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Objectives
• Helper methods
• __cmp__ method
• Group Work: Designing Classes
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Helper Methods
• Sometimes, you may need helper methods

that are part of the class but are not meant to
be part of the class’s API
Make your code easier but others outside the

class shouldn’t use
• Convention: method name begins with “_”
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Example Helper Methods
• Only loosely enforces that other can’t use

Doesn’t show up in help
Does show up in dir

def _isFaceCard(self):
if self.rank > 10 and self.rank < 14:

return True
return False

Helper Method: 

def rummyValue(self):
if self._isFaceCard():

return 10
elif self.rank == 14:

return 15
else:

return 5

In use:
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Comparing Objects of the Same Type
• Special __cmp__ method

 Header: _cmp__(self, other)
• other is another object of the same type

 Returns
• Negative integer if self < other
• 0 if self==other
• Positive integer if self > other

• Similar to implementing Comparable interface in
Java

• If no __cmp__ method, defaults to comparing
memory addresses of objects

card3_nocmp.py
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Comparing Objects of the Same Type
• What uses the __cmp__ method?

Comparison operators: <,>,==, etc.
List’s sort() method

• Works best if list contains all the same type of
objects
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Another Example of __cmp__

card5.py

def __cmp__(self, other):
if self.getSuit() < other.getSuit():

return -1
if self.getSuit() > other.getSuit():

return 1
# same suit; differentiate by rank
if self.getRank() < other.getRank():

return -1
if self.getRank() > other.getRank():

return 1
return 0

Comparing by suit then rank; order is 2 Clubs,
3 Clubs, …, Ace Clubs, 2 Diamonds, 3 Diamonds, …
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Summary: Designing Classes
• What does the object/class represent?
• How to model/represent the class’s data?

 Instance variable
Data type

• What functionality should objects of the class
have?
How will others want to use the class?
Put into methods for others to call (API)

• In general, the nouns in a problem are the
classes/objects, verbs are the methods
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Benefits of Classes
• Package/group related data into one object
• Reusing code

E.g., Don’t need to check if user put in valid key
• Provide interface, can change underlying 

implementation without affecting calling code
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Changing Implementations
• Same API, different implementations

def __init__(self, rank, suit):
self.rank = rank
self.suit = suit

def getRank(self):
return self.rank

def getSuit(self):
return self.suit

def __init__(self, rank, suit):
self.cardid=rank
if suit == “clubs”:

self.cardid += 13
elif suit == “hearts”:

self.cardid += 26
elif suit == “diamonds”:

self.cardid += 39

def getRank(self):
return (self.cardid-2) % 13 + 2

def getSuit(self):
suits = ["spades", "clubs", "hearts", "diamonds"]

      whichsuit = (self.cardid-2)/13
      return suits[whichsuit]

Tradeoff: Saving
information (memory);
Computing information
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Considerations for Using Classes
• Only use class if you’re using most of its

functionality/information
Don’t use Counter for validating if a number is

within the valid range
• Because not using the wrapping/current value

• Since don’t know implementation, may
inadvertently duplicate code
Redo something done by class
Could have efficiency penalties
But time saved reusing code is usually worth it
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Top-Down Design
• Break down larger problems into pieces that

you can solve
Smaller pieces: classes, methods, functions
 Implement smallest pieces and build up

• We’ve been doing this most of the semester
Typically, program was 1) read input, 2) process

input, 3) print result
• Started putting Step 2 into >= 1 functions
• Steps 1 and 3 were sometimes a function

Now: on larger scale
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Design a Music Manager
• Reads your music library from a file
• Displays the songs in your music library
• Stores your music library in a file
• Allows you to add songs to your library from

a file
• Keeps track of the total length of your music

library
• Allows you to sort the songs in your library
• Provides a user interface to do these things
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Designing a Music Manager
• Break down into pieces
• What classes do we need?

What data needed to model those classes?
What functionality do each of those classes

need?
• What does our driver program (user

interface) do?
• How should we implement those

classes/program?
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Designs
• For each of your classes

Data
API

Group 1: Greg, Dave, Joe, Colin
Group 2: Alex, Nay, Julie, Vasil
Group 3: Ty, Clay, Arturo
Group 4: Joa, Lucy, Stuart 
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Music Manager Classes/Driver Data
• MusicLibrary

 Songs
 Total length
 Filename

• Song
 Title
 Artist name
 Album name
 Length

• PlayTime
 Days, hours,
 Minutes, seconds

• Driver (UI)
 Music library

What are the data types for each
class’s data?
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MM Classes/Driver Functionality
• MusicLibrary

 Getters (accessors)
 String rep
 Reading library from file
 Saving library to file
 Adding albumclear
 Sorting

• Song
 Getters
 String rep
 Comparator
 Writing to a file

• PlayTime
 Getters, String rep
 Adding play time

• Driver
 Getting user input to

• Read library, album
files

• Store library to file
• Sort songs
• View songs

 Summary: call
appropriate methods on
classes to do above

(given)
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Lab 10 Design
• 2 files: music.py and mytunes.py

PlayTime (given)
Song

Music Collection
(test functions)

music.py

Driver

• Uses MusicCollection object
• Gets command-line argument
• Handles UI
• Calls methods on the MC object

mytunes.py
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Problem: Album Music Files
• Given an album file that has the format

 <Artist name>
 <Album name>
 <number of songs>
 <Song name 1>
 <Song length 1>
 …
 <Song name n>
 <Song length n>

• Write algorithm to create Song objects to represent
each song

Length has the format
min:seconds
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Problem: Library Music Files
• Given a library file that has the format

 <number of songs>
 <Song artist 1>
 <Song album 1>
 <Song name 1>
 <Song length 1>
 …
 <Song artist n>
 <Song album n>
 <Song name n>
 <Song length n>

• Create a MusicLibrary object
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UI Specification
• Checks if user entered a command-line argument

 Default library: libraries/mytunes.library
• Read library from file
• Repeatedly gets selected options from the user,

until quits
• Repeatedly prompts for new selection if invalid

option
• Executes the appropriate code for the selection
• Stops when user quits
• Stores the library into the file Demonstrate program

Write pseudocode
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UI Pseudocode

Use default library if only one command-line argument
Read library from file
while True:

display menu options
prompt for selection
while invalid option

print error message
prompt for selection

break if selected quit
otherwise, do selected option

Store library to designated file
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Implementation Plan
• Review PlayTime class

 How will you create a PlayTime object?
 How will you use it?

• Implement Song class
 Test (write test functions, e.g., testSong())

• Implement MusicCollection class
 Example runs in lab write up
 Note: in general, methods for classes will not prompt for

input (Use input parameters)
 Test

• Implement driver program
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Plan for Implementing a Class
• Write the constructor and string

representation/print methods first
• Write function to test them
• While more methods to implement …

Write method
Test

• See counter.py and card.py for example test
functions
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Broader Issue
• One Laptop Per Child Project

Main story on CS111 page
Blog entry has a lot of other interesting links,

videos


