
1

Mar 17, 2008Mar 17, 2008 Sprenkle - CS111Sprenkle - CS111 11

Objectives
• Defining our own classes

Mar 17, 2008Mar 17, 2008 Sprenkle - CS111Sprenkle - CS111 22

Lab 8 Info
• Due tomorrow before lab (2:25)

Do not be printing just before lab
Professor Levy leading the Quagents lab

• Additional office hours:
Today, 2:30-4:40
Tomorrow, 11-1

Mar 17, 2008Mar 17, 2008 Sprenkle - CS111Sprenkle - CS111 33

Lab 8 Info
• Name frequencies

Size of files
• Females: 1042
• Males: 1139
• Last names: 2181

Could process a larger file without changing
processing code

Mar 17, 2008Mar 17, 2008 Sprenkle - CS111Sprenkle - CS111 44

Deal or No Deal
• Problem #1 of lab relates to printBoard,

not printCasesLeft
•printCasesLeft hint:

When do you print a case?
What is the difference between the print

statements for these and this one?

How can you distinguish between these cases?

 4 7 9 10
12 13 14 15
…

Mar 17, 2008Mar 17, 2008 Sprenkle - CS111Sprenkle - CS111 55

Deal or No Deal Hints
•printBoard hint

 Is that the same condition?

When should you
print this value?

When should you
print this value?

 The Board:
$ 0.01 ----
$ 1.00 $ 5000.00

Mar 17, 2008Mar 17, 2008 Sprenkle - CS111Sprenkle - CS111 66

Abstractions
• Provide ways to think about the program and its

data
 Get the jist without the details

• Examples we’ve seen
 Functions and methods

• Used to perform some operation but we don’t need to
know how they’re implemented

 Dictionaries
• Know they map keys to values
• Don’t need to know how the keys are organized/stored in

the computer’s memory
 Just about everything we do in this class…

2

Mar 17, 2008Mar 17, 2008 Sprenkle - CS111Sprenkle - CS111 77

Classes and Objects
• Provide an abstraction for how to organize

and reason about data
• Example: GraphWin class

Had attributes (i.e., data or state) background
color, width, height, and title

Each GraphWin object had these attributes
• Each GraphWin object had its own values for

these attributes
Used methods to modify the object’s state.

Mar 17, 2008Mar 17, 2008 Sprenkle - CS111Sprenkle - CS111 88

Defining Our Own Classes
• Often, we want to represent data or

information that we don’t already have a way
to represent using built-in types or libraries

• Provide way to organize and manipulate data
Organize: data structures used

• E.g., ints, lists, dictionaries, other objects, etc.
Manipulate: methods

Mar 17, 2008Mar 17, 2008 Sprenkle - CS111Sprenkle - CS111 99

What is a Class?
• Defines a new data type
• Defines the class’s attributes (i.e., data) and

methods
Methods are functions within a class and are

the class’s API

Object o
of type

Classname

Internal
data hidden
from others

Other objects
manipulate using
methods

1010Sprenkle - CS111Sprenkle - CS111

Defining a Card Class
• Create a class that represents a playing card

How can we represent a playing card?
What information do we need to represent a

playing card?

Mar 17, 2008Mar 17, 2008 Sprenkle - CS111Sprenkle - CS111 1111

Representing a Card object
• Every card has two attributes:

Suite (one of “hearts”, “diamonds”, “clubs”,
“spades”)

Rank
• 2-10: numbered cards
• 11: Jack
• 12: Queen
• 13: King
• 14: Ace

Mar 17, 2008Mar 17, 2008 Sprenkle - CS111Sprenkle - CS111 1212

Defining a New Class
• Syntax:

class <class-name>:
<method definitions>

Typically starts with
a capital letter

3

Mar 17, 2008Mar 17, 2008 Sprenkle - CS111Sprenkle - CS111 1313

Card Class (Incomplete)
class Card:
 """
 A class to represent a standard playing card. The ranks are ints:
 2-10 for numbered cards, 11=Jack, 12=Queen, 13=King, 14=Ace.
 The suits are strings: 'clubs', 'spades', 'hearts', 'diamonds'.
 """
 def __init__(self, rank, suit):
 "Constructor for class Card takes int rank and string suit."
 self.rank = rank
 self.suit = suit

 def getRank(self):
 "Returns the card’s rank."
 return self.rank

 def getSuit(self):
 "Returns the card’s suit."
 return self.suit

Doc String

card.py

M
et
h
o
d
s

Mar 17, 2008Mar 17, 2008 Sprenkle - CS111Sprenkle - CS111 1414

Card Class (Incomplete)
class Card:
 """
 A class to represent a standard playing card. The ranks are ints:
 2-10 for numbered cards, 11=Jack, 12=Queen, 13=King, 14=Ace.
 The suits are strings: 'clubs', 'spades', 'hearts', 'diamonds'.
 """
 def __init__(self, rank, suit):
 "Constructor for class Card takes int rank and string suit."
 self.rank = rank
 self.suit = suit

 def getRank(self):
 "Returns the card’s rank."
 return self.rank

 def getSuit(self):
 "Returns the card’s suit."
 return self.suit

Doc String

card.py

M
et
h
o
d
s

Methods are functions
defined in a class.

1515Sprenkle - CS111Sprenkle - CS111

Defining the Constructor
• __init__ method is the constructor
• In constructor, define instance variables

Data contained in every object
Also called attributes or fields

• Constructor does not return anything

def __init__(self, rank, suit):
 "Constructor for class Card takes int rank and string suit."
 self.rank = rank
 self.suit = suit

First parameter of every method is self
- pointer to the object that method

acts on

Instance variables

Mar 17, 2008Mar 17, 2008 Sprenkle - CS111Sprenkle - CS111 1616

Using the Constructor
• As defined, constructor is called using
Card(<rank>,<suit>)
Do not pass anything for the self parameter
Python handles underneath, passing the

parameter for us automatically
• Example:

card = Card(2, “hearts”)

Creates a 2 of Hearts card
Underneath, Python passes card as self for

us

Object card
of type Card

rank = 2
suit = “hearts”

Mar 17, 2008Mar 17, 2008 Sprenkle - CS111Sprenkle - CS111 1717

Accessor Methods
• Need to be able to get information about the

object

• These will get called as card.getRank()
and card.getSuit()
Python plugs card in for self

 def getRank(self):
 "Returns the card’s rank."
 return self.rank

 def getSuit(self):
 "Returns the card’s suit."
 return self.suit

• Have self parameter
• Return data

Mar 17, 2008Mar 17, 2008 Sprenkle - CS111Sprenkle - CS111 1818

Another Special Method: __str__
• Returns a string that

describes the object
• Whenever you
print an object,
Python checks if you
have defined the
__str__ method to
see what should be
printed

• str(<object>) also
calls __str__ method

 def __str__(self):
 “””Returns a string describing

the card as 'rank of suit'.”””
 result = ""
 if self.rank == 11:
 result += "Jack"
 elif self.rank == 12:
 result += "Queen"
 elif self.rank == 13:
 result += "King"
 elif self.rank == 14:
 result += "Ace"
 else:
 result += str(self.rank)
 result += " of " + self.suit
 return result

4

Mar 17, 2008Mar 17, 2008 Sprenkle - CS111Sprenkle - CS111 1919

Using the Card Class
def main():
 c1 = Card(14, "spades")
 print c1
 c2 = Card(13, "hearts")
 print c2

Invokes the
__str__ method

Displays:

Ace of spades
King of hearts

Object c1 of
type Card

rank = 14
suit = “spades”

Object c2 of
type Card

rank = 13
suit = “hearts”

Mar 17, 2008Mar 17, 2008 Sprenkle - CS111Sprenkle - CS111 2020

Example: Black Jack Value
• Add a method to the Card class called

blackJackValue that returns the value of
the card in the game of black jack.
Have Jack, Queen, and King be worth 10
Ace is worth 1
All the other cards have the value of their rank

• What is the method header?

card2.py

2121Sprenkle - CS111Sprenkle - CS111

Example: Rummy Value
• Add a method to the Card class called

rummyValue that returns the value of the
card in the game of Rummy

card2.py Mar 17, 2008Mar 17, 2008 Sprenkle - CS111Sprenkle - CS111 2222

Card API
• Based on what we’ve seen/done so far, what

does the Card class’s API look like?

2323

Instance
Variables:
rank, suit

Sprenkle - CS111Sprenkle - CS111

Card API
• Card(<rank>, <suit>)
• getRank()
• getSuit()
• blackJackValue()
• rummyValue()
• __str__()

Object o of
type Card

Implementation of
methods is hidden

API

2424Sprenkle - CS111Sprenkle - CS111

Defining a Card Class
• Create a class that represents a playing card

How can we represent a playing card?
What information do we need to represent a

playing card?

• Do we need a class to
represent a card?
Does any built-in data
type naturally represent a
card?

5

Mar 17, 2008Mar 17, 2008 Sprenkle - CS111Sprenkle - CS111 2525

Using the Card class
• Now that we have the Card class, how can

we use it?
• Can make a Deck class

What data should a Deck contain?
How can we represent that data?

• To start: write methods __init__ and __str__
What do the method headers look like?

Mar 17, 2008Mar 17, 2008 Sprenkle - CS111Sprenkle - CS111 2626

Creating a Deck Class (Partial)
• List of Card objects

from card import *

class Deck:
 def __init__(self):
 self.cards = []
 for suit in ["clubs","hearts","diamonds","spades"]:
 for rank in range(2,15):
 self.cards.append(Card(rank, suit))

 def __str__(self):
 result = ""
 for c in self.cards:
 result += c.__str__() + "\n"
 return result

Displays cards
on separate lines

Initialize instance variable,
self.cards

Creates and returns a string

Mar 17, 2008Mar 17, 2008 Sprenkle - CS111Sprenkle - CS111 2727

Deck API
• What methods should our Deck class

provide?

2828Sprenkle - CS111Sprenkle - CS111

Adding Deck Functionality
• Functionality:

Shuffle the cards
Deal one card
Number of cards remaining

• What do the method headers look like?
• What should they return?
• How do we implement them?

Mar 17, 2008Mar 17, 2008 Sprenkle - CS111Sprenkle - CS111 2929

Deck API
• Deck()
• shuffle()
• deal()
• numRemaining()
• __str__()

Constructor

Mar 17, 2008Mar 17, 2008 Sprenkle - CS111Sprenkle - CS111 3030

Broader Issue
• Facebook knows what you did last summer

