
1

Sep 12, 2007Sep 12, 2007 Sprenkle - CS111Sprenkle - CS111 11

ObjectivesObjectives

• Review
Linux
Why programming languages?

• Compiled vs. Interpreted Languages
• Programming in Python

Data types
Expressions
Variables
Comments
Arithmetic

Sep 12, 2007Sep 12, 2007 Sprenkle - CS111Sprenkle - CS111

Review: LinuxReview: Linux

• How do you …
Learn more about a Linux command?
List the files in a directory?
Change your current directory?
Make a directory?
Find out the current directory?

• What is the shortcut for …
The current directory?
The parent directory?

Sep 12, 2007Sep 12, 2007 Sprenkle - CS111Sprenkle - CS111

Review: Linux File StructureReview: Linux File Structure

usr etchome

/

coursesstudents www tmpfaculty

Your
directories

cs111

labs

lab0

handouts turnin

Your web
pages

Paths through tree
Relative paths Sep 12, 2007Sep 12, 2007 Sprenkle - CS111Sprenkle - CS111

Why Do We Need ProgrammingWhy Do We Need Programming
Languages?Languages?
• Computers can’t understand English

Too ambiguous (PB&J)

• Humans can’t easily write machine code
Problem Statement (English)

Algorithm/Pseudocode

Bytecode

High-level Programming Language (Python)

Machine code/Central Processing Unit (CPU)

Programmer (YOU!)
translates from
problem to algorithm
(solution) to program

Python interpreter
translates into
bytecode

Sep 12, 2007Sep 12, 2007 Sprenkle - CS111Sprenkle - CS111

Why Do We Need ProgrammingWhy Do We Need Programming
Languages?Languages?
• Computers can’t understand English

Too ambiguous (PB&J)

• Humans can’t easily write machine code
Problem Statement (English)

Algorithm/Pseudocode

Bytecode

High-level Programming Language (Python)

Machine code/Central Processing Unit (CPU)

Python interpreter
executes the
bytecode in a “virtual
machine”

Sep 12, 2007Sep 12, 2007 Sprenkle - CS111Sprenkle - CS111

Python InterpreterPython Interpreter
1. Validates the Python programming language

expression
• Enforces Python syntax
• Reports syntax errors

2. Simulates a computer (executes the expression)
• Runtime errors (e.g., divide by 0)

• Semantic errors (not what you meant)

Interpreter
(python)

Python
expression

Output
Executable
bytecode

Have a lot of these early on!

• Good way to test
expressions

• What you were
doing in the “shell”



2

Sep 12, 2007Sep 12, 2007 Sprenkle - CS111Sprenkle - CS111 77

Our Programming ProcessOur Programming Process

1. Programmer types a program/script into a
text editor (jEdit or IDLE).

2. An interpreter turns each expression into
bytecode and then executes each expression

Interpreter
(python)

Program
text file

program.py  

Output

Text Editor
(jEdit or IDLE)

Executable
bytecode

1 “line”
at a time

• Get feedback about which
line caused the problem

• Interpreter stops
validating/executing lines

Sep 12, 2007Sep 12, 2007 Sprenkle - CS111Sprenkle - CS111

Compiled LanguagesCompiled Languages

• Examples: Java, C++, C, etc.
• Compile whole program into

bytecode/executable format
• Then, execute the bytecode/machine code

Sep 12, 2007Sep 12, 2007 Sprenkle - CS111Sprenkle - CS111 99

Compiled Language ProgrammingCompiled Language Programming
ProcessProcess
1. Compiler compiles program

• Validate program, report syntax errors
• Creates executable (bytecode or machine code)

2. Execute executable

Compiler
Program
text file

Output

Text Editor

Executable
Bytecode or

Machine code

Validates whole program

Sep 12, 2007Sep 12, 2007 Sprenkle - CS111Sprenkle - CS111

Compiled Compiled vsvs. Interpreted Languages. Interpreted Languages

Compiler
Program
text file

Output

Text Editor

Executable
Bytecode or

Machine code

Interpreter
Program
text file

Output

Text Editor

Executable
bytecode

1 “line”
at a time

Compiled:

Interpreted:

Validates whole program

+ immediate feedback

+ execution speed

Sep 12, 2007Sep 12, 2007 Sprenkle - CS111Sprenkle - CS111 1111

Parts of an AlgorithmParts of an Algorithm
Primitive operations

 What data you have, what you can do to the data

• Naming
 Identify things we’re using

• Sequence of operations
• Conditionals

 Handle special cases

• Repetition/Loops
• Subroutines

 Call, reuse similar techniques

An overview for

the sem
ester!

Sep 12, 2007Sep 12, 2007 Sprenkle - CS111Sprenkle - CS111 1212

Primitive TypesPrimitive Types

• Variable types are the kind of thing a
variable can hold

• Broadly, the categories of primitive types are
Numeric
Boolean
Strings



3

Sep 12, 2007Sep 12, 2007 Sprenkle - CS111Sprenkle - CS111 1313

Numeric Primitive TypesNumeric Primitive Types

1j * 1J --> (-1+0j)Imaginary
numbers (have
real and imaginary
part)

complex

ExamplesDescriptionData Type

Bigger integers
(neg or pos,
precision limited by
computer memory)

Real numbers

Plain integers (32-
bit precision)

2147483648L
long

.001, -1.234, 1000.1, 0.00,
2.45

float

-214, -2, 0, 2, 100

Range: -231 to 231-1
int

Copy on board Sep 12, 2007Sep 12, 2007 Sprenkle - CS111Sprenkle - CS111 1414

How big (or small or precise) can weHow big (or small or precise) can we
get?get?
• We cannot represent all values
• Problem: Computer has a finite capacity

The computer only has so much memory that it
can devote to one value.

Eventually, reach a cutoff
• Limits size of value
• Limits precision of value

In reality, computers represent data in binary, using only 0s and 1s

0  0  0  0  0  3  .  1  4  1  5  9  2  6  5

PI has more decimals,
but we’re out of space!

Sep 12, 2007Sep 12, 2007 Sprenkle - CS111Sprenkle - CS111 1515

Strings: Strings: strstr

• Indicated by double quotes “” or single
quotes ‘’

• Treat what is in the “” or ‘’ literally
Known as string literals

• Examples:
 “Hello, world!”
 “c”
 “That is Sara’s cat”

Sep 12, 2007Sep 12, 2007 Sprenkle - CS111Sprenkle - CS111

Booleans: Booleans: boolbool

• 2 values
True
False

• More on these later…

Sep 12, 2007Sep 12, 2007 Sprenkle - CS111Sprenkle - CS111 1717

What is the valueWhat is the value’’s type?s type?

‘false’
True

4047583648L

“int”

4+6j
-0.01

52
TypeValue

Sep 12, 2007Sep 12, 2007 Sprenkle - CS111Sprenkle - CS111 1818

Introduction to VariablesIntroduction to Variables

• Variables have names, called identifiers
• A variable name (identifier) can be any one

word that:
Consists of letters, numbers, or _
Cannot start with a number
Cannot be a Python reserved word

• like for, while, def, etc.

• Python is case-sensitive:
change isn’t the same as Change



4

Sep 12, 2007Sep 12, 2007 Sprenkle - CS111Sprenkle - CS111 1919

Variable Name ConventionsVariable Name Conventions

• Variables start with lowercase letter
• Constants (values that won’t change) are in

all capitals

• Example: Variable for the current year
 currentYear
 current_year
 current year
CURRENT_YEAR

Sep 12, 2007Sep 12, 2007 Sprenkle - CS111Sprenkle - CS111

Variable SemanticsVariable Semantics

Computer
Memory

x = 5
y = x + 1

x

5

y 6

Sep 12, 2007Sep 12, 2007 Sprenkle - CS111Sprenkle - CS111 2121

AssignmentsAssignments
• Variables can be given any value using the

“=“ sign
 called an assignment statement

• Syntax: <variable> = <expression>
• After a variable is given a value, the variable

is said to be initialized.
• These aren’t equations! Read “=” as “gets”

current_year = 2007;
my_num = 3.4;
option = ‘q’;

Sep 12, 2007Sep 12, 2007 Sprenkle - CS111Sprenkle - CS111 2222

Variables: The RulesVariables: The Rules

1. Only the variable(s) to the left of the =
change

2. You should initialize a variable before using
it on the righthand side (rhs) of a rule.

3. You can only have one variable with any
given name in a particular block.

Sep 12, 2007Sep 12, 2007 Sprenkle - CS111Sprenkle - CS111 2323

LiteralsLiterals

• Pieces of data that are not variables are
called literals.

• Ex:
4
3.2
‘q’
“books”

Sep 12, 2007Sep 12, 2007 Sprenkle - CS111Sprenkle - CS111

Arithmetic OperationsArithmetic Operations

Exponentiation (power)**

Remainder (“mod”)%

Division/

MeaningSymbol

Multiplication

Subtraction

Addition

*

-

+



5

Sep 12, 2007Sep 12, 2007 Sprenkle - CS111Sprenkle - CS111 2525

ArithmeticArithmetic

• You can use the assignment operator (=)
and arithmetic operators to do calculations.

• Remember your order of operations!
(PEMDAS)

• The thing on the left gets changed.
x = 4+3*10;
y = 3.0/2.0;
z = x+y;

The right-hand sides are
expressions, just like in
math.

Sep 12, 2007Sep 12, 2007 Sprenkle - CS111Sprenkle - CS111 2626

Printing OutputPrinting Output

• print is a function
Function: A command to do something
Displays the result of expression(s) to the

terminal

• print “Hello, class”

• print “Your answer is”, answer
string literal

print automatically adds a ‘\n’
(carriage return) after it’s printed

Use commas to
print multiple

“things” in one line

Sep 12, 2007Sep 12, 2007 Sprenkle - CS111Sprenkle - CS111

Getting Input From UserGetting Input From User
• input and raw_input are functions

Prompts user for input, gets the user’s input
 input: for numbers
 raw_input for strings

• Typically used in assignments
width = input(“Enter the width: “)

• In execution, terminal displays
 “Enter the width: ”
Assigns width the value the user enters

Sep 12, 2007Sep 12, 2007 Sprenkle - CS111Sprenkle - CS111

Getting Input from UserGetting Input from User
• color = raw_input(“What is your favorite color? ”)

> python input_demo.py
What is your favorite color? blue
Cool!  My favorite color is _light_ blue !

Terminal:
Grabs every character up to
the user presses “enter”

Assigns variable color that input

Sep 12, 2007Sep 12, 2007 Sprenkle - CS111Sprenkle - CS111

Documenting Your CodeDocumenting Your Code
• Use English to describe what your program is

doing in comments
Everything after a # is a comment

• Color-coded in IDLE, jEdit
Python does not execute comments

• How to Use Comments
Document the author, high-level description of

the program at the top of the program
Provide an outline of an algorithm

• Identifies the steps of the algorithm
Describe difficult-to-understand code

Sep 12, 2007Sep 12, 2007 Sprenkle - CS111Sprenkle - CS111

Identify the Pieces of a ProgramIdentify the Pieces of a Program
# Demonstrate numeric and string input
# by Sara Sprenkle for CS111 on 9/12/07
#

color = raw_input("What is your favorite color? ")
print "Cool!  My favorite color is _light_", color, "!"

scale = input("On a scale of 1 to 10, how much do you like Matt Damon? ")
print "Cool!  I like him ", scale*1.8, " much!"

Identify the comments, variables, functions, expressions,
assignments



6

Sep 12, 2007Sep 12, 2007 Sprenkle - CS111Sprenkle - CS111

Identify the Pieces of a ProgramIdentify the Pieces of a Program
# Demonstrate numeric and string input
# by Sara Sprenkle for CS111 on 9/12/07
#

color = raw_input( "What is your favorite color? ” )
print "Cool!  My favorite color is _light_” , color, "!"

scale = input( "On a scale of 1 to 10, how much do you like Matt Damon? ” )
print "Cool!  I like him ” , scale*1.8, " much!"

Identify the comments, variables, functions, expressions,
assignments, literals

expression

Sep 12, 2007Sep 12, 2007 Sprenkle - CS111Sprenkle - CS111 3232

PracticePractice

• Average three numbers


