Obijectives

Search strategies
Exceptions
Broader Issue: One Laptop Per Child

Mar 28, 2007 Sprenkle - CS111

Search Using in Review

Iterates through a list, checking if the
element is found

Known as linear search
Implementation:

def inSearch(searchlist, key):
for elem in searchlist:
if elem == key:
return True
return False

value| 8 5 3 7

pos 0 1 2 3

What are the strengths and weaknesses of
implementing search this way?

Mar 28, 2007 Sprenkle - CS111 Search.py 2

Linear Search

Overview: lterates through a list, checking if
the element is found
Benefits:
Works on any list
Drawbacks:
Does not tell us where in the list it is
What if wanted to do something to that element?
Could implement our own version that returns the
position
Slow -- needs to check each element of list if the
element is not in the list

Mar 28, 2007 Sprenkle - CS111

Strategy: Eliminate Half the
Possibilities
Repeat until find value (or looked through all
values)
Guess middle value of possibilities
(not middle position)
If match, found!
Otherwise, find out too high or too low
Modify your possibilities
Eliminate the possibilities from your number and
higher/lower, as appropriate

Known as Binary Search

Mar 28, 2007 Sprenkle - CS111 4

A Binary Search Solution

def search(searchlist, key):
low=0
high = len(searchlist)-1
while low <= high :
mid = (low+high)/2
if searchlistimid] == key:

return mid # return True
elif key > searchlist[mid]:
low = mid+1 If you just want to
else: know if it's in the list
high = mid-1

return -1 # return False

Mar 28, 2007 Sprenkle - CS111 search2.py 5

Binary Search

Example of a algorithm
Break into smaller pieces that you can solve

Benefits:
Faster to find elements (especially with larger
lists)

Drawbacks:

Requires that data can be compared
method implemented by the class
List must be sorted before searching
Takes time to search

Mar 28, 2007 Sprenkle - CS111 6




Empirical Study of Search Techniques

Goal: Determine which technique is better
under various circumstances

How long does it take to find various keys?
Measure by the number of comparisons
Vary the size of the list and the keys
What are good tests for the lists and the keys?

Mar 28, 2007 Sprenkle - CS111 searchfcompare.py 7

Empirical Study of Search Techniques
By how much did the number of comparisons
for vary?

By how much did the number of comparisons
for vary?

What conclusions can you draw from these
results?

Mar 28, 2007 Sprenkle - CS111 searchfcompare.py 8

Modifying Solution

def search(searchlist, key):
low=0

What if we had a list of Cards
instead of a list of integers?
. . ¢ What needs to be changed?
high = len(searchlist)-1 « What has to be done/verified
while low <= high : in the Card class?

mid = (low+high)/2

if searchlist{mid] == key:
return mid
elif key > searchlistimid]:  # look in upper half
low=mid+1
else: # look in lower half
high = mid-1
return -1

Mar 28, 2007 Sprenkle - CS111 9

Extensions to Solution

def search(searchlist, key): Consider what happens when

low=0 searchlist is a list of Songs

high = len(searchlist)-1 ¢ What if we wanted to check

while low <= high : if the song’s title matched the
mid = (low+high)/2 key and return the song?

if searchlist{mid] == key:
return mid
elif key > searchlist{mid]:
low=mid+1
else:
high = mid-1
return -1

Mar 28, 2007 Sprenkle - CS111 10

Extensions to Solution
Consider what happens when
searchlist is a list of Songs
low=0 ) * What if we wanted all the
high = len(searchlist)-1 songs with the title that
while low <= high : matched the key?

mid = (low+high)/2

def search(searchlist, key):

if searchlist{mid] == key:
return mid
elif key > searchlist{mid]:
low=mid+1
else:
high = mid-1
return -1

Mar 28, 2007 Sprenkle - CS111 "

Summary of Extensions to Solution

Check the of the Song at the midpoint

Get the songs before and after that song in the list
that have the same title and put in a list
Represent, handle when no song matches

For “most intuitive” results:

Strip, lowercase the key
Which means what for your algorithm?

Note: we’re not just implementing “title contains”
How could we implement that?

Mar 28, 2007 Sprenkle - CS111 12




Search Strategies Summary

Which search strategy should | use under the
various circumstances?
| have a short list

| have a long list

| have a long sorted list

Mar 28, 2007 Sprenkle - CS111 13

Search Strategies Summary

Which search strategy should | use under the
various circumstances?
I have a short list
How short? How many searches? Linear (in)
| have a long list
Linear (in) - because don’t know if in order,

comparable
| have a long sorted list
Binary
Mar 28, 2007 Sprenkle - CS111 14

Validating User Input

def main():
#Program mission statement
print "This program determines your birth year"
print "given your age and the current year \n"

age=input("Enter your age: ")
currentyear=input("Enter the current year: ")

#Subtract age from current year

birthyear=currentyear - age

#Display output to the user

print "You were either born in", birthyear, "or", birthyear-1

Mar 28, 2007 Sprenkle - CS111 15

Validating User Input

def main():
#Program mission statement
print "This program determines your birth year
print "given your age and the current year \n"

age=input("Enter your age: ")
currentyear=input("Enter the current year: ")

if age < 0 or age > 115:
print "Come on: that's not a reasonable age.”
elif currentyear < 0:
print "You need to have a positive year."
else:
birthyear=currentyear - age
print "You were either born in", birthyear, "or", birthyear-1

Mar 28, 2007 Sprenkle - CS111 birthyear.py 16

Validating User Input

What happened when the user entered
something like “B6”?

Mar 28, 2007 Sprenkle - CS111 17

Validating User Input

What happened when the user entered
something like “B6”?
Threw an Exception and the program exited

Python interpreter’'s message:

Enter your age: B6
Traceback (most recent call last):
File "currentAge.py", line 22, in <module>
main()
File "currentAge.py", line 9, in main
age=input("Enter your age: ")
File "<string>", line 1, in <module>
NameError: name 'B6' is not defined

Mar 28, 2007 Sprenkle - CS111 18




Handling Exceptions

Using try/except statements
Syntax:

try:
<body> _|_Optional: use this to
except [<errorType>]:| handle specific error
<handler> types appropriately
Example:
try:

age = input(“Enter your age: ")

currentyear = input(“Enter the current year: ")
except:

print “ERROR: Your input was not in the correct form.”

print “Enter integers for your age and the current year”

return

Mar 28, 2007 Sprenkle - CS111 yearbomzlpy 19

Handling Exceptions

Could put try/catch statements in a loop to
make sure user enters valid input
Example: birthyear3.py

Other types of exceptions
File exceptions:
File doesn’t exist
Don’t have permission to read/write file

Mar 28, 2007 Sprenkle - CS111 file_handle. py 20

Group 1: Vasil, Stuart, Greg

Broader Issues Group 2: Alex, Clay, Nay, Colin
Group 3: Joa, Joe, Dave

One Laptop Per Child

An experiment on bringing cheap but
educational technology to poor children

What challenges did OLPC face and how did
that affect their design decisions?

What are some unusual features of the
laptop?

What does this technology mean for better-
off countries?

Is this project worthwhile?

Mar 28, 2007 Sprenkle - CS111 21

Discussion

Challenge |Design Decision

New, cheap battery; Consumes less power;
Lack of power |Alternative power sources: solar power, pull
cord

Software bloat |Rewrite code more compactly, efficiently

Environment Dust proof, drop proof, light

Simple user interfaces; tiny keyboard;
Users: children | lightweight; applications keep students
interested

Cost Linux, Python, open-sources tools; cheaper
battery; no hard drive; no CD/DVD drive

Mar 28, 2007 Sprenkle - CS111 22




