Obijectives

More on Functions
Scope, variable lifetime

Defining Modules

Feb 27, 2008 Sprenkle - CS111

Quick Review

The data type of the loop variable depends
on what'’s after in

string = “some string”

) . What is the data
for x in xrange(len(string)): type the loop

loop body ... variable x?

for x in string:
loop body ...

Feb 27, 2008 Sprenkle - CS111 2

Quick Review

The data type of the loop variable depends
on what'’s after in

string = “some string”

for x in xrange(len(string)): Integer
loop body ...

for x in string: String
loop body ...

Feb 27, 2008 Sprenkle - CS111

Functions

In general, a function can have

0 or 1 outputs (what is returned)

When we define a function, we know its
and if it has output

function_name output

Feb 27, 2008 Sprenkle - CS111 4

Syntax of Function Definition

Keyword Function Input Name/
Name Parameter

def metersToMiles() I Function header
METERS_TO_MILES = .0006215

miles = meters * METERS_TO_MILES
return miles

Body (or
function
definition)

Output
Keyword:

How to give output

Feb 27, 2008 Sprenkle - CS111

Parameters

are the variables named
in the the function definition.

or are the
variables or literals that really get used when
the function is called. Formal
Actual

Defined: def round(X, n) : /
Use: roundCelc = round(celc, 2)
Formal & actual parameters must match in

order, number, and type!

Feb 27, 2008 Sprenkle - CS111 6

Passing Parameters

Only copies of the actual parameters are
given to the function
for immutable data types (which are what we've
talked about so far)
The actual parameters in the calling code do
not change

Feb 27, 2008 Sprenkle - CS111 7

Function Output

When the code reaches a statement like
return x

x is the output returned to the place where

function called and the function stops

For functions that don’t have explicit output,
return does not have a value with it, e.g.,

return
Optional: don’t need to have return (see menu.py)

Feb 27, 2008 Sprenkle - CS111 8

Why write functions?

Allows you to break up a hard problem into smaller,
more manageable parts

Makes your code easier to understand
Hides implementation details (abstraction)
Provides interface (input, output)
Makes part of the code reusable so that you:
Only have to write function code once
Can debug it all at once
Isolates errors
Can make changes in one function (maintainability)
Similar to benefits of classes in OO Programming

Feb 27, 2008 Sprenkle - CS111 9

Where are Functions Defined?

Functions can go inside of program script
Defined before use/called (if no main() function)
Functions can go inside a separate module
Reduces code in main script
Easier to reuse by importing from a module
Maintains the “black box”
Isolates testing of function

Write “test driver” scripts to test functions
separately from use in script

Feb 27, 2008 Sprenkle - CS111 10

Program Organization: main function

In many languages, you put the “driver” for
your program in a main function

You can (and should) do this in Python as well
Typically main functions are defined at the
top of your program

Readers can quickly see what program does
main usually takes no arguments

Example: def main():

Feb 27, 2008 Sprenkle - CS111 "

Program With main () & Functions
def main():
print "This program converts binary numbers to decimal numbers."

binary_string = raw_input("Enter a number in binary: ")

Presents overview of what

while not isBinary(binary_string) :
program does (hides details)

print "Sorry, that is not a binary string"
binary_string = raw_input("Enter a number in binary: ")
print "The decimal value is", binaryToDecimal(binary_string)
def isBinary(binary_string):
def. .l;inaryToDecimaI(binary_string):
mair;()

Feb 27, 2008 Sprenkle - CS111 12

What does this program output?

def main() :
x=10
sum = sumEvens(x)
print “The sum of even #s up to”, x, “is”, sum

def sumEvens(limit) :
total = 0
for x in xrange(0, limit, 2):
total += x
return total

main()

Feb 27, 2008 Sprenkle - CS111 13

Function Variables
def main() :
x=10
sum = sumEvens(x)
print “The sum of even #s up to”, x, “is”, sum

def sumEvens(limit) : Why can we name two
total = 0 variables x?
for x in xrange(0, limit, 2):
total +=x
return total

main()

Feb 27, 2008 Sprenkle - CS111 14

Function Variables

def main() :
x=10

print “The sum of even #s up to”, x, “is”, sum

def sumEvens(limit) :

total =0
for x in xrange(0, limit, 2):
total += x The stack Variable names are
return total like first names
main | x 10 —
main()

Function names are like last names
Feb 27, 2008 Sprenkle - CS111 15

Function Variables

def main() :
x=10

o

print “The sum of even #s up to”, x, “is”, sum

Called the function sumEvens

def Add its parameters to the stack
total = 0
for x in xrange(0, limit, 2):
e UM limit 10
total += x Evens

return total

main | x 10

main()

Feb 27, 2008 Sprenkle - CS111 16

Function Variables

def main() :
x=10

print “The sum of even #s up to”, x, “is”, sum

def sumEvens(limit) :

for x in xrange(0, limit, 2): sum |imit 10

total += x Evens [total 0
return total

main [x 10
main()

Feb 27, 2008 Sprenkle - CS111 17

Function Variables

def main() :
x=10

print “The sum of even #s up to”, x, “is”, sum

def sumEvens(limit) :

total = 0
limit 10
UM Jiotal 0
total +=x Evens
X 0

return total

main [x 10
main()

Feb 27, 2008 Sprenkle - CS111 18

Function Variables

def main() :
x=10

print “The sum of even #s up to”, x, “is”, sum

def sumEvens(limit) :

total =0 —
for x in xrange(0, limit, 2): sum Itlmltl ;0
total += x Evens wizl) Ay
X 8
) main [x 10
main()
Feb 27, 2008 Sprenkle - CS111

Function Variables

def main() :
x=10

o

print “The sum of even #s up to”, x, “is”, sum

Function max returned, so we

def sumEvens(limit) : no longer have to keep track of

total = 0 its variables on the stack.
for x in xrange(0, limit, 2):
total += x The lifetime of those variables

return total Is over.

) . [sum 20

main
0 main (°7 10

Feb 27, 2008 Sprenkle - CS111 20

Function Variables

def main() :
x=10
sum = sumEvens(x)

def sumEvens(limit) :

total =0
for x in xrange(0, limit, 2):
total += x
return total
| x 10
main
main() sum 20

Feb 27, 2008 Sprenkle - CS111

21

Variable Scope

Functions can have the same parameter and
variable names as other functions

Need to look at the variable’s scope to determine which
one you're looking at

Use the stack to figure out which variable you're using
Scope levels
Local scope (also called function scope)
Can only be seen within the function
Global scope (also called file scope)
Whole program can access
More on these later

Feb 27, 2008 Sprenkle - CS111 22

Function Scope

What variables can we “see” (i.e., use)?

def main():
binary_string = raw_input("Enter a binary #: ")
if not isBinary(binary_string):
print "That is not a binary string"
sys.exit()
print "The decimal value is", binaryToDecimal(binary_string)

def isBinary(string):
for bit in string: g
if bit 1= "0" and bit = "1":
return False
return True

Feb 27, 2008 Sprenkle - CS111

23

Variable Scope

Practice: scope.py
Trace through program--what does it do?

Answer questions in program...

Feb 27, 2008 Sprenkle - CS111 24

Practice

What is the output of this program?
Example: user enters 4

def main():
num = input("Enter a number to be squared: ")
square=square(num)
print "The square is: ", square
def square(n):
returnn *n

main()

Feb 27, 2008 Sprenkle - CS111 practicel.py 25

Practice

What is the output of this program?
Example: user enters 4

def main():
num = input("Enter a number to be squared: ")
squared = square(num)
print "The square is: ", squared
print “The original num was:”, n

def square(n):
returnn *n

main()

Feb 27, 2008 Sprenkle - CS111 practice2.py 2

Practice

What is the output of this program?
Example: user enters 4

def main():
num = input("Enter a number to be squared: ")
squared = square(num)
print "The square is: ", squared Error! n does not
print “The original num was:”, n «—— have a value in
function main()
def square(n):
returnn *n

main()

Feb 27, 2008 Sprenkle - CS111 27

Variable Scope

Know “lifetime” of variable
Only during execution of function
Related to idea of “scope”

What about variables outside of functions?
Example: non_function_vars.py

Feb 27, 2008 Sprenkle - CS111 28

Debugging Advice

Build up your program in steps
Always write only small pieces of code
Test, debug. Repeat

Write function body as part of main, test
Then, separate out into its own function
Similar to process using in lab probs

Test function separately from other code

Comment out irrelevant code to make sure that
the function behaves as expected

Feb 27, 2008 Sprenkle - CS111 29

Writing a “good” function
Should be an “intuitive chunk”
Doesn’t do too much or too little
Should be reusable

Always have comment that tells what
the function does

Feb 27, 2008 Sprenkle - CS111 30

Good vs. Bad Functions

Bad: Does too little

def getUserInput():
input = input(“Enter a number”)
return input

Good: Validates the input

def getUserInput():
input = input(“Enter a number”)
while input <= 0:
print *Number must be positive”
input = input(“Enter a number”)
return input

Feb 27, 2008 Sprenkle - CS111 31

Creating Modules

Modules group together related functions
and constants

Unlike functions, no special keyword to
define a module
Modules are named by the filename
Example, oldmac.py
In Python shell: import oldmac
Explain what happened

Feb 27, 2008 Sprenkle - CS111 32

Creating Modules

So that our program doesn’t execute when it

is in a program, at bottom, add
if _name__==' main__: .
. Not important how
main() \ this works; just know
when to use

Then, to call main function
oldmac.main()

Note the files now listed in the directory

Feb 27, 2008 Sprenkle - CS111 33

Creating Modules

Then, to call main function
oldmac.main()

Why would you want to call a module’s main
function?

Use main function as driver to test functions in

module
To access one of the defined constants
oldmac.EIEIO
Feb 27, 2008 Sprenkle - CS111 34

Defining Constants in Modules

Add constant to menu.py
STOP_OPTION

Show use in menu_withfunctions.py

Feb 27, 2008 Sprenkle - CS111 35

Program Organization

Larger programs require functions to maintain
readability

Use main () and other functions to break up your
program into smaller, more manageable chunks
“Abstract away” the details

As before, you can still write smaller scripts without
any functions

Can try out functions using smaller scripts

Need the main () function when using other
functions to keep “driver” at top

Otherwise, functions need to be defined before use

Feb 27, 2008 Sprenkle - CS111 36

Broader Issue Reading

Two articles about Microsoft Excel 2007 Bug

Just write one summary

Feb 27, 2008 Sprenkle - CS111

37

