
1

Mar 24, 2008Mar 24, 2008 Sprenkle - CS111Sprenkle - CS111 11

Objectives
• Helper methods
• __cmp__ method
• Group Work: Designing Classes

Mar 24, 2008Mar 24, 2008 Sprenkle - CS111Sprenkle - CS111 22

Helper Methods
• Sometimes, you may need helper methods

that are part of the class but are not meant to
be part of the class’s API
Make your code easier but others outside the

class shouldn’t use
• Convention: method name begins with “_”

Mar 24, 2008Mar 24, 2008 Sprenkle - CS111Sprenkle - CS111 33

Example Helper Methods
• Only loosely enforces that other can’t use

Doesn’t show up in help
Does show up in dir

def _isFaceCard(self):
if self.rank > 10 and self.rank < 14:

return True
return False

Helper Method:

def rummyValue(self):
if self._isFaceCard():

return 10
elif self.rank == 14:

return 15
else:

return 5

In use:

card4.py Mar 24, 2008Mar 24, 2008 Sprenkle - CS111Sprenkle - CS111 44

Comparing Objects of the Same Type
• Special __cmp__ method

 Header: _cmp__(self, other)
• other is another object of the same type

 Returns
• Negative integer if self < other
• 0 if self==other
• Positive integer if self > other

• Similar to implementing Comparable interface in
Java

• If no __cmp__ method, defaults to comparing
memory addresses of objects

card3_nocmp.py

Mar 24, 2008Mar 24, 2008 Sprenkle - CS111Sprenkle - CS111 55

Comparing Objects of the Same Type
• What uses the __cmp__ method?

Comparison operators: <,>,==, etc.
List’s sort() method

• Works best if list contains all the same type of
objects

Mar 24, 2008Mar 24, 2008 Sprenkle - CS111Sprenkle - CS111 66

Another Example of __cmp__

card5.py

def __cmp__(self, other):
if self.getSuit() < other.getSuit():

return -1
if self.getSuit() > other.getSuit():

return 1
same suit; differentiate by rank
if self.getRank() < other.getRank():

return -1
if self.getRank() > other.getRank():

return 1
return 0

Comparing by suit then rank; order is 2 Clubs,
3 Clubs, …, Ace Clubs, 2 Diamonds, 3 Diamonds, …

2

Mar 24, 2008Mar 24, 2008 Sprenkle - CS111Sprenkle - CS111 77

Summary: Designing Classes
• What does the object/class represent?
• How to model/represent the class’s data?

 Instance variable
Data type

• What functionality should objects of the class
have?
How will others want to use the class?
Put into methods for others to call (API)

• In general, the nouns in a problem are the
classes/objects, verbs are the methods

Mar 24, 2008Mar 24, 2008 Sprenkle - CS111Sprenkle - CS111 88

Benefits of Classes
• Package/group related data into one object
• Reusing code

E.g., Don’t need to check if user put in valid key
• Provide interface, can change underlying

implementation without affecting calling code

Mar 24, 2008Mar 24, 2008 Sprenkle - CS111Sprenkle - CS111 99

Changing Implementations
• Same API, different implementations

def __init__(self, rank, suit):
self.rank = rank
self.suit = suit

def getRank(self):
return self.rank

def getSuit(self):
return self.suit

def __init__(self, rank, suit):
self.cardid=rank
if suit == “clubs”:

self.cardid += 13
elif suit == “hearts”:

self.cardid += 26
elif suit == “diamonds”:

self.cardid += 39

def getRank(self):
return (self.cardid-2) % 13 + 2

def getSuit(self):
suits = ["spades", "clubs", "hearts", "diamonds"]

 whichsuit = (self.cardid-2)/13
 return suits[whichsuit]

Tradeoff: Saving
information (memory);
Computing information

card_byid.py Mar 24, 2008Mar 24, 2008 Sprenkle - CS111Sprenkle - CS111 1010

Considerations for Using Classes
• Only use class if you’re using most of its

functionality/information
Don’t use Counter for validating if a number is

within the valid range
• Because not using the wrapping/current value

• Since don’t know implementation, may
inadvertently duplicate code
Redo something done by class
Could have efficiency penalties
But time saved reusing code is usually worth it

Mar 24, 2008Mar 24, 2008 Sprenkle - CS111Sprenkle - CS111 1111

Top-Down Design
• Break down larger problems into pieces that

you can solve
Smaller pieces: classes, methods, functions
 Implement smallest pieces and build up

• We’ve been doing this most of the semester
Typically, program was 1) read input, 2) process

input, 3) print result
• Started putting Step 2 into >= 1 functions
• Steps 1 and 3 were sometimes a function

Now: on larger scale

Mar 24, 2008Mar 24, 2008 Sprenkle - CS111Sprenkle - CS111 1212

Design a Music Manager
• Reads your music library from a file
• Displays the songs in your music library
• Stores your music library in a file
• Allows you to add songs to your library from

a file
• Keeps track of the total length of your music

library
• Allows you to sort the songs in your library
• Provides a user interface to do these things

3

Mar 24, 2008Mar 24, 2008 Sprenkle - CS111Sprenkle - CS111 1313

Designing a Music Manager
• Break down into pieces
• What classes do we need?

What data needed to model those classes?
What functionality do each of those classes

need?
• What does our driver program (user

interface) do?
• How should we implement those

classes/program?

Mar 24, 2008Mar 24, 2008 Sprenkle - CS111Sprenkle - CS111 1414

Designs
• For each of your classes

Data
API

Group 1: Greg, Dave, Joe, Colin
Group 2: Alex, Nay, Julie, Vasil
Group 3: Ty, Clay, Arturo
Group 4: Joa, Lucy, Stuart

Mar 24, 2008Mar 24, 2008 Sprenkle - CS111Sprenkle - CS111 1515

Music Manager Classes/Driver Data
• MusicLibrary

 Songs
 Total length
 Filename

• Song
 Title
 Artist name
 Album name
 Length

• PlayTime
 Days, hours,
 Minutes, seconds

• Driver (UI)
 Music library

What are the data types for each
class’s data?

Mar 24, 2008Mar 24, 2008 Sprenkle - CS111Sprenkle - CS111 1616

MM Classes/Driver Functionality
• MusicLibrary

 Getters (accessors)
 String rep
 Reading library from file
 Saving library to file
 Adding albumclear
 Sorting

• Song
 Getters
 String rep
 Comparator
 Writing to a file

• PlayTime
 Getters, String rep
 Adding play time

• Driver
 Getting user input to

• Read library, album
files

• Store library to file
• Sort songs
• View songs

 Summary: call
appropriate methods on
classes to do above

(given)

Mar 24, 2008Mar 24, 2008 Sprenkle - CS111Sprenkle - CS111 1717

Lab 10 Design
• 2 files: music.py and mytunes.py

PlayTime (given)
Song

Music Collection
(test functions)

music.py

Driver

• Uses MusicCollection object
• Gets command-line argument
• Handles UI
• Calls methods on the MC object

mytunes.py

Mar 24, 2008Mar 24, 2008 Sprenkle - CS111Sprenkle - CS111 1818

Problem: Album Music Files
• Given an album file that has the format

 <Artist name>
 <Album name>
 <number of songs>
 <Song name 1>
 <Song length 1>
 …
 <Song name n>
 <Song length n>

• Write algorithm to create Song objects to represent
each song

Length has the format
min:seconds

4

Mar 24, 2008Mar 24, 2008 Sprenkle - CS111Sprenkle - CS111 1919

Problem: Library Music Files
• Given a library file that has the format

 <number of songs>
 <Song artist 1>
 <Song album 1>
 <Song name 1>
 <Song length 1>
 …
 <Song artist n>
 <Song album n>
 <Song name n>
 <Song length n>

• Create a MusicLibrary object

Mar 24, 2008Mar 24, 2008 Sprenkle - CS111Sprenkle - CS111 2020

UI Specification
• Checks if user entered a command-line argument

 Default library: libraries/mytunes.library
• Read library from file
• Repeatedly gets selected options from the user,

until quits
• Repeatedly prompts for new selection if invalid

option
• Executes the appropriate code for the selection
• Stops when user quits
• Stores the library into the file Demonstrate program

Write pseudocode

Mar 24, 2008Mar 24, 2008 Sprenkle - CS111Sprenkle - CS111 2121

UI Pseudocode

Use default library if only one command-line argument
Read library from file
while True:

display menu options
prompt for selection
while invalid option

print error message
prompt for selection

break if selected quit
otherwise, do selected option

Store library to designated file

Mar 24, 2008Mar 24, 2008 Sprenkle - CS111Sprenkle - CS111 2222

Implementation Plan
• Review PlayTime class

 How will you create a PlayTime object?
 How will you use it?

• Implement Song class
 Test (write test functions, e.g., testSong())

• Implement MusicCollection class
 Example runs in lab write up
 Note: in general, methods for classes will not prompt for

input (Use input parameters)
 Test

• Implement driver program

Mar 24, 2008Mar 24, 2008 Sprenkle - CS111Sprenkle - CS111 2323

Plan for Implementing a Class
• Write the constructor and string

representation/print methods first
• Write function to test them
• While more methods to implement …

Write method
Test

• See counter.py and card.py for example test
functions

Mar 24, 2008Mar 24, 2008 Sprenkle - CS111Sprenkle - CS111 2424

Broader Issue
• One Laptop Per Child Project

Main story on CS111 page
Blog entry has a lot of other interesting links,

videos

