
1

Mar 28, 2007Mar 28, 2007 Sprenkle - CS111Sprenkle - CS111 11

Objectives
• Search strategies
• Exceptions
• Broader Issue: One Laptop Per Child

Mar 28, 2007Mar 28, 2007 Sprenkle - CS111Sprenkle - CS111 22

Search Using in Review
• Iterates through a list, checking if the

element is found
• Known as linear search
• Implementation:
def inSearch(searchlist, key):
for elem in searchlist:
if elem == key:
return True

return False

search.py

3210pos

7358value

What are the strengths and weaknesses of
implementing search this way?

Mar 28, 2007Mar 28, 2007 Sprenkle - CS111Sprenkle - CS111 33

Linear Search
• Overview: Iterates through a list, checking if

the element is found
• Benefits:

Works on any list
• Drawbacks:

Does not tell us where in the list it is
• What if wanted to do something to that element?
• Could implement our own version that returns the

position
Slow -- needs to check each element of list if the

element is not in the list
Mar 28, 2007Mar 28, 2007 Sprenkle - CS111Sprenkle - CS111 44

Strategy: Eliminate Half the
Possibilities
• Repeat until find value (or looked through all

values)
Guess middle value of possibilities

• (not middle position)
 If match, found!
Otherwise, find out too high or too low
Modify your possibilities

• Eliminate the possibilities from your number and
higher/lower, as appropriate

• Known as Binary Search

Mar 28, 2007Mar 28, 2007 Sprenkle - CS111Sprenkle - CS111 55

A Binary Search Solution
def search(searchlist, key):

low=0
high = len(searchlist)-1
while low <= high :

mid = (low+high)/2
if searchlist[mid] == key:

return mid # return True
elif key > searchlist[mid]:

low = mid+1
else:

high = mid-1
return -1 # return False

search2.py

If you just want to
know if it’s in the list

Mar 28, 2007Mar 28, 2007 Sprenkle - CS111Sprenkle - CS111 66

Binary Search
• Example of a Divide and Conquer algorithm

Break into smaller pieces that you can solve
• Benefits:

Faster to find elements (especially with larger
lists)

• Drawbacks:
Requires that data can be compared

• __cmp__ method implemented by the class
List must be sorted before searching

• Takes time to search

2

Mar 28, 2007Mar 28, 2007 Sprenkle - CS111Sprenkle - CS111 77

Empirical Study of Search Techniques
• Goal: Determine which technique is better

under various circumstances

• How long does it take to find various keys?
Measure by the number of comparisons
Vary the size of the list and the keys
What are good tests for the lists and the keys?

search_compare.py Mar 28, 2007Mar 28, 2007 Sprenkle - CS111Sprenkle - CS111 88

Empirical Study of Search Techniques
• By how much did the number of comparisons

for linear search vary?
• By how much did the number of comparisons

for binary search vary?
• What conclusions can you draw from these

results?

search_compare.py

Mar 28, 2007Mar 28, 2007 Sprenkle - CS111Sprenkle - CS111 99

Modifying Solution
def search(searchlist, key):

low=0
high = len(searchlist)-1
while low <= high :

mid = (low+high)/2

if searchlist[mid] == key:
return mid

elif key > searchlist[mid]: # look in upper half
low=mid+1

else: # look in lower half
high = mid-1

return -1

What if we had a list of Cards
instead of a list of integers?
• What needs to be changed?
• What has to be done/verified
in the Card class?

Mar 28, 2007Mar 28, 2007 Sprenkle - CS111Sprenkle - CS111 1010

Extensions to Solution
def search(searchlist, key):

low=0
high = len(searchlist)-1
while low <= high :

mid = (low+high)/2

if searchlist[mid] == key:
return mid

elif key > searchlist[mid]:
low=mid+1

else:
high = mid-1

return -1

Consider what happens when
searchlist is a list of Songs
• What if we wanted to check
if the song’s title matched the
key and return the song?

Mar 28, 2007Mar 28, 2007 Sprenkle - CS111Sprenkle - CS111 1111

Extensions to Solution
def search(searchlist, key):

low=0
high = len(searchlist)-1
while low <= high :

mid = (low+high)/2

if searchlist[mid] == key:
return mid

elif key > searchlist[mid]:
low=mid+1

else:
high = mid-1

return -1

Consider what happens when
searchlist is a list of Songs
• What if we wanted all the
songs with the title that
matched the key?

Mar 28, 2007Mar 28, 2007 Sprenkle - CS111Sprenkle - CS111 1212

Summary of Extensions to Solution
• Check the title of the Song at the midpoint
• Get the songs before and after that song in the list

that have the same title and put in a list
• Represent, handle when no song matches

• For “most intuitive” results:
 Strip, lowercase the key

• Which means what for your algorithm?

• Note: we’re not just implementing “title contains”
 How could we implement that?

3

Mar 28, 2007Mar 28, 2007 Sprenkle - CS111Sprenkle - CS111 1313

Search Strategies Summary
• Which search strategy should I use under the

various circumstances?
 I have a short list

 I have a long list

 I have a long sorted list

Mar 28, 2007Mar 28, 2007 Sprenkle - CS111Sprenkle - CS111 1414

Search Strategies Summary
• Which search strategy should I use under the

various circumstances?
 I have a short list

• How short? How many searches? Linear (in)
 I have a long list

• Linear (in) - because don’t know if in order,
comparable

 I have a long sorted list
• Binary

Mar 28, 2007Mar 28, 2007 Sprenkle - CS111Sprenkle - CS111 1515

Validating User Input

def main():
 #Program mission statement
 print "This program determines your birth year"
 print "given your age and the current year \n"

 age=input("Enter your age: ")
 currentyear=input("Enter the current year: ")

 #Subtract age from current year
 birthyear=currentyear - age
 #Display output to the user
 print "You were either born in", birthyear, "or", birthyear-1

Mar 28, 2007Mar 28, 2007 Sprenkle - CS111Sprenkle - CS111 1616

Validating User Input
def main():
 #Program mission statement

print "This program determines your birth year"
 print "given your age and the current year \n"

 age=input("Enter your age: ")
 currentyear=input("Enter the current year: ")

 if age < 0 or age > 115:
 print "Come on: that’s not a reasonable age.”
 elif currentyear < 0:

print "You need to have a positive year."
 else:

birthyear=currentyear - age
print "You were either born in", birthyear, "or", birthyear-1

birthyear.py

Mar 28, 2007Mar 28, 2007 Sprenkle - CS111Sprenkle - CS111 1717

Validating User Input
• What happened when the user entered

something like “B6”?

Mar 28, 2007Mar 28, 2007 Sprenkle - CS111Sprenkle - CS111 1818

Validating User Input
• What happened when the user entered

something like “B6”?
Threw an Exception and the program exited

Enter your age: B6
Traceback (most recent call last):
 File "currentAge.py", line 22, in <module>
 main()
 File "currentAge.py", line 9, in main
 age=input("Enter your age: ")
 File "<string>", line 1, in <module>
NameError: name 'B6' is not defined

Python interpreter’s message:

4

Mar 28, 2007Mar 28, 2007 Sprenkle - CS111Sprenkle - CS111 1919

Handling Exceptions
• Using try/except statements
• Syntax:

• Example:

try:
<body>

except [<errorType>] :
<handler>

try:
age = input(“Enter your age: ”)
currentyear = input(“Enter the current year: ”)

except:
print “ERROR: Your input was not in the correct form.”
print “Enter integers for your age and the current year”
return

yearborn2.py

Optional: use this to
handle specific error
types appropriately

Mar 28, 2007Mar 28, 2007 Sprenkle - CS111Sprenkle - CS111 2020

Handling Exceptions
• Could put try/catch statements in a loop to

make sure user enters valid input
Example: birthyear3.py

• Other types of exceptions
File exceptions:

• File doesn’t exist
• Don’t have permission to read/write file

file_handle.py

Mar 28, 2007Mar 28, 2007 Sprenkle - CS111Sprenkle - CS111 2121

Broader Issues
• One Laptop Per Child

An experiment on bringing cheap but
educational technology to poor children

• What challenges did OLPC face and how did
that affect their design decisions?

• What are some unusual features of the
laptop?

• What does this technology mean for better-
off countries?

• Is this project worthwhile?

Group 1: Vasil, Stuart, Greg
Group 2: Alex, Clay, Nay, Colin
Group 3: Joa, Joe, Dave

Mar 28, 2007Mar 28, 2007 Sprenkle - CS111Sprenkle - CS111 2222

Discussion

Linux, Python, open-sources tools; cheaper
battery; no hard drive; no CD/DVD driveCost

Simple user interfaces; tiny keyboard;
lightweight; applications keep students
interested

Users: children

Dust proof, drop proof, lightEnvironment

Rewrite code more compactly, efficientlySoftware bloat

New, cheap battery; Consumes less power;
Alternative power sources: solar power, pull
cord

Lack of power

Design DecisionChallenge

