Obijectives

Wrap-up: Using str methods
Introduction to Functions

Feb 25, 2008 Sprenkle - CS111 1

str Methods

str is a class or a type
Methods: available operations to perform on
str objects

Used slightly differently than functions

Provide common functionality
To see all the methods available for the str
class

help(str)

Feb 25, 2008 Sprenkle - CS111 2

Common str Methods

Common str Methods

Method Operation

Method Operation

Returns a copy of string centered within

center(width) the given number of columns

Return # of non-overlapping occurrences

count(subl, start [, end]]) of substring sub in the string.

Returns a copy of string with all
occurrences of substring old replaced by
substring new. If count given, only
replaces first count instances.

replace(old, newl, count])

Return a list of the words in the string,

. using sep as the delimiter string. If sep is
split([sep]) not specified or is None, any whitespace
string is a separator.

tri Return a copy of the string with the leading
strip() and trailing whitespace removed

Return a string which is the concatenation
of the strings in the sequence with the
string this is called on as the separator

join(<sequence>)

endswith(sub), Return True iff string ends with/starts with
startswith(sub) sub
find(subl, start [, end]]) Return first index where substring sub is
found
isalpha(), isdigit(), Returns True iff string contains
isspace() letters/digits/whitespace only
Return a copy of string converted to
lower(), upper() lowercase/lowercase
Feb 25, 2008 sprenkie-cs111 - string_methods.py 3

Return a copy of the string with uppercase
swapcase() characters converted to lowercase and vice
versa.

Feb 25, 2008 Sprenkle - CS111

string_methods.py *

Implementing Wheel of Fortune

Simplifications: no money, no buying vowels, no
keeping track of previous guesses, one player
Functionality

Displaying puzzle appropriately

Gets guesses from user

Either letters or solve the puzzle

Reports number of the guess in the puzzle

Displays puzzle with guesses filled in
Think about ...

User input robustness?

Any special cases?

Feb 25, 2008 Sprenkle - CS111 Wheeloffortune,py 5

Implementing Wheel of Fortune

Differences between real and simulated
game
Players say letter rather than type it in
Case matters
Colin’s suggestion to change the user's
guess to uppercase -- OK
Emulates real game better
All uppercase letters in puzzle
Keeping my swapcase solution

Allows user to have lowercase letters in original
phrase

Feb 25, 2008 Sprenkle - CS111 6

Wheel of Fortune

Practice: Modify displayed puzzle to handle
punctuation

Include punctuation in displayed puzzle

Original code: gisplayedpuzzle = "

for char in PHRASE:
ifchar!=""
displayedpuzzle +="_"
else:

displayedpuzzle +=* *“

Practice: update puzzle with the user's guess
User's guess is named guess

Feb 25, 2008 Sprenkle - CS111 7

Functions

We’ve used functions
Built-in functions: len, input, raw_input
Functions from modules, e.g., math and random

Today, we’ll learn how to define our own
functions!

Feb 25, 2008 Sprenkle - CS111

Functions

Function is a black box
Implementation doesn’t matter

Only care that function generates appropriate
output, given appropriate input
Example:

Didn’'t care how raw_input function was
implemented

Use: user_input = raw_input (prompt)

user_input
— output

We saved output
Feb 25, 2008 Sprenkle - CS111 in a variable 9

Functions
In general, a function can have
0 or 1 outputs

When we define a function, we know its
and if it has output

function_name output

Feb 25, 2008 Sprenkle - CS111 10

Why write functions?

Allows you to break up a hard problem into smaller,
more manageable parts

Makes your code easier to understand
Hides implementation details (abstraction)
Provides interface (input, output)
Makes part of the code reusable so that you:
Only have to write function code once
Can debug it all at once
Isolates errors
Can make changes in one function (maintainability)
Similar to benefits of classes in OO Programming

Feb 25, 2008 Sprenkle - CS111 "

Comparison of Code Using Functions

Without functions:
menu_withoutfunc.py

With functions
menu_withfunctions.py

Feb 25, 2008 Sprenkle - CS111

Example Program

Lab 2, Problem 4
Any place to make a function?

Any place that has some useful code that we
may want to reuse?

Feb 25, 2008 Sprenkle - CS111 13

Convert meters to miles

miles

mmmmmmd metersToMiles output

: meters
Output: miles

Feb 25, 2008 Sprenkle - CS111 14

Syntax of Function Definition

Keyword Function Input Name/
Name Parameter

def metersToMiles() I Function header
METERS_TO_MILES = .0006215

miles = meters * METERS_TO_MILES
return miles

Body (or
function
definition,

Functions: Similarity to Math

In math, function definition looks like:
f(x) =x2+2
Plug values in for x
f(3)=32+2=11
3 is your input, assigned to x
11 is output

Feb 25, 2008 Sprenkle - CS111 16

Output
Keyword:
How to give output
Feb 25, 2008 Sprenkle - CS111 15
Parameters
The to a function are called
or

When calling/using functions, arguments
must appear in same order as in the function
header
Example: round(x, n)
x is the float to round
n is integer of decimal places to round to

Feb 25, 2008 Sprenkle - CS111 17

Parameters
are the variables named
in the the function definition.

or are the
variables or literals that really get used when
the function is called. Formal

Defined: def round(x, n) : /

Use: roundCelc = round(celc, 2)

Formal & actual parameters must match in
order, number, and type!

Actual

Feb 25, 2008 Sprenkle - CS111 18

Function Output

When the code reaches a statement like
return x
x is the output returned to the place where
function called and the function stops
For functions that don’t have explicit output,
return does not have a value with it, e.g.,
return
Optional: don’t need to have return (see menu.py)

Feb 25, 2008 Sprenkle - CS111 19

Calling your own functions

miles = metersToMiles(100)
miles2 = metersToMiles(200)
miles3 = metersToMiles(400)

miles/4'= metersToMiles(800)

Outputis Function] t
assigned to npu
R Name
miles4
Feb 25, 2008 Sprenkle - CS111 20

Flow of Control

When you call the function, the computer
jumps to the function and executes it
When it is done executing the function, the
computer returns to the same place in the
first code where it left off

is assigned dist1, which is 100

def metersToMiles():
#Make conversions M2MI=.0006215
dist1 = 100 miles = meters * M2MI

miles1 = metersToMiles(dist1) «— return miles

Feb 25, 2008 Sprenkle - CS111 21

Flow of Control

def max(num1, num2):
result = 0
if num1 >= num2:
result = num1
else:
result = num2
return result

print \The max is”, z

Program starts executing here
Feb 25, 2008 Sprenkle - CS111 22

Flow of Control

def max(num1, num2):
result = 0 To
if num1 >= num2: input
result = num1 function

else:
result = num2

= input("Enter ...”
return result i put()

print \The max is”, z

Program starts executing here
Feb 25, 2008 Sprenkle - CS111 23

num1 gets the value of x
num2 gets the value of y

—>| def max(num1, num2) : |

Flow of Control
To
input
function

L y = input(“Enter ...")
~

Gets replaced with
NS
Nt
S

function’s output

print “The max is”, z

def max(num1, num2):
result = 0
if numi >= num2:
result = num1
else:
result = num2
Feb 25, 20 return result Sprenkle - CS111 24

Flow of Control: Using return

def max(num1, num2) :

if num1 >=num2 :
return num1
else: |def max(num1, num?2) : |

return num2

x=2 numl >= num2
y=6 True False
z=max(Xx,y)
|return num1| |return num2|
return to caller
Feb 25, 2008 Sprenkle - CS111 25

Flow of Control: Using return

def max(num1, num2) :

if num1 >=num2 :
return num1
return num2

| def max(num1, num2) : |

x=2 numl >= num2
y=6
z=max(Xx,y)
return numl]
Implicit false branch:
Only way got here is
if the condition was
return to caller not true
Feb 25, 2008 Sprenkle 26

Passing Parameters

Only copies of the actual parameters are
given to the function
for immutable data types (which are what we've
talked about so far)
The actual parameters in the calling code do
not change.
Swap example:
Swap two values in script
Then, put into a function

Feb 25, 2008 Sprenkle - CS111 27

Where are Functions Defined?

Functions can go inside of program script
Defined before use/called (if no main() function)
Functions can go inside a separate module
Reduces code in main script
Easier to reuse by importing from a module
Maintains the “black box”
Isolates testing of function

Write “test driver” scripts to test functions
separately from use in script

Feb 25, 2008 Sprenkle - CS111 menu'py 28

Program Organization: main function

In many languages, you put the “driver” for
your program in a main function

You can (and should) do this in Python as well
Typically main functions are defined at the
top of your program

Readers can quickly see what program does
main usually takes no arguments

Example: def main():

Feb 25, 2008 Sprenkle - CS111 29

Using a main Function

Callmain () at the bottom of your program

Side effects:
Do not need to define functions before main
function
main can “see” other functions
Note that main is a function that calls other
functions
Any function can call other functions

Feb 25, 2008 Sprenkle - CS111 30

Program With main () & Functions

def main():
print
print "This program converts binary numbers to decimal numbers."
print

binary_string = raw_input("Enter a number in binary: ")
while not isBinary(binary_string) :

print "Sorry, that is not a binary string"

binary_string = raw_input("Enter a number in binary: ")

print "The decimal value is", binaryToDecimal(binary_string)

Presents overview of what program does (hides details)

Feb 25, 2008 Sprenkle - CS111 31

Example program with a main()

oldmac.py

Feb 25, 2008 Sprenkle - CS111

Broader Issue Reading
Two articles about Microsoft Excel 2007 Bug

Feb 25, 2008 Sprenkle - CS111 33

