Obijectives

Review: format specifiers, for loops
Nested for loops
Code readability

Sept 24, 2007 Sprenkle - CS111 1

Exam-like Review Questions

If you want to use functions or constants that
are defined in a module, what type of
statement do you use?

In module_example.py, when we computed
el" + 1, the answer wasn’t 0. Why?

Sept 24, 2007 Sprenkle - CS111 2

Formatting Output

Make the output from the program easy for
user to read, understand

Using str() constructor
Format specifiers:
More formatting options for print
Control over how output is displayed to user
Right, center, left justification
Number of decimals to display

Sept 24, 2007 Sprenkle - CS111 3

Solution: using str()

Recall: str() is constructor/converter function
to convert other data types to strings
Example: str(33) — ‘33’

Use when printing output with the + (i.e.,
concatenation) operator
print “You owe $” + str(x) + “.”

Sept 24, 2007 Sprenkle - CS111 4

Format Specifiers

The [] mean
General format: “optional”
%l[flags][width][.precision]code
flags:
0: zero fills

+: include a sign before positive integers
-: left-justification
width:

Minimum number of character spaces
reserved to display the entire value

Includes decimal point, digits before and after
the decimal point and the sign

Sept 24, 2007 Sprenkle - CS111 5

Format Specifiers

General format:
%l[flags][width][.precision]code
precision:
Number of digits after the decimal point for real
values
code:
For the value’s type
»s - string
»d (ori) - integer
> f - floating point
» e - floating point with exponent

Sept 24, 2007 Sprenkle - CS111 6

Using Format Specifiers

Basic format is
print <templatestring> % (gvalue1>, <value2>
-, <valuen>) Replacement values
templatestring is a template for the print
statement with format specifiers instead of
the values

For each format specifier in templatestring,
should have a replacement value

Throws TypeError if not enough replacements
for specifiers in templatestring
If only one replacement value, don’t need ()

Formatting operator

Sept 24, 2007 Sprenkle - CS111 7

Format Specifiers
print “%5d” % month

[T 1 [12) L1 [[2[s] [2]0]
| [[[1]2]

Precision is 2
/)

print “%9.2f” % expense

Field width is 5 — ~
. s Field width is 9
Right-justified
What if precision is bigger than the decimal places?
Fills decimal with Os
What if field width is smaller than the length of the value?
Prints entire value
For more info:
http://docs.python.org/lib/typesseq-strings.html
Sept 24, 2007 Sprenkle - CS111 format,speCifierS.p\/ 8

Practice

Format output from xrange_analysis.py
nicely

Sept 24, 2007 Sprenkle - CS111 9

Practicing For Loops

Print the following:

12345

Sept 24, 2007 Sprenkle - CS111 10

Practicing For Loops

Print the following:

12345
12345
12345

Sept 24, 2007 Sprenkle - CS111 "

Improving Code Readability

Comments
Don't affect Python’s execution
Start with a # sign
Constants

Change one value (at top of program) to change
value everywhere in program

Flexible programs
Gets rid of “magic numbers”
Give a clear name/purpose to values

Sept 24, 2007 Sprenkle - CS111 12

Variable Name Conventions

Variables start with lowercase letter

Constants (values that won’t change) are in
all capitals

Example: Variable for the current year
currentYear
current_year
curr ar
CURRENT_YEAR

Sept 24, 2007 Sprenkle - CS111 13

Improving Code Readability/Usability

What does this program do?
How would you figure it out?

What would you do to improve the program’s
readability and usability?

program_before.py

program_after.py
Sept 24, 2007 Sprenkle - CS111

Fence Post Problem

Given some posts and some beams to
connect the posts, build a fence that is X
fenceposts long

Sept 24, 2007 Sprenkle - CS111 fence,POSt- py 15

Assigning Students to Groups

Using a for loop and the modulo (%) operator

Sept 24, 2007 Sprenkle - CS111 16

TODO

Read “Why You Can’t Cite Wikipedia in My
Class” for Friday

Sept 24, 2007 Sprenkle - CS111 17

