
1

•  Defining our own classes • When defining a function, how can we make
a parameter have a default value?

•  Compare some properties about dictionaries
and lists
 When should you use one over the other?

•  Provide ways to think about program and its
data
 Get the jist without the details

•  Examples we’ve seen
 Functions and methods

•  Used to perform some operation but we don’t need to
know how they’re implemented

 Dictionaries
•  Know they map keys to values
•  Don’t need to know how the keys are organized/

stored in the computer’s memory
 Just about everything we do in this class…

encodeMessage(phrase, key)	

•  Provide an abstraction for how to organize
and reason about data

•  Example: GraphWin class
 Had attributes (i.e., data or state) background

color, width, height, and title
 Each GraphWin object had these attributes

•  Each GraphWin object had its own values for
these attributes

 Used methods to modify the object’s state.

•  Often, we want to represent data or
information that we do not have a way to
represent using built-in types or libraries

•  Classes provide way to organize and
manipulate data
 Organize: data structures used

•  E.g., ints, lists, dictionaries, other objects, etc.
 Manipulate: methods

•  Defines a new data type
•  Defines the class’s attributes (i.e., data) and

methods
 Methods are like functions within a class and

are the class’s API

Object o of
type

Classname

Internal
data hidden
from others

Other objects
manipulate using

methods

2

•  Create a class that represents a playing card
 How can we represent a playing card?
 What information do we need to represent a

playing card?

•  Every card has two attributes:
 Suite (one of “hearts”, “diamonds”, “clubs”,

“spades”)
 Rank

•  2-10: numbered cards
•  11: Jack
•  12: Queen
•  13: King
•  14: Ace

•  Syntax:

class <class-name>:	
	<method definitions>	

Typically starts
with a capital letter Keyword

class Card:	
 """ A class to represent a standard playing card.	
 The ranks are ints: 2-10 for numbered cards, 11=Jack,
12=Queen, 13=King, 14=Ace.	
 The suits are strings: 'clubs', 'spades', 'hearts',
'diamonds’."""	
 def __init__(self, rank, suit):	
 """Constructor for class Card takes int rank and 	

	 	string suit."""	
 self.rank = rank	
 self.suit = suit	

 def getRank(self):	
 "Returns the card’s rank." 		
 return self.rank	

 def getSuit(self):	
 "Returns the card’s suit."	
 return self.suit	

Doc String

card.py

M
et

ho
ds

 Methods are like functions
defined in a class

• __init__ method is like the constructor
•  In constructor, define instance variables

 Data contained in every object
 Also called attributes or fields

•  Constructor never returns anything

def __init__(self, rank, suit):	
 """Constructor for class Card takes int rank 	

	 	and string suit."""	
 self.rank = rank	
 self.suit = suit	

First parameter of every method is self	
-  pointer to the object that method

acts on

Instance variables

•  As defined, constructor is called using
Card(<rank>,<suit>)	
 Do not pass anything for the self parameter
 Python handles underneath, passing the

parameter for us automatically
Object card
of type Card	

rank = ?
suit = ?

def __init__(self, rank, suit):	

3

•  As defined, constructor is called using
Card(<rank>,<suit>)	
 Do not pass anything for the self parameter
 Python handles underneath, passing the

parameter for us automatically
•  Example:

 card = Card(2, “hearts”)	
 Creates a 2 of Hearts card
 Python passes card as self for us

def __init__(self,	
 	rank, suit):	

Object card
of type Card	

rank = 2
suit = “hearts”

•  Need to be able to get information about the
object

•  These will get called as card.getRank()
and card.getSuit()	
 Python plugs card in for self	

def getRank(self):	
	"Returns the card’s rank.”	
	return self.rank	

def getSuit(self):	
	"Returns the card’s suit.”	
	return self.suit	

•  Have self
parameter

•  Return data/
information

•  Returns a string that
describes the object

•  Whenever you
print an object,
Python checks if you
have defined the
__str__ method to
see what should be
printed

• str(<object>)
also calls __str__
method

def __str__(self):	
 “””Returns a string
describing the card as 'rank of
suit'.”””	
 result = ""	
 if self.rank == 11:	
 result += "Jack"	
 elif self.rank == 12:	
 result += "Queen"	
 elif self.rank == 13:	
 result += "King"	
 elif self.rank == 14:	
 result += "Ace"	
 else:	
 result += str(self.rank)	
 result += " of " + self.suit	
 return result	

def main():	
 c1 = Card(14, "spades")	
 print c1	
 c2 = Card(13, "hearts")	
 print c2	

Invokes the
__str__ method

Displays:
Ace of spades
King of hearts

Object c1 of
type Card	

rank = 14
suit = “spades”

Object c2 of
type Card	

rank = 13
suit = “hearts”

•  Problem: Add a method to the Card class
called rummyValue that returns the value of
the card in the game of Rummy

•  Procedure for defining a method (similar to
functions)
 What is the input?
 What is the output?
 What is the method header?
 What does the method do?

•  How do we call the method?
card2.py

•  Based on what we’ve seen/done so far, what
does the Card class’s API look like?

4

• Card(<rank>, <suit>)	
• getRank()	
• getSuit()	
• rummyValue()	
• __str__()	

Instance
Variables:
rank, suit

Object o of
type Card

Implementation of
methods is hidden

API

•  Create a class that represents a playing card
 How can we represent a playing card?
 What information do we need to represent a

playing card?

• Do we need a class to
represent a card?
 Does any built-in data

type naturally represent a
card?

•  Now that we have the Card class, how can
we use it?

•  Let’s write a simplified version of the game of
War
 Basically just part of a round

• What are the rules of War?

war.py	

•  Now that we have the Card class, how can
we use it?

•  Can make a Deck class
 What data should a Deck contain?
 How can we represent that data?

•  To start: write methods __init__ and
__str__	
 What do the method headers look like?

•  List of Card objects
from card import *	

class Deck:	
 def __init__(self):	
 self.cards = []	
 for suit in ["clubs","hearts","diamonds","spades"]:	
 for rank in xrange(2,15):	
 self.cards.append(Card(rank, suit))	

 def __str__(self):	
 deckRep= ""	
 for c in self.cards:	
 deckRep += str(c) + "\n"	
 return deckRep	

Displays cards on
separate lines

Initialize instance variable,
self.cards	

Creates and returns a string

• What methods should our Deck class
provide?

5

•  Functionality:
 Shuffle the cards
 Deal one card
 Number of cards remaining

• What do the method headers look like?
• What should they return?
•  How do we implement them?

• Deck()	
• shuffle()	
• draw()	
• deal(num_players, num_cards)	
• numRemaining()	
• isEmpty()	
• __str__()	

Constructor

1.  Identify need for a class
2.  Identify state or attributes of a class/an

object in that class
  Write the constructor (__init__) and

__str__ methods
3.  Identify methods the class should provide

  How will a user call those methods
(parameters, return values)?

•  Develop API
  Implement methods

•  Lab 9
 Practice: Dictionary, defining classes, writing

files
 Processing data

•  Broader Issue: environmental monitoring
using sensor networks

