
1

Objectives

•  Lists

Review: Files

•  How do you create a file?
• Whenever you open a file (i.e., construct a

file), what should you always remember to
do?

• What data types are read/written in files by
default?

•  How do we handle numeric data?

Recall

•  Focus for most of remainder of semester is
data types and what we can do with that
data

Other Sequences of Data
•  Sequences so far …

 String: sequence of characters
 Files: sequence of data (lines) in a file

• We commonly group a sequence of data
together and refer to them by one name
 Days of the week: Sunday, Monday, Tuesday, …
 Months of the year: Jan, Feb, Mar, …
 Shopping list

•  Can represent this data as a list in Python
 Similar to arrays in other languages

Lists: A Sequence of Data Elements

“Sun”	“Mon”	“Tue”	 “Wed”	“Thu”	“Fri”	“Sat”	
0	 1	 2	 3	 4	 5	 6	

element

Position
in the list len(daysInWeek) is 7

daysInWeek	

•  Elements in lists can be any data type

What does does this look similar to, in structure?

Example Lists in Python

•  List of strings:
 daysInWeek=["Sun", "Mon”, “Tue”, “Wed”,
“Thu”, “Fri”, “Sat”]	

•  List of floats
 highTemps=[60.4, 70.2, 63.8, 55.7, 54.2]	

•  List of file objects
 recentFiles=[<17-modules.ppt>, <18-
files.ppt>, <19-files.ppt>]	

•  Lists can contain >1 type file objects

2

Benefits of Lists

•  Group related items together
 Instead of creating separate variables
• sunday = “Sun”	
• monday = “Mon”	

•  Convenient for dealing with large amounts of
data
 Example: could keep all the temperature data in

a list if needed to reuse later
•  Functions and methods for handling,

manipulating lists

List Operations

Concatenation <seq> + <seq>	
Repetition <seq> * <int-expr>	
Indexing <seq>[<int-expr>]	
Length len(<seq>)	
Slicing <seq>[:]	
Iteration for <var> in <seq>:	
Membership <expr> in <seq>	

Similar to operations for strings

Lists: A Sequence of Data Elements

• <listname>[<int_expr>]	
 Similar to accessing characters in a string
 daysInWeek[-1] is “Sat”
 daysInWeek[0] is “Sun”

“Sun”	“Mon”	“Tue”	 “Wed”	“Thu”	“Fri”	“Sat”	
0	 1	 2	 3	 4	 5	 6	

element

Position
in the list len(daysInWeek) is 7

daysInWeek	

Iterating through a List

•  Read as
 For every element in the list …

•  Equivalent to

for item in list:	
	print item	

An item in the list list object

for x in xrange(len(list)):	
	print list[x]	

Iterates through
positions in list

Iterates through
items in list

daysOfWeek.py	

Practice

•  Get the list of weekend days from the days of
the week list
 daysInWeek=["Sun", "Mon”, “Tue”,
“Wed”, “Thu”, “Fri”, “Sat”]	

Practice

•  Get the list of weekend days from the days of
the week list
 daysInWeek=["Sun", "Mon”, “Tue”,
“Wed”, “Thu”, “Fri”, “Sat”]	

 weekend = daysInWeek[:1] +
daysInWeek[-1:]	

or
 weekend = [daysInWeek[0]] +
[daysInWeek[-1]]	

Gives back a list	

Gives back an
element of list,
which is a str	

3

Membership
•  Check if a list contains an element
•  Example problem

 enrolledstudents is a list of students who are
enrolled in the class

 Want to check if a student who attends the class is
enrolled in the class

•  Problem: If have a list attendingstudents,
check if each attending student is an enrolled
student

if student not in enrolledstudents:	
	print student, “is not enrolled”	

List Methods
Method Name Functionality
<list>.append(x)	 Add element x to the end
<list>.sort()	 Sort the list
<list>.reverse()	 Reverse the list

<list>.index(x)	 Returns the index of the first occurrence
of x, Error if x is not in the list

<list>.insert(i, x)	 Insert x into list at index i

<list>.count(x)	 Returns the number of occurrences of x
in list

<list>.remove(x)	 Deletes the first occurrence of x in list

<list>.pop(i)	 Deletes the i th element of the list and
returns its value

Note: methods do not return a copy of the list …

Fibonacci Sequence

•  Goal: Solve using list
•  F0=F1=1
•  Fn=Fn-1+ Fn-2
•  Example sequence: 1, 1, 2, 3, 5, 8, 13, 21, …

Fibonacci Sequence
•  Create a list of the 1st 15 Fibonacci

numbers
 F0=F1=1; Fn=Fn-1+ Fn-2

fibs = [] 	 	# create an empty list	
fibs.append(1) 	# append the first two Fib numbers	
fibs.append(1)	
for x in xrange(2,16): 	# compute the next 13 nums	

	newfib = fibs[x-1]+fibs[x-2]	
	fibs.append(newfib)	

print fibs 	 	# print out the list	

fibs.py	

Grow list as we go

Fibonacci Sequence
•  Create a list of the 1st 15 Fibonacci

numbers
 F0=F1=1; Fn=Fn-1+ Fn-2

fibs = range(15) # creates a list of size 15,	
	 	 	# containing nums 0 to 14	

fibs[0] = 1	
fibs[1] = 1	
for x in xrange(2,15):	

	newfib = fibs[x-1]+fibs[x-2]	
	fibs[x] = newfib	

for num in fibs: 	# print each num on sep line	
	print num	

fibs2.py	

Si
m

ila
r

to
 x
ra

ng
e,

Ca

ll
si

m
ila

rly

•  Create list
•  Update values

range vs xrange

• range: creates a list
 Use when you want a list

 Loop goes through each element in the list
•  list has 10,000 integers from 0 to 9,9999

• xrange: creates an iterator
 More efficient to use in for loops when you

want a counter (not a list)

 Generates 10,000 numbers, one by one
for x in xrange(10000):	

for x in range(10000):	

Won’t be able to use this
list outside of for loop

because not named

4

Lists vs. Arrays

•  Briefly, lists are similar to arrays in other
languages
 More similar to Vectors in C++ and ArrayLists in

Java
•  Typically, arrays have static lengths

 Can’t insert and remove elements from arrays so
that the length of the array changes

 Need to make the array as big as you’ll think
you’ll need

Lists vs. Strings
•  Strings are immutable

 Can’t be mutated?
 Er, can’t be modified/

changed

•  Lists are mutable
 Can be changed
 Changes how we call/

use methods

groceryList=[“milk”, “eggs”, “bread”, “Doritos”, “OJ”, \
	 	 “sugar”]	

groceryList[0] = “skim milk”	
groceryList[3] = “popcorn”	

groceryList is now [“skim milk”, “eggs”, “bread”, \
	 	 	“popcorn”, “OJ”, “sugar”]	

Practice
• list = [7,8,9]	
• string = “789”	
• list[1]	
• string[1]	
• string.upper()	
• list.reverse()	
• string	
• list	
• string = string.upper()	
• list = list.reverse()	
• string	
• list	

Practice: Wheel of Fortune

•  Allow user to choose between several
categories of puzzles
 Each category is represented by a different file,

e.g., oscars.txt, grammy_noms.txt,
famous_pairs.txt

•  How to model/implement this in Python?
 How to represent data?

Exam
•  Focus on material after first exam
•  More focus on reading and understanding code
•  When writing code, don’t need comments or

constants unless
 explicitly asked or
  it helps you or it helps me understand what you’re

trying to do
•  Reminders:

 Concise (but complete!) answers
 Budget time to complete writing code

