
1

•  More on Functions
 Scope, variable lifetime

•  Combinations of building block
•  Faster recognition of how to solve

 String without spaces  accumulate string!
•  Iterative problem solving

• What is the keyword to create a new
function?

• What is the keyword to give output from a
function?

•  How do we give input to a function?
• Why write functions?

•  In general, a function can have
 0 or more inputs (the parameters)
 0 or 1 outputs (what is returned)

• When we define a function, we know its
inputs and if it has output

function_name	input output

def metersToMiles(meters):	
	METERS_TO_MILES = .0006215 	
	miles = meters * METERS_TO_MILES	
	return miles	

Keyword Function
Name

Input Name/
Parameter

B
od

y
(o

r
fu

nc
tio

n
de

fin
iti

on
)

Keyword:
How to give output

Function header

Output

•  Formal Parameters are the variables named
in the function definition

•  Actual Parameters or Arguments are
variables or literals that really get used when
the function is called. Formal

Actual
Defined: def round(x, n) :	
Use: roundCelc = round(celc, 2)	

Formal & actual parameters must
match in order, number, and type!

2

• When the code reaches a statement like
	 	return x	
 the function stops executing and
 x is the output returned to the place where
function was called

•  For functions that don’t have explicit output,
return does not have a value with it, e.g.,
 return	
 Optional: don’t need to have return	

• What is the input and output to this function?

def metersToMiles(meters) :	
	METERS_TO_MILES = .0006215 	
	miles = meters * METERS_TO_MILES	
	return miles	

•  1 input: meters
•  1 output: the converted miles

def metersToMiles(meters) :	
	METERS_TO_MILES = .0006215 	
	miles = meters * METERS_TO_MILES	
	return miles	

•  Identify input and output

def printVerse(animal, sound):	
 print BEGIN_END + EIEIO	
 print "And on that farm he had a " + animal + EIEIO	
 print "With a " + sound + ", " + sound + " here"	
 print "And a " + sound + ", " + sound + " there"	
 print "Here a", sound	
 print "There a", sound	
 print "Everywhere a " + sound + ", " + sound	
 print BEGIN_END + EIEIO	
 print	

•  2 inputs: animal and sound
•  0 outputs

 Displays something but does not return
anything

def printVerse(animal, sound):	
 print BEGIN_END + EIEIO	
 print "And on that farm he had a " + animal + EIEIO	
 print "With a " + sound + ", " + sound + " here"	
 print "And a " + sound + ", " + sound + " there"	
 print "Here a", sound	
 print "There a", sound	
 print "Everywhere a " + sound + ", " + sound	
 print BEGIN_END + EIEIO	
 print	

•  Input? Output?

def printMenu():	
 print "You have some options for what to do: "	
 print "Enter an 'F' to find a song"	
 print "Enter an 'S' to sort by Song title"	
 print "Enter an 'A' to sort by Album"	
 print "Enter an 'R' to sort by aRtist name"	
 print "Enter an 'H' to list your options again"	
 print "Enter a 'Q' to quit"	

3

•  0 inputs and 0 outputs
 Again, it displays something but does not
return anything

def printMenu():	
 print "You have some options for what to do: "	
 print "Enter an 'F' to find a song"	
 print "Enter an 'S' to sort by Song title"	
 print "Enter an 'A' to sort by Album"	
 print "Enter an 'R' to sort by aRtist name"	
 print "Enter an 'H' to list your options again"	
 print "Enter a 'Q' to quit"	

1.  Identify functionality that should be put into a
function
  What is the function’s input?
  What is the function’s output?

2. Define/write the function
  Write descriptive comments

3. Call the function where appropriate
4. Create a main function that contains the

“driver” for your program
  Put at top of program

5. Call main at bottom of program	

• binaryToDecimal.py	
 Converting from binary to decimal
 Checking if a string contains only binary

numbers

• Write comments for the functions

•  Allows you to break up a hard problem into smaller,
more manageable parts

•  Makes your code easier to understand
•  Hides implementation details (abstraction)

 Provides interface (input, output)

•  Makes part of the code reusable so that you:
 Only have to write function code once
 Can debug it all at once

•  Isolates errors
 Can make changes in one function (maintainability)

Similar to benefits of OO Programming

def main():  
x = 10	

	sum = sumEvens(x)	
	print “The sum of even #s up to”, x, “is”, sum	

def sumEvens(limit):	
	total = 0	
	for x in xrange(0, limit, 2):	
	 	total += x 		
	return total	

main()	

4

def main():  
x = 10	
	sum = sumEvens(x)	
	print “The sum of even #s up to”, x, “is”, sum	

def sumEvens(limit):	
	total = 0	
	for x in xrange(0, limit, 2):	
	 	total += x 		
	return total	

main()	
Why can we name two

variables x?

mystery.py

def main():  
x = 10	

	sum = sumEvens(x)	
	print “The sum of even #s up to”, x, “is”, sum	

def sumEvens(limit):	
	total = 0	
	for x in xrange(0, limit, 2):	
	 	total += x 		
	return total	

main()	

D
ef

in
es

 f
un

ct
io

ns
 When you call main(), that means you

want me to execute this function

def main() :  
x=10	
	sum = sumEvens(x)	
	print “The sum of even #s up to”, x, “is”, sum	

def sumEvens(limit) :	
	total = 0	
	for x in xrange(0, limit, 2):	
	 	total += x 		
	return total	

main()	
main

The stack

 x 10
Function names are

like last names

Variable names are
like first names

def main() :  
x=10	
	sum = sumEvens(x)	
	print “The sum of even #s up to”, x, “is”, sum	

def sumEvens(limit) :	
	total = 0	
	for x in xrange(0, limit, 2):	
	 	total += x 		
	return total	

main()	 main x 10

sum
Evens limit 10

Called the function sumEvens 	
Add its parameters to the stack

def main() :  
x=10	
	sum = sumEvens(x)	
	print “The sum of even #s up to”, x, “is”, sum	

def sumEvens(limit) :	
	total = 0	
	for x in xrange(0, limit, 2):	
	 	total += x 		
	return total	

main()	
main x 10

sum
Evens

limit 10
total 0

def main() :  
x=10	
	sum = sumEvens(x)	
	print “The sum of even #s up to”, x, “is”, sum	

def sumEvens(limit) :	
	total = 0	
	for x in xrange(0, limit, 2):	
	 	total += x 		
	return total	

main()	
main x 10

sum
Evens

limit 10
total 0
x 0

5

def main() :  
x=10	

	sum = sumEvens(x)	
	print “The sum of even #s up to”, x, “is”, sum	

def sumEvens(limit) :	
	total = 0	
	for x in xrange(0, limit, 2):	
	 	total += x 		
	return total	

main()	
main x 10

sum
Evens

limit 10
total 20
x 8

def main() :  
x=10	
	sum = sumEvens(x)	
	print “The sum of even #s up to”, x, “is”, sum	

def sumEvens(limit) :	
	total = 0	
	for x in xrange(0, limit, 2):	
	 	total += x 		
	return total	

main()	
main sum 20

 x 10

Function sumEvens returned
• no longer have to keep track
of its variables on stack

•  lifetime of those variables is
over

def main() :  
x=10	
	sum = sumEvens(x)	
	print “The sum of even #s up to”, x, “is”, sum	

def sumEvens(limit) :	
	total = 0	
	for x in xrange(0, limit, 2):	
	 	total += x 		
	return total	

main()	
main x 10

sum 20

•  Functions can have the same parameter and
variable names as other functions
 Need to look at the variable’s scope to determine which

one you’re looking at
 Use the stack to figure out which variable you’re using

•  Scope levels
 Local scope (also called function scope)

•  Can only be seen within the function
 Global scope (also called file scope)

•  Whole program can access
•  More on these later

• What variables can we “see” (i.e., use)?
def main():	
 binary_string = raw_input("Enter a binary #: ")	
 if not isBinary(binary_string):	
 print "That is not a binary string"	
 sys.exit()	
 decVal = binaryToDecimal(binary_string)	
 print "The decimal value is", decVal	

def isBinary(string):	
 for bit in string:	
 if bit != "0" and bit != "1":	
 return False	
 return True	

•  Practice: scope.py	
 Trace through program--what does it do?

•  Answer questions in program…

6

• What is the output of this program?
 Example: user enters 4

def main():	
 num = input("Enter a number to be squared: ")	
 square = square(num)	
 print "The square is:", square	

def square(n):	
 return n * n	

main()	

practice1.py

• What is the output of this program?
 Example: user enters 4

def main():	
 num = input("Enter a number to be squared: ")	
 squared = square(num)	
 print "The square is:", squared	
 print “The original num was:”, n	

def square(n):	
 return n * n	

main()	

practice2.py

def main():	
 num = input("Enter a number to be squared: ")	
 squared = square(num)	
 print "The square is:", squared	
 print “The original num was:”, n	

def square(n):	
 return n * n	

main()	

• What is the output of this program?
 Example: user enters 4

Error! n does not
have a value in
function main()	

•  Know “lifetime” of variable
 Only during execution of function
 Related to idea of “scope”

• What about variables outside of functions?
 Example: non_function_vars.py

•  Other functions modify our data
 Unintentionally from our point of view …

•  Only copies of the actual parameters are
given to the function
 For immutable data types (which are what

we’ve talked about so far)
•  The actual parameters in the calling code do

not change
•  Swap example:

 Swap two values in script
 Then, put into a function

x = 5	
y = 7	

x = 7	
y = 5	

7

• Should be an “intuitive chunk”
 Doesn’t do too much or too little

• Should be reusable
• Always have comment that tells what

the function does

•  Bad: Does too little

•  Good: Validates the input

def getUserInput():	
	input = input(“Enter a number”)	
	return input	

def getUserInput():	
	input = input(“Enter a number”)	
	while input <= 0:	
	 	print “Number must be positive”	
	 	input = input(“Enter a number”)	
	return input	

•  Build up your program in steps
 Always write only small pieces of code
 Test, debug. Repeat

• Write function body as part of main, test
 Then, separate out into its own function
 Similar to process using in lab probs

•  Test function separately from other code
 Comment out irrelevant code to make sure that

the function behaves as expected

•  Lab 6 due Friday
•  Broader Issue: Volunteer Computing

•  Reminder: Next Friday, Mar 12, Exam

