
1

Objectives

•  Introduction to Object-Oriented Programming
•  Introduction to APIs
•  Problem-solving using APIs

Lab Review

•  2 Challenge problems
 Multiplication tables
 Craps

•  More examples of different ways to look at
and solve problems

Programming Paradigm: Imperative

•  Most modern programming languages are
imperative

•  Have data (numbers and strings in variables)
•  Perform operations on data using operations,

such as + (addition and concatenation)
•  Data and operations are separate

•  Add to imperative: object-oriented
programming

OBJECT-ORIENTED
PROGRAMMING

Object-Oriented Programming

•  Program is a collection of objects
•  Objects combine data and methods together
•  Objects interact by invoking methods on

other objects
 Methods perform some operation on object

Object-Oriented Programming

•  Program is a collection of objects
•  Objects combine data and methods together
•  Objects interact by invoking methods on

other objects
 Methods perform some operation on object

Object o of
type X

Hides
internal data

o.method()	

Optionally may return
something back

2

Object-Oriented Programming

• We’ve been using objects
 Just didn’t call them objects

•  For example: str is a data type (or class)
 We created objects of type (class) string	
• animal = “cow”	
• pick4Str = str(randnum) + “-”	

memory

Objects of
type string

Variable
names/

identifiers
“cow”	

“1-”	

animal	

pick4str	

Example of OO Programming Abstraction

•  Think of a TV -- It’s an object
• What can you do to your TV using one of two

interfaces: the remote or the buttons on the
TV?

Example of OO Programming Abstraction

•  Think of a TV -- it’s an object
• What can you do to your TV using one of two

interfaces: the remote or the buttons on the
TV?
 Turn on/off
 Change channel
 Change volume
 …

•  You don’t know how that operation is being
done (i.e., implemented)
 Just know what it does and that it works

methods

Example of OO Programming Abstraction

•  Your TV is an object
•  Methods you can call on your TV:

 Turn on/off
 Change channel
 Change volume
 …

• TV is a class, a.k.a., a data type
 Your TV (named “myTV”) is an object of type TV	
 You can call the above methods on any object of

type TV

Object-Oriented Programming

•  Objects combine data and methods together

Object o of
type X

Hides internal
data structures,
implementation

o.method()

Optionally may return
something back

Provides interface (methods)
that users interact with

Use an Application Programming Interface (API)
to interact with a set of classes.

Class Libraries

•  Python provides libraries of classes
 Defines methods that you can call on objects

from those classes
 str class provides a bunch of useful methods

•  More on that later

•  Third-party libraries
 Written by non-Python people
 Can write programs using these libraries too

3

Benefits of Object-Oriented Programming

•  Abstraction
 Hides details of underlying implementation
 Easier to change implementation

•  Easy reuse of code

•  Collects related data/methods together
 Easier to reason about data

•  Less code in main program

Using a Graphics Module/Library
•  Allows us to handle graphical input and

output
 Example output: Pictures
 Example input: Mouse clicks

•  Defines a collection of related graphics
classes

•  Not part of a standard Python distribution
 Need to import from graphics.py	

 Use the library to help us learn OO
programming

USING A GRAPHICS MODULE

Using a Graphics Module/Library

•  Handout lists the various classes
 Constructor is in bold

•  Creates an object of that type
 For each class, lists some of their methods and

parameters
 Drawn objects have some common methods

•  Listed at end of handout

•  Known as an API
 Application Programming Interface

Example of Output
•  From Fall07 class

Using the API: Constructors
•  To create an object of a certain type/class,

use the constructor for that type/class
 Syntax:

 Note:
•  Class names typically begin with capital letter
•  Object names begin with lowercase letter

 objname is known as an instance of the class
•  Example: To create a GraphWin object

that’s named “window”
window = GraphWin(“My Window”,200,200)	

objName = ClassName([parameters])	

4

Using the API: Methods

•  To call a method on an object,
 Syntax:

 Method names typically begin with lowercase
letter

 Similar to calling functions
•  Example: To change the background color of

a GraphWin object named “window”
window.setBackground(“blue”)	

objName.methodName([parameters])	

Using the API: Methods

•  A method sometimes returns output, which
you may want to save in a variable
 Class’s API should say if method returns output

•  Example: if you want to know the width of a
GraphWin object named window

width = window.getWidth()	

What Does This Code Do?

•  Use OO terminology previously defined

from graphics import *	

win = GraphWin(“My Circle”, 100, 100)	
c = Circle(Point(50,50), 10)	
c.draw(win)	
win.getMouse()	

What Does This Code Do?

•  Use OO terminology previously defined

from graphics import *	

win = GraphWin(“My Circle”, 100, 100)	
c = Circle(Point(50,50), 10)	
c.draw(win)	
win.getMouse()	

Constructor

GraphWin
object

Method called on GraphWin object

Also known as
an instance of
the GraphWin
class Note: Class names start with capital letters,

Method names start with lowercase letters

Using the Graphics Library

•  In general, graphics are drawn on a canvas
 A canvas is a 2-dimensional grid of pixels

•  For our Graphics library, our canvas is a
window
 Specifically an instance of the GraphWin class
 By default, a GraphWin object is 200x200

pixels

A GraphWin Object’s Canvas

X horizontal axis

Y

(0,0)

(200,200)

origin Coordinates are
specified as (x,y)

a
x
i
s

v
e
r
t
i
c
a
l

What are the
coordinates for
these points?

5

Reading Code
•  After this program executes, what does the window

look like?

graphics_test.py	

from graphics import *	

win = GraphWin(“My Circle”, 100, 100)	
c = Circle(Point(50,50), 10)	
c.draw(win)	
win.getMouse()	

The GraphWin Class

•  All parameters to the constructor are optional
•  Could call constructor as

Call Meaning

GraphWin() Title, width, height to defaults
(“Graphics Window”, 200, 200)

GraphWin(<title>)	 Width, height to defaults
GraphWin(<title>,<width>)	 Height to default
GraphWin(<title>,
<width>, <height>)	

The GraphWin API

•  Accessor methods for GraphWin	
 Return some information about the GraphWin	

•  Example methods:
 <GraphWinObj>.getWidth()	
 <GraphWinObj>.getHeight()	

The GraphWin API
• <GraphWinObj>.setBackground(<color>)	

 Colors are strings, such as “red” or “purple”
•  Can add numbers to end of string for darker

colors, e.g., "red2", "red3", “red4”

 Does not return anything to shell
 Called for its change in win’s state, i.e., this

method is a mutator

win = GraphWin()	
win.setBackground(“purple”)	

Colors

•  Strings, such as “blue4”
•  Can also create colors using the function
color_rgb(<red>,<green>,<blue>)	
 Parameters in the range [0,255]
 Example use:

•  Background is a dark blue/green color
 Example color codes:

•  http://en.wikipedia.org/wiki/List_of_colors	

win.setBackground(color_rgb(10,100,100))

General Categories of Methods

•  Accessor
 Returns information about the object
 Example: getWidth()	

•  Mutator
 Changes the state of the object

•  i.e., changes something about the object
 Example: setBackground()	

6

Using the Graphics Library
•  How do we create an instance of a

Rectangle?

•  Draw the rectangle?

•  Shift the instance of the Rectangle class to
the right 10 pixels

• What are the x- and y- coordinates of the
upper-left corner of the Rectangle now?

rectangle.py	

OO Terminology Summary

Term Definition Examples

Class
A data type. Defines the
data and operations for
members of the class

string, TV, GraphWin

Object An instance of a specific
class animal, myTV, window

Method Operations you can call on
an object

setBackground(<color>),
getWidth()	

Constructor
Special method to create
an object of a certain type/
class

GraphWin(), str(1234)	

This Week

•  Lab due Friday
•  Broader Issue: DARPA Urban Challenge

 Write up in Sakai due Friday

Exam 1 Results

•  Had 104 points but out of 100, plus 6 bonus points
•  Common mistakes

 Budgeting time
•  Too-long answers

 Only worth 3-5 points; looking for key words
 Tracing through if problem, fixing code

•  use control flow diagrams
 for loop (up to but not including), string accumulator
 <= instead of ≤

A B C Total
Average 85.77 78.22 83.33 88
Median 87.50 77.94 88.33 88.5

Paying Off Debt

debt = input("Enter your debt: ")	
payoff = input("Enter monthly payment: ")	

print 	
print "Month Start Debt Interest Final Debt"	
print "-"*40	

for x in xrange(1, 13):	
 print "%5d" % x, 	
 print "%10.2f" % debt, 	
 interest = debt * .05	
 print "%10.2f" % interest,	
 debt = debt - payoff + interest	
	print "%10.2f" % debt	

You didn’t have to worry
about column widths

Awards Banquet

numAttend = input("Enter the number of attendees: ")	
startTime = input("Enter the start time: ")	

if numAttend < 50:	
 cost = 25	
else:	
 cost = 15	

if startTime > 7:	
 cost += 5	
elif startTime > 5:	
 cost += 3	

print "The banquet costs $%.2f" % (cost*numAttend)	

Note how clean/simple
the solution is

