
1

•  Review: string format
•  Functions
•  Import
•  Intro to design patterns
•  Definite loops

• What data type does string formatting give
you?
 For example, what data type would
“%6.2f” % expense give back?

• What is the format specifier’s code for ints?
Floats? Strings?

• What is the format specifier for right-justifying
a float within 10 spaces that displays 3
decimals?

•  Input, Output
•  Primitive operations

 What data you have, what you can do to the data
•  Naming

  Identify things we’re using
•  Sequence of operations
•  Conditionals

 Handle special cases
•  Repetition/Loops
•  Subroutines

 Call, reuse similar techniques

•  Functions perform some task
 May take arguments/parameters
 May return a value that can be used in

assignment

function Input
(arguments)

Output
(return value)

What does it do?
How does it do it?

We don’t know how it does it,
but it’s okay because it doesn’t

matteras long as it works!

•  Syntax:
 func_name(arg0, arg1, …, argn)	

•  Depending on the function, arguments may
or may not be required
 [] indicate an optional argument

•  Semantics: depend on the function

Argument/parameter list (input)

function Input
(arguments)

Output
(return value)

2

• raw_input([prompt])	
 If prompt is given as an argument, prints the

prompt without a newline/carriage return
 If no prompt, just waits for user’s input
 Returns user’s input (up to “enter”) as a string

• input([prompt])	
 Similar to raw_input but returns a number

Known as function’s “signature”
Template for how to “call” function

Optional argument

• round(x[,n])	
 Return the float x rounded to n digits after the

decimal point
 If no n, round to nearest int	

• abs(x)	
 Returns the absolute value of x

• type(x)	
 Return the type of x	

• pow(x, y)	
 Returns xy

Terminal

•  Example use: Alternative to exponentiation
 Goal: compute -32

 Python alternatives:
• pow(-3, 2)
•  (-3) ** 2

• We often use functions in assignment
statements
 Function does something
 Save the output of function in a variable

function_example.py	

roundx = round(x)	

•  Beyond built-in functions, Python has a rich
library of functions and definitions available
 The library is broken into modules
 A module is a file containing Python definitions

and statements
•  Example modules

 math -- useful math functions
 os -- useful OS functions
 network -- useful networking functions

•  Defines constants (variables) for pi (i.e., π)
and e
 These values never change, i.e., are constants
 Recall: we name constants with all caps

•  Defines functions such as

Function What it Does
ceil(x)	 Return the ceiling of x as a float
exp(x)	 Return e raised to the power of x	
sqrt(x)	 Return the square root of x	

•  To use the definitions in a module, you must
first import the module
 Example: to use the math module’s definitions,

use the the import statement: import math
 Typically import statements are at top of

program
•  To find out what a module contains, use the
help function
 Example within Python interpreter

import math	
help(math)	

3

•  Prepend constant or function with
“modulename.”
 Examples for constants:
• math.pi	
• math.e	

 Examples for functions:
• math.sqrt	

•  Practice
 How would we write the expression eiπ + 1 in

Python?
module_example.py	

•  Examples:
 from math import *	

•  Means “import everything from the math module”
 from math import pi	

•  Means “import pi from the math module”

• With this import statement, don’t need to
prepend module name before using functions
 Example: e**(1j*pi) + 1	

from <module> import <defn_name>	

•  Benefits of functions/definitions in modules
 Don’t need to rewrite someone else’s code
 If it’s in a module, it is very efficient (in terms of

computation speed and memory usage)

•  How do I know if functionality that I want
already exists?
 Python Library Reference:
 http://docs.python.org/lib/lib.html	

•  For example, string module has functions
for manipulating strings

•  For the most part, in the beginning you will
write most of your code from scratch

print	

•  Each type of statement is a
building block
 Initialization/Assignment

•  Arithmetic, string concatenation,
functions

 Print
 Import

• We can combine them to create
more complex programs
 Solutions to problems

Assign.

Assign.
Assign.

print	
Assign.

print	

import	

import	 •  General, repeatable solution to a commonly
occurring problem in software design
 Template for solution

4

•  General, repeatable solution to a commonly
occurring problem in software design
 Template for solution

•  Example (Standard Algorithm)
 Get input from user
 Do some computation
 Display output

•  Learn new building block, new design pattern

print	
Assign.
Assign. x = input(“…”)	

ans = …	
print ans	

•  Input, Output
•  Primitive operations

 What data you have, what you can do to the data
•  Naming

  Identify things we’re using
•  Sequence of operations
•  Conditionals

 Handle special cases
•  Repetition/Loops
•  Subroutines

 Call, reuse similar techniques

Make PB&J sandwich

Make PB&J sandwich

Repeat 10 times
Make 10

PB&J
sandwiches

•  Use when know how many times loop will
execute
 Repeat N times

Make PB&J sandwich

for i in xrange(10):	
Make 10

PB&J
sandwiches

Loop body

Loop
header

Loop variable
Keywords Built-in function

•  Make PB&J Sandwich
1.  Gather materials (bread, PB, J, knives, plate)
2.  Open bread
3.  Put 2 pieces of bread on plate
4.  Spread PB on one side of one slice
5.  Spread Jelly on one side of one slice
6.  Place PB-side facedown on Jelly-side of bread
7.  Close bread
8.  Clean knife
9.  Put away materials

Make PB&J sandwich

for i in xrange(10):	

5

•  Make PB&J Sandwich
1.  Gather materials (bread, PB, J, knives, plate)
2.  Open bread
3.  Put 2 pieces of bread on plate
4.  Spread PB on one side of one slice
5.  Spread Jelly on one side of one slice
6.  Place PB-side facedown on Jelly-side of bread
7.  Close bread
8.  Clean knife
9.  Put away materials

Initialization

Lo
op

 B
od

y

Finalization

•  Use when know how many times loop will
execute
 Repeat N times Times to repeat

for i in xrange(10):	
	statement_1

	statement_2	
	…	
	statement_n

“Body” of for loop
-  Gets repeated
-  Note indentation

•  If only one statement to repeat

simple_for.py	

for variable in xrange(5): print “Hello!”	

• xrange is a built-in function

• What does xrange do, exactly?

xrange_analysis.py

• What does the above signature mean? •  1 argument: xrange(stop)	

•  2 arguments: xrange(start, stop)	

•  3 arguments: xrange(start, stop,
step)	

using_xrange.py

6

•  1 argument: xrange(stop)	
 Defaults: start = 0, step = 1
 Iterates from 0 to stop-1 with step size=1

•  2 arguments: xrange(start, stop)	
 Default: step = 1
 Iterates from start to stop-1 with step size=1

•  3 arguments: xrange(start, stop,
step)	
 Iterates from start to stop-1 with step

size=step	
using_xrange.py	

• xrange is a built-in function
 1 argument: xrange(stop)	
 2 arguments: xrange(start, stop)	
 3 arguments: xrange(start, stop, step)	

0 -5 5 10 15 -10 -15

[start, stop)

xrange(10)	
xrange(0,10)	
xrange(0,10,1)	

0 -5 5 10 15 -10 -15

xrange(5, -15, -5):	

0 -5 5 10 15 -10 -15

xrange(1, 15, 3):	

new_for.py	

0 -5 5 10 15 -10 -15

xrange(8, -10, -3):	
0 -5 5 10 15 -10 -15

xrange(2, 14, 2):	

Place these:

Which direction?

0 -5 5 10 15 -10 -15

xrange(-5, 15, -3):	

0 -5 5 10 15 -10 -15

xrange(8, -10, -3):	
0 -5 5 10 15 -10 -15

xrange(2, 14, 2):	

0 -5 5 10 15 -10 -15

xrange(-5, 15, -3):	 Won’t do any

•  Add 5 numbers, inputted by the user
 After implementing, simulate running on

computer

sum5.py

7

1.  Initialize accumulator variable
2. Loop until done

 Update the value of the accumulator
3. Display result

•  Average 5 numbers inputted by the user

average5.py

•  Tuesday: Lab 2
 Lab due on Friday

• Wednesday: Advanced for Loop
•  Friday: 2nd Half of Puzzles from Cyberspace

