
1

• Review Lab
•  Introduction to

 Problem solving
 Programming languages
 Writing Python programs

• Learned some UNIX commands
• Created a Web page
• Started writing Python programs

• Lessons learned:
 Problems are fixable (often just typos!)
 Find a good solution

• UNIX is a bad parent
 Doesn’t tell you when you’ve done something

right
 Only tells you when you’ve done something

wrong

sprenkle@spartacus Desktop$ mv lab00.ppt.pdf lab00.pdf	
sprenkle@spartacus Desktop$ 	

RIGHT! Because didn’t get an error message!

• How do you …
 Learn more about a Linux command?
 List the files in a directory?
 Change your current directory?
 Make a directory?
 Find out the current directory?

• What is the shortcut for …
 The current directory?
 The parent directory?
 Your home directory?

usr	 etc	home	

/

courses	students	 www	 tmp	faculty	

Your
directories

cs111	

labs	

lab0	

handouts	 turnin	

Your web
pages

Paths through tree
Relative paths

public_html	
Link or alias •  Given that you’re at WLU, how would you get to Washington Hall?

To Roanoke? To Baltimore?

canada	 china	us	

/

VA	CA	 NY	 MD	NC	

WLU	 Roanoke	 Baltimore	

WashingtonHall	

You are here

2

•  Given that you’re in China, how would you go to Canada? WLU?
Washington Hall?

canada	 china	us	

/

VA	CA	 NY	 MD	NC	

WLU	 Roanoke	 Baltimore	

WashingtonHall	

Home
directory

• Computational Problem
 A problem that can be solved by logic

• To solve the problem:
 Create a model of the problem
 Design an algorithm for solving the problem

using the model
 Write a program that implements the algorithm

• Algorithm: a well-defined recipe for solving a
problem
 Has a finite number of steps
 Completes in a finite amount of time

• Program
 An algorithm written in a programming

language
 Also called code

• Application
 Large programs, solving many problems

• Algorithms often have a defined input and
output

• Correct algorithms give the intended output
for a set of input

• Example: Multiply by 10
 I/O for a correct algorithm:

• More examples: averaging numbers, recipes

input algorithm output

I O

Input Output
5 50

.32 3.2

x 10x

• How do you make a peanut butter and jelly
sandwich?

• Write down the steps so that someone else
can follow your instructions
 Make no assumptions about the person’s

knowledge of PB&J sandwiches
 The person has the following materials:

• Loaf of bread, Jar of PB, Jar of Jelly
• 2 Knives, paper plates, napkins

• The computer: a blessing and a curse
 Recognize and meet the challenge!

• Be unambiguous, descriptive
 Must be clear for the computer to understand
 “Do what I meant! Not what I said!”

• Motivates programming languages
• Creating/Implementing an algorithm

 Break down pieces
 Try it out
 Revise

3

• Be prepared for special cases
 Any other special cases we didn’t discuss?

• Aren’t necessarily spares in real life
 Need to write correct algorithms!

• Reusing similar techniques
 Do the same thing with a little twist

• Looping
 For repeating the same action

•  Input, Output
• Primitive operations

 What data you have, what you can do to the data
• Naming

 Identify things we’re using
• Sequence of operations
• Conditionals

 Handle special cases
• Repetition/Loops
• Subroutines

 Call, reuse similar techniques

An overview for
the semester!

• A cowboy’s wisdom: Good judgment comes
from experience
 How can you get experience?
 Bad judgment works every time

• Program errors can have bad effects
 Prevent the bad effects--especially before you

turn in your assignment!

• Computational Problem
 A problem that can be solved by logic

• To solve the problem:
 Create a model of the problem
 Design an algorithm for solving the problem

using the model
 Write a program that implements the algorithm

• Computers can’t understand English
 Too ambiguous

• Humans can’t easily write machine code
Problem Statement (English)

Machine code/Central Processing Unit (CPU)

000000 00001 00010 00110 00000 100000

Live Jazz!
• Computers can’t understand English

 Too ambiguous
• Humans can’t easily write machine code

Problem Statement (English)

Algorithm/Pseudocode

Bytecode

High-level Programming Language (Python)

Machine code/Central Processing Unit (CPU)

Programmer (YOU!)
translates from
problem to algorithm
(solution) to program

Python interpreter
translates into
bytecode

4

• Computers can’t understand English
 Too ambiguous

• Humans can’t easily write machine code
Problem Statement (English)

Algorithm/Pseudocode

Bytecode

High-level Programming Language (Python)

Machine code/Central Processing Unit (CPU)

Python interpreter
executes the
bytecode in a “virtual
machine”

• Programming language:
 Specific rules for what is and isn’t allowed
 Must be exact
 Computer carries out commands as they are

given
• Syntax: the symbols given
• Semantics: what it means
• Example: III * IV means 3 × 4 which

evaluates to 12
• Programming languages are unambiguous

1.  Validates Python programming language
expression(s)
•  Enforces Python syntax
•  Reports syntax errors

2.  Executes expression(s)
•  Runtime errors (e.g., divide by 0)
•  Semantic errors (not what you meant)

Interpreter
(python)

Python
expression

Output Executable
bytecode

 Input, Output
•  Primitive operations

 What data you have, what you can do to the data
•  Naming

  Identify things we’re using
•  Sequence of operations
•  Conditionals

 Handle special cases
•  Repetition/Loops
•  Subroutines

 Call, reuse similar techniques

• print is a special command
 Displays the result of expression(s) to the

terminal
• print “Hello, class”	

string literal

print automatically
adds a ‘\n’ (carriage
return) after it’s printed

• print is a special command
 Displays the result of expression(s) to the

terminal
• print “Hello, class”	

• print “Your answer is”, 4*4	
 Displays same as:

• print “Your answer is”,	
• print 4*4	

string literal

print automatically
adds a ‘\n’ (carriage
return) after it’s printed

Syntax: commas
Semantics: print
multiple “things” in

one line

5

• More programming fundamentals
•  Broader Issue: “New Programs Aim to Lure

Young Into Digital Jobs”
 Post write up on Sakai, as response to appropriate topic
 Your write up will include

•  How interesting you found this article on a scale of 0 to 9
•  Summary of the 3 most important points
•  Article’s effect on your understanding of CS
•  Article’s relation to our course specifically (if applicable)
•  Question for class discussion

 See Course’s CS Issues page for more information

• Examples: Java, C++, C, etc.
• Compile whole program into bytecode/

executable format
• Then, execute the bytecode/machine code

1.  Compiler compiles program
•  Validate program, report syntax errors
•  Creates executable (bytecode or machine code)

2.  Execute executable

Compiler
Program
text file

Output

Text Editor

Executable
Bytecode or

Machine code

Validates whole program

Compiler
Program
text file

Output

Text Editor

Executable
Bytecode or

Machine code

Interpreter
Program
text file

Output

Text Editor

Executable
bytecode

1 “line”
at a time

Compiled:

Interpreted:

Validates whole program

+ immediate feedback

+ compile once, execute
multiple times
+ execution speed

• Combination of compiled and interpreted
•  Interactive mode: interpreted

 Validate, execute each line

• Python “interpreter” in script mode:
 Compiles Python script into bytecode
 Runs Python Virtual Machine that interprets the

bytecode and executes

