
1 

•  Review 
•  Lab 1 

 Linux practice 
 Programming practice 

•  Numeric operations 
•  Getting input from the user 

•  Test case: input used to test the program, 
expected output given that input 

•  Verify if output is what you expected 
•  Need good test cases 

 Good that you know the “problematic” test 
cases, even if we don’t know how to address 
them yet 

Input Program Output 

Expected 
Output 

Verify output 
Test Case 

•  Edit the program, re-execute/test until 
everything works 

•  The error is often called a “bug” 
•  Diagnosing and fixing it is called debugging 

Interpreter 
(python) 

Program 
text file 

program.py   
Output 

Text Editor 
(jEdit or IDLE) 

ERROR! 
Identify bug, fix 

debug_practice.py 

•  Design the algorithm 
 Break into pieces  

•  Implement and Test each piece separately 
 Identify the best pieces to make progress 
 Iterate over each step to improve it 

• Write comments FIRST for each step 
 Elaborate on what you’re doing in comments 

when necessary 

Symbol Meaning Associativity 

+	 Addition Left 

-	 Subtraction Left 
*	 Multiplication Left 
/	 Division Left 

%	 Remainder (“mod”) Left 

**	 Exponentiation (power) Right 

Precedence rules: P E - DM% AS 

negation 

Associativity matters 
when you have the 

same operation multiple 
times 

•  Float Division: Result is a float 
 3.0/6.0  0.5 
 6.0/3.0  2.0 
 At least one of numerator and denominator 

must have a decimal, i.e., have type float 
•  Integer Division: Result is an int 

 3/6  0 
 6/3  2 
 x/y, if both x and y are ints 
 If both numerator and denominator are ints, 

result is int 

Not always obvious 



2 

•  CS Issues Grading/Expectations 
 6 pts for blog entry 

•  Common issue – missing answers to one of 
questions 

 4 pts for participation in class 

•  Idea: online grading (in Sakai) in future? 
 No paper copy (less waste) 
 But you’d have to login to Sakai and look at the 

feedback 

•  Overall, did well 
 Often lost points because missed some 

directions 
•  E.g., broken Web page links, documentation in 

programs, output of programs 
 Generally, lab grades should be high 

•  Interesting article links 
 Consider reviewing for extra credit 

•  Missed my Sakai extra credit 

• <arg> means fill in the appropriate thing 
• [arg] means optional argument 

•  Example: Move or Rename a file 
 mv <sourcefile> <destination> 
 If <destination> is a directory, keeps the 

original source file’s name 

•  File “file.py” will be in labs/lab1 directory 

mv ~/labs/file.py labs/lab1/ directory 

• ls -l option 
 Demonstrate how different from -1 option 

•  Need electronic as well as printed 
submission 
 I can execute your program, help find mistakes 
 Copy your lab directory into your turnin 

directory 
 How do you copy a directory? 

•  Setting up directories 
•  Renaming/moving files 
•  Note: terminal tells you which directory 

you’re in 

•  Name them lab1.n.py, where n is the 
problem you’re working on 

•  After completed, demonstrate that your 
program works 
 Close IDLE/Python shell, rerun program 

•  Get rid of the output from when you were developing/
debugging (“scratch work”) 

 Execute using good test cases 
•  More than one test case if dealing with user input 
•  Don’t need to exhaustively test 

 Save output for each program in file named lab1.n.out 
where n is the problem you’re working on 



3 

•  Expect comments in programs 
 High-level comments, authorship 
 Notes for your algorithms, implementation 

•  Expect testing on programs 
 What are good test cases for your programs? 
 Show the output from those test cases 
 But don’t go overboard, testing every possible 

number! 
•  Honor System 

 Pledge the Honor Code on printed sheets 


