
1

•  Designing our own classes
 Representing attributes/data
 What functionality to provide

•  Using our defined classes

•  Data File Length:
 Female first names: 876
 Male first names: 865
 First names, last names: 1741

•  How would you need to change your code to
handle files that had 10,000 names?
100,000 names?

•  Became really abstract
 Partly a drawback of Python

•  Lose track of data types
 Keep telling yourself “This object is type X. That

means I can do these operations on it…”
 Examples:

•  Dictionary: mapped string  integer	
•  Dictionary: mapped string  FrequencyObject	
•  Values from dictionary: list of FrequencyObjects	

•  Use example programs

• With what you now know (OO programming)
 Opens up the possibilities for what you kinds of

programs you can write
 Just about anything computational is possible

• What is the keyword to create a new class?
•  How do you create a new object of a given

class?
 What method does this call?

• What parameter is needed in every method?
•  How do we access instance variables in

other methods?

• We’re all of type homo sapien
•  Each of us has these attributes:

 Height
 Weight
 Hair color
 Hair type
 Skin color

•  Methods
 Breathe
 Speak …

We all have these
attributes,

different values for
the attributes

2

•  c1 = Card(14, "spades")
•  c2 = Card(13, "hearts")

Instance variables,
attributes, or fields

Object c1 of
type Card

rank = 14
suit = “spades”

Object c2 of
type Card

rank = 13
suit = “hearts”

•  List of Card objects
from card import *	

class Deck:	
 def __init__(self):	
 self.cards = []	
 for suit in ["clubs","hearts","diamonds","spades"]:	
 for rank in xrange(2,15):	
 self.cards.append(Card(rank, suit))	

 def __str__(self):	
 result = ""	
 for c in self.cards:	
 result += str(c) + "\n"	
 return result	

Displays cards on
separate lines

Initialize instance variable,
self.cards	

Creates and returns a string

•  Shuffle the cards
•  Number of cards remaining
•  Draw one card
•  Deal out cards

• What do the method headers look like?
• What should they return?
• How do we implement them?

• shuffle()	
 Shuffles the cards

• draw()	
 Removes one card from the Deck and returns it

• numRemaining()	
 Returns the number of cards that are in the deck

• deal(numplayers, numcards)	
 Deals numcards to each of the numplayers

players

•  Return proposals, given that a hand is a list
of cards
 Return a dictionary of hands
 Preferred: Return a list of hands
•  Dictionaries take up a lot of space, much more

than a list that’s as long as the number of players
1
2
…
n

C C C C

C C C C

C C C C

…
n
1
…
2

C C C C

C C C C

Dictionary List

• Deck()	
• shuffle()	
• draw()	
• numRemaining()	
• __str__()	

Constructor

Show help(Deck), help(Card)

3

• Write additional code for Deck and Card
classes
 Leading to a game…

•  Adding a Player class for a particular game
•  Due next Tuesday before lab

•  Return the card’s color (Red/Black), using a
constant defined at the top for each color
 What game is this useful for?

•  Boolean methods: isBlack(), isRed()
•  Boolean method: isOppositeColor(card)
•  Boolean method: isSameSuit(card)
•  Create a Hand class (very similar to Deck class)

 Methods that check if all same suit, all same rank

•  Player class for various games …
•  Test/Demonstrate your methods

Due Tuesday before lab

•  Has a fixed range
•  Starts at some low value, increments by 1,

loops back around to low value if gets
beyond some maximum value

•  Example application of the counter: Caesar
cipher for letters ‘a’ to ‘z’

Object o
of type
Counter

What is the API
for this object/

class?

•  What are the attributes
of an object in the
class?

•  What data should be
used to represent an
object in the class?

•  Data: Instance variables
 High, Low, Current Value

•  API (methods)
 Counter(low, high)
 increment([amount])
 setValue(value)
 getValue()
 getLow()
 getHigh()

counter.py

•  Lab 9 due Friday

•  One Environmental Monitoring article

