Objectives

More on Functions
» Scope, variable lifetime

March 3, 2010 Sprenkle - CSCI111 1

Lab Review

Combinations of building block
Faster recognition of how to solve
» String without spaces - accumulate string!

Iterative problem solving

March 3, 2010 Sprenkle - CSCI111 2

Review: Functions

What is the keyword to create a new
function?

What is the keyword to give output from a
function?

How do we give input to a function?
Why write functions?

March 3, 2010 Sprenkle - CSCI111 3

Review: Functions

In general, a function can have

» 0 or more inputs (the parameters)

>0 or 1 outputs (what is returned)

When we define a function, we know its
inputs and if it has output

.
input I output

March 3, 2010 Sprenkle - CSCI111 4

Review: Syntax of Function Definition

Keyword Function Input Name/
Name Parameter

def metersToMiles(meters): Function header
METERS_TO_MILES = .0006215
miles = meters * METERS_TO_MILES
return miles

Body (or
function
definition)

Output

Keyword:
How to give output

March 3, 2010 Sprenkle - CSCI111 5

Review: Parameters

Formal Parameters are the variables named
in the function definition

Actual Parameters or Arguments are
variables or literals that really get used when

the function is called. Formal
Actual

Defined: def round(x, n :/%
Use: roundCelc = round(celc, 2)

Formal & actual parameters must
match in order, number, and type!

March 3, 2010 Sprenkle - CSCI111 6

Review: Function Output

When the code reaches a statement like
return x
the function stops executing and

x is the output returned to the place where
function was called
For functions that don’t have explicit output,
return does not have a value with it, e.g.,
> return
» Optional: don’t need to have return

March 3, 2010 Sprenkle - CSCI111 7

Function Input and Output
What is the input and output to this function?
def metersToMiles(meters) :
METERS_TO_MILES = .0006215

miles = meters * METERS_TO_MILES
return miles

March 3, 2010 Sprenkle - CSCI111 8

Function Input and Output

1 input: meters
1 output: the converted miles

def metersToMiles(meters) :
METERS_TO_MILES = .0006215

miles = meters * METERS_TO_MILES
return miles

March 3, 2010 Sprenkle - CSCI111 9

Function Input and Output
Identify input and output

def printVerse(animal, sound):
print BEGIN_END + EIEIO
print "And on that farm he had a " + animal + EIEIO
print "With a " + sound + ", " + sound + " here"
print "And a " + sound + ", " + sound + " there"
print "Here a", sound
print "There a", sound
print "Everywhere a " + sound + ", " + sound
print BEGIN_END + EIEIO
print

March 3, 2010 Sprenkle - CSCI111 10

Function Input and Output

2 inputs: animal and sound
0 outputs

» Displays something but does not return
anything

def printVerse(animal, sound):
print BEGIN_END + EIEIO
print "And on that farm he had a " + animal + EIEIO
print "With a " + sound + ", " + sound + " here"
print "And a " + sound + ", " + sound + " there"
print "Here a", sound
print "There a", sound
print "Everywhere a " + sound + ", " + sound
print BEGIN_END + EIEIO
print

Function Input and Output
Input? Output?

def printMenu():
print "You have some options for what to do:
print "Enter an 'F' to find a song"
print "Enter an 'S' to sort by Song title"
print "Enter an 'A' to sort by Album"
print "Enter an 'R' to sort by aRtist name"
print "Enter an 'H' to list your options again"
print "Enter a 'Q' to quit"

March 3, 2010 Sprenkle - CSCI111 12

Function Input and Output

0 inputs and 0 outputs

» Again, it displays something but does not
return anything

def printMenu():
print "You have some options for what to do: "
print "Enter an 'F' to find a song"
print "Enter an 'S' to sort by Song title"
print "Enter an 'A' to sort by Album"
print "Enter an 'R' to sort by aRtist name"
print "Enter an 'H' to list your options again"
print "Enter a 'Q' to quit"

March 3, 2010 Sprenkle - CSCI111 13

Typical Refactoring Process

Identify functionality that should be putinto a
function

» What is the function’s input?

» What is the function’s output?
Define/write the function

» Write descriptive comments

Call the function where appropriate
Create a main function that contains the
“driver” for your program

» Put at top of program

Call main at bottom of program

March 3, 2010 Sprenkle - CSCI111 14

Converting functionality into functions

binaryToDecimal.py
» Converting from binary to decimal

» Checking if a string contains only binary
numbers

Write comments for the functions

March 3, 2010 Sprenkle - CSCI111 15

Review: Why write functions?

Allows you to break up a hard problem into smaller,
more manageable parts

Makes your code easier to understand

Hides implementation details (abstraction)

» Provides interface (input, output)
Makes part of the code reusable so that you:

» Only have to write function code once

» Can debug it all at once

Isolates errors
» Can make changes in one function (maintainability)
Similar to benefits of OO Programming

March 3, 2010 Sprenkle - CSCI111 16

VARIABLE LIFETIMES AND
SCOPE

March 3, 2010 Sprenkle - CSCI111 17

What does this program output?

def main():
x = 10
sum = sumEvens(x)
print “The sum of even #s up to”, x, “is”, sum

def sumEvens(limit):
total = @
for x in xrange(@, limit, 2):
total += x
return total

main()

March 3, 2010 Sprenkle - CSCI111 18

Function Variables

def main(Q):
x = 10
sum = sumEvens(x)
print “The sum of even #s up to”, x, “is”, sum

def sumEvens(limit):

total = @
for x in xrange(@, limit, 2):
total += x

return total
Why can we name two

mainQ) variables x?

March 3, 2010 Sprenkle - CSCI11 mystery.py 19

Tracing through Execution

[def main(): When you call main(), that means you
2| x=10 want me to execute this function
2 sum = sumEvens(x)
e print “The sum of even #s up to”, x, “is”, sum
=]
=]
$— def sumEvens(limit):
s total = 0
A for x in xrange(@, limit, 2):

total += x
L return total

;_'main()

March 3, 2010 Sprenkle - CSCI111 20

Function Variables

def main(Q) :
x=10
sum = sumEvens(x)
print “The sum of even #s up to”, x, “is”, sum

def sumEvens(limit) :

total = @
for x in xrange(@, limit, 2):
total += x
return total The stack Variable names are
like first names
main()

main [x 10

Function names are

like last names
March 3, 2010 Sprenkle - CSCI111 21

Function Variables

def main(Q) :
x=10
sum = sumEvens(x)
print “The sum of even #s up to”, x, “is”, sum

def sumEvens(limit) : Called the function sumEvens

total = 0 Add its parameters to the stack
for x in xrange(@, limit, 2):
total += x sum |. .
return total Evens imit 10
matnO main [x 10

March 3, 2010 Sprenkle - CSCI111 22

Function Variables

def main(Q) :
x=10
sum = sumEvens(x)
print “The sum of even #s up to”, x, “is”, sum

def sumEvens(limit) :

total = @
for x in xrange(@, limit, 2):
total += x

sum |[limit 10

fetugnjtotal Evens|total 0

mainQ)
main [x 10

March 3, 2010 Sprenkle - CSCI111 23

Function Variables

def mainQ) :
x=10
sum = sumEvens(X)
print “The sum of even #s up to”, x, “is”, sum

def sumEvens(limit) :

total = @
for x in xrange(@, limit, 2): —
total += x sum |Imlt| 100
return total Evens| @ 0
X
main()
main | x 10

March 3, 2010 Sprenkle - CSCI111 24

Function Variables

def mainQ) :
x=10
sum = sumEvens(x)
print “The sum of even #s up to”, x, “is”, sum

def sumEvens(limit) :

total = @
for x in xrange(@, limit, 2): —
total += x limit 10|
return total Evens | otal 20
X 8
mainQ)
main | x 10
March 3, 2010 Sprenkle - CSCI111 25

Function Variables

def mainQ) :
x=10
sum = sumEvens(X)
print “The sum of even #s up to”, x, “is”, sum

def sumEvens(limit) : Function sumEvens returned
total = @ * no longer have to keep track
of its variables on stack

for x in xrange(@, limit, 2):
9e(2, » Dt lifetime of those variables is

total += x

return total o
main(3 main [sum 20
x 10
March 3, 2010 Sprenkle - CSCI111 26

Function Variables

def main(Q) :
x=10
sum = sumEvens(x)
print “The sum of even #s up to”, x, “is”, sum

def sumEvens(limit) :
total = @
for x in xrange(@, limit, 2):
total += x
return total

main() main X 10
sum 20

March 3, 2010 Sprenkle - CSCI111 27

Variable Scope

Functions can have the same parameter and
variable names as other functions

» Need to look at the variable’s scope to determine which
one you're looking at

» Use the stack to figure out which variable you’re using
Scope levels
» Local scope (also called function scope)
Can only be seen within the function
» Global scope (also called file scope)
Whole program can access
More on these later

March 3, 2010 Sprenkle - CSCI111 28

Function Scope

What variables can we “see” (i.e., use)?

def main(Q):
binary_string = raw_input("Enter a binary #: ")
if not isBinary(binary_string):
print "That_ is not a binary string"
sys.exit()‘_
decVal = binaryToDecimal(binary_string)
print "The decimal value is", decVal

def isBinary(string):
for bit in string: 4
if bit != "@" and bit != "1":
return False
return True

March 3, 2010 Sprenkle - CSCI111 29

Variable Scope

Practice: scope.py
» Trace through program--what does it do?

Answer questions in program...

March 3, 2010 Sprenkle - CSCI111 30

Practice

What is the output of this program?
» Example: user enters 4

def main():
num = input("Enter a number to be squared: ")
square = square(num)
print "The square is:", square

def square(n):
return n * n

main()

March 3, 2010 sprenkie-cscit practicel.py

31

Practice

What is the output of this program?

» Example: user enters 4
def main():
num = input("Enter a number to be squared: ")
squared = square(num)

print "The square is:", squared
print “The original num was:”, n

def square(n):
return n * n

main()

March 3, 2010 sprenkie-cscitt1 practice2.py 32

Practice

What is the output of this program?
» Example: user enters 4
def main():
num = input("Enter a number to be squared: ")
squared = square(num)
print "The square is:", squared
print “The original num was:”, n ,__-_-

def square(n):
return n * n

main()

March 3, 2010 Sprenkle - CSCI111

Error! n does not
have a value in
function main(Q)

33

Variable Scope

Know “lifetime” of variable
» Only during execution of function
» Related to idea of “scope”

What about variables outside of functions?
» Example: non_function_vars.py

March 3, 2010 Sprenkle - CSCI111 34

Why We Don’t Want Variables to
Have Global Scope

Other functions modify our data
» Unintentionally from our point of view ...

March 3, 2010 Sprenkle - CSCI111

35

Passing Parameters

Only copies of the actual parameters are
given to the function

» For immutable data types (which are what
we’ve talked about so far)

The actual parameters in the calling code do
not change

Swap example: x =75 x=7
» Swap two values in script Y ’ l:>y =5
» Then, put into a function

March 3, 2010 Sprenkle - CSCI111 36

WHAT MAKES A GOOD
FUNCTION?

March 3, 2010 Sprenkle - CSCI111 37

Writing a “good” function
Should be an “intuitive chunk”
»Doesn’t do too much or too little
Should be reusable

Always have comment that tells what
the function does

March 3, 2010 Sprenkle - CSCI111 38

Good vs. Bad Functions

Bad: Does too little

def getUserInput():
input = input(“Enter a number”)
return input

Good: Validates the input

def getUserInput():
input = input(“Enter a number”)
while input <= 0:
print “Number must be positive”
input = input(“Enter a number”)
return input

March 3, 2010 Sprenkle - CSCI111 39

Debugging Advice

Build up your program in steps
» Always write only small pieces of code
» Test, debug. Repeat
Write function body as part of main, test
» Then, separate out into its own function
» Similar to process using in lab probs
Test function separately from other code

» Comment out irrelevant code to make sure that
the function behaves as expected

March 3, 2010 Sprenkle - CSCI111 40

This Week

Lab 6 due Friday
Broader Issue: Volunteer Computing

Reminder: Next Friday, Mar 12, Exam

March 3, 2010 Sprenkle - CSCI111 41

