
1

•  Review: string format
•  Functions
•  Import
•  Intro to design patterns
•  Definite loops

• What data type does string formatting give
you?
 For example, what data type would
“%6.2f” % expense give back?

• What is the format specifier’s code for ints?
Floats? Strings?

• What is the format specifier for right-justifying
a number within 10 spaces that displays 3
decimals?

•  Input, Output
•  Primitive operations

 What data you have, what you can do to the data
•  Naming

  Identify things we’re using
•  Sequence of operations
•  Conditionals

 Handle special cases
•  Repetition/Loops
•  Subroutines

 Call, reuse similar techniques

•  Functions perform some task
 May take arguments/parameters
 May return a value that can be used in

assignment
•  Syntax

 func_name(arg0, arg1, …, argn)	
•  Depending on the function, the arguments

may or may not be required
 [] indicate an optional argument

•  Semantics: depend on the function

Argument/parameter list
• raw_input([prompt])	

 If prompt is given as an argument, prints the
prompt without a newline/carriage return

 If no prompt, just waits for user’s input
 Returns user’s input (up to “enter”) as a string

• input([prompt])	
 Similar to raw_input but returns a number

Known as function’s “signature”
Template for how to “call” function

Optional argument

2

• round(x[,n])	
 Round the float x to n digits after the decimal

point
 If no n, round to nearest int	

• abs(x)	
 Returns the absolute value of x

• type(x)	
 Return the type of x	

• pow(x, y)	
 Returns xy

•  Example use: Alternative to Exponentiation
 Goal: compute -32

 Python alternatives:
• pow(-3, 2)
•  (-3) ** 2

•  Typically, we use functions in assignment
statements
 Function does something
 We save the result of function in a variable

function_example.py

•  Beyond built-in functions, Python has a rich
library of functions and definitions available
 The library is broken into modules
 A module is a file containing Python definitions

and statements
•  Example modules

 math -- useful math functions
 os -- useful OS functions
 network -- useful networking functions

•  Defines constants (variables) for pi (i.e., π)
and e
 These values never change, i.e., are constants
 Remember: we name constants with all caps

•  Defines functions such as
 ceil(x)	

•  Return the ceiling of x as a float	
 exp(x)	

•  Return e raised to the power of x	
 sqrt(x)

•  Return the square root of x	

•  To use the definitions in a module, you must
first import the module
 Example: to use the math module’s definitions,

use the the import statement: import math
 Typically import statements are at top of

program
•  To find out what a module contains, use the
help function
 Example:

import math	
help(math)	

•  Prepend constant or function with
“modulename.”
 Examples for constants:
• math.pi	
• math.e	

 Examples for functions:
• math.sqrt	

•  Practice
 How would we write the expression eiπ + 1 in

Python?
module_example.py

3

•  Examples:
 from math import *	

•  Means “import everything from the math module”
 from math import pi	

•  Means “import pi from the math module”

• With this import statement, don’t need to
prepend module name before using
 Example: e**(1j*pi) + 1

from <module> import <defn_name>	 •  Python has a rich library of functions and
definitions available for your use
 The library is broken into modules
 A module is a file containing Python definitions

and statements
•  Benefits of functions/definitions in modules

 Don’t need to rewrite someone else’s code
 If it’s in a module, it is very efficient (in terms of

computation speed and memory usage)

•  How do I know if some code that I want
already exists?
 Python Library Reference:
 http://docs.python.org/lib/lib.html	

•  For example, string module has functions/
constants for manipulating strings

•  For the most part, to practice, in the
beginning you will write most of your code
from scratch print	

•  Each type of statement is a
building block
 Initialization/Assignment

•  Arithmetic, string concatenation,
functions

 Print
 Import

• We can combine them to create
more complex programs
 Solutions to problems

Assign.

Assign.
Assign.

print	
Assign.

print	

import	

import	

•  General, repeatable solution to a commonly
occurring problem in software design
 Template for solution

•  General, repeatable solution to a commonly
occurring problem in software design
 Template for solution

•  Example (Standard Algorithm)
 Get input from user
 Do some computation
 Display output

•  Learn new building block, new design pattern

print	
Assign.
Assign. x = input(“…”)	

ans = …	
print ans	

4

•  Input, Output
•  Primitive operations

 What data you have, what you can do to the data
•  Naming

  Identify things we’re using
•  Sequence of operations
•  Conditionals

 Handle special cases
•  Repetition/Loops
•  Subroutines

 Call, reuse similar techniques

Make PB&J sandwich

Make PB&J sandwich

Repeat 10 times
Make 10

PB&J
sandwiches

•  Use when know how many times loop will
execute
 Repeat N times

Make PB&J sandwich

for i in xrange(10):	
Make 10

PB&J
sandwiches

Loop body

Loop header

Loop variable
Keywords

•  Make PB&J Sandwich
 Gather materials (bread, PB, J, knives, plate)
 Open bread
 Put 2 pieces of bread on plate
 Spread PB on one side of one slice
 Spread Jelly on one side of one slice
 Place PB-side facedown on Jelly-side of bread
 Close bread
 Clean knife
 Put away materials

Make PB&J sandwich

for i in xrange(10):	

•  Make PB&J Sandwich
 Gather materials (bread, PB, J, knives, plate)
 Open bread
 Put 2 pieces of bread on plate
 Spread PB on one side of one slice
 Spread Jelly on one side of one slice
 Place PB-side facedown on Jelly-side of bread
 Close bread
 Clean knife
 Put away materials

Initialization

Lo
op

 B
od

y

Finalization

•  Use when know how many times loop will
execute
 Repeat N times Times to repeat

for i in xrange(10):	
	statement_1	
	statement_2	
	…	
	statement_n

“Body” of for loop
-  Gets repeated
-  Note indentation

5

•  If only one statement to repeat

simple_for.py

for i in xrange(5): print “Hello!”	

• xrange is a built-in function

• What does xrange do, exactly?
 Simulate on paper

xrange_analysis.py

• What does the above signature mean? •  1 argument: xrange(stop)	

•  2 arguments: xrange(start, stop)	

•  3 arguments: xrange(start, stop,
step)	

using_xrange.py

•  1 argument: xrange(stop)	
 Defaults: start = 0, step = 1
 Iterates from 0 to stop-1 with step size=1

•  2 arguments: xrange(start, stop)	
 Default: step = 1
 Iterates from start to stop-1 with step size=1

•  3 arguments: xrange(start, stop,
step)	
 Iterates from start to stop-1 with step size=step

using_xrange.py

• xrange is a built-in function
 1 argument: xrange(stop)	
 2 arguments: xrange(start, stop)	
 3 arguments: xrange(start, stop, step)	

0 -5 5 10 15 -10 -15

[start, stop)

xrange(10)	
xrange(0,10)	
xrange(0,10,1)	

6

0 -5 5 10 15 -10 -15

xrange(5, -15, -5):	

0 -5 5 10 15 -10 -15

xrange(1, 15, 3):	

new_for.py

0 -5 5 10 15 -10 -15

xrange(8, -10, -3):	
0 -5 5 10 15 -10 -15

xrange(2, 14, 2):	

Place these:

Which direction?

0 -5 5 10 15 -10 -15

xrange(-5, 15, -3):	

0 -5 5 10 15 -10 -15

xrange(8, -10, -3):	
0 -5 5 10 15 -10 -15

xrange(2, 14, 2):	

0 -5 5 10 15 -10 -15

xrange(-5, 15, -3):	 Won’t do any

•  Add 5 numbers, inputted by the user
 After implementing, simulate running on

computer

sum5.py

