
1 

• Review Lab 
•  Introduction to  

 problem solving 
 programming languages 
 writing python programs 

• Learned some UNIX commands 
• Created a Web page 
• Started writing Python programs 

• Lessons learned: 
 Problems are fixable, find a good solution 

• How do you … 
 Learn more about a Linux command? 
 List the files in a directory? 
 Change your current directory? 
 Make a directory? 
 Find out the current directory? 

• What is the shortcut for … 
 The current directory? 
 The parent directory? 

usr	 etc	home	

/ 

courses	students	 www	 tmp	faculty	

Your 
directories 

cs111	

labs	

lab0	

handouts	 turnin	

Your web 
pages 

Paths through tree 
Relative paths 

public_html	
Link or alias 

•  Given that you’re at WLU, how would you get to Washington Hall?  
To Roanoke?  To Baltimore? 

canada	 china	us	

/ 

VA	CA	 NY	 MD	NC	

WLU	 Roanoke	 Baltimore	

WashingtonHall	

You are here 

•  Given that you’re in China, how would you go to Canada?  WLU?  
Washington Hall?  

canada	 china	us	

/ 

VA	CA	 NY	 MD	NC	

WLU	 Roanoke	 Baltimore	

WashingtonHall	

Home 
directory 



2 

• Computational Problem 
 A problem that can be solved by logic 

• To solve the problem: 
 Create a model of the problem 
 Design an algorithm for solving the problem 

using the model 
 Write a program that implements the algorithm 

• Algorithm: a well-defined recipe for solving a 
problem 
 Has a finite number of steps  
 Completes in a finite amount of time 

• Program 
 An algorithm written in a programming 

language 
 Also called code 

• Application 
 Large programs, solving many problems 

• Algorithms often have a defined input and 
output 

• Correct algorithms give the intended output 
for a set of input 

• Example: Multiply by 10 
 I/O for a correct algorithm:  

• More examples: averaging numbers, recipes 

input  algorithm output 

I O 

Input Output 
5 50 

.32 3.2 

x 10x 

• How do you make a peanut butter and jelly 
sandwich? 

• Write down the steps so that someone else 
can follow your instructions 
 Make no assumptions about the person’s 

knowledge of PB&J sandwiches 
 The person has the following materials: 

• Loaf of bread, Jar of PB, Jelly, 2 Knives, paper 
plates, napkins 

• The computer: a blessing and a curse 
 Recognize and meet the challenge! 

• Be unambiguous, descriptive 
 Must be clear for the computer to understand 
 “Do what I meant!  Not what I said!” 

• Motivates programming languages 
• Creating/Implementing an algorithm 

 Break down pieces 
 Try it out 
 Revise 

• Be prepared for special cases 
• Aren’t necessarily spares in real life 

 Need to write correct algorithms! 
• Reusing similar techniques 

 Do the same thing with a little twist 
• Looping 

 For repeating the same action 



3 

•  Input, Output 
•  Primitive operations 

 What data you have, what you can do to the data 
•  Naming 

  Identify things we’re using 
•  Sequence of operations 
•  Conditionals 

 Handle special cases 
•  Repetition/Loops 
•  Subroutines 

 Call, reuse similar techniques 

An overview for 

the semester! 

• A cowboy’s wisdom: Good judgment comes 
from experience 
 How can you get experience? 
 Bad judgment works every time 

• Program errors can have bad effects 
 Prevent the bad effects--especially before you 

turn in your assignment! 

• Computational Problem 
 A problem that can be solved by logic 

• To solve the problem: 
 Create a model of the problem 
 Design an algorithm for solving the problem 

using the model 
 Write a program that implements the algorithm 

• Computers can’t understand English 
 Too ambiguous 

• Humans can’t easily write machine code 
Problem Statement (English) 

Machine code/Central Processing Unit (CPU) 

000000 00001 00010 00110 00000 100000


• Computers can’t understand English 
 Too ambiguous 

• Humans can’t easily write machine code 
Problem Statement (English) 

Algorithm/Pseudocode 

Bytecode 

High-level Programming Language (Python) 

Machine code/Central Processing Unit (CPU) 

Programmer (YOU!) 
translates from 
problem to algorithm 
(solution) to program 

Python interpreter 
translates into 
bytecode 

• Computers can’t understand English 
 Too ambiguous 

• Humans can’t easily write machine code 
Problem Statement (English) 

Algorithm/Pseudocode 

Bytecode 

High-level Programming Language (Python) 

Machine code/Central Processing Unit (CPU) 

Python interpreter 
executes the 
bytecode in a “virtual 
machine” 



4 

• Programming language: 
 Specific rules for what is and isn’t allowed 
 Must be exact 
 Computer carries out commands as they are 

given 
• Syntax: the symbols given 
• Semantics: what it means 
• Example:  III * IV = 3 x 4 = 12 
• Programming languages are unambiguous 

1.  Validates Python programming language 
expression(s) 
•  Enforces Python syntax 
•  Reports syntax errors 

2.  Executes expression(s) 
•  Runtime errors (e.g., divide by 0) 
•  Semantic errors (not what you meant) 

Interpreter 
(python) 

Python 
expression 

Output Executable 
bytecode 

 Input, Output 
•  Primitive operations 

 What data you have, what you can do to the data 
•  Naming 

  Identify things we’re using 
•  Sequence of operations 
•  Conditionals 

 Handle special cases 
•  Repetition/Loops 
•  Subroutines 

 Call, reuse similar techniques 

• print is a special command 
 Displays the result of expression(s) to the 

terminal 
• print “Hello, class”	

string literal 

print automatically 
adds a ‘\n’ (carriage 
return) after it’s printed 

• print is a special command 
 Displays the result of expression(s) to the 

terminal 
• print “Hello, class”	

• print “Your answer is”, 4*4	
 Displays same as: 

• print “Your answer is”,	
• print 4*4	

string literal 

print automatically 
adds a ‘\n’ (carriage 
return) after it’s printed 

Syntax: commas 
Semantics: print 
multiple “things” in 

one line  

•  10 points applied to Lab grade 
•  Attend a CS talk, all in Parmly 405 

 Mon, Jan 12, D period 
•  Andrea Tartaro: “Authorable Virtual Peers: Using 

Computer Science to Understand and Support Children 
with Special Needs” 

 Thurs, Jan 15, 3:30 p.m. 
•  Mark Liffiton, “Satisfying Constraints, and What To Do 

When You Can’t” 
 Fri, Jan 23, 4 p.m. 

•  Joshua Stough, “Appearance Models for Medical Image 
Segmentation” 

•  Post summary on Sakai, following CS Issues write up 



5 

• More programming fundamentals 
•  Broader Issue: Technology Education 

 Post write up on Sakai, as response to appropriate topic 
 Your write up will include 

•  How interesting you found this article on a scale of 0 to 9 
•  Summary of the 3 most important points 
•  Article’s effect on your understanding of CS 
•  Article’s relation to our course specifically (if applicable) 
•  Question for class discussion 

 See Course’s CS Issues page for more information 


