
1

Objectives

•  Search strategies

Mar 30, 2011 Sprenkle - CSCI111 1

Lab 10

•  Trying to solve a real problem
•  Started with designing the solution from a

vague specification
•  Broke into smaller problems (different

classes, different responsibilities)
•  Implementing smaller components
•  Building to large component

Mar 30, 2011 Sprenkle - CSCI111 2

Demonstration of Example UI

Lab 10 Discussion

• What is the API for the Person class?
• What is the API for the SocialNetwork

class?

Mar 30, 2011 Sprenkle - CSCI111 3

APIs
Person	
•  Person(id)	
•  str(person)	
•  getName()	
•  getNetwork()	
•  getFriends()	
•  getNumberOfFriends()	
•  getId()	
•  setName(newName)	
•  setNetwork

(newNetwork)	
•  addFriend(person)	

SocialNetwork	
•  SocialNetwork()	
•  str(socialNetwork)	
•  getPerson(id)	
•  getPeople()	
•  getUserIds()	
•  printNetwork()	
•  addConnection(id1,

id2)	
•  addConnections

(filename)	
•  …	

Mar 30, 2011 Sprenkle - CSCI111 4

Need 2 Volunteers

•  No one will get hurt …

Mar 30, 2011 Sprenkle - CSCI111 5

Find the Card in Your Deck

•  Reminder to me: take out the jokers
•  Challenge: who can find the card first

 (Most efficient algorithm)
•  Need rest of class to keep searchers honest

and help me determine who found the card
first

Mar 30, 2011 Sprenkle - CSCI111 6

2

The Race is On!

•  3 of Hearts
•  2 of Diamonds
•  4 of Clubs
•  Queen of Spades
•  King of Queens

Mar 30, 2011 Sprenkle - CSCI111 7

Searching for a Playing Card

•  Given a deck of cards and a card to find,
describe the algorithm for how you would find
that card.
 Present several algorithms (naïve ones too!)
 Discuss the strengths and weaknesses of each

Mar 30, 2011 Sprenkle - CSCI111 8

Search Using in Review

•  Iterates through a list, checking if the
element is found

•  Known as linear search
•  Implementation:

Mar 30, 2011 Sprenkle - CSCI111 9

def linearSearch(searchlist, key):	
	for elem in searchlist:	
	 	if elem == key:	
	 	 	return True	
	return False	

search.py	

8 5 3 7

0 1 2 3

What are the strengths and weaknesses
of implementing search this way?	

value

pos

Linear Search
•  Overview: Iterates through a list, checking if

the element is found
•  Benefits:

 Works on any list
•  Drawbacks:

 Does not tell us where in the list it is
•  What if wanted to do something to that element?
•  Could implement our own version that returns the

position
 Slow -- needs to check each element of list if the

element is not in the list
Mar 30, 2011 Sprenkle - CSCI111 10

High-Low Game/TPIR Clock Game

•  I’m thinking of a number between 1-100
•  You want to guess the number as quickly as

possible (in fewest guesses)
•  For every number you guess, I’ll tell you if

you got it right. If you didn’t, I’ll tell you
whether you’re too high or too low

Mar 30, 2011 Sprenkle - CSCI111 11

Reminder: write down guesses

High-Low Game/TPIR Clock Game

•  I’m thinking of a number between 1-100
•  You want to guess the number as quickly as

possible (in fewest guesses)
•  For every number you guess, I’ll tell you if

you got it right. If you didn’t, I’ll tell you
whether you’re too high or too low

Mar 30, 2011 Sprenkle - CSCI111 12

 What is your best guessing strategy?

3

Strategy: Eliminate Half the Possibilities

•  Repeat until find value or looked through all
values
 Guess middle value of possibilities
 If match, found!
 Otherwise, find out too high or too low
 Modify your possibilities

•  Eliminate the possibilities from your number and
higher/lower, as appropriate

•  Known as Binary Search

Mar 30, 2011 Sprenkle - CSCI111 13

Searching…

Mar 30, 2011 Sprenkle - CSCI111 14

-3 0 0 1 2 7 8 9
0 1 2 3 4 5 6 7

value

pos

Use algorithm to search for key = 8

Searching for 8

•  Find the middle of the list
 Positions: 0-7, so mid position is ((7+0)/2) = 3

•  Check if the key equals the value at mid (1)
 If so, report the location

•  Check if the key is higher or lower than value
at mid
 Search the appropriate half of the list

Mar 30, 2011 Sprenkle - CSCI111 15

-3 0 0 1 2 7 8 9
0 1 2 3 4 5 6 7

8 > 1, so look
in upper half

-3 0 0 1 2 7 8 9
0 1 2 3 4 5 6 7

mid low high

Searching for 8
•  mid is 5 ((7+4)/2), list[5] is 7

Mar 30, 2011 Sprenkle - CSCI111 16

2 7 8 9
4 5 6 7

8>7, so look in
upper half

mid low high

Searching for 8
•  mid is 5 ((7+4)/2), list[5] is 7

•  mid is 6 ((7+6)/2), list[6] is 8

Mar 30, 2011 Sprenkle - CSCI111 17

2 7 8 9
4 5 6 7

8 9
6 7

8>7, so look in
upper half

8==8, FOUND IT at
position 6!

What if searched for 6 instead of 8?	

Searching for 6
• Will follow same execution flow, but 6 is not

in the list
•  mid is 6, list[5] is 7

•  mid is 4, list[4] is 2

Mar 30, 2011 Sprenkle - CSCI111 18

2
4

6>2, so will try to look in upper half of
the list, but we’ve already determined
it’s not there.
How do we know to stop looking?

-3 0 0 1 2 7 8 9
0 1 2 3 4 5 6 7

2 7 8 9
4 5 6 7

6 < 7, so will try to look in lower
half of the list

4

Implementation Group Work

•  Trace through your program using examples
 Start simple (small lists)
 Do what the program says exactly, not what you

think the program says
Mar 30, 2011 Sprenkle - CSCI111 19

def search(searchlist, key):	
	“””Pre: searchlist is a list of

integers in sorted order. Returns the
position of key (an integer) in the list
of integers (searchlist) or -1 if not
found”””	

One Solution

Mar 30, 2011 Sprenkle - CSCI111 20

Cutting list in half
Discuss tradeoffs

def altBinarySearch(searchlist, key): 	
 # Base Case: ran out of elements in the list 	
 if len(searchlist) == 0:	
 return NOT_FOUND	
	
 low = 0	
 high = len(searchlist)-1	
 mid = (low+high)/2	
 	
 valueAtMid = searchlist[mid]	
 if valueAtMid == key:	
 return mid	
 if low == high:	
 return NOT_FOUND 	
	
 if searchlist[mid] < key: # search upper half	
 return altBinarySearch(searchlist[mid+1:], key)	
 else: # search lower half	
 return altBinarySearch(searchlist[:mid], key)	

Creating a new list	

Unnecessary memory use	

search_divide.py	

One Solution

Mar 30, 2011 Sprenkle - CSCI111 21

def search(searchlist, key):	
	low=0	
	high = len(searchlist)-1	
	while low <= high :	
	 	mid = (low+high)/2	
	 	if searchlist[mid] == key:	
	 	 	return mid 	 # return True	
	 	elif key > searchlist[mid]:	
	 	 	low = mid+1	
	 	else:	
	 	 	high = mid-1	
	return -1 	# return False	

search2.py	

If you just want to
know if it’s in the list

Binary Search

•  Example of a Divide and Conquer algorithm
 Break into smaller pieces that you can solve

•  Benefits:
 Faster to find elements (especially with larger

lists)
•  Limitations:

 Requires that data can be compared
• __cmp__ method implemented by the class

 List must be sorted before searching
•  Takes time to sort beforehand

Mar 30, 2011 Sprenkle - CSCI111 22

Empirical Study of Search Techniques

•  How long does it take to find various keys?
 Measure by the number of comparisons
 Vary the size of the list and the keys
 What are good tests for the lists and the keys?

Mar 30, 2011 Sprenkle - CSCI111 23

search_compare.py	

Goal: Determine which technique is
better under various circumstances

Empirical Study of Search Techniques

•  Analyzing Results …
 By how much did the number of comparisons for

linear search vary?
 By how much did the number of comparisons for

binary search vary?

• What conclusions can you draw from these
results?

Mar 30, 2011 Sprenkle - CSCI111 24

search_compare.py	

5

Key Questions in Computer Science

•  How can we efficiently organize data?
•  How can we efficiently search for data, given

various constraints?
 Example: data may or may not be sortable

• What are the tradeoffs?

Mar 30, 2011 Sprenkle - CSCI111 25

For Friday

•  Broader Issue
 One of social networking articles

•  Lab 10

Mar 30, 2011 Sprenkle - CSCI111 26

