
1

Nov 5, 2007Nov 5, 2007 Sprenkle - CS111Sprenkle - CS111 11

Objectives
• Midterm prep
• Defining our own classes

Some more tricks
• Designing our own classes

Nov 5, 2007Nov 5, 2007 Sprenkle - CS111Sprenkle - CS111 22

Midterm Prep
• Midterm: Friday
• Prep document online
• Similar problems to last exam

Very short answer
Short answer
Reading code (what’s the output)
Writing code, comments

• Slightly more emphasis on writing code

Nov 5, 2007Nov 5, 2007 Sprenkle - CS111Sprenkle - CS111 33

Creating a Counter Class
• Has a fixed range
• Starts at some low value, increments by 1,

loops back around to low value if gets
beyond some maximum value

• Example application of the counter: Caesar
cipher for letters ‘a’ to ‘z’

Object o
of type
Counter

What is the API
for this

object/class?

• What are the attributes
of an object in the class?
• What data should be
used to represent an
object in the class?

Nov 5, 2007Nov 5, 2007 Sprenkle - CS111Sprenkle - CS111 44

Creating a Counter Class
• Data: Instance variables that represent

High, Low, Current Value
• Methods (API)

Counter(low, high)
 increment([amount])
decrement([amount])
setValue(value)
getValue()
getLow()
getHigh()

counter.py

Defaults to 1,

-1

Nov 5, 2007Nov 5, 2007 Sprenkle - CS111Sprenkle - CS111 55

Applying the Counter Class
• To the Caesar Cipher program

• Compare implementations, with and without
using the counter

• Any drawbacks from using Counter class?

caesar2.py Nov 5, 2007Nov 5, 2007 Sprenkle - CS111Sprenkle - CS111 66

Applying the Counter Class
• Creating a Clock class

Model the hours, minutes, seconds
Default: starts at 12:00:00

• Operations:
Ticking
Set the Time

clock.py

2

Nov 5, 2007Nov 5, 2007 Sprenkle - CS111Sprenkle - CS111 77

Discussing the Clock Class
• Do we have to worry about user setting

hours to > 12?
Add test

Nov 5, 2007Nov 5, 2007 Sprenkle - CS111Sprenkle - CS111 88

Discussing the Clock Class
• Do we have to worry about user setting

hours to > 12?
No. Counter object handles.

• Separation of functionality
Building code on top of other classes
Smaller chunk of code, well-tested that handles

some set of functionality

Nov 5, 2007Nov 5, 2007 Sprenkle - CS111Sprenkle - CS111 99

Summary: Designing Classes
• What does the object/class represent?
• How to model/represent the class’s data?

 Instance variable
Data type

• What functionality should objects of the class
have?
How will others want to use the class?
Put into methods for others to call (API)

Nov 5, 2007Nov 5, 2007 Sprenkle - CS111Sprenkle - CS111 1010

Benefits of Classes
• Package/group related data into one object
• Reusing code

E.g., Don’t need to check if user put in valid time
• Provide interface, can change underlying

implementation
e.g., Counter’s increment -- could implement like

in Caesar Ciphers instead

Nov 5, 2007Nov 5, 2007 Sprenkle - CS111Sprenkle - CS111 1111

Considerations for using Classes
• Only use class if you’re using most of its

functionality/information
Don’t use Counter for validating if a number is

within the valid range; not using the wrapping/
current value

• Since don’t know implementation, may
inadvertently duplicate code
Redo something done by class
Could have efficiency penalties
But time saved reusing code is usually worth it

Nov 5, 2007Nov 5, 2007 Sprenkle - CS111Sprenkle - CS111 1212

Comparing Objects of the Same Type
• Special __cmp__ method

 Header: _cpm__(self,other)
• other is another object of the same type

 Returns
• Negative integer if self < other
• 0 if self==other
• Positive integer if self > other

• Similar to implementing Comparable interface in
Java

• Can now use objects in comparison expressions
 <,>,==, etc.

3

Nov 5, 2007Nov 5, 2007 Sprenkle - CS111Sprenkle - CS111 1313

Comparing Objects of the Same Type
• Example Code:

def __cmp__(self, other):
 """ Compares Card objects by their ranks """
 # Could compare by black jack value or rummy value

 if self.rank < other.getRank():
return -1

 elif self.rank > other.getRank():
return 1

 else:
 return 0

card3.py Nov 5, 2007Nov 5, 2007 Sprenkle - CS111Sprenkle - CS111 1414

Lab 7 Feedback
• Good things:

Use of functions
Closing files
Creative pictures, animations

• Efficiency issue: Reading in whole file and
saving all words in list
Better: line by line reading/processing

