
1

•  Command-line arguments
•  Group Work: Designing Classes

• What method do we implement to compare
two objects of the same type?

• What does the method header look like?
• What does it return?
•  How can we use it?

• We can run programs from terminal (i.e., the
“command-line”) and from IDLE

•  Can pass in arguments from the command-
line, similar to how we use Unix commands
 Ex: cp <source> <dest>	

 Ex: python command_line_args.py 3	
•  Makes input easier

 Don’t have to retype each time executed

Command-line arguments

•  Using the sys module
 What else did we use from the sys module?

•  How to reference (get value) “<filename>”?

python command_line_args.py <filename>	

List of arguments, named sys.argv	

•  Using the sys module

•  How to reference (get value) “<filename>”?
 sys.argv is a list of the arguments	
 sys.argv[1] is the filename 	
 sys.argv[0] is the name of the program

command_line_args.py

python command_line_args.py filename	

sys.argv	 “command_line_args.py”	 “filename”	
0 1

2

•  In general in Python:
 sys.argv[0] is the Python program’s name

•  Have to run program from terminal
 (not from IDLE)
 Can still edit program in IDLE

 Useful trick:
 If can’t figure out bug in IDLE, try running from

command-line
•  May get different error message

• What does the object/class represent?
•  How to model/represent the class’s data?

 Instance variable
 Data type

• What functionality should objects of the class
have?
 How will others want to use the class?
 Put into methods for others to call (API)

General Class Design:
•  nouns in a problem are classes/objects
•  verbs are methods

•  Break down larger problems into pieces that
you can solve
 Smaller pieces: classes, methods, functions
 Implement smallest pieces and build up

• We’ve been doing this most of the semester
 Typically, program was 1) read input, 2) process

input, 3) print result
•  Started putting Step 2 into >= 1 functions
•  Steps 1 and 3 were sometimes a function

 Now: on larger scale

•  Reads social network from two files
 One file contains people
 One file contains connections between people

•  Add connections between people
 Symmetric relationship

•  Creates a file to show social network as a
graph

•  Provides a user interface to do these things
• What else?

•  Break down into pieces
• What classes do we need?

 What data needed to model those classes?
 What functionality do each of those classes

need?
• What does our driver program (user

interface) do?
•  How should we implement those classes/

program?

3

•  For each of your classes
 Data
 API

Sirocco
Taylor
Harrison
Shannon
Luke

Nick
George
Will
James
Ben

Dalena
Phil
Collier
Kelly Mae
Dave

Amy
Andrew
Logan
Hank
Jeni

•  Person
  Id
 Name
 Network
 Friends

•  Social Network
 People in network

•  Driver (UI)
 Social network

What are the data types for each
class’s data?

•  Person
 Getters (accessors)
 String rep
 Setters

•  Social Network
 Getters
 String rep
 Add people to network
 Add connections
 Writing to a file

•  Driver
 Getting user input to

•  Read people,
connections files

•  Store social network to
file

•  Add a person
•  Add connections

 Summary: call
appropriate methods on
classes to do above

How should we test these?

•  3 files: person.py, socialnetwork.py,
facespace.py	

SocialNetwork
(test functions)

socialnetwork.py	

Driver

•  Uses SocialNetwork object
•  Gets command-line arguments
•  Handles UI
•  Calls methods on the SN object

facespace.py	

Person
(test functions)

person.py	

•  Given a people file that has the format

•  Write algorithm to create Person objects to
represent each person, add to SocialNetwork
object

<num_users>	
<user_id>	
<name>	
<network>	
…	
<user_id_n>	
<name_n>	
<network_n>	

•  Given a connection file that has the format

•  Each line represents a friend/connection
 Symmetric relationship
 Each is a friend of the other

•  Update SocialNetwork object

<user_id> <user_id>	
<user_id> <user_id>	
…	
<user_id> <user_id>	

4

•  Checks if user entered command-line argument
 Default files otherwise

•  Read people, connections from files
•  Repeatedly gets selected options from the user,

until user quits
•  Repeatedly prompts for new selection if invalid

option
•  Executes the appropriate code for the selection
•  Stops when user quits
•  Stores the social network into the file

Write pseudocode

Use default files if only one command-line argument
Read people, connections from files
while True:

 display menu options
 prompt for selection
 while invalid option
 print error message
 prompt for selection
 break if selected quit
 otherwise, do selected option

Store social network to designated file

1.  Implement Person class
 Test (write test functions, e.g., testPerson())

2.  Implement SocialNetwork class
 Example runs in lab write up
 Note: Methods for classes will not prompt for input; Use

input parameters
 Test

3.  Implement driver program

• Write the constructor and string
representation/print methods first

• Write function to test them
 See counter.py and card.py for example test

functions
• While more methods to implement …

 Write method
 Test
 REMINDER: methods should not be using
input function but getting the input as
parameters to the method

•  You will create two graphs that look something
like this and put them on a new web page for
Lab 10

•  Lab 10
•  Broader Issue: One of Social Network

articles
 News feed
 Privacy/security

