
1

Objectives

•  Designing our own classes
 Representing attributes/data
 What functionality to provide

•  Using our defined classes
•  Broader Issue: environmental monitoring

Mar 18, 2011 Sprenkle - CSCI111 1

Discussion

•  Jan Cuny talk
 No class on Monday

•  Reflection on lab
 Anyone get a tester?
 Lists, Functions

Mar 18, 2011 Sprenkle - CSCI111 2

Review

• When defining a function, how can we make
a parameter have a default value?

•  Compare some properties of dictionaries and
lists
 When should you use one over the other?

Mar 18, 2011 Sprenkle - CSCI111 3

Review: Object-Oriented Programming

• What is the keyword to create a new class?
•  How do you define a method?

 What parameter is needed in every method?
•  How do you create a new object of a given

class?
 What method does this call?

•  How do we access instance variables in
other methods?

Mar 18, 2011 Sprenkle - CSCI111 4

Where We Are

• With what you now know (OO programming)
 Opens up the possibilities for what you kinds of

programs you can write
 Just about anything computational is possible

Mar 18, 2011 Sprenkle - CSCI111 5

Review: Classes and Objects
• We’re all of type homo sapien
•  Each of us has these attributes:

 Height
 Weight
 Hair color
 Hair type
 Skin color

•  Methods
 Breathe
 Speak
 …

Mar 18, 2011 Sprenkle - CSCI111 6

We all have these attributes, ���
different values for the attributes	

Each of us is an instance of
the homo sapien class	

2

Review: Classes and Objects
c1 = Card(14, "spades")	
c2 = Card(13, "hearts")	

Mar 18, 2011 Sprenkle - CSCI111 7

Instance variables,
attributes, or fields

Object c1 of
type Card	

rank = 14
suit = “spades”

Object c2 of
type Card	

rank = 13
suit = “hearts”

c1 and c2 are
instances of the

Card class

Review: Card API

• Card(rank, suit)	
• getRank()	
• getSuit()	
• getRummyValue()	
• __str__()	

 Can call using str(card)	

Mar 18, 2011 Sprenkle - CSCI111 8

Where We Left Off…

•  Can make a Deck class
 What data should a Deck contain?
 How can we represent that data?

•  To start: write methods __init__ and
__str__	
 What do the method headers look like?

Mar 18, 2011 Sprenkle - CSCI111 9

Now that we have the Card class,
how can we use it?

Creating a Deck Class (Partial)

•  List of Card objects

Mar 18, 2011 Sprenkle - CSCI111 10

from card import *	
	
class Deck:	
 def __init__(self):	
 self.deck = []	
 for suit in ["clubs","hearts","diamonds","spades"]:	
 for rank in xrange(2,15):	

	card = Card(rank, suit)	
 self.deck.append(card)	
	
 	

Initialize instance variable,
self.deck	

So we can use the Card class

Next: write __str__ method
•  What is the method header?
•  What data type does it return?

Creating a Deck Class (Partial)

•  List of Card objects

Mar 18, 2011 Sprenkle - CSCI111 11

from card import *	
	
class Deck:	
 def __init__(self):	
 self.deck = []	
 for suit in ["clubs","hearts","diamonds","spades"]:	
 for rank in xrange(2,15):	

	card = Card(rank, suit)	
 self.deck.append(Card(rank, suit))	
	
 def __str__(self):	
 result = ""	
 for c in self.deck:	
 result += str(c) + "\n"	
 return result	

Displays cards on
separate lines

Initialize instance variable,
self.deck	

Creates and returns a string

So we can use the Card class

Deck API

• What does the Deck API look like so far?

Mar 18, 2011 Sprenkle - CSCI111 12

3

Deck API

• Deck()	
• __str__()	

Mar 18, 2011 Sprenkle - CSCI111 13

How could we test these methods?

Deck API

• Deck()	
• __str__()	

Mar 18, 2011 Sprenkle - CSCI111 14

What would be useful to add to the API?

Constructor

Adding Deck Functionality

•  Shuffle the cards
•  Number of cards remaining
•  Draw one card
•  Deal out cards

Mar 18, 2011 Sprenkle - CSCI111 15

• What do the method headers look like?	

• What should they return?	

• How do we implement them?	

Filling in the Deck API

• shuffle()	
 Shuffles the cards

• draw()	
 Removes one card from the Deck and returns it

• numRemaining()	
 Returns the number of cards that are in the deck

• deal(numcards)	
 Deals numcards out

Mar 18, 2011 Sprenkle - CSCI111 16

Deck API

• Deck()	
• shuffle()	
• draw()	
• numRemaining()	
• __str__()	

Mar 18, 2011 Sprenkle - CSCI111 17

Constructor

Show help(Deck), help(Card)

Extra Credit Opportunity

• Write additional code for Deck and Card
classes
 Leading to a game…

•  Adding a Player class for a particular game
•  Due next Tuesday before lab

Mar 18, 2011 Sprenkle - CSCI111 18

4

Extra Credit Functionality Ideas
•  Return the card’s color (Red/Black), using a

constant defined at the top for each color
 What game is this useful for?

•  Boolean methods: isBlack(), isRed()
•  Boolean method: isOppositeColor(card)
•  Boolean method: isSameSuit(card)
•  Create a Hand class (very similar to Deck class)

 Methods that check if all same suit, all same rank
•  Player class for various games …
•  Test/Demonstrate your methods

Mar 18, 2011 Sprenkle - CSCI111 19
Due Tuesday before lab

Broader Issues: Environmental Monitoring

•  Interdisciplinary projects involving sensor
networks
 Important new-ish CS research area

•  Disclaimer:
 Not a seismologist or a biologist

•  Spring Term: Kamin Whitehouse, UVa
•  Groups:

Mar 18, 2011 Sprenkle - CSCI111 20

Volcano:
Colin
Will
Anh

Zebra:
Callie
Lida
Yates
Minh

Zebra:
Meng
Nick
Ola
Jean Paul

Discussion

• What is the project?
• What are the CS challenges to the projects?

 Any challenges only applicable to one project?
•  How does the environment impact the CS

research problems/solutions?
•  How did the researchers address these

challenges?
 How would you address the challenges?

Mar 18, 2011 Sprenkle - CSCI111 21

Overview of Challenges: Efficiency

•  Some programmers thought that efficiency
didn’t matter anymore
 GB of memory, terabytes of storage on

machines
•  Now: small and embedded devices

 Need to be efficient!
•  Energy in battery powered nodes
•  Amount of data stored (when to delete?)
• When, amount of data transferred

Mar 18, 2011 Sprenkle - CSCI111 22

Overview of Challenges: Reliability
•  Data delivery

 Missing data
 Connectivity (good signal?)
 Duplicate data (different sources?)
 Dead sensor nodes
 Calibration of data (time synchronization)

•  Nodes
 Withstand extreme weather, conditions
 Battery life

•  Robustness: recover from software failure/
malfunction or bad data

Mar 18, 2011 Sprenkle - CSCI111 23

Overview of Challenges

•  Testing
 Accurately simulate conditions (which will vary

widely over long periods of time)
•  Different goals from domain scientists

 CS: push boundaries of sensor networks
•  Example: Improve reliability of data to 95%
•  Seismologists: need 100% reliable data

Mar 18, 2011 Sprenkle - CSCI111 24

5

Looking ahead to next week

•  Monday: No class
 Study for exam; practice problems

•  Tuesday: Lab
 Practice with dictionaries, object-oriented

programming
•  Friday

 Exam, in class, on paper
 Review document on line

•  no creating your own classes
 No broader issue

Mar 18, 2011 Sprenkle - CSCI111 25

