Objectives

String review
Introduction to Functions

March 1, 2010 Sprenkle - CSCI111 1

Implementing Wheel of Fortune

Simplifications: no money, no buying vowels, no
keeping track of previous guesses, one player
Functionality

» Displaying puzzle appropriately

» Gets guesses from user

Either letters or solve the puzzle

» Keep track of the number of guesses

» Displays puzzle with guesses filled in
Think about ...

» User input robustness?

» Any special cases?

March 1, 2010 sprenkle - csci111 - wheeloffortune.py

2

Implementing Wheel of Fortune

Differences between real and simulated
game

» Players type in letter rather than say it
Case matters
What if user enters more than one letter?

March 1, 2010 Sprenkle - CSCI111 3

Implementing Wheel of Fortune

User input verification

» How can we ensure that the user entered only
one letter?

» How can we ensure that the user entered a
letter?

Checking the guess

» How can we tell if the guessed letter is in the
puzzle?

» How can we report the number of times the
guessed letter occurs in the puzzle?

March 1, 2010 Sprenkle - CSCI111

Implementing Wheel of Fortune

How many times should we prompt the user
for a guess?

How can we display the current puzzle?
» What does the puzzle look like when we start the

game?
» What does it look like after we correctly guess a
letter?
March 1, 2010 Sprenkle - CSCI111 5

Wheel of Fortune

Practice: Modify displayed puzzle to handle
punctuation

» Include punctuation in displayed puzzle
» Original code:

for char in PHRASE:
if char =" ":
displayedpuzzle += "_"
else:
displayedpuzzle += " '

displayedpuzzle = "‘/ puzzle

March 1,2010 Sprenkle - CSCI111 6

DEFINING FUNCTIONS

March 1, 2010 Sprenkle - CSCI111 7

Functions

We've used functions
» Built-in functions: 1len, input, raw_input
> Functions from modules, e.g., math and random

Today, we'll learn how to define our own
functions!

March 1, 2010 Sprenkle - CSCI111 8

Review: Functions

Function is a black box
» Implementation doesn’t matter

» Only care that function generates appropriate
output, given appropriate input

Example:
» Didn’t care how raw_1input function was
implemented
> Use: user_input = raw_input(prompt)
Input H Output
(arguments) 5 (return value)

prompt user_input

Saved output in a variable
March 1, 2010 Sprenkle - CSCI111 9

Creating Functions

A function can have

» 0 or more inputs

» 0 or 1 outputs

When we define a function, we know its
inputs and if it has output

Input F
unction

Output
(arguments) y (return value)

March 1, 2010 Sprenkle - CSCI111 10

Writing a Function

| want a function that averages two numbers

* What is the input to this function?
* What is the output to this function?

March 1, 2010 Sprenkle - CSCI111 "

Writing a Function

| want a function that averages two numbers
What is the input to this function?

» The two numbers
What is the output to this function?

» The average of those two numbers, as a float

These are key questions to ask yourself
when designing your own functions.

* Inputs: parameters

* Output: what is getting returned

March 1,2010 Sprenkle - CSCI111 12

Comparison of Code Using Functions

Without functions: menu_withoutfunc.py
With functions: menu_withfunctions.py

How do the two programs compare in terms of
+ Length? (all code and just the “"main” code)
+ Readability?

March 1, 2010 Sprenkle - CSCI111 13

Why Write Functions?

Allows you to break up a hard problem into smaller,
more manageable parts

Makes your code easier to understand
Hides implementation details (abstraction)

» Provides interface (input, output)
Makes part of the code reusable so that you:

» Only have to write function code once

» Can debug it all at once

Isolates errors
» Can make changes in one function (maintainability)
Similar to benefits of OO Programming

March 1, 2010 Sprenkle - CSCI111 14

Example Program: Lab 2, Problem 4

Any place to make a function?

~ Duplicated code is often a “symptom” of when
we should make a function

Any place that has some useful code that we
may want to reuse?

March 1, 2010 Sprenkle - CSCI111 15

Convert meters to miles

meters [miles
input metersToMiles output

Input: meters
Output: miles

March 1, 2010 Sprenkle - CSCI111 16

Syntax of Function Definition

Keyword Function Input Name/
Name Parameter

def metersToMiles(meters): Function header
METERS_TO_MILES = .0006215
miles = meters * METERS_TO_MILES
return miles

Body (or
function
definition)

Output

Keyword:
How to give output

March 1, 2010 Sprenkle - CSCI111 17

Calling your own functions

Same as calling someone else’s functions ...

miles = metersToMiles(100)

I

Function Input
Name

Output is
assigned to
miles

March 1,2010 Sprenkle - CSCI111 18

Functions: Similarity to Math

In math, a function definition looks like:
»f(x)=x2+2

Plug values in for x

>f(3)=32+2=11

» 3 is your input, assigned to x

» 11 is output

March 1, 2010 Sprenkle - CSCI111 19

Parameters

The inputs to a function are called
parameters or arguments
When calling/using functions, arguments
must appear in same order as in the function
header
> Example: round(x, n)
x is the float to round
nis int of decimal places to round x to

March 1, 2010 Sprenkle - CSCI111 20

Parameters

Formal Parameters are the variables named
in the function definition
Actual Parameters or Arguments are the
variables or literals that really get used when
the function is called. Formal
Actual
Defined: def round(x, n) : |
Use: roundCelc = round(celc, 2)

Formal & actual parameters must
match in order, number, and type!

March 1, 2010 Sprenkle - CSCI111 21

Passing Parameters

Only copies of the actual parameters are
given to the function for immutable data
types
» Immutable types: what we’ve talked about so far
Strings, integers, floats
The actual parameters in the calling code do
not change

March 1, 2010 Sprenkle - CSCI111 22

Function Output

When the code reaches a statement like

return x
» The function stops executing
» X is the output returned to the place where the

function was called
For functions that don’t have explicit output,
return does not have a value with it, e.g.,
return
» Optional: don’t need to have return
Function automatically returns at the end

March 1, 2010 Sprenkle - CSCI111 23

Example Functions

userPBPref(<username>)

» For the given user, returns the amount of PB
they want on their sandwich

» Input: ?

» Output: ?

spread(<condiment>, <amount_in_TB>,
<sandwich>)

» Spreads given amount of condiment on
sandwich

» Input: ?
» Output: ?

March 1,2010 Sprenkle - CSCI111 24

Example Functions

userPBPref(<username>)
» For the given user, returns the amount of PB they
want on their sandwich

» Input: username
» Output: the user’s PB preference

spread(<condiment>, <amount_in_TB>,
<sandwich>)
» Spreads given amount of condiment on sandwich
> Input: condiment, amount_in_TB, sandwich
» Output: no output
State of sandwich changes - now has condiment on
it

March 1, 2010 Sprenkle - CSCI111 25

CONTROL FLOW WITH
FUNCTIONS

March 1, 2010 Sprenkle - CSCI111

Flow of Control

When code calls a function, the program
jumps to the function and executes it

After executing the function, the computer
returns to the same place in the calling code
where it left off

distl (100)is assigned to meters

Calling code: def metersToMiles(DI
Make conversions M2MI=.0006215
distl = 100 miles = meters * M2MI

milesl = metersToMiles(distl) e=———return miles

March 1, 2010 Sprenkle - CSCI111 27

Flow of Control

def max(huml, num2):
result = 0
if numl >= num2:
result = numl
else:
result = num2
return result

X =2
y = input(“Enter a number: ”)
z = max(x, y)

print “The max is”, z

March 1, 2010 spreniie -cscitit T Low_example.py 28

Flow of Control

def max(numl, num2): ‘ What does this function do?

result = @

if numl >= num2:
result = numl

else: Function definitions:
result = num2 Save functions for later use

return result

2 4= Program starts executing here

X =
y = input(“Enter a number: ”)
z = max(x, y)

print “The max is”, z

March 1, 2010 Sprenkle - CSCI111 29

Flow of Control

def max(huml, num2):
result = @
if numl >= num2: put
result = numl 1ction
else:

x=2,
!

result = num2 »'y = input("Enter ..")

return result

2 <= Program starts executing here
y = input(“Enter a number: ”)

z = max(x, y)

print “The max is”, z

X

March 1,2010 Sprenkle - CSCI111

2=max(x,)

numl gets the value of x
num2 gets the value of y

Flow of Control

To
input — def max(numl, num2):
function x=2|
i
result=0
y = input("Enter ...") ‘
ot l Gets gssigned

R\)
NS oo | max’s joutput numl >= num2
<A &V z=many)
S 'Y True False

print “The max is”, z result=num1 | result=num2

N

return result |
return to caller

def max(numl, num2):
result = @
if numl >= num2:
result = numl
else:
result = num2
March 1, 201 return result de - CSCI111 31

Flow of Control: Using return

Is this implementation of
the function correct?

def max(nhuml, num2): def max(numl, numz):

if numl >= num2:

return numl
else: numl >= num2

return num2 W

return numl| return num2

return to caller

March 1, 2010 Sprenkle - CSCI111 32

Flow of Control: Using return

Is this implementation of
the function correct?

def max(numl, numz): def maxCnuml, num2):
if numl >= num2:
return numl

return num2 numi >= num2 |

Implicit false branch:
Only way got here is
if the condition was

return to caller ~ return num2 not True

March 1, 2010 Sprenkle‘m—l 33

Function Input and Output
Identify input and output

def printVerse(animal, sound):
print BEGIN_END + EIEIO
print "And on that farm he had a " + animal + EIEIO
print "With a " + sound + ", " + sound + " here"
print "And a " + sound + ", " + sound + " there"
print "Here a", sound
print "There a", sound
print "Everywhere a " + sound + ", " + sound
print BEGIN_END + EIEIO
print

March 3, 2010 Sprenkle - CSCI111 34

Function Input and Output

2 inputs: animal and sound
0 outputs

» Displays something but does not return
anything

def printVerse(animal, sound):
print BEGIN_END + EIEIO
print "And on that farm he had a " + animal + EIEIO
print "With a " + sound + ", " + sound + " here"
print "And a " + sound + ", " + sound + " there"
print "Here a", sound
print "There a", sound
print "Everywhere a " + sound + ", " + sound
print BEGIN_END + EIEIO
print . .

o g Function exits here

PROGRAM ORGANIZATION

March 1,2010 Sprenkle - CSCI111 36

Where are Functions Defined?

Functions can go inside of program script

> If no main() function, defined before use/called
Example from lab2.4.py

»Ifmain() function, defined anywhere in script
More in a bit...

Functions can go inside a separate module
» Example: menu. py
» More on Wednesday

March 1, 2010 Sprenkle - CSCI111 37

Program Organization: main function

In many languages, you put the “driver” for
your program in a main function
> You can (and should) do this in Python as well
Typically main functions are defined at the
top of your program
» Readers can quickly see overview of what
program does

main usually takes no arguments
» Example: def main():

March 1, 2010 Sprenkle - CSCI111 38

Using a main Function

Call main() at the bottom of your program

Side effects:

> Do not need to define functions before main
function

> main can “see” other functions

> Note that main is a function that calls other
functions

Any function can call other functions

March 1, 2010 Sprenkle - CSCI111 39

Program with main() and Functions

def main(): <——— Program’s driver goes at top

print
print "This program converts from binary to decimal numbers.”
print
binary_string = raw_input("Enter a number in binary: ")
while not isBinary(binary_string) :

print "Sorry, that is not a binary string”

binary_string = raw_input("Enter a number in binary: ")

decValue = binaryToDecimal(binary_string)
print "The decimal value is”, decValue

Presents overview of what program does (hides details)

March 1, 2010 Sprenkle - CSCI111 40

Example program with a main()

oldmac.py

March 1, 2010 Sprenkle - CSCI111 41

Converting functionality into functions

binaryToDecimal.py
» Converting from binary to decimal

» Checking if a string contains only binary
numbers

Write comments for the functions

March 3, 2010 Sprenkle - CSCI111 42

This Week

Tuesday: Lab 6

~ String practice

» Encryption

» Functions

Broader issue for Friday: Volunteer
Computing

» “PCs Around the World Unite To Map the Milky

Way”

March 1, 2010 Sprenkle - CSCI111 43

