
1

Objectives

• Wrap up defining classes
•  Command-line arguments
•  Group Work: Designing Classes

Mar 28, 2011 Sprenkle - CSCI111 1

Review

•  How do we define a class?
• What do methods look like in Python?
• What parameter does every method take?
• What is the difference between calling

methods and functions?

Mar 28, 2011 Sprenkle - CSCI111 2

Review

• What does the __init__ method do?
 How should you implement it?
 When does it get called?

• What does the __str__ method do?
 How should you implement it?
 When does it get called?

Mar 28, 2011 Sprenkle - CSCI111 3

__CMP__ METHOD

Mar 28, 2011 Sprenkle - CSCI111 4

__cmp__:
Compare Objects of Same Type

•  Header: def __cmp__(self, other)	
 other is another object of the same type

•  Returns
 Negative integer if self < other
 0 if self==other
 Positive integer if self > other

•  Similar to implementing Comparable interface
in Java

•  Can now use objects in comparison expressions
 <,>,==, sort	

Mar 28, 2011 Sprenkle - CSCI111 5

How would you compare
2 Card objects?	

Comparing Objects of the Same Type

Mar 28, 2011 Sprenkle - CSCI111 6 card3.py	

def __cmp__(self, other):	
	""" Compares Card objects by their ranks """	

	
	if self.rank < other.getRank():	
	 	 return -1	
	elif self.rank > other.getRank():	
	 	 return 1	
	else:	
	 	 return 0	

	
# Could compare by black jack or rummy value	

2

Frequency Object

Mar 28, 2011 Sprenkle - CSCI111 7

def __cmp__(self, other):	
 """Compares this object with another object.

	Used in a sort method.""”	
 if self.count == other.count:	

	return cmp(self.key, other.key)	
 return cmp(self.count, other.count)	

HELPER METHODS

Mar 28, 2011 Sprenkle - CSCI111 8

Helper Methods

•  Part of the class
•  Not part of the API

•  Make your code easier but others outside the
class shouldn’t use

•  Convention: method name begins with “_”

Mar 28, 2011 Sprenkle - CSCI111 9

Example Helper Methods

•  Only loosely enforces that other can’t use
 Doesn’t show up in help	
 Does show up in dir	

Mar 28, 2011 Sprenkle - CSCI111 10

def _isFaceCard(self):	
	if self.rank > 10 and self.rank < 14:	
	 	return True	
	return False	

Helper Method:

def rummyValue(self):	
	if self._isFaceCard():	
	 	return 10	
elif self.rank == 10:	

	 	return 10	
	elif self.rank == 14:	
	 	return 15	
	else:	
	 	return 5	

In use:

card4.py	

Summary: Designing Classes

• What does the object/class represent?
•  How to model/represent the class’s data?

 Instance variable
 Data type

• What functionality should objects of the class
have?
 How will others want to use the class?
 Put into methods for others to call (API)

Mar 28, 2011 Sprenkle - CSCI111 11

Benefits of Classes

•  Package/group related data into one object
 Deck can have list of Card objects rather than

a list of ranks and a list of suits
•  Reusing code

 E.g., Don’t need to check if user put in valid key
•  Provide interface, can change underlying

implementation without affecting calling code

Mar 28, 2011 Sprenkle - CSCI111 12

3

COMMAND-LINE
ARGUMENTS

Mar 28, 2011 Sprenkle - CSCI111 13

Command-line Arguments

• We can run programs from terminal (i.e., the
“command-line”) and from IDLE

•  Can pass in arguments from the command-
line, similar to how we use Unix commands
 Ex: cp <source> <dest>	

 Ex: python command_line_args.py file.txt	
•  Motivation: Makes input easier

 Don’t have to retype each time executed
Mar 28, 2011 Sprenkle - CSCI111 14

Command-line arguments

Command-line Arguments

•  Using the sys module
 What else did we use from the sys module?

•  How to reference (get value) “<filename>”?

Mar 28, 2011 Sprenkle - CSCI111 15

python command_line_args.py <filename>	

List of arguments, named sys.argv	

Command-line Arguments
•  Using the sys module

•  How to reference (get value) “<filename>”?

 sys.argv is a list of the arguments	
 sys.argv[1] is the filename 	
 sys.argv[0] is the name of the program

Mar 28, 2011 Sprenkle - CSCI111 16

command_line_args.py	

python command_line_args.py filename	

sys.argv	 “command_line_args.py”	 “filename”	
0 1

Using Command-line Arguments
•  In general in Python:

 sys.argv[0] is the Python program’s name
•  Have to run program from terminal

 (not from IDLE)
 Can still edit program in IDLE

 Useful trick:
 If can’t figure out bug in IDLE, try running from

command-line
•  May get different error message

Mar 28, 2011 Sprenkle - CSCI111 17

DESIGNING CLASSES

Mar 28, 2011 Sprenkle - CSCI111 18

4

Summary: Designing Classes
• What does the object/class represent?
•  How to model/represent the class’s data?

 Instance variable
 Data type

• What functionality should objects of the class
have?
 How will others want to use the class?
 Put into methods for others to call (API)

Mar 28, 2011 Sprenkle - CSCI111 19

General Class Design:
•  nouns in a problem are classes/objects
•  verbs are methods

Top-Down Design
•  Break down larger problems into pieces that

you can solve
 Smaller pieces: classes, methods, functions
 Implement smallest pieces and build up

• We’ve been doing this most of the semester
 Typically, program was 1) read input, 2) process

input, 3) print result
•  Started putting Step 2 into >= 1 functions
•  Steps 1 and 3 were sometimes a function

 Now: on larger scale

Mar 28, 2011 Sprenkle - CSCI111 20

Requirements for a Social Network Application

•  Reads social network from two files
 One file contains people
 One file contains connections between people

•  Add connections between people
 Symmetric relationship

•  Creates a file to show social network as a
graph

•  Provides a user interface to do these things
• What else?

Mar 28, 2011 Sprenkle - CSCI111 21

Designing a Social Network Application

•  Break down into pieces
• What classes do we need?

 What data needed to model those classes?
 What functionality do each of those classes

need?
• What does our driver program (user

interface) do?
•  How should we implement those classes/

program?

Mar 28, 2011 Sprenkle - CSCI111 22

Designs

•  For each of your classes
 Data
 API

Mar 28, 2011 Sprenkle - CSCI111 23

Will, Meng, Ola

Nick, Anh, Minh, Callie

Jean Paul, Lida, Yates, Colin

Social Network Classes/Driver Data
•  Person

  Id
 Name
 Network
 Friends

•  Social Network
 People in network

•  Driver (UI)
 Social network

Mar 28, 2011 Sprenkle - CSCI111 24

What are the data types
for each class’s data?	

5

SN Classes/Driver Functionality
•  Person

 Getters (accessors)
 String rep
 Setters

•  Social Network
 Getters
 String rep
 Add people to network
 Add connections
 Writing to a file

•  Driver
 Getting user input to

•  Read people,
connections files

•  Store social network to
file

•  Add a person
•  Add connections

 Summary: call
appropriate methods on
classes to do above

Mar 28, 2011 Sprenkle - CSCI111 25

How should we test these?	

Lab 10 Design

•  3 files: person.py, socialnetwork.py,
facespace.py	

Mar 28, 2011 Sprenkle - CSCI111 26

SocialNetwork
(test functions)

socialnetwork.py	

Driver

•  Uses SocialNetwork object
•  Gets command-line arguments
•  Handles UI
•  Calls methods on the SN object

facespace.py	

Person
(test functions)

person.py	

Problem: People Files
•  Given a people file that has the format

•  Write algorithm to create Person objects to
represent each person, add to SocialNetwork
object

Mar 28, 2011 Sprenkle - CSCI111 27

<num_users>	
<user_id>	
<name>	
<network>	
…	
<user_id_n>	
<name_n>	
<network_n>	

Problem: Connection Files

•  Given a connection file that has the format

•  Each line represents a friend/connection
 Symmetric relationship
 Each is a friend of the other

•  Update SocialNetwork object

Mar 28, 2011 Sprenkle - CSCI111 28

<user_id> <user_id>	
<user_id> <user_id>	
…	
<user_id> <user_id>	

UI Specification
•  Checks if user entered command-line argument

 Default files otherwise

•  Read people, connections from files
•  Repeatedly gets selected options from the user,

until user quits
•  Repeatedly prompts for new selection if invalid

option
•  Executes the appropriate code for the selection
•  Stops when user quits
•  Stores the social network into the file

Mar 28, 2011 Sprenkle - CSCI111 29
Write pseudocode

UI Pseudocode

Mar 28, 2011 Sprenkle - CSCI111 30

Use default files if only one command-line argument
Read people, connections from files
while True:

 display menu options
 prompt for selection
 while invalid option
 print error message
 prompt for selection
 break if selected quit
 otherwise, do selected option

Store social network to designated file

6

Implementation Plan
1.  Implement Person class

 Test (write test functions, e.g., testPerson())

2.  Implement SocialNetwork class
 Example runs in lab write up
 Note: Methods for classes will not prompt for input; Use

input parameters
 Test

3.  Implement driver program

Mar 28, 2011 Sprenkle - CSCI111 31 Mar 28, 2011 Sprenkle - CSCI111 32

Plan for Implementing a Class
• Write the constructor and string

representation/print methods first
• Write function to test them

 See card.py for example test functions
• While more methods to implement …

 Write method
 Test
 REMINDER: methods should not be using
input function but getting the input as
parameters to the method

Goal Output
•  You will create graphs that look something like

this and put them on a new web page for Lab 10

Mar 28, 2011 Sprenkle - CSCI111 33

This Week

•  Lab 10
•  Broader Issue: An article about social

networking
 News feed
 Privacy/security

Mar 28, 2011 Sprenkle - CSCI111 34

