
1

Objectives

• str methods

Feb 18, 2011 Sprenkle - CSCI111 1

Review

•  How does the computer represent
information?
 Numeric?
 String?

•  How do we figure out a character's ASCII
value?

•  How do we figure out the character
represented by a number?

Feb 18, 2011 Sprenkle - CSCI111 2

Review: Translating to/from ASCII

•  Translate a character into its ASCII numeric
code using built-in function ord
 ord('a') ==> 97	

•  Translate an ASCII numeric code into its
character using built-in function chr
 chr(97) ==> 'a'	

Feb 18, 2011 Sprenkle - CSCI111 3

ascii_table.py	
ascii.py	

USING THE STR API

Feb 18, 2011 Sprenkle - CSCI111 4

str Methods

• str is a class or a type

•  Methods: available operations to perform on
str objects
 Provide common functionality

•  To see all methods available for str class
 help(str)

	
Feb 18, 2011 Sprenkle - CSCI111 5

str Methods

•  Example method: find(substring)	
 Finds the index where substring is in string
 Returns -1 if substring isn’t found

•  To call a method:
 <stringobj>.methodname([arguments])	
 Example: filename.find(“.py”)	

Feb 18, 2011 Sprenkle - CSCI111 6

Executed on this string

2

Common str Methods

Feb 18, 2011 Sprenkle - CSCI111 7

Method Operation
center(width)	 Returns a copy of string centered within

the given number of columns
count(sub[, start [,
end]])	

Return # of non-overlapping occurrences
of substring sub in the string.

endswith(sub),
startswith(sub)	

Return True iff string ends with/starts with
sub

find(sub[, start [,
end]])	

Return first index where substring sub is
found

isalpha(), isdigit
(), isspace()	

Returns True iff string contains letters/
digits/whitespace only

lower(), upper()	 Return a copy of string converted to
lowercase/lowercase

string_methods.py	

Common str Methods

Feb 18, 2011 Sprenkle - CSCI111 8

Method Operation

replace(old, new[,
count])	

Returns a copy of string with all
occurrences of substring old replaced by
substring new. If count given, only
replaces first count instances.

split([sep])	
Return a list of the words in the string,
using sep as the delimiter string. If sep is
not specified or is None, any whitespace
string is a separator.

strip()	 Return a copy of the string with the leading
and trailing whitespace removed

join(<sequence>)	
Return a string which is the concatenation
of the strings in the sequence with the
string this is called on as the separator

swapcase()	
Return a copy of the string with uppercase
characters converted to lowercase and vice
versa.

Functions vs Methods

Functions
•  All “input” as arguments/

parameters
•  Example: len is a built-in

function
  Called as len(string)	

Methods
•  “Input” are argument/

parameters and the string
the method was called on

•  Example:
  string.upper()	

Feb 18, 2011 Sprenkle - CSCI111 9

Are You Smarter Than a 5th Grader?

•  Problem in spelling from the show: How
many a's are in abracadabra?
 Solve using str methods

Feb 18, 2011 Sprenkle - CSCI111 10

Get the Username

•  Given the directory formatted as
 dir = “/home/www/users/username/”	

•  Get the username out

Feb 18, 2011 Sprenkle - CSCI111 11

Using str Methods

•  Modify binaryToDecimal.py to verify that
the entered string contains only numbers
 Keep asking them for a number until the string

contains only numbers

Feb 18, 2011 Sprenkle - CSCI111 12

3

Using str Methods

•  Modify binaryToDecimal.py to verify that
the entered string contains only numbers
 Keep asking them for a number until the string

contains only numbers

•  2nd modification: How could we make sure
that entered string contains only 0s and 1s?

Feb 18, 2011 Sprenkle - CSCI111 13

Implementing Wheel of Fortune
•  Simplifications: no money, no buying vowels, no

keeping track of previous guesses, one player
•  Functionality

 Displaying puzzle appropriately
 Gets guesses from user

•  Either letters or solve the puzzle
 Keep track of the number of guesses
 Displays puzzle with guesses filled in

•  Think about …
 What do we need to model? How would we model it?
 User input robustness?
 Any special cases?

Feb 18, 2011 Sprenkle - CSCI111 14

wheeloffortune.py	

Implementing Wheel of Fortune
•  Differences between real and simulated

game
 Players type in letter rather than say it

•  Case matters
•  What if enter more than one letter

Feb 18, 2011 Sprenkle - CSCI111 15

Implementing Wheel of Fortune

•  User input verification
 How can we ensure that the user typed only one

letter?
 How can we ensure that the user typed a letter?

•  Checking the guess
 How can we tell if the guessed letter is in the

puzzle?
 How can report the number of times the guessed

letter occurs in the puzzle?

Feb 18, 2011 Sprenkle - CSCI111 16

Implementing Wheel of Fortune

•  How many times should we prompt the user
for a guess?

•  How can we display the current puzzle?
 What does the puzzle look like when we start the

game?
 What does it look like after we correctly guess a

letter?

Feb 18, 2011 Sprenkle - CSCI111 17

Wheel of Fortune
•  Practice: Modify displayed puzzle to handle

punctuation
 Include punctuation in displayed puzzle
 Original code:

Feb 18, 2011 Sprenkle - CSCI111 18

displayedpuzzle = ""	
for char in PHRASE:	
 if char != " ”:	

	 displayedpuzzle += "_"	
 else:	
 displayedpuzzle += " "	

4

Feb 18, 2011 Sprenkle - CSCI111 19

Broader Issues in Computer Science

•  Testing isn't a broader issue
 Glad you noticed lots of the issues with testing
 We'll keep talking about testing because I love it!

Ola
Nick

Will
Yates
Callie
Jean Paul
Anh
Minh

Google Maps Excel

Feb 18, 2011 Sprenkle - CSCI111 20

Broader Issues in Computer Science

•  Is the Excel 2007 or Google Maps bug a
“reasonable” bug?
 Why weren't they caught?
 Should they have been caught?

• When should a company stop testing?
 When do you stop testing?

• Why doesn't software have guarantees?

Feb 18, 2011 Sprenkle - CSCI111 21

Broader Issues in Computer Science
•  Have you ever encountered a bug in a program?

 What happened?
 How severe was the problem? Were you able to

recover?
 How did you respond? (Angry? Didn’t think about? …)

•  If people can recover from a bug, when does it
become important for software developers to fix the
problem?
 Tradeoffs between costs/revenues of implementing new

features versus fixing existing code
 What matters to you (as a consumer) more?

Notes from a Keynote Speech about
Testing Microsoft Vista
•  Users are “trained” to not use buggy

features
 After user encounters a certain bug when doing

something enough times, the user stops trying to
do that buggy activity

•  Only ship fixes that affect many users

Feb 18, 2011 Sprenkle - CSCI111 22

User’s Loss in
Confidence

= Disruption
Frequency x

Recovery Time
Recover Effort
Lost data
Uncertainty

Relation to Our Class

• When do you stop testing?

Feb 18, 2011 Sprenkle - CSCI111 23 Feb 18, 2011 Sprenkle - CSCI111 24

Status from Official Excel Blog
•  Post on 9/25/07

  We’ve come up with a fix for this issue and are in the final phases of a
broad test pass in order to ensure that the fix works and doesn’t introduce
any additional issues - especially any other calculation issues. This fix then
needs to make its way through our official build lab and onto a download
site - which we expect to happen very soon.

•  Post on 10/9/07
  As of today, fixes for this issue in Excel 2007 and Excel Services 2007 are

available for download …
  We are in the process of adding this fix to Microsoft Update so that it will get

automatically pushed to users running Excel 2007 or Excel Services 2007.
Additionally, the fix will also be contained in the first service pack of Office
2007 when it is released (the release date for SP1 of Office 2007 has not
been finalized).

Happy Ending

