
1

•  String review
•  Introduction to Functions

•  Simplifications: no money, no buying vowels, no
keeping track of previous guesses, one player

•  Functionality
 Displaying puzzle appropriately
 Gets guesses from user

•  Either letters or solve the puzzle
 Keep track of the number of guesses
 Displays puzzle with guesses filled in

•  Think about …
 User input robustness?
 Any special cases?

wheeloffortune.py

•  Differences between real and simulated
game
 Players type in letter rather than say it

•  Case matters
•  What if user enters more than one letter?

•  User input verification
 How can we ensure that the user entered only

one letter?
 How can we ensure that the user entered a

letter?
•  Checking the guess

 How can we tell if the guessed letter is in the
puzzle?

 How can we report the number of times the
guessed letter occurs in the puzzle?

•  How many times should we prompt the user
for a guess?

•  How can we display the current puzzle?
 What does the puzzle look like when we start the

game?
 What does it look like after we correctly guess a

letter?

•  Practice: Modify displayed puzzle to handle
punctuation
 Include punctuation in displayed puzzle
 Original code:

displayedpuzzle = ""	
for char in PHRASE:	
 if char != " ":	

	 displayedpuzzle += "_"	
 else:	
 displayedpuzzle += " "	

puzzle

2

• We’ve used functions
 Built-in functions: len, input, raw_input
 Functions from modules, e.g., math and random	

•  Today, we’ll learn how to define our own
functions!

•  Function is a black box
 Implementation doesn’t matter
 Only care that function generates appropriate

output, given appropriate input
•  Example:

 Didn’t care how raw_input function was
implemented

 Use: user_input = raw_input(prompt)	

prompt user_input	
Saved output in a variable

raw_input	Input
(arguments)

Output
(return value)

• A function can have
 0 or more inputs
 0 or 1 outputs

• When we define a function, we know its
inputs and if it has output

function	Input
(arguments)

Output
(return value)

•  I want a function that averages two numbers

• What is the input to this function?
• What is the output to this function?

•  I want a function that averages two numbers
• What is the input to this function?

 The two numbers
• What is the output to this function?

 The average of those two numbers, as a float

These are key questions to ask yourself
when designing your own functions.

• Inputs: parameters
• Output: what is getting returned

3

• Without functions: menu_withoutfunc.py	
• With functions: menu_withfunctions.py	

How do the two programs compare in terms of
•  Length? (all code and just the “main” code)
•  Readability?

•  Allows you to break up a hard problem into smaller,
more manageable parts

•  Makes your code easier to understand
•  Hides implementation details (abstraction)

 Provides interface (input, output)

•  Makes part of the code reusable so that you:
 Only have to write function code once
 Can debug it all at once

•  Isolates errors
 Can make changes in one function (maintainability)

Similar to benefits of OO Programming

•  Any place to make a function?
 Duplicated code is often a “symptom” of when

we should make a function
•  Any place that has some useful code that we

may want to reuse? •  Input: meters
•  Output: miles

metersToMiles	input output
meters miles

def metersToMiles(meters):	
	METERS_TO_MILES = .0006215 	
	miles = meters * METERS_TO_MILES	
	return miles	

Keyword Function
Name

Input Name/
Parameter

B
od

y
(o

r
fu

nc
tio

n
de

fin
iti

on
)

Keyword:
How to give output

Function header

Output

miles = metersToMiles(100)	

Output is
assigned to

miles	
Function

Name
Input

Same as calling someone else’s functions …

4

•  In math, a function definition looks like:
 f(x) = x2 + 2

•  Plug values in for x
 f(3) = 32 + 2 = 11
 3 is your input, assigned to x
 11 is output

•  The inputs to a function are called
parameters or arguments

• When calling/using functions, arguments
must appear in same order as in the function
header
 Example: round(x, n)	

•  x is the float to round
•  n is int of decimal places to round x to

•  Formal Parameters are the variables named
in the function definition

•  Actual Parameters or Arguments are the
variables or literals that really get used when
the function is called. Formal

Actual
Defined: def round(x, n) :	
Use: roundCelc = round(celc, 2)	

Formal & actual parameters must
match in order, number, and type!

•  Only copies of the actual parameters are
given to the function for immutable data
types
 Immutable types: what we’ve talked about so far

•  Strings, integers, floats

•  The actual parameters in the calling code do
not change

• When the code reaches a statement like
	 	return x	

 The function stops executing
 x is the output returned to the place where the

function was called
•  For functions that don’t have explicit output,
return does not have a value with it, e.g.,

 Optional: don’t need to have return	
•  Function automatically returns at the end

return	

• userPBPref(<username>)	
 For the given user, returns the amount of PB

they want on their sandwich
 Input: ?
 Output: ?	

• spread(<condiment>, <amount_in_TB>,
<sandwich>)	
 Spreads given amount of condiment on

sandwich
 Input: ?
 Output: ?

5

• userPBPref(<username>)	
 For the given user, returns the amount of PB they

want on their sandwich
  Input: username	
 Output: the user’s PB preference	

• spread(<condiment>, <amount_in_TB>,
<sandwich>)	
 Spreads given amount of condiment on sandwich
  Input: condiment, amount_in_TB, sandwich	
 Output: no output

•  State of sandwich changes  now has condiment on
it

• When code calls a function, the program
jumps to the function and executes it

•  After executing the function, the computer
returns to the same place in the calling code
where it left off

# Make conversions	
dist1 = 100	
miles1 = metersToMiles(dist1)	

dist1 (100) is assigned to meters
Calling code:

def max(num1, num2):	
	result = 0	
	if num1 >= num2:	
	 	result = num1	
	else:	
	 	result = num2	
	return result	

x = 2	
y = input(“Enter a number: ”)	
z = max(x, y)	
print “The max is”, z	

flow_example.py	

def max(num1, num2):	
	result = 0	
	if num1 >= num2:	
	 	result = num1	
	else:	
	 	result = num2	
	return result	

x = 2	
y = input(“Enter a number: ”)	
z = max(x, y)	
print “The max is”, z	

What does this function do?

Program starts executing here

Function definitions:
Save functions for later use

z=max(x, y)

x=2

y = input(“Enter …”)

To
input
function

def max(num1, num2):
 result = 0
 if num1 >= num2:
 result = num1
 else:
 result = num2
 return result

x = 2
y = input(“Enter a number”)
z = max(x, y)
print “The max is”, z

def max(num1, num2):	
	result = 0	
	if num1 >= num2:	
	 	result = num1	
	else:	
	 	result = num2	
	return result	

x = 2	
y = input(“Enter a number: ”)	
z = max(x, y)	
print “The max is”, z	

Program starts executing here

6

print “The max is”, z

z=max(x, y)

Gets assigned
max’s output

x=2

y = input(“Enter …”)

To
input
function

result=num1

num1 >= num2

result=0

True False

result=num2

return result	

def max(num1, num2):	

num1 gets the value of x	
num2 gets the value of y	

def max(num1, num2):	
	result = 0	
	if num1 >= num2:	
	 	result = num1	
	else:	
	 	result = num2	
	return result	

“ca
lls”

 max

functio
n

return to caller

return num1	

num1 >= num2
True False

return num2	

def max(num1, num2):	

return to caller

def max(num1, num2):	
	if num1 >= num2:	
	 	return num1	
	else:	
	 	return num2	

Is this implementation of
the function correct?

return num1	

num1 >= num2
True

return num2	

def max(num1, num2):	

return to caller

Implicit false branch:
Only way got here is
if the condition was

not True	

def max(num1, num2):	
	if num1 >= num2:	
	 	return num1	
	return num2	

Is this implementation of
the function correct?

•  Identify input and output

def printVerse(animal, sound):	
 print BEGIN_END + EIEIO	
 print "And on that farm he had a " + animal + EIEIO	
 print "With a " + sound + ", " + sound + " here"	
 print "And a " + sound + ", " + sound + " there"	
 print "Here a", sound	
 print "There a", sound	
 print "Everywhere a " + sound + ", " + sound	
 print BEGIN_END + EIEIO	
 print	

•  2 inputs: animal and sound
•  0 outputs

 Displays something but does not return
anything

def printVerse(animal, sound):	
 print BEGIN_END + EIEIO	
 print "And on that farm he had a " + animal + EIEIO	
 print "With a " + sound + ", " + sound + " here"	
 print "And a " + sound + ", " + sound + " there"	
 print "Here a", sound	
 print "There a", sound	
 print "Everywhere a " + sound + ", " + sound	
 print BEGIN_END + EIEIO	
 print	

Function exits here

7

•  Functions can go inside of program script
 If no main() function, defined before use/called

•  Example from lab2.4.py
 If main() function, defined anywhere in script

•  More in a bit…

•  Functions can go inside a separate module
 Example: menu.py	
 More on Wednesday

•  In many languages, you put the “driver” for
your program in a main function
 You can (and should) do this in Python as well

•  Typically main functions are defined at the
top of your program
 Readers can quickly see overview of what

program does
• main usually takes no arguments

 Example: def main():	

•  Call main() at the bottom of your program

•  Side effects:
 Do not need to define functions before main

function
 main can “see” other functions
 Note that main is a function that calls other

functions
•  Any function can call other functions

def main():	
	print 	
	print "This program converts from binary to decimal numbers.”	
	print	

	binary_string = raw_input("Enter a number in binary: ")	

	while not isBinary(binary_string) :	
		 	print "Sorry, that is not a binary string”	
		 	binary_string = raw_input("Enter a number in binary: ")	

	decValue = binaryToDecimal(binary_string)	
	print "The decimal value is”, decValue	

Presents overview of what program does (hides details)

Program’s driver goes at top

•  oldmac.py • binaryToDecimal.py	
 Converting from binary to decimal
 Checking if a string contains only binary

numbers

• Write comments for the functions

8

•  Tuesday: Lab 6
 String practice
 Encryption
 Functions

•  Broader issue for Friday: Volunteer
Computing
 “PCs Around the World Unite To Map the Milky

Way”

