
1

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 11

Objectives
• Search strategies
• Broader Issues: One Laptop Per Child

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 22

Search Using in Review
• Iterates through a list, checking if the

element is found
• Known as linear search
• Implementation:
def inSearch(searchlist, key):

for elem in searchlist:
if elem == key:

return True
return False

search.py

3210pos

7358value

What are the strengths and weaknesses of
implementing search this way?

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 33

Search Using in Review
• Iterates through a list, checking if the

element is found
• Known as linear search
• Benefits:

Works on any list
• Drawbacks:

Slow -- needs to check each element of list if the
element is not in the list

Current implementation of in does not tell us
where in the list it is
• What if wanted to do something to that element?

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 44

Binary Search Review
• High-Low game

 I’m thinking of a number between 1-100
You want to guess the number as quickly as

possible
For every number you guess, I’ll tell you whether

you’re too high or too low or if you got it right
• What is your best strategy?

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 55

Strategy: Eliminate Half the
Possibilities

• Repeat until find value (or looked through all
values):
Guess middle value of possibilities
 If match, found!
Otherwise, find out too high or too low
Modify your possibilities

• Eliminate the possibilities from your number and
(higher or lower, as appropriate)

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 66

Searching for 8
• Find the middle of the list

Positions: 0 -- 7, so mid is 3 (7/2)
• Check if the key equals the value at mid (1)

 If so, report the location
• Check if the key is higher or lower than value

at mid
Search the appropriate half of the list

76543210
9872100-3 8 > 1, so look

in upper half

76543210
9872100-3

2

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 77

Binary Search
• mid is 5 ((7+4)/2), list[5] is 7

• mid is 6 ((6+7)/2), list[6] is 8

• What if searched for 6 instead of 8?

4
2

765
987

7
9

6
8

8 > 7, so look
in lower half

8==8, FOUND IT!

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 88

Searching for 6
• Will follow some of same program flow, but 6

is not in the list
• mid is 5, list[5] is 7

• mid is 4, list[4] is 2
6 > 2, so will try to look in upper
half of the list, but we’ve already
determined it’s not there.
How do we know to stop looking?

4
2

765
987

4
2

76543210
9872100-3

6 < 7, so will try in lower half
of list

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 99

Implementation Group Work

• Trace through your program using examples
Start simple (small lists)
Do what the program says exactly, not what you
think the program says

def search(searchlist, key):
“””Pre: searchlist is in sorted order.

Returns the position of key (an integer) in the
list of integers (searchlist) or -1 if not found”””

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 1010

One Solution
def search(searchlist, key):

low=0
high = len(searchlist)-1
while low <= high :

mid = (low+high)/2
if searchlist[mid] == key:

return mid # return True
elif searchlist[mid] < key:

low=mid+1
else:

high = mid-1
return -1 # return False

search.py

If you just want to
know if it’s in the list

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 1111

Binary Search
• Example of a Divide and Conquer algorithm

Break into smaller pieces that you can solve
• Benefits:

Faster to find elements (especially with larger
lists)

• Drawbacks:
Requires that data can be compared (rather than

just equal)
• __cmp__ method implemented by the class

List must be sorted before searching
• Takes time to search

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 1212

Empirical Study of Search Techniques
• Goal: Determine which technique is better

under various circumstances

• How long does it take to find various keys?
Measure by the number of comparisons
Vary the size of the list and the keys
What are good tests for the lists and the keys?

search_compare.py

3

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 1313

Modifying Solution
def search(searchlist, key):

low=0
high = len(searchlist)-1
mid = (low+high)/2
while low <= high :

if searchlist[mid] == key:
return mid # return True

elif searchlist[mid] < key:
low=mid+1

else:
high = mid-1

mid = (low+high)/2
return -1 # return False

What if we had a list of Cards
instead of a list of integers?
• What needs to be changed?
• What has to be done in the
Card class?

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 1414

Comparing Card Objects
• What order do we want the cards in?

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 1515

Previously…
• Why isn’t this sufficient for use with search?

def __cmp__(self, other):
if self.getRank() < other.getRank():

return -1
if self.getRank() > other.getRank():

return 1
return 0

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 1616

Comparing Card Objects

card5.py

def __cmp__(self, other):
if self.getSuit() < other.getSuit():

return -1
if self.getSuit() > other.getSuit():

return 1
if self.getRank() < other.getRank():

return -1
if self.getRank() > other.getRank():

return 1
return 0

Comparing by suit then rank; order is 2 Clubs,
3 Clubs, …, Ace Clubs, 2 Diamonds, 3 Diamonds, …

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 1717

Extensions to Solution
def search(searchlist, key):

low=0
high = len(searchlist)-1
mid = (low+high)/2
while low <= high :

if searchlist[mid] == key:
return mid # return True

elif searchlist[mid] < key:
low=mid+1

else:
high = mid-1

mid = (low+high)/2
return -1 # return False

What if we had a list of Songs
instead of a list of integers?
• What if we wanted to check
if the song’s title matched the
key and give the song back?

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 1818

Extensions to Solution
def search(searchlist, key):

low=0
high = len(searchlist)-1
mid = (low+high)/2
while low <= high :

if searchlist[mid] == key:
return mid # return True

elif searchlist[mid] < key:
low=mid+1

else:
high = mid-1

mid = (low+high)/2
return -1 # return False

What if we had a list of Songs
instead of a list of integers?
• What if we wanted all songs
that matched the title?

4

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 1919

Summary of Extensions to Solution
• Check the title of the Song at the midpoint
• Get the songs before and after that song in

list that have the same title and put in a list
• Represent, handle when no song matches
• For “most intuitive” results:

Strip, lowercase the key
• Which means what for your algorithm?

• Note: we’re not just doing “contains”
How could we implement that?

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 2020

Search Strategies Summary
• Which search strategy should I use under the

various circumstances?
 I have a short list

 I have a long list

 I have a long sorted list

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 2121

Search Strategies Summary
• Which search strategy should I use under the

various circumstances?
 I have a short list

• How short? Linear (in)
 I have a long list

• Linear (in) -- because don’t know if in order,
compararable

 I have a long sorted list
• Binary

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 2222

A Scientific Application

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 2323

Broader Issues
• One Laptop Per Child

An experiment on bringing cheap technology to
poor children

Give 1, Get 1 program is on until Dec 31
• What challenges did OLPC face and how did

that affect their design decisions?
• What are some other unusual features of the

laptop?
• What does this technology mean for better-

off countries?
Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 2424

Discussion

Linux, Python, open-source tools;
cheaper battery; no harddrive, CD/DVD
drive

Cost

Simple user interfaces; tiny keyboard;
light; applications keep students
interested

Users - children

Dust proof, drop proof, lightEnvironment

Rewrite code more compactly, efficientlySoftware bloat

New, cheap battery; Consumes less
power; Alternative power sources: solar
power, pull cord

Lack of Power
Design DecisionChallenge

