
1/17/11

1

Objectives

•  Continuing fundamentals of programming in
Python

•  Numeric Operations
•  Software development practices

 Testing
 Debugging
 Iteration

Jan 17, 2011 Sprenkle - CSCI111 1

Parts of an Algorithm
•  Input, Output
•  Primitive operations

 What data you have, what you can do to the data
•  Naming

  Identify things we’re using
•  Sequence of operations
•  Conditionals

 Handle special cases
•  Repetition/Loops
•  Subroutines

 Call, reuse similar techniques

Jan 17, 2011 Sprenkle - CSCI111 2

Review

• What are Python’s primitive data types and
what do they represent?

•  Note on Linux machines: “Switch User” is not
the same as “Logout”

Jan 17, 2011 Sprenkle - CSCI111 3

Recap of Programming Fundamentals
•  Most important data types (for us, for now):
int, float, str, bool	
 Use these types to represent various information

•  Variables have identifiers, (implicit) types
 Should have “good” names
 Names: start with lowercase letter; can have

numbers, underscores
•  Assignments

 x = y means “x set to value y” or “x is
assigned value of y”

 Only variable on LHS of statement changes
Jan 17, 2011 Sprenkle - CSCI111 4

Review: Assignment statements

•  Assignment statements are NOT math
equations!

•  These are commands!
x = 2	
y = x	
x = x + 3	

Jan 17, 2011 Sprenkle - CSCI111 5

count = count + 1	

What is the value of y?	

What are the values?

•  After executing the following statements,
what are the values of each variable?
 a = 5	
 y = a + -1 * a	
 z = a + y / 2	
 a = a + 3	
 y = (7+x)*z	
 x = z*2 	

Jan 17, 2011 Sprenkle - CSCI111 6

Runtime error: 	

	
x doesn’t have a value yet!	

•  We say “x was not initialized”	

•  Can’t use a variable on RHS until

seen on LHS!*	

1/17/11

2

More on Arithmetic Operations

Jan 17, 2011 Sprenkle - CSCI111 7

Symbol Meaning Associativity

+	 Addition Left

-	 Subtraction Left
*	 Multiplication Left
/	 Division Left

%	 Remainder (“mod”) Left

**	 Exponentiation (power) Right

Precedence rules: P E - DM% AS

negation

Associativity matters when
you have the same

operation multiple times	

NOT Math Class

•  Need to write out all operations explicitly
 In math class, a (b+1) meant a * (b+1)	

Jan 17, 2011 Sprenkle - CSCI111 8

Write this way in Python	

Math Practice

Jan 17, 2011 Sprenkle - CSCI111 9

5+3*2	
2 * 3 ** 2	
-3 ** 2	
2 ** 3 ** 3	

How should we verify our answers?	

Two Types of Division
•  Float Division: Result is a float	

 At least one of numerator and denominator
must have a decimal, i.e., have type float	

 3.0/6.0 0.5
 6.0/3 2.0

•  Integer Division: Result is an int
 x/y, if both x and y are ints
 If both numerator and denominator are ints,

result is int	
 3/6 0
 6/3 2

Jan 17, 2011 Sprenkle - CSCI111 10

Not always obvious	

Division Practice (NOT Math class)

• x = 6/4	
• y = 4 / 6 * 5.0 	
• a = 6/12.0	
• b = 6.0/12	
• z = .3	
 z = x / y	
	z = x / 3	

Jan 17, 2011 Sprenkle - CSCI111 11

• What is the result? 	

• What is the type of the LHS variable?	

Parts of an Algorithm
•  Input, Output
•  Primitive operations

 What data you have, what you can do to the data
•  Naming

  Identify things we’re using
•  Sequence of operations
•  Conditionals

 Handle special cases
•  Repetition/Loops
•  Subroutines

 Call, reuse similar techniques

Jan 17, 2011 Sprenkle - CSCI111 12

1/17/11

3

Printing Output

• print is a special command
 Displays the result of expression(s) to the

terminal
• print “Hello, class”	

• print “Your answer is”, 4*4	

 Displays same as:
• print “Your answer is”,	
• print 4*4	

Jan 17, 2011 Sprenkle - CSCI111 13

string literal

print automatically
adds a ‘\n’ (carriage
return) after it’s printed	

Syntax: comma
Semantics: ���
print multiple

“things” in one line 	

Interactive Programs

•  Often, meaningful programs need input from
users

•  Demo: input_demo.py	

Jan 17, 2011 Sprenkle - CSCI111 14

Getting Input From User

• input and raw_input are functions
 Function: A command to do something

•  A “subroutine”
 Prompts user for input, gets the user’s input
 input: to read in numbers
 raw_input: to read in strings/text

•  Syntax:
 input(<string_prompt>)	
 raw_input(<string_prompt>)	

Jan 17, 2011 Sprenkle - CSCI111 15

Getting Input From User
•  Typically used in assignments
•  Examples:

 width = input(“Enter the width: ”)	
• width is assigned the number the user enters
•  Use input because expect a number from user	

 name=raw_input(“What is your name?”)	
• name is assigned the string the user enters
•  Use raw_input because expect a string from

user

Jan 17, 2011 Sprenkle - CSCI111 16

Prompt displayed to user	

What do you think the code looks like for input_demo.py?

Getting Input from User

color = raw_input(“What is your favorite color? ”)	

Jan 17, 2011 Sprenkle - CSCI111 17

> python input_demo.py	
What is your favorite color? blue	
Cool! My favorite color is _light_ blue !	

Terminal:	

Grabs every character up to
the user presses “enter”	

Semantics: Assigns variable color the user’s input	

input_demo.py	

Documenting Your Code
•  Use English to describe what your program is

doing in comments
 Everything after a # is a comment

•  Color-coded in IDLE, jEdit
 Python does not execute comments

•  Does not affect the correctness of your program

•  Improves program’s readability
 Easier for someone else to read and update your

code
Jan 17, 2011 Sprenkle - CSCI111 18

1/17/11

4

When to Use Comments
•  Document the author, high-level description

of the program at the top of the program

•  Provide an outline of an algorithm
 Separates the steps of the algorithm

•  Describe difficult-to-understand code

Jan 17, 2011 Sprenkle - CSCI111 19

Identify the Parts of a Program

Jan 17, 2011 Sprenkle - CSCI111 20

# Demonstrate numeric and string input	
# by Sara Sprenkle for CS111	
#	
	
color = raw_input("What is your favorite color? ")	
print "Cool! My favorite color is _light_", color, "!"	
	
scale = input("On a scale of 1 to 10, how much do you
like Matt Damon? ")	
print "Cool! I like him", scale*1.8, "much!"	
	

Identify the comments, variables, functions,
expressions, assignments, literals 	

input_demo.py	

Identify the Parts of a Program

Jan 17, 2011 Sprenkle - CSCI111 21

# Demonstrate numeric and string input	
# by Sara Sprenkle for CS111	
#	
	
color = raw_input("What is your favorite color? ”)	
print "Cool! My favorite color is _light_” , color, "!"	
	
scale = input("On a scale of 1 to 10, how much do you
like Matt Damon? ”)	
print "Cool! I like him” , scale*1.8, "much!"	
	

Identify the comments, variables, functions,
expressions, assignments, literals 	

expression

Our First Computational Algorithm

•  Find the area of a rectangle (which has a
width and height)

Jan 17, 2011 Sprenkle - CSCI111 22

Our First Computational Algorithm

•  Find the area of a rectangle (which has a
width and height)

•  Algorithm:
 Optional: get the width and height from user

•  Alternative: “hard-code” width and height
 Calculate area
 Print area

Jan 17, 2011 Sprenkle - CSCI111 23 area.py

Errors/Bugs
•  Sometimes the program doesn’t work
•  Types of programming errors:

 Syntax error
•  Interpreter shows where the problem is

 Logic/semantic error
•  answer = 2+3
•  No, answer should be 2*3

 Exceptions/Runtime errors
•  answer = 2/0
•  Undefined variable name

Jan 17, 2011 Sprenkle - CSCI111 24

Expose errors when Testing	

1/17/11

5

Testing Process

Jan 17, 2011 Sprenkle - CSCI111 25

Program

•  Test case: input used to test the program,
expected output given that input

•  Verify if output is what you expected

Verify output

Output Input

Expected
Output

Test Case

Testing Process

Jan 17, 2011 Sprenkle - CSCI111 26

•  Need good test cases to help determine if
program is correct
 Tester plays devil’s advocate
 Want to expose all bugs!
 Find before customer/professor!

Input Program Output

Expected
Output

Verify output
Test Case

Practice: Test Cases

•  Test cases for finding the area of a rectangle

Jan 17, 2011 Sprenkle - CSCI111 27

Input Expected Output

Practice: Test Cases

•  Test cases for finding the area of a rectangle
 Test both integers
 Test with at least one float for width, height
 Test numbers less than or equal to 0

•  Shouldn’t compute area for those

Jan 17, 2011 Sprenkle - CSCI111 28

Debugging

•  Edit the program, re-execute/test until
everything works

•  The error is called a “bug” or a “fault”
•  Diagnosing and fixing it is called debugging

Jan 17, 2011 Sprenkle - CSCI111 29

Interpreter
(python)

Program
text file

program.py
Output

Text Editor
(jEdit or IDLE)

ERROR!	

Identify bug, fix	

debug_practice.py	

Good Development Practices
•  Design the algorithm

 Break into pieces

•  Implement and Test each piece separately
 Identify the best pieces to make progress
 Iterate over each step to improve it

• Write comments FIRST for each step
 Elaborate on what you’re doing in comments

when necessary

Jan 17, 2011 Sprenkle - CSCI111 30

1/17/11

6

This Week

•  Tuesday: Lab 1
 Bring your lecture notes and handouts!
 Due Friday

• Wednesday: 2:05 p.m.‐2:50 p.m.
 For ODK
 Pushes my office hours back accordingly

•  For Friday, read up to (but not including)
“Themes" of Four Puzzles from Cyberspace
 Post summary on Sakai

Jan 17, 2011 Sprenkle - CSCI111 31

