Obijectives

Review solutions for more secure programs
“Helper” Methods
Group work: Designing Classes

Nov 26, 2007 Sprenkle - CS111 1

Handling Exceptions

Using try/except statements

Syntax: [y
<body>
except [<errorType>]:
<handler>
Example:
try:

age = input(“Enter your age: ")

currentyear = input(“Enter the current year: ")
except:

print “ERROR: Your input was not in the correct form.”

print “Enter integers for your age and the current year”

return

Nov 26, 2007 Sprenkle - CS111 birthyearzlpy 2

input as a security hole

input is actually eval (raw_input(..))
How to exploit?

Nov 26, 2007 Sprenkle - CS111

input as a security hole

input is actually eval (raw_input(..))
How to exploit?

Know/guess variable names

Use correct Python syntax to be evaluated
How to fix?

Python: in the future, only raw_input will be
allowed

Our code: inside a try/except statement, use
raw_input and then cast as an int or float

Nov 26, 2007 Sprenkle - CS111 4

Designing Bank Classes Summary

Nouns are our classes/objects

Verbs are the methods called on the
classes/objects

Nov 26, 2007 Sprenkle - CS111

“Helper” Methods

Sometimes, you may need helper methods
that are part of the class but are not meant to
be part of the class’s API

Make your code cleaner/easier

Only call from inside the object

Others outside the class shouldn’t use

Known as “private” methods in other languages

Convention: method name begins with “_"

Called as self. method(...)

Nov 26, 2007 Sprenkle - CS111 6

Example Helper Methods

def _isFaceCard(self): “Helper” Method
if self.rank > 10 and self.rank < 14:
return True

return False def rummyValue(self):

if self.rank == 14:
return 15

elif self._isFaceCard():
return 10

else:
return 5

Only loosely enforced that others can’t use
dir, help

Nov 26, 2007 Sprenkle - CS111 card4.py 7

Designing a Music Manager

Create a music manager that
Reads your music library from a file
Displays the songs in your music library
Stores your music library in a file
Allows you to add songs to your library from a
file
Keeps track of the total length of your music
library
Allows you to sort the songs in your library
Provides user interface to do these things

Designing a Music Manager

Break down into pieces
What classes do we need?
What data needed to model those classes?

What functionality do each of those classes
need?

What does our driver program do?

How should we implement those
classes/program?

Nov 26, 2007 Sprenkle - CS111 9

Nov 26, 2007 Sprenkle - CS111 8
Designs
For each of your classes
Data
API
Nov 26, 2007 Sprenkle - CS111 10

Problem: Album Music Files

Given an album file that has the format
<Artist name>
<Album name>
<number of songs>
<Song name 1>
<Song length 1>

<Song name n> Length has the format
<Song length n> min:seconds

Create Song objects

Nov 26, 2007 Sprenkle - CS111 "

Problem: Library Music Files

Given a library file that has the format
<number of songs>
<Song artist 1>
<Song album 1>
<Song name 1>
<Song length 1>

<Song artist n>
<Song album n>
<Song name n>
<Song length n>
Create a MusicLibrary object

Nov 26, 2007 Sprenkle - CS111 12

Music Manager Classes/Driver Data

MusicLibrary PlayTime
Songs Days, hours,
Total length Minutes, seconds
Filename Driver

Song Music library
Title
Artist name
Album name
Length

What are the data types for each of these?

Nov 26, 2007 Sprenkle - CS111 13

MM Classes/Driver Functionality

MusicLibrary PlayTime
Getters Getters, String rep
String rep Adding play time

Saving library to file Driver
Adding albums Getting user input to

Sorting Read library, album files
Song Store library to file

Getters Sort songs

String rep View songs

Summary: Call appropriate

Comparator
. -p) methods on classes to do
Writing to a file above
Nov 26, 2007 Sprenkle - CS111 14

Exam Review

Added 3 points to all tests, in case delayed
test caused problems
Mean: 86.3
Median: 89.5
Most difficult part: B (avg - 73%; med - 75%)
Understanding OO programming

Should see major improvement on final after
more practice

Understanding control flow

Nov 26, 2007 Sprenkle - CS111 15

From 10/26 and 10/29

Snippet of Code

Using our knowledge of Python and the Graphics module's
API, we knew what this program does

f hics i rt *
rom graphics impo Constructor
def main():

= GraphWin(“My Circle”, 100, 100)

Also known as ¢ = Circle(Point(50,50), 10)

an instance of c.draw(win)
the . 0
class)
main()
Nov 26, 2007 Sprenkle - CS111 16

Benefits of Classes From 11/05
Package/group related data into one object
Reusing code

E.g., Don’t need to check if user put in valid time
Provide interface, can change underlying
implementation

e.g., Counter’s increment -- could implement like
in Caesar Ciphers instead

Nov 26, 2007 Sprenkle - CS111 17

Problem with helperl and helper2

Better job with the comments, renaming than
last exam
Problem: flow of control

def helperl(word, letter):
for i in range(len(word)):
if word[i] == letter:
return 1 Goes back to whatever
retura -1<4——— “qjied this function.

Returns position of first occurrence of the letter,
-1 if not found.

Nov 26, 2007 Sprenkle - CS111 18

Creating a Door Class

Options to represent if door is closed
Boolean isClosed: True/False
Integer state: 0/1
String state: “closed”/"open”
Counter isClosed = Counter(0,1)

Nov 26, 2007 Sprenkle - CS111

Creating a Door Class (Example soln)

def __init__ (self) def isOpen(self):
self.isClosed = True return not self.isClosed
def __str_ (self):
if self.isClosed: Tester function
return “Door is closed” def testDoor():
door = Door()
def toggle(self): print door
if self.isClosed: door.toggle()
self.isClosed = False print door.isOpen()
else:

self.isClosed = True

Nov 26, 2007 Sprenkle - CS111 20

This Week

Tuesday: Lab

MyTunes implementation
Wednesday

Recursion
Friday

Searching

Broader Issue: One Laptop Per Child

Nov 26, 2007 Sprenkle - CS111

21

