
1

•  Search strategies: wrap up
•  Exceptions
•  Broader Issue: Social Network Issues

•  Created two classes
 Used one class within another class
 Tested them

•  Hopefully created .dot file and then graph to see
what you were capable of

•  For a real purpose

•  I am an excellent debugger
•  I have made most of your mistakes

 Have seen students make the rest
•  Program doctor

 Symptom: Why would X happen?
•  No output, certain error message, printing on

separate lines, …
 Sometimes need to run some more tests

•  E.g., Print Z … what additional information does that
tell me?

 Diagnosis: They must have Y!
•  No main() function call, …

•  Discuss content later
 Focus since last exam

•  All CS exams are taken in Parmly 405 (our
lab)

•  At your specified time, someone brings the
tests to Parmly 405

•  You have 3 hours to take the exam
•  Can change exam time by using sheet

outside of department office (Parmly 407)

•  Next Wednesday, on Sakai
•  General questions about the course
•  Specific questions

 Feedback on improving the broader issues
component of the course

•  Iterates through a list, checking if the
element is found

•  Known as linear search
•  Implementation:
def linearSearch(searchlist, key):	

	for elem in searchlist:	
	 	if elem == key:	
	 	 	return True	
	return False	

search.py	

8 5 3 7

0 1 2 3

What are the strengths and weaknesses
of implementing search this way?

value

pos

2

•  Overview: Iterates through a list, checking if
the element is found

•  Benefits:
 Works on any list

•  Drawbacks:
 Does not tell us where in the list it is

•  What if wanted to do something to that element?
•  Could implement our own version that returns the

position
 Slow -- needs to check each element of list if the

element is not in the list

•  Repeat until find value (or looked through all
values)
 Guess middle value of possibilities

•  (not middle position)
 If match, found!
 Otherwise, find out too high or too low
 Modify your possibilities

•  Eliminate the possibilities from your number and
higher/lower, as appropriate

•  Known as Binary Search

def search(searchlist, key):	
	low=0	
	high = len(searchlist)-1	
	while low <= high :	
	 	mid = (low+high)/2	
	 	if searchlist[mid] == key:	
	 	 	return mid 	 # return True	
	 	elif key > searchlist[mid]:	
	 	 	low = mid+1	
	 	else:	
	 	 	high = mid-1	
	return -1 	# return False	

search2.py

If you just want to
know if it’s in the list

•  Example of a Divide and Conquer algorithm
 Break into smaller pieces that you can solve

•  Benefits:
 Faster to find elements (especially with larger

lists)
•  Drawbacks:

 Requires that data can be compared
•  __cmp__ method implemented by the class

 List must be sorted before searching
•  Takes time to sort

def search(searchlist, key):	
	low=0	
	high = len(searchlist)-1	
	while low <= high :	
	 	mid = (low+high)/2	
	 	if searchlist[mid] == key:	
	 	 	return mid 	 # return True	
	 	elif key > searchlist[mid]: 	
	 	 	# look in upper half	
	 	 	low = mid+1	
	 	else:	
	 	 	# look in lower half	
	 	 	high = mid-1	
	return -1 	# return False	

What if we had a list of Cards
instead of a list of integers and
key was a Card?
• What needs to change?
• What has to be done/verified
in the Card class?

def search(searchlist, key):	
	low=0	
	high = len(searchlist)-1	
	while low <= high :	
	 	mid = (low+high)/2	
	 	if searchlist[mid] == key:	
	 	 	return mid 	 # return True	
	 	elif key > searchlist[mid]: 	
	 	 	# look in upper half	
	 	 	low = mid+1	
	 	else:	
	 	 	# look in lower half	
	 	 	high = mid-1	
	return -1 	# return False	

Consider what happens when
searchlist is a list of
Persons	
• What if we wanted to check if
the Person’s network
matched the key and return
the Person?

3

def search(searchlist, key):	
	low=0	
	high = len(searchlist)-1	
	while low <= high :	
	 	mid = (low+high)/2	
	 	if searchlist[mid] == key:	
	 	 	return mid 	 # return True	
	 	elif key > searchlist[mid]: 	
	 	 	# look in upper half	
	 	 	low = mid+1	
	 	else:	
	 	 	# look in lower half	
	 	 	high = mid-1	
	return -1 	# return False	

Consider what happens when
searchlist is a list of
Persons	
• What if we wanted all the
Persons with the network
that matched the key?

•  Check the network of the Person at the midpoint
•  Get the Persons before and after that Person in

the list that have the same network and put in a list
•  Represent, handle when no Person matches

•  Note: we’re not implementing “network contains”
 How could we implement that?

• Which search strategy should I use under the
various circumstances?
 I have a short list

 I have a long list

 I have a long sorted list

• Which search strategy should I use under the
various circumstances?
 I have a short list

•  How short? How many searches? Linear (in)
 I have a long list

•  Linear (in) - because don’t know if in order,
comparable

 I have a long sorted list
•  Binary

def main():	
 #Program mission statement	
 print "This program determines your birth year" 	
 print "given your age and the current year \n"	

 age=input("Enter your age: ")	
 currentyear=input("Enter the current year: ")	

 #Subtract age from current year	
 birthyear=currentyear - age	
 #Display output to the user	
 print "You were either born in", birthyear, "or", \	

	 	birthyear-1	

def main():	
	print "This program determines your birth year" 	

 print "given your age and the current year \n"	

 age=input("Enter your age: ")	
 	currentyear=input("Enter the current year: ")	

 if age < 0 or age > 115:	
 	 	print "Come on: that’s not a reasonable age.”	
 elif currentyear < 0:	

	 	print "You need to have a positive year."	
 else:	

	 	birthyear=currentyear - age	
	 	print "You were either born in", birthyear, "or", \	
	 	 	birthyear-1	

birthyear.py

4

What happened when the user
entered something like “B6”?

• What happened when the user entered
something like “B6”?
 Threw an Exception and the program exited

Enter your age: B6	
Traceback (most recent call last):	
 File "currentAge.py", line 22, in <module>	
 main()	
 File "currentAge.py", line 9, in main	
 age=input("Enter your age: ")	
 File "<string>", line 1, in <module>	
NameError: name 'B6' is not defined	

Python interpreter’s message:

•  Using try/except statements
•  Syntax:

•  Example:

try:	
	<body>	

except [<errorType>] :	
	<handler>	

try:	
	age = input(“Enter your age: ”)	
currentyear = input(“Enter the current year: ”) 	

except:	
	print “ERROR: Your input was not in the correct form.”
	print “Enter integers for your age and the current year”	
	return	

yearborn.py	

Optional: use this to
handle specific error
types appropriately

•  Could put try/except statements in a
loop to make sure user enters valid input
 Example: birthyear3.py

•  Other types of exceptions
 File exceptions:

•  File doesn’t exist
•  Don’t have permission to read/write file

file_handle.py	

•  Facebook’s News Feed
•  Privacy/Security
News Feed:
Kelly Mae
Amy
Andrew
Harrison

Privacy and Security:
Nick
James
Sirocco
Collier
Will

Shannon
Dalena
Ben
Hank

???
Phil
George
Logan
Taylor
Luke
Dave

•  Facebook is #2 property on Internet—measured
by time users spend on site

•  Over 200 billion monthly page views
•  >3.9 trillion feed actions processed per day
•  Over 15,000 websites use Facebook content
•  In 2004, the shape of the curve plotting user

population as a function of time showed
exponential growth to 2M users. 5 years
later they have stayed on the same exponential
curve with >300M users.

•  Facebook is a global site, with 70% of users
outside US

From a talk by Jeff Rothschild,
Vice President of Technology at
Facebook in Oct 2009 at UCSD

5

•  How does Facebook’s newsfeed work?
 What data structures would you use to implement it?

•  What are the pros and cons of the News Feed?
•  What are a Social Network’s privacy and

security issues?
 How do Facebook/MySpace address these issues?
 Does knowledge of these issues change your

perspective/use of the tools?
•  What do you think of Facebook’s new look?
•  What about Facebook’s terms of service?

•  Good algorithm → Business success
 Google’s PageRank algorithm

•  Revenue: $16 billion (2007)
 Facebook’s Newsfeed algorithm

•  Revenue: $150 million/year
 Others?

•  Algorithm uses
 Lots of data --> how is it organized?
 Fancy frequency tables

•  We have used simplified versions
 Weight factors (Deal or No Deal offer)
 AI to adapt the weights

•  Frequency algorithms, most-recent
algorithms: commonly used in OS,
Architecture (caching)

•  Be careful with Facebook (and MySpace and
others) when you’re job hunting

•  Finish UI for Social Networking App
 Continuing development in Tuesday’s lab

