Obijectives

Creating your own functions

Oct 15, 2007 Sprenkle - CS111 1

Why write functions?

Allows you to break up a hard problem into smaller,
more manageable parts

Makes your code easier to understand
Hides implementation details (abstraction)
Provides interface (input, output)
Makes part of the code reusable so that you:
Only have to type it out once
Can debug it all at once
Isolates errors
Can make changes in one function (maintainability)

Oct 15, 2007 Sprenkle - CS111 2

Functions

Function is a black box
Implementation doesn’t matter
Only care that function generates appropriate
output, given appropriate input

Example:

Didn’t care how raw_input function was
implemented

user_input
output

We saved output

in a variable
Oct 15, 2007 Sprenkle - CS111

Syntax of Function Definition

Keyword Function ~ !nput Name/

Na I’ 0 Pa7vveter

def ftpsToMPH(ftps) : Function header
T SECOND_TO_HOUR = 3600
FEET_TO_MILE = (1.0/5280)

result = ftps * SECOND_TO_HOUR * FEET_TO_MILE
return result

Body (or
function
definition,

Keyword:
How to give output

Oct 15, 2007 Sprenkle - CS111 4

Where are functions in the code?

Can be defined in script before use (calling it)
Could be in separate module

Import to use in script

Example: menu.py

Define in modules when functions are reusable
for many different programs
Benefits: shorter code (no function defns), isolate
testing of function, write “test driver” scripts to test
functions separately from use in script

Oct 15, 2007 Sprenkle - CS111 5

Parameters

The inputs to a function are called
parameters or arguments
When calling/using functions, parameters
must appear in same order as in the function
header
Example: round(x, n)
x is float to round
n is integer of decimal places to round to

Oct 15, 2007 Sprenkle - CS111 6

Parameters Practice: Old McDonald

Formal Parameters are the variables named A verse of the song goes
in the the function definition. Old McDonald had a farm, E-I-E-I-O
Actual Parameters are the variables or And on that farm he had a dog, E-I-E--0

. . With a ruff, ruff here
literals that really get used when the function And a ruff, ruff there

is called. Formal Actual Here a ruff, there a ruff, everywhere a ruff, ruff

def round(x, n) : Old McDonald had a farm, E-I-E-I-O

roundCelc = round(celc,2) Write a function to print a verse

Why does it make sense to write a function for the
i verse?

Formal & actual parameters must match in What i input?

order, number, and type! What is output?

Oct 15, 2007 Sprenkle - CS111 7 Oct 15, 2007 Sprenkle - CS111 8

: num1 gets the value of x

Function Output Flow of Control hum2 gets the valus of y

When the code reaches a statement like To def max(num1, num2) : |

return x input

function

_

Trug

x is the output returned to the place where
function called and the function stops

For functions that don’t have explicit output,
return does not have a value with it

= input(“Enter ...")

function’s output felse

| result=num1 || result=num2 |
return
Optional: don’t need to have output/return | print “The max is”, z | \
—| return result
Oct 15, 2007 Sprenkle - CS111 9 Oct 15, 2007 Sprenkle - CS111 10
Flow of Control: Using return Using return
def max(num1, num?) : Use return to “shortcut” function

if num1 >= num2 :
return num1
return num2 |

Return output as soon as know answer

Compare efficiency of two functions in
binaryToDecimal.py

def max(num1, num2) : |

x=2
y=6
z=max(Xx,Yy)

numl >= num2

return num1]
Implicit false branch:
Only way got here is

if the condition was
return to caller return num2 not true
Oct 15, 2007 Sprenkle " Oct 15, 2007 Sprenkle - CS111 12

Passing Parameters
Only copies of the actual parameters are
given to the function

The actual parameters in the calling code do
not change.
Showed example with swap function

Oct 15, 2007 Sprenkle - CS111 13

Program Organization

Functions can go inside of program script
Defined before use

Functions can go inside a separate module
Reduces code in main script
Easier to reuse by importing from a module
Maintains the “black box”

Oct 15, 2007 Sprenkle - CS111 14

Writing @ main function

In many languages, you put the “driver” for
your program in a main function

You can (and should) do this in Python as well
Typically main methods go at the top of your
program

Readers can quickly see what program does
main usually takes no arguments

Example: def main():

Oct 15, 2007 Sprenkle - CS111 15

Using a main Function

Call main() at the bottom of your program

Side-effect:

Do not need to define functions before main
function

main can “see” other functions

Note that main is a function that calls other
functions

Any function can call other functions

Oct 15, 2007 Sprenkle - CS111 OIdmany 16

Example program with a main()

oldmac.py

Oct 15, 2007 Sprenkle - CS111 17

Function Variables

def mainf) Why can we name two
y=6 variables max?

def max(num1, num2) :
max = num1

if num2 >= num1 :
max = num2

return max

main()

Oct 15, 2007 Sprenkle - CS111 18

Function Variables

def main() :
x=2
y=6

def max(num1, num2) :

Function Variables

def main() :
x=2
y=6
Called the function max, so need
def - to add its parameters to the stack
max = num1 numi 2
if num2 >= num1 : e X num2 6
max = num2
return max R 2
main |y 6
max -
main()
Oct 15, 2007 Sprenkle - CS111 20
Function Variables
def main() :
x=2
y=6
def max_(num1, num2) : _—
max = num1 max |[num2 6
if num2 >= num1 : max 6
max = num2
X 2
main |y 6
max -
main()
Oct 15, 2007 Sprenkle - CS111 22

max = num1
if num2 >=num1 :
max = num2 The stack Variable names are
return max like first names
X 2
. main 6
main() x’Iax _
Function names are like last names
Oct 15, 2007 Sprenkle - CS111 19
Function Variables
def main() :
x=2
y=6
def max(num1, num2) : _—
max [num2 6
if num2 >= num1 : max 2
max = num2
return max R 2
main |y 6
max -
main()
Oct 15, 2007 Sprenkle - CS111 21
Function Variables
def main() :
x=2
y=6 Function max returned, so we no

longer have to keep track of its
variables on the stack.

def max(num1, num2) :
The lifetime of those variables is

max = num1

) over.

if num2 >=num1 :

max = num2

return max R 2
main |y 6

. max 6

main()

Oct 15, 2007 Sprenkle - CS111 23

Variable Scope

Functions can have the same parameter and
variable names as other functions
Need to look at the variable’s scope to determine which
one you're looking at
Use the stack to figure out which variable you're using

Scope levels
Local scope (also called function scope)
Can only be seen within the function
Global scope (also called file scope)
Whole program can access
More on these later

scope.py

Oct 15, 2007 Sprenkle - CS111 24

Practice

What is the output of this program?
Example: user enters 4

def square(n):
return n * n
def main():
num = input("Enter a number to be squared: ")
square(num)
print "The square is: ", num

main()

Oct 15, 2007 Sprenkle - CS111 25

Writing a “good” function
Should be an “intuitive chunk”
Doesn’t do too much or too little
Should be reusable

Always have comment that tells what
the function does

Oct 15, 2007 Sprenkle - CS111 26

Writing a “good” function

Precondition: Things that must be true in order for
the function to work correctly

E.g., num must be even
Postcondition: Things that will be true when
function finishes (if precondition is true)

E.g., the returned value is the max

Oct 15, 2007 Sprenkle - CS111 27

Writing good comments for functions

Good style: Each function must have a
comment

Written at a high-level

Include the precondition, postcondition

Describe the parameters (their types) and the
result (precondition and postcondition may cover
this)

Oct 15, 2007 Sprenkle - CS111 28

Goals of Good Programs: Extensibility

Should be able to easily extend your
program’s use

Constants

User-input

Functions
Modularity

Functions that can be reused in other code

Oct 15, 2007 Sprenkle - CS111 29

Creating Modules

Unlike functions, no special keyword to
define a module
Modules are named by the filename
Example, oldmac.py
In Python shell: import oldmac
Explain what happened

Oct 15, 2007 Sprenkle - CS111 30

Creating Modules

So that our program doesn’t execute when it

is in a program, at bottom, add
if _name__==' main__": N .
. ot important how
main() T~ this works; just know
when to use

Then, to call main function
oldmac.main()
Note the files now listed in the directory

Oct 15, 2007 Sprenkle - CS111 31

Creating Modules

Then, to call main function
oldmac.main()
Why would you want to do this?

Use main function as driver to test functions in
module

To access one of the defined constants
oldmac.EIEIO

Oct 15, 2007 Sprenkle - CS111

Broader Issues Reading
Microsoft Excel 2007 bug

Oct 15, 2007 Sprenkle - CS111 33

