
1

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 11

Objectives

• Creating your own functions

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 22

Why write functions?
• Allows you to break up a hard problem into smaller,

more manageable parts

• Makes your code easier to understand

• Hides implementation details (abstraction)
 Provides interface (input, output)

• Makes part of the code reusable so that you:
 Only have to type it out once

 Can debug it all at once

• Isolates errors

 Can make changes in one function (maintainability)

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 33

Functions
• Function is a black box

 Implementation doesn’t matter
Only care that function generates appropriate

output, given appropriate input

• Example:
Didn’t care how raw_input function was

implemented

raw_inputinput output
prompt user_input

We saved output
in a variable

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 44

Syntax of Function Definition

def ftpsToMPH(ftps) :
SECOND_TO_HOUR = 3600

FEET_TO_MILE = (1.0/5280)

result = ftps * SECOND_TO_HOUR * FEET_TO_MILE
return result

Keyword Function
Name

Input Name/
Parameter

B
o

d
y

(o
r

fu
n

ct
io

n
d

ef
in

it
io

n
)

Keyword:
How to give output

Function header

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 55

Where are functions in the code?

• Can be defined in script before use (calling it)

• Could be in separate module
 Import to use in script

Example: menu.py

Define in modules when functions are reusable
for many different programs
• Benefits: shorter code (no function defns), isolate

testing of function, write “test driver” scripts to test
functions separately from use in script

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 66

Parameters

• The inputs to a function are called
parameters or arguments

• When calling/using functions, parameters
must appear in same order as in the function
header
Example: round(x, n)

• x is float to round

• n is integer of decimal places to round to

2

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 77

Parameters
• Formal Parameters are the variables named

in the the function definition.
• Actual Parameters are the variables or

literals that really get used when the function
is called.

 def round(x, n) :
roundCelc = round(celc,2)

Formal & actual parameters must match in
order, number, and type!

Formal Actual

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 88

Practice: Old McDonald
• A verse of the song goes

Old McDonald had a farm, E-I-E-I-O
And on that farm he had a dog, E-I-E-I-O
With a ruff, ruff here
And a ruff, ruff there
Here a ruff, there a ruff, everywhere a ruff, ruff
Old McDonald had a farm, E-I-E-I-O

• Write a function to print a verse
 Why does it make sense to write a function for the

verse?
 What is input?
 What is output?

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 99

Function Output

• When the code reaches a statement like

return x

x is the output returned to the place where
function called and the function stops
For functions that don’t have explicit output,

return does not have a value with it
• return

• Optional: don’t need to have output/return

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 1010

Flow of Control

print “The max is”, z

z=max(x, y)

Gets replaced with
function’s output

x=2

y = input(“Enter …”)

To
input
function

result=num1

num1 >= num2

result=0

True False

result=num2

return result

def max(num1, num2) :

num1 gets the value of x
num2 gets the value of y

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 1111

Flow of Control: Using return
def max(num1, num2) :

if num1 >= num2 :
return num1

return num2

x=2
y=6
z = max(x, y)

return num1

num1 >= num2

True

return num2

def max(num1, num2) :

return to caller

Implicit false branch:
Only way got here is
if the condition was

not true

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 1212

Using return

• Use return to “shortcut” function
Return output as soon as know answer

Compare efficiency of two functions in
binaryToDecimal.py

3

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 1313

Passing Parameters

• Only copies of the actual parameters are
given to the function

• The actual parameters in the calling code do
not change.
Showed example with swap function

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 1414

Program Organization

• Functions can go inside of program script
Defined before use

• Functions can go inside a separate module
Reduces code in main script

Easier to reuse by importing from a module

Maintains the “black box”

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 1515

Writing a main function

• In many languages, you put the “driver” for
your program in a main function
You can (and should) do this in Python as well

• Typically main methods go at the top of your
program
Readers can quickly see what program does

• main usually takes no arguments
Example: def main():

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 1616

Using a main Function

• Call main() at the bottom of your program

• Side-effect:
Do not need to define functions before main

function

main can “see” other functions

Note that main is a function that calls other
functions
• Any function can call other functions

oldmac.py

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 1717

Example program with a main()

• oldmac.py

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 1818

Function Variables
def main() :

x=2
y=6
max = max(x, y);

def max(num1, num2) :
max = num1
if num2 >= num1 :

max = num2
return max

main()

Why can we name two
variables max?

4

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 1919

Function Variables
def main() :

x=2
y=6
max = max(x, y);

def max(num1, num2) :
max = num1
if num2 >= num1 :

max = num2
return max

main()
main

The stack

x 2
y 6
max --

Function names are like last names

Variable names are
like first names

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 2020

Function Variables
def main() :

x=2

y=6

max = max(x, y);

def max(num1, num2) :

max = num1

if num2 >= num1 :
max = num2

return max

main()

main
x 2
y 6
max --

max
num1 2
num2 6

Called the function max, so need
to add its parameters to the stack

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 2121

Function Variables
def main() :

x=2

y=6

max = max(x, y);

def max(num1, num2) :

max = num1

if num2 >= num1 :
max = num2

return max

main()

main
x 2
y 6
max --

max
num1 2
num2 6
max 2

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 2222

Function Variables
def main() :

x=2

y=6

max = max(x, y);

def max(num1, num2) :

max = num1

if num2 >= num1 :
max = num2

return max

main()

main
x 2
y 6
max --

max
num1 2
num2 6
max 6

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 2323

Function Variables
def main() :

x=2

y=6

max = max(x, y);

def max(num1, num2) :

max = num1

if num2 >= num1 :
max = num2

return max

main()

main
x 2
y 6
max 6

Function max returned, so we no
longer have to keep track of its
variables on the stack.

The lifetime of those variables is
over.

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 2424

Variable Scope
• Functions can have the same parameter and

variable names as other functions
 Need to look at the variable’s scope to determine which

one you’re looking at

 Use the stack to figure out which variable you’re using

• Scope levels
 Local scope (also called function scope)

• Can only be seen within the function

 Global scope (also called file scope)
• Whole program can access

• More on these later

scope.py

5

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 2525

Practice

• What is the output of this program?
Example: user enters 4

def square(n):
 return n * n

def main():
 num = input("Enter a number to be squared: ")
 square(num)
 print "The square is: ", num

main()

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 2626

Writing a “good” function

• Should be an “intuitive chunk”
Doesn’t do too much or too little

• Should be reusable

• Always have comment that tells what
the function does

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 2727

Writing a “good” function
• Precondition: Things that must be true in order for

the function to work correctly
 E.g., num must be even

• Postcondition: Things that will be true when
function finishes (if precondition is true)
 E.g., the returned value is the max

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 2828

Writing good comments for functions

• Good style: Each function must have a
comment
Written at a high-level

 Include the precondition, postcondition

Describe the parameters (their types) and the
result (precondition and postcondition may cover
this)

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 2929

Goals of Good Programs: Extensibility

• Should be able to easily extend your
program’s use
Constants

User-input

Functions

• Modularity
Functions that can be reused in other code

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 3030

Creating Modules

• Unlike functions, no special keyword to
define a module
Modules are named by the filename

Example, oldmac.py
• In Python shell: import oldmac

• Explain what happened

6

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 3131

Creating Modules

• So that our program doesn’t execute when it
is imported in a program, at bottom, add
if __name__ == '__main__’ :

 main()

• Then, to call main function
oldmac.main()

• Note the files now listed in the directory

Not important how
this works; just know
when to use

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 3232

Creating Modules

• Then, to call main function
oldmac.main()

• Why would you want to do this?
Use main function as driver to test functions in

module

• To access one of the defined constants
oldmac.EIEIO

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 3333

Broader Issues Reading

• Microsoft Excel 2007 bug

