
1

Objectives

•  Dictionaries

How Does in Work for Lists?

•  Example: guess in prevGuesses, where
prevGuesses is a list object
 For each element in list, checks if element

equals (==) guess

•  In the worst case, how many elements does
in have to check?
 How could we improve the search?

Faster Lookups
•  If I wanted to know the Registrar’s phone

number, …
 Would I search through an alphabetized list of

phone numbers?
 No, I would look up the Registrar and find the

phone number associated with the Registrar
•  This type of data structure is known as a

dictionary in Python
 Maps a key to a value
 Phone book’s key: “Registrar”, value: phone

number

Examples of Dictionaries

•  Any other things we’ve done/used in class?

Dictionary Keys Values

Dictionary

Textbook’s index

Cookbook

URL (Uniform
Resource Locator)

Examples of Dictionaries

•  Real-world:
 Dictionary
 Textbook’s index
 Cookbook
 URL (Uniform Resource Locator)

•  Examples from class
 Function name --> function definition
 Variable name --> value
 ASCII value --> character

Example: Textbook’s Index

20

60

45

25

“integer”

“string”

“float”

“list”

Keys

Values

Lots of
empty
space to
add new
values

Keys are not
in any order

2

Dictionaries in Python
•  Map keys to values

 Keys are probably not alphabetized
 Mappings are from one key to one or more

values
•  Keys are unique, Values are not necessarily

unique
 Example: student id --> last name

•  Keys must be immutable (numbers, strings)
•  Similar to Hashtables/Hashmaps in other

languages
How would we handle if there is more than one value for a key?

Why Dictionaries?

•  Another way to store data
•  Allow fast lookup of data

 Requires keys, unique keys
•  Data may not have a natural mapping

Pros Cons

Fast lookup (much
faster than lists if a lot of
elements)

Requires a lot of space,
unique keys

Creating Dictionaries in Python

Syntax:
{<key>:<value>, …, <key>:<value>}

empty = {}
ascii = { ‘a’:97, ‘b’:98, ‘c’:99, …, ‘z’:122 }

Dictionary Operations

Indexing <dict>[<key>]	
Length (# of keys) len(<dict>)	
Iteration for <key> in <dict>:	
Membership <key> in <dict>	
Deletion del <dict>[<key>]	

Unlike strings and lists, doesn’t make sense to do
slicing, concatenation, repetition for dictionaries

Dictionary Methods

Method Name Functionality
<dict>.clear()	 Remove all items from dictionary

<dict>.keys()	 Returns a copy of dictionary’s list of keys

<dict>.values()	 Returns a copy of dictionary’s list of
values

<dict>.get(x[,	
 default])	

Returns <dict>[x] if x is a key;
Otherwise, returns None (or default
value)

Accessing Values using Keys
•  Syntax:

<dictionary>[<key>]	
•  Examples:

• KeyError if key is not in dictionary
 Runtime error; exits program

ascii[‘z’]	

directory[‘registrar’]	

3

Alternatively, Using get method

• <dict>.get(x[,default])	
 Returns <dict>[x] if x is a key; Otherwise,

returns None (or default value)

•  If no mapping, get None back instead of
KeyError

ascii.get(‘z’)	

directory.get(‘registrar’)	

Accessing Values Using Keys

•  Typically, you will check if dictionary has a
key before trying to access the key

•  Or handle if get default back

if ‘z’ in ascii:	
	value = ascii[‘z’]	

Know mapping exists
before trying to access

val = ascii.get(‘z’) 	
if val is None:	

	# do something …	

Special Value: None

•  Special value we can use
 E.g., Return value from function when there is an

error
•  Similar to null in Java

•  If you execute
list = list.sort()	
print list	
 Prints None because list.sort() does not return

anything

Example Using None

# returns the lowercase letter translated by the key.	
# If letter is not a lowercase letter, returns None	
def translateLetter(letter, key):	

	if letter < ‘a’ or letter > ‘z’:	
	 	return None	
	#As usual …	

# example use	
encLetter = translateLetter(char, key)	
if encLetter is None:	

	print “Error in message: “, char	

Inserting Key-Value Pairs

•  Syntax:
<dictionary>[<key>] = <value>	

• ascii[‘a’] = 97	
 Creates new mapping of ‘a’ --> 97

ascii_dictionary.py

Textbook’s Index

•  bookindex[“dictionary”]=58

20

60

45

25

“integer”

“string”

“float”

“list”

Keys

Values

4

Textbook’s Index

•  bookindex[“dictionary”]=58

20

60

45

58

25

“integer”

“string”

“float”

“list”

“dictionary”

Keys

Values
Adding/Modifying Key-Value Pairs

•  Syntax:
<dictionary>[<key>] = <value>	

• directory[‘registrar’] = 8455	
 Modifies old entry (if it existed) and changes

mapping for ‘registrar’ to 8455

Problem

•  Given a file of the form
 <lastname> <year>

•  Create a mapping between the last names
and years
 How do we want to model the data?
 What is the key? What is the value?

years_dictionary.py

Why Data File Problems Ad
Nauseam?
•  “Parsing” data files for different purposes is

very common

128.4.131.54 [09/Aug/2005:14:01:35] GET /dspace/simple-search
128.4.133.79 [09/Aug/2005:14:13:13] GET /dspace/simple-search
128.4.133.139 [09/Aug/2005:14:28:20] GET /dspace/simple-search
128.4.133.139 [09/Aug/2005:14:32:45] GET /dspace/adv-search
…

Simplified web application access log:

I write scripts to
 - create user sessions (use as test cases)
 - analyze user sessions (avg. length, patterns)
 - emulate user sessions

Problem

•  Given a file of the form
 <lastname> <year>

•  Create and display a mapping between the
last names and years
 How to display the mapping in a pretty way?
 What order is the data printed in?

years_dictionary.py

Problem

•  Modify the previous program to keep track of
the number of students of each year
 How do we want to model the data?
 What is the key? What is the value?

 Could we solve this using a list?

years_dictionary2.py

5

Analyzing years_dictionary2.py

•  Anything useful/general that we could put in
a function?

This Week

•  Lab 8 due Friday
•  Broader Issue: Digital Humanities

