Obijectives

Command-line arguments
Calls to UNIX tools
Designing Classes, Larger Programs

Nov 12, 2007 Sprenkle - CS111 1

Summary: Designing Classes

What does the object/class represent?
How to model/represent the class’s data?
Instance variable
Data type
What functionality should objects of the class
have?
How will others want to use the class?
Put into methods for others to call (API)

Nov 12, 2007 Sprenkle - CS111 2

Benefits of Classes

Package/group related data into one object
Reusing code
E.g., Don’t need to check if user put in valid time

Provide interface, can change underlying
implementation

e.g., Counter’s increment -- could implement like
in Caesar Ciphers instead

Nov 12, 2007 Sprenkle - CS111 3

Considerations for using Classes

Only use class if you're using most of its
functionality/information
Don’t use Counter for validating if a number is
within the valid range; not using the wrapping/
current value
Since don’t know implementation, may
inadvertently duplicate code
Redo something done by class
Could have efficiency penalties
But time saved reusing code is usually worth it

Nov 12, 2007 Sprenkle - CS111 4

Command-line Arguments

Using the sys module

python command_line_args.py <filename>
-

List of arguments, named sys.argv

How to reference (get value) “<filename>"?

Nov 12, 2007 Sprenkle-CS111 command_line_args.py 6

Command-line Arguments

Using the sys module

python command_line_args.py <filename>
- )

List of arguments, named sys.argv
How to reference (get value of) “<filename>"?
sys.argv[1]
sys.argv[0] is the name of the program
Have to run from command-line (not from IDLE)
Can edit program in IDLE though

Nov 12, 2007 Sprenkle-CS111 command_line_args.py 6




Calling UNIX Commands from Python

commands module
getoutput(<command_str>)
Example use
output = getoutput(“ls *.py”)
output is what you’d get in terminal from calling
that command

Nov 12, 2007 Sprenkle - CS111 python_list.py 7

Top-Down Design

Break down larger problems into pieces that you
can solve
Smaller pieces: classes, methods, functions
Create stubs, implement smallest pieces and build up
We’ve been doing this most of the semester
Typically, program was 1) read input, 2) process input, 3)
print result
Started putting Step 2 into >= 1 functions
Steps 1 and 3 were sometimes a function
Now: on larger scale

Nov 12, 2007 Sprenkle - CS111 8

Distributed Programming

Client
Client 7 Server
Client X
Application
code

Server application provides a service
Client program(s) communicates with server application

Nov 12, 2007 Sprenkle - CS111 9

Web Servers/Applications

Client Server
>
A A
\ / \
Web Browser Web Web
Server Application

Specialized network programming

Web browser: makes requests, renders responses;

executes JavaScript, client-side code

Web Server: handles static requests

Web Application: handles dynamic requests
Response may change based on user input or other state

Nov 12, 2007 Sprenkle - CS111 10

Web Servers/Applications

Client Server
>
.\ A A
\
Web Browser Web Web
Server Application

May be useful to know who (what clients) are accessing
the web application or web server
Our next lab

Nov 12, 2007 Sprenkle - CS111 "

Network Addresses

A computer on a network has an address.
address is used to uniquely identify the
computer (also known as a host) on the network

The most common address system in use

today is the Internet Protocol (IPv4)

addressing system

a 32-bit address, typically written as a “dotted-
quad”: four numbers, 0 through 255, separated
by dots, e.g.,

137.113.48.2

Nov 12, 2007 Sprenkle - CS111 12




DNS: Domain Name System

Translate IP addresses to human-
understandable host names and vice versa

Example: going from www.cnn.com to IP
address 64.236.16.20

Nov 12, 2007 Sprenkle - CS111 13

DNS: Domain Name System

Unique names for computers
Hierarchical system (tree structure)

root

Top-level domains l edu com zn

/AN

Host name comes from

wlu s+ vmi

Has IP addresses g

for leaf nodes following path from leaf to
root, e.g.,
perl == perl.cs.wlu.edu
Nov 12, 2007 Sprenkle - CS111 14

Using the UNIX host command

host <ipaddress>
Examples:
host 64.236.16.20
For www2.cnn.com
host 137.113.48.2
BSC-5000.wlu.edu
host 209.249.86.17

Host 17.86.249.209.in-addr.arpa not found:
3(NXDOMAIN)

Doesn'’t have a mapping

Nov 12, 2007 Sprenkle - CS111 15

Top-Level Domains

Generic:
edu, com, net, org, gov, mil
Many others now

Country

us, ca, de, se, ...

Nov 12, 2007 Sprenkle - CS111 16

Lab: Parsing Web Access Log

Problem: Given the IP addresses of requests
to a web application, what is the distribution
of requests from top-level domains?

Show results in graphical way

Example of real scientific processing
Simplified version of my research

Nov 12, 2007 Sprenkle - CS111 17

Overview: Parsing a Web Access Log

Gnuplot
Plot File
Web
Access
Log
<ipaddr> Gruplot
<ipaddr>
<ipaddr>
Put image on
Web page
Nov 12, 2007 Sprenkle - CS111 18




Pseudocode for Main Function

Top-down Design

Nov 12, 2007 Sprenkle - CS111 19

Pseudocode for Main Function

Get input file from user (command-line)
Create output file name

Process input file
Read each line of input file
Convert IP address into host name
Compute top-level domain
Update mapping of top-level domains to number of

requests
Print number of lines read WWhat data
' i structures
Write output file needed?

Sort domains by number of requests
For each top-level domain
Print domain id, number of requests
Nov 12, 2007 Sprenkle - CS111 20

Pseudocode for Main Function

Get input file from user (command-line)
Create output file name
Process input file
Read each line of input file
Convert IP address into host name
Compute top-level domain
Update mapping of top-level domains to number of
requests will utilize
Print number of lines read several built-in
Write output file modules and our

Mapping: Tld-name
= DomainRequests

Sort domains by number of requests own classes
For each top-level domain
Print domain id, number of requests
Nov 12, 2007 Sprenkle - CS111 21

Classes

WebClientInfo
Data:
Functionality:

DomainRequests
Data:
Functionality:

Nov 12, 2007 Sprenkle - CS111 22

Classes

WebClientinfo
Data: ip address, hostname, top-level domain
Functionality: methods to “get” data,
constructor, string representation
DomainRequests
Data: name, number of requests

Functionality: methods to “get” data, update
number of requests, constructor, comparator,
string representation

Nov 12, 2007 Sprenkle - CS111 23

Broader Issue

Facebook’s News Feed

Brought to you by Sue Lister
One Laptop Per Child
http://laptop.org

Nov 12, 2007 Sprenkle - CS111 24




