
1

Nov 26, 2007Nov 26, 2007 Sprenkle - CS111Sprenkle - CS111 11

Objectives
• Review solutions for more secure programs
• “Helper” Methods
• Group work: Designing Classes

Nov 26, 2007Nov 26, 2007 Sprenkle - CS111Sprenkle - CS111 22

Handling Exceptions
• Using try/except statements
• Syntax:

• Example:

try:
<body>

except [<errorType>]:
<handler>

try:
age = input(“Enter your age: ”)
currentyear = input(“Enter the current year: ”)

except:
print “ERROR: Your input was not in the correct form.”
print “Enter integers for your age and the current year”
return

birthyear2.py

Nov 26, 2007Nov 26, 2007 Sprenkle - CS111Sprenkle - CS111 33

input as a security hole

•input is actually eval(raw_input(…))
• How to exploit?

Nov 26, 2007Nov 26, 2007 Sprenkle - CS111Sprenkle - CS111 44

input as a security hole

•input is actually eval(raw_input(…))
• How to exploit?

Know/guess variable names
Use correct Python syntax to be evaluated

• How to fix?
Python: in the future, only raw_input will be

allowed
Our code: inside a try/except statement, use
raw_input and then cast as an int or float

Nov 26, 2007Nov 26, 2007 Sprenkle - CS111Sprenkle - CS111 55

Designing Bank Classes Summary
• Nouns are our classes/objects
• Verbs are the methods called on the

classes/objects

Nov 26, 2007Nov 26, 2007 Sprenkle - CS111Sprenkle - CS111 66

“Helper” Methods
• Sometimes, you may need helper methods

that are part of the class but are not meant to
be part of the class’s API
Make your code cleaner/easier
Only call from inside the object
Others outside the class shouldn’t use

• Known as “private” methods in other languages

• Convention: method name begins with “_”
• Called as self._method(…)

2

Nov 26, 2007Nov 26, 2007 Sprenkle - CS111Sprenkle - CS111 77

Example Helper Methods

• Only loosely enforced that others can’t use
dir, help

def _isFaceCard(self):
 if self.rank > 10 and self.rank < 14:
 return True
 return False

card4.py

def rummyValue(self):
 if self.rank == 14:
 return 15
 elif self._isFaceCard():
 return 10
 else:
 return 5

“Helper” Method

Nov 26, 2007Nov 26, 2007 Sprenkle - CS111Sprenkle - CS111 88

Designing a Music Manager
• Create a music manager that

Reads your music library from a file
Displays the songs in your music library
Stores your music library in a file
Allows you to add songs to your library from a

file
Keeps track of the total length of your music

library
Allows you to sort the songs in your library
Provides user interface to do these things

Nov 26, 2007Nov 26, 2007 Sprenkle - CS111Sprenkle - CS111 99

Designing a Music Manager
• Break down into pieces
• What classes do we need?

What data needed to model those classes?
What functionality do each of those classes

need?
• What does our driver program do?
• How should we implement those

classes/program?

Nov 26, 2007Nov 26, 2007 Sprenkle - CS111Sprenkle - CS111 1010

Designs
• For each of your classes

Data
API

Nov 26, 2007Nov 26, 2007 Sprenkle - CS111Sprenkle - CS111 1111

Problem: Album Music Files
• Given an album file that has the format

<Artist name>
<Album name>
<number of songs>
<Song name 1>
<Song length 1>
…
<Song name n>
<Song length n>

• Create Song objects

Length has the format
min:seconds

Nov 26, 2007Nov 26, 2007 Sprenkle - CS111Sprenkle - CS111 1212

Problem: Library Music Files
• Given a library file that has the format

 <number of songs>
 <Song artist 1>
 <Song album 1>
 <Song name 1>
 <Song length 1>
 …
 <Song artist n>
 <Song album n>
 <Song name n>
 <Song length n>

• Create a MusicLibrary object

3

Nov 26, 2007Nov 26, 2007 Sprenkle - CS111Sprenkle - CS111 1313

Music Manager Classes/Driver Data
• MusicLibrary

 Songs
 Total length
 Filename

• Song
 Title
 Artist name
 Album name
 Length

• PlayTime
 Days, hours,
 Minutes, seconds

• Driver
 Music library

What are the data types for each of these?

Nov 26, 2007Nov 26, 2007 Sprenkle - CS111Sprenkle - CS111 1414

MM Classes/Driver Functionality
• MusicLibrary

 Getters
 String rep
 Saving library to file
 Adding albums
 Sorting

• Song
 Getters
 String rep
 Comparator
 Writing to a file

• PlayTime
 Getters, String rep
 Adding play time

• Driver
 Getting user input to

• Read library, album files
• Store library to file
• Sort songs
• View songs
• Summary: Call appropriate

methods on classes to do
above

Nov 26, 2007Nov 26, 2007 Sprenkle - CS111Sprenkle - CS111 1515

Exam Review
• Added 3 points to all tests, in case delayed

test caused problems
Mean: 86.3
Median: 89.5

• Most difficult part: B (avg - 73%; med - 75%)
Understanding OO programming

• Should see major improvement on final after
more practice

Understanding control flow

Nov 26, 2007Nov 26, 2007 Sprenkle - CS111Sprenkle - CS111 1616

Snippet of Code
• Using our knowledge of Python and the Graphics module's

API, we knew what this program does

from graphics import *

def main():
win = GraphWin(“My Circle”, 100, 100)
c = Circle(Point(50,50), 10)
c.draw(win)
win.getMouse()

main()

Constructor

GraphWin object

Method called on GraphWin object

Also known as
an instance of
the GraphWin
class

From 10/26 and 10/29

Nov 26, 2007Nov 26, 2007 Sprenkle - CS111Sprenkle - CS111 1717

Benefits of Classes
• Package/group related data into one object
• Reusing code

E.g., Don’t need to check if user put in valid time
• Provide interface, can change underlying

implementation
e.g., Counter’s increment -- could implement like

in Caesar Ciphers instead

From 11/05

Nov 26, 2007Nov 26, 2007 Sprenkle - CS111Sprenkle - CS111 1818

Problem with helper1 and helper2
• Better job with the comments, renaming than

last exam
• Problem: flow of control
def helper1(word, letter):

for i in range(len(word)):
if word[i] == letter:

return i
return -1

Goes back to whatever
called this function.

Returns position of first occurrence of the letter,
-1 if not found.

4

Nov 26, 2007Nov 26, 2007 Sprenkle - CS111Sprenkle - CS111 1919

Creating a Door Class
• Options to represent if door is closed

Boolean isClosed: True/False
 Integer state: 0/1
String state: “closed”/”open”
Counter isClosed = Counter(0,1)

Nov 26, 2007Nov 26, 2007 Sprenkle - CS111Sprenkle - CS111 2020

Creating a Door Class (Example soln)
• def __init__(self)

 self.isClosed = True
• def __str__(self):

 if self.isClosed:
• return “Door is closed”

 …
• def toggle(self):

 if self.isClosed:
• self.isClosed = False

 else:
• self.isClosed = True

• def isOpen(self):
 return not self.isClosed

• Tester function
• def testDoor():

 door = Door()
 print door
 door.toggle()
 print door.isOpen()

Nov 26, 2007Nov 26, 2007 Sprenkle - CS111Sprenkle - CS111 2121

This Week
• Tuesday: Lab

MyTunes implementation
• Wednesday

Recursion
• Friday

Searching
Broader Issue: One Laptop Per Child

