
1

Objectives

•  Indefinite Loops
•  Exam review

Lab Review

•  1 “Challenge” problem
•  1 Application problem

Enhanced Lottery Game

•  Check if user’s pick matches the number you
generated

pick4winner.py

Indefinite Loops

• for loops are definite loops
 Execute a fixed number of times

•  Indefinite loops: keeps iterating until certain
conditions are met
 Depending on condition, no guarantee in

advance of how many times the loop body will
be executed

While Loop Syntax

while condition :	
statement1	
statement2	
…	
statementn	

•  Like a looped if statement
  Execute statements only when condition is true

body of while loop

ke
yw

or
d

While Loop

print “i equals”, i	

i < 10	

i = 0	

True

False

i+=1	

print “Done”, i	

i = 0	
while i < 10 :	
 print “i equals ”, i	
 i+=1	
print “Done”, i	

Questions:
• How many times will i get
printed out?

• How many times is the
condition evaluated?

• What is the value of i
after the loop?

while.py	

2

While Loop
i = 0	
while i < 10 :	
 print “i equals ”, i	
 i+=1	
print “Done”, i	

Initialize i before
using in condition

print “i equals”, i	

i < 10	

i = 0	

True

False

i+=1	

print “Done”, i	

Questions:
• How many times will i get
printed out?

• How many times is the
condition evaluated?

• What is the value of i
after the loop?

while.py	

While vs. For Loops

•  Any for loop can be translated into a while
loop
 Not vice versa

• while loops are more powerful than for
loops

Convert to a for loop

We can convert this
while loop into a for
loop because it executes
a fixed number of times.

i = 0	
while i < 10 :	
 print “i equals ”, i	
 i+=1	
print “Done”, i	

print “i equals”, i	

i < 10	

i = 0	

True

False

i+=1	

print “Done”, i	

Comparing while and for

• What are the main differences between
these loops?

• What are the advantages and disadvantages
of each?

whilevsfor.py	

for i in xrange(10):	
 print "i equals", i	

print "Done", i	

i = 0	
while i < 10 :	
 print “i equals ”, i	
 i+=1	
print “Done”, i	

What Will This Loop Do?

loop.py	

count = 1	
while count > 0:	

	print count	
	count += 1	

Infinite Loop

•  Condition will never be False so keeps
executing

•  To stop an executing program in Linux use
 Control-C

count = 1	
while count > 0:	

	print count	
	count += 1	

3

Infinite Loop Questions
•  Is there ever a time that an infinite loop is

wanted?
 Yes! For example in web servers, we have

something like

•  Can a computer automatically detect infinite
loops?
 No that is an undecidable problem
 Best to prevent infinite loops (more later)

•  Benefit of Python’s for loops: definite loops

while True:	
	listenForRequest()	
	handleRequest()	

Unknown Number of Iterations

•  Sums numbers input by user
 Stop when the user inputs some designated stop

value (enter key --> “”)

sumtillenter.py	

Design Pattern: Sentinel Loop

•  Sentinel: when to stop
 “guard” to the loop

value = get input	
while value != sentinel :	
 process value	
 value = get input	

Discussion

•  How can we make sure that the loop actually
stops (is not infinite)?

Discussion

•  How can we make sure that the loop actually
stops (is not infinite)?
 Update the condition’s variable inside loop
 Test

•  How you’ll usually detect an infinite loop…
 “Why isn’t my program giving me any output?”
 If the program isn’t exiting, probably an infinite

loop

Use of break statement

• break statement can “break you” out of a
loop

if count < 100 	

while i < 10	

i = 0; count = i	

True

False

i+=1	

print “Done”, i	

break	
False True

i = 0	
count = i	
while i < 10 :	
 if count < 100 :	
 i += 1	
 else:	
 break	
print “Done”, i	

4

while Loops: comparing use of
break
# condition shows when loop 	
# will stop executing	
x= input(“Enter a number:”)	
while x % 2 != 0 :	
	x = input(“Try again.
Enter a number: ”)	

print x, “is an even
number.” 	

# have to look inside loop to	
# know when it stops	
while True :	
	x = input(“Enter a number:”)	
	if x %2 == 0 :	
	 	break	

print x, “is an even number.”	

Using break statements:
Best when loop has to
execute at least once.

While vs. For Loops

•  Any for loop can be translated into a while
loop
 Not vice versa

• while loops are more powerful than for
loops
 Give an example of a while loop that can’t be

converted to a for

Summary of Control-Flow Building
Blocks (so far)

•  Conditional statements
 if, if-else, if-elif-else	

•  Loops
 while, for	

Exam 1 Prep
•  Cumulative up to today

 We keep using the ideas from the first day of class
 Basic Linux commands used during every lab

•  Similar problems as in handouts, class discussion,
labs

•  Read code and explain what it does
 What it displays as output

•  Sections: Very Short Answer, Short Answer, Write
Code

•  Online prep document

Grading Overview

•  Labs: 38%
•  2 Exams: 30%
•  Final: 20%
•  Broader Issues: 7%
•  Participation: 5%

