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Objectives
• Command-line arguments
• Calls to UNIX tools
• Designing Classes, Larger Programs
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Summary: Designing Classes
• What does the object/class represent?
• How to model/represent the class’s data?

 Instance variable
Data type

• What functionality should objects of the class
have?
How will others want to use the class?
Put into methods for others to call (API)
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Benefits of Classes
• Package/group related data into one object
• Reusing code

E.g., Don’t need to check if user put in valid time
• Provide interface, can change underlying 

implementation
e.g., Counter’s increment -- could implement like

in Caesar Ciphers instead
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Considerations for using Classes
• Only use class if you’re using most of its

functionality/information
Don’t use Counter for validating if a number is

within the valid range; not using the wrapping/
current value

• Since don’t know implementation, may
inadvertently duplicate code
Redo something done by class
Could have efficiency penalties
But time saved reusing code is usually worth it
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Command-line Arguments
• Using the sys module

• How to reference (get value) “<filename>”?

command_line_args.py

python command_line_args.py <filename>

List of arguments, named sys.argv
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Command-line Arguments
• Using the sys module

• How to reference (get value of) “<filename>”?
 sys.argv[1]
 sys.argv[0] is the name of the program

• Have to run from command-line (not from IDLE)
 Can edit program in IDLE though

command_line_args.py

python command_line_args.py <filename>

List of arguments, named sys.argv
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Calling UNIX Commands from Python
•commands module

getoutput(<command_str>)
• Example use

output = getoutput(“ls *.py”)

output is what you’d get in terminal from calling
that command

python_list.py Nov 12, 2007Nov 12, 2007 Sprenkle - CS111Sprenkle - CS111 88

Top-Down Design
• Break down larger problems into pieces that you

can solve
 Smaller pieces: classes, methods, functions
 Create stubs, implement smallest pieces and build up

• We’ve been doing this most of the semester
 Typically, program was 1) read input, 2) process input, 3)

print result
• Started putting Step 2 into >= 1 functions
• Steps 1 and 3 were sometimes a function

 Now: on larger scale
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Distributed Programming

• Server application provides a service
• Client program(s) communicates with server application

Client

ServerClient

Client

Network

Application
code
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Web Servers/Applications

• Specialized network programming
• Web browser: makes requests, renders responses;

executes JavaScript, client-side code
• Web Server: handles static requests
• Web Application: handles dynamic requests

 Response may change based on user input or other state

Client ServerNetwork

Web Browser Web
Server

Web 
Application
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Web Servers/Applications

• May be useful to know who (what clients) are accessing
the web application or web server
 Our next lab

Client ServerNetwork

Web Browser Web
Server

Web 
Application
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Network Addresses
• A computer on a network has an address.

address is used to uniquely identify the
computer (also known as a host) on the network

• The most common address system in use
today is the Internet Protocol (IPv4)
addressing system
a 32-bit address, typically written as a “dotted-

quad”: four numbers, 0 through 255, separated
by dots, e.g.,

137.113.48.2
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DNS: Domain Name System
• Translate IP addresses to human-

understandable host names and vice versa
Example: going from www.cnn.com to IP

address 64.236.16.20
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DNS: Domain Name System
• Unique names for computers
• Hierarchical system (tree structure)

root

Top-level domains …edu com zn

……wlu vmi

…cs

perl … perl.cs.wlu.edu

Host name comes from
following path from leaf to
root, e.g.,

Has IP addresses
for leaf nodes
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Using the UNIX host command

• host <ipaddress>
• Examples:

host 64.236.16.20
• For www2.cnn.com

host 137.113.48.2
• BSC-5000.wlu.edu

host 209.249.86.17
• Host 17.86.249.209.in-addr.arpa not found:

3(NXDOMAIN)
• Doesn’t have a mapping
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Top-Level Domains
• Generic:

edu, com, net, org, gov, mil
Many others now

• Country
us, ca, de, se, …
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Lab: Parsing Web Access Log
• Problem: Given the IP addresses of requests

to a web application, what is the distribution
of requests from top-level domains?
Show results in graphical way

• Example of real scientific processing
Simplified version of my research
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Overview: Parsing a Web Access Log

Web
Access

Log

<ipaddr>
<ipaddr>
<ipaddr>

…

Gnuplot Data File

<domain> <#reqs>
<domain> <#reqs>
<domain> <#reqs>

…

Gnuplot

PNG File
(graph)

Put image on
Web page

Gnuplot
Plot File
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Pseudocode for Main Function
• Top-down Design
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Pseudocode for Main Function
• Get input file from user (command-line)
• Create output file name
• Process input file

 Read each line of input file
• Convert IP address into host name
• Compute top-level domain
• Update mapping of top-level domains to number of

requests
 Print number of lines read

• Write output file
 Sort domains by number of requests
 For each top-level domain

• Print domain id, number of requests

What data
structures
needed?
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Pseudocode for Main Function
• Get input file from user (command-line)
• Create output file name
• Process input file

 Read each line of input file
• Convert IP address into host name
• Compute top-level domain
• Update mapping of top-level domains to number of

requests
 Print number of lines read

• Write output file
 Sort domains by number of requests
 For each top-level domain

• Print domain id, number of requests

Will utilize
several built-in

modules and our
own classes

Mapping: Tld-name
 DomainRequests

Nov 12, 2007Nov 12, 2007 Sprenkle - CS111Sprenkle - CS111 2222

Classes
• WebClientInfo

Data:
Functionality:

• DomainRequests
Data:
Functionality:
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Classes
• WebClientInfo

Data: ip address, hostname, top-level domain
Functionality: methods to “get” data,

constructor, string representation
• DomainRequests

Data: name, number of requests
Functionality: methods to “get” data, update

number of requests, constructor, comparator,
string representation
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Broader Issue
• Facebook’s News Feed

• Brought to you by Sue Lister
One Laptop Per Child
http://laptop.org


