
1

Objectives

•  Dictionaries

How Does in Work for Lists?

•  Example: guess in prevGuesses, where
prevGuesses is a list object
 For each element in list, checks if element

equals (==) guess

•  In the worst case, how many elements does
in have to check?
 How could we improve the search?

Faster Lookups
•  If I wanted to know the Registrar’s phone

number, …
 Would I search through an alphabetized list of

phone numbers?
 No, I would look up the Registrar and find the

phone number associated with the Registrar
•  This type of data structure is known as a

dictionary in Python
 Maps a key to a value
 Phone book’s key: “Registrar”, value: phone

number

Examples of Dictionaries

•  Any other things we’ve done/used in class?

Dictionary Keys Values

Dictionary

Textbook’s index

Cookbook

URL (Uniform
Resource Locator)

Examples of Dictionaries

•  Real-world:
 Dictionary
 Textbook’s index
 Cookbook
 URL (Uniform Resource Locator)

•  Examples from class
 Function name --> function definition
 Variable name --> value
 ASCII value --> character

Example: Textbook’s Index

20

60

45

25

“integer”

“string”

“float”

“list”

Keys

Values

Lots of
empty
space to
add new
values

Keys are not
in any order

2

Dictionaries in Python
•  Map keys to values

 Keys are probably not alphabetized
 Mappings are from one key to one or more

values
•  Keys are unique, Values are not necessarily

unique
 Example: student id --> last name

•  Keys must be immutable (numbers, strings)
•  Similar to Hashtables/Hashmaps in other

languages
How would we handle if there is more than one value for a key?

Why Dictionaries?

•  Another way to store data
•  Allow fast lookup of data

 Requires keys, unique keys
•  Data may not have a natural mapping

Pros Cons

Fast lookup (much
faster than lists if a lot of
elements)

Requires a lot of space,
unique keys

Creating Dictionaries in Python

Syntax:
{<key>:<value>, …, <key>:<value>}

empty = {}
ascii = { ‘a’:97, ‘b’:98, ‘c’:99, …, ‘z’:122 }

Dictionary Operations

Indexing <dict>[<key>]	
Length (# of keys) len(<dict>)	
Iteration for <key> in <dict>:	
Membership <key> in <dict>	
Deletion del <dict>[<key>]	

Unlike strings and lists, doesn’t make sense to do
slicing, concatenation, repetition for dictionaries

Dictionary Methods

Method Name Functionality
<dict>.clear()	 Remove all items from dictionary

<dict>.keys()	 Returns a copy of dictionary’s list of keys

<dict>.values()	 Returns a copy of dictionary’s list of
values

<dict>.get(x[,	
 default])	

Returns <dict>[x] if x is a key;
Otherwise, returns None (or default
value)

Accessing Values using Keys
•  Syntax:

<dictionary>[<key>]	
•  Examples:

• KeyError if key is not in dictionary
 Runtime error; exits program

ascii[‘z’]	

directory[‘registrar’]	

3

Alternatively, Using get method

• <dict>.get(x[,default])	
 Returns <dict>[x] if x is a key; Otherwise,

returns None (or default value)

•  If no mapping, get None back instead of
KeyError

ascii.get(‘z’)	

directory.get(‘registrar’)	

Accessing Values Using Keys

•  Typically, you will check if dictionary has a
key before trying to access the key

•  Or handle if get default back

if ‘z’ in ascii:	
	value = ascii[‘z’]	

Know mapping exists
before trying to access

val = ascii.get(‘z’) 	
if val is None:	

	# do something …	

Special Value: None

•  Special value we can use
 E.g., Return value from function when there is an

error
•  Similar to null in Java

•  If you execute
list = list.sort()	
print list	
 Prints None because list.sort() does not return

anything

Example Using None

# returns the lowercase letter translated by the key.	
# If letter is not a lowercase letter, returns None	
def translateLetter(letter, key):	

	if letter < ‘a’ or letter > ‘z’:	
	 	return None	
	#As usual …	

# example use	
encLetter = translateLetter(char, key)	
if encLetter is None:	

	print “Error in message: “, char	

Inserting Key-Value Pairs

•  Syntax:
<dictionary>[<key>] = <value>	

• ascii[‘a’] = 97	
 Creates new mapping of ‘a’ --> 97

ascii_dictionary.py

Textbook’s Index

•  bookindex[“dictionary”]=58

20

60

45

25

“integer”

“string”

“float”

“list”

Keys

Values

4

Textbook’s Index

•  bookindex[“dictionary”]=58

20

60

45

58

25

“integer”

“string”

“float”

“list”

“dictionary”

Keys

Values
Adding/Modifying Key-Value Pairs

•  Syntax:
<dictionary>[<key>] = <value>	

• directory[‘registrar’] = 8455	
 Modifies old entry (if it existed) and changes

mapping for ‘registrar’ to 8455

Problem

•  Given a file of the form
 <lastname> <year>

•  Create a mapping between the last names
and years
 How do we want to model the data?
 What is the key? What is the value?

years_dictionary.py

Why Data File Problems Ad
Nauseam?
•  “Parsing” data files for different purposes is

very common

128.4.131.54 [09/Aug/2005:14:01:35] GET /dspace/simple-search
128.4.133.79 [09/Aug/2005:14:13:13] GET /dspace/simple-search
128.4.133.139 [09/Aug/2005:14:28:20] GET /dspace/simple-search
128.4.133.139 [09/Aug/2005:14:32:45] GET /dspace/adv-search
…

Simplified web application access log:

I write scripts to
 - create user sessions (use as test cases)
 - analyze user sessions (avg. length, patterns)
 - emulate user sessions

Problem

•  Given a file of the form
 <lastname> <year>

•  Create and display a mapping between the
last names and years
 How to display the mapping in a pretty way?
 What order is the data printed in?

years_dictionary.py

Problem

•  Modify the previous program to keep track of
the number of students of each year
 How do we want to model the data?
 What is the key? What is the value?

 Could we solve this using a list?

years_dictionary2.py

5

Analyzing years_dictionary2.py

•  Anything useful/general that we could put in
a function?

This Week

•  Lab 8 due Friday
•  Broader Issue: Digital Humanities

