
1

•  Function wrapup
 Creating modules

•  Algorithm review
•  Introduction to Files
•  Broader Issue: Volunteer Computing

CONSTANT = 12	

def main():	
 first = input("Enter the first number: ")	
 second = input("Enter the second number: ")	
 computedVal = myFunction(first, second)	
 print "The answer is", computedVal	

def myFunction(x, y):	
 result = x*x + y*y + CONSTANT	
 return result	

main()	

Where does program start “doing stuff”?

What variables
can function
“see” here?
What vars
can’t it see?

•  Organize our code
•  Easier to read
•  Easier to change
•  Easier to reuse

•  Had this team:

• Wanted this team (temporarily):

?

•  Functions can go inside of program script
 Defined before use/called (if no main() function)

•  Functions can go inside a separate module

2

•  Reduces code in main script
•  Easier to reuse by importing from a module
•  Maintains the “black box”
•  Isolates testing of function
• Write “test driver” scripts to test functions

separately from use in script

menu.py	

•  Modules group together related functions
and constants

•  Unlike functions, no special keyword to
define a module
 A module is named by its filename

•  Example, oldmac.py	
 In Python shell: import oldmac
 Explain what happened

Just a
Python file!

if __name__ == '__main__’ : 	
 main()	

•  So that our program doesn’t execute when it
is imported in a program, at bottom, add

•  Then, to call main function
 oldmac.main()	

•  Note the files now listed in the directory

Not important how
this works;

just know when to use

•  Then, to call main function
 oldmac.main()	

• Why would you want to call a module’s main
function?
 Use main function as driver to test functions in

module
•  To access one of the defined constants

 oldmac.EIEIO	

•  Add constant to menu.py	
 STOP_OPTION	

•  Show use in menu_withfunctions.py	

•  Larger programs require functions to maintain
readability
 Use main() and other functions to break up program

into smaller, more manageable chunks
  “Abstract away” the details

•  As before, can still write smaller scripts without any
functions
 Can try out functions using smaller scripts

•  Need the main() function when using other
functions to keep “driver” at top
 Otherwise, functions need to be defined before use

3

•  Primitive operations
 What data you have, what you can do to the data

•  Naming
  Identify things we’re using

•  Sequence of operations
•  Conditionals

 Handle special cases
•  Repetition/Loops
•  Subroutines

 Call, reuse similar techniques

• Which of these have we
covered?

• How do we implement
them in Python?

•  Primitive operations
 What data you have, what you can do to the data

•  Naming
  Identify things we’re using

•  Sequence of operations
•  Conditionals

 Handle special cases
•  Repetition/Loops
•  Subroutines

 Call, reuse similar techniques

Here is where most of
the rest of the

semester focuses

No longer primitive

•  The data type of the loop variable depends
on what’s after in 	

string = “some string”	

for x in xrange(len(string)):	
	# loop body …	

for x in string:	
	# loop body …	

What is the data
type of the loop

variable x?

•  The data type of the loop variable depends
on what’s after in 	

string = “some string”	

for x in xrange(len(string)):	
	# loop body …	

for x in string:	
	# loop body …	

Integer

String

•  User input
 Slow if need to enter a lot of data
 Error-prone

•  User enters the wrong value!
 What if want to run again after program gets

modified?

•  Text files
 Enter data once into a file, save it, and reuse it
 Good for large amounts of data
 Programs can use files to communicate
 Need to be able to read from and write to files

Text
Editor python

Python
script

Text File

4

Text
Editor

Web
Server

HTML

Web Page
(Text File)

Web
Browser

Firefox

“Renders” web page
for user

•  Example use of text files as input

Text
Editor python

Python
script

Text Files

Data
file

•  Uses a file of puzzles
 Puzzles no longer appear directly in program
 Can modify puzzle file to get different puzzles

def displayPuzzle(puzzle):	
 displayedPuzzle = ""	
 for char in puzzle:	
 if char.isalpha():	
 displayedPuzzle += "_"	
 else:	
 displayedPuzzle += char	
 return displayedPuzzle	

•  Conceptually, a file is a sequence of data
stored in memory

•  To use a file in a Python script, create an
object of type file	
 file is a data type

 <varname> = file(<filename>,<mode>)	
• <filename> : string	
• <mode>: string, either “r” for read or “w” for

write
 Ex: dataFile = file(“years.dat”, “r”)	

constructor -
 “constructs” a file object

Method Name Functionality

read()	 Read the entire content from the file,
returned as a string object

readline()	
Read one line from file, returned as a string
object (which includes the “\n”). If it returns
“”, then you’ve reached the end of the file

write(string)	 Write a string to the file

close()	 Close the file. Must close the file after done
reading from/writing to a file

•  Examples of reading from a file using file
methods
 Show file: data/years.dat	

• file_read.py (using read())
 How is what Python printed different than the

file’s content?
 How to fix?

• file_read2.py (using readline())

Typically use .dat
or .txt file

extension for files
containing data/text

5

•  Recall that a file is a sequence of data

•  Can use a for loop to iterate through a file

 Read as: for each line in the file, do something

file_read3.py	

for line in dataFile:	
	print line	

A line (of type str)
from the file

file object

•  What are the data types of the loop variable x?
string = “some string”	
dataFile = file(“years.dat”, “r”)	

for x in xrange(len(string)):	
	# loop body …	

for x in string:	
	# loop body …	

for x in dataFile:	
	# loop body …	

•  What are the data types of the loop variable x?

integer

string = “some string”	
dataFile = file(“years.dat”, “r”)	

for x in xrange(len(string)):	
	# loop body …	

for x in string:	
	# loop body …	

for x in dataFile:	
	# loop body …	

string  single
characters

string  line
(include \n)

• We want to search a file for some term. We
want to know which lines of the file contain
that term and a count of the number of lines
that contained that term

file_search.py	

•  Monday
 Files, Introduction to lists

•  Tuesday
 Lab

• Wednesday
 Lists, Exam Review

•  Friday
 Exam!

Amy
Luke
Hank
Ben
CJ

Dave
George
Dalena
Kelly Mae

Logan
Jeni
Andrew
Harrison

Will
Sirocco
James
Taylor

Collier
Phil
Shannon
Nick

6

•  What is the goal of the project/problem they are solving?
•  Why are computer scientists involved with this problem/its

solution?
•  What is their solution to the problem?

  What was their insight to the solution?
•  What are some of the results of their solution?
•  What are some issues they have had to solve?
•  What are other problems that are being solved in similar

ways?
•  What other problems should we use volunteer computing

to solve?
•  How does involving the public in science change people’s

perception of science, if at all?
•  How does this article relate to this class?

•  Problem: huge computational problems,
huge data sets; limited computing resources
 Supercomputers are expensive

•  Insight: lots of computers that are often idle
 Leverage these cheap resources to create a

distributed super computer
•  Can break up a huge problem into small

pieces that can be solved separately
 Merge solved pieces back together

•  How to break up the problem, how to merge
 Need correct, efficient solutions

•  How do we distribute the problems?
•  Lots of different OSs, types of machines

 Process in platform-independent way
•  How do we know we’re getting the right

answer?
•  What if a volunteer gives unreliable results?
•  How can we identify malicious behavior?
•  How do we store all the results?

Computer science problems motivated by other domains!

• http://folding.stanford.edu	
•  Accurately simulate folding of proteins
•  Results help understand diseases and

fundamental biology
 W&L Team: 41737 W&L has a team!

Why I chose
this article…

