
1

Nov 28, 2007Nov 28, 2007 Sprenkle - CS111Sprenkle - CS111 11

Objectives
• Administration
• Lab 10 Questions?
• Search strategies

Nov 28, 2007Nov 28, 2007 Sprenkle - CS111Sprenkle - CS111 22

Lab 10
• Song

writeSong(file)
• Takes a file object (not a filename, which is a

string)

• MusicCollection
 readLibrary(filename)

• Extra Credit - submit your own album files for
others to use

Nov 28, 2007Nov 28, 2007 Sprenkle - CS111Sprenkle - CS111 33

Demonstrating MyTunes
• Demonstrate “typical” usage of your program

User should try out each available option
• You won’t demo command-line args

 I will test that when I execute your program

Nov 28, 2007Nov 28, 2007 Sprenkle - CS111Sprenkle - CS111 44

Final Exam Details
• Discuss content a little later
• Give your envelope to me by Thursday,

December 6
 Include your name and proposed time to take

the exam on the envelope
• In the CS department, all exams are taken in

Parmly 405 (our lab)
• At your specified time, someone brings the

tests to Parmly 405 and you have 3 hours to
take them

Nov 28, 2007Nov 28, 2007 Sprenkle - CS111Sprenkle - CS111 55

Course Evaluations
• Next Wednesday
• General questions (similar to midterm

survey)
• Specific questions

Feedback on improving the broader issues
component of the course

Nov 28, 2007Nov 28, 2007 Sprenkle - CS111Sprenkle - CS111 66

Need 4 Volunteers

2

Nov 28, 2007Nov 28, 2007 Sprenkle - CS111Sprenkle - CS111 77

Find the Card in Your Deck
• Reminder to me: take out the jokers
• Challenge: who can find the card first

 (Most efficient algorithm)
• Need rest of class to keep searchers honest

(and help me determine who “rang in” first)

Nov 28, 2007Nov 28, 2007 Sprenkle - CS111Sprenkle - CS111 88

The Race is On!
• 3 of Hearts
• 2 of Diamonds
• 4 of Clubs
• Queen of Spades
• King of Queens

Nov 28, 2007Nov 28, 2007 Sprenkle - CS111Sprenkle - CS111 99

Searching for a Playing Card
• Given a deck of cards and a card to find,

describe the algorithm for how you would find
that card.
Present several algorithms and discuss the

strengths and weaknesses of each

Nov 28, 2007Nov 28, 2007 Sprenkle - CS111Sprenkle - CS111 1010

Search Using in Review
• Iterates through a list, checking if the

element is found
• Known as linear search
• Implementation:
def inSearch(searchlist, key):

for elem in searchlist:
if elem == key:

return True
return False

search.py

3210pos

7358value

What are the strengths and weaknesses of
implementing search this way?

Nov 28, 2007Nov 28, 2007 Sprenkle - CS111Sprenkle - CS111 1111

Search Using in Review
• Iterates through a list, checking if the

element is found
• Known as linear search
• Benefits:

Works on any list
• Drawbacks:

Does not tell us where in the list it is
• What if wanted to do something to that element?

Slow -- needs to check each element of list if the
element is not found

Nov 28, 2007Nov 28, 2007 Sprenkle - CS111Sprenkle - CS111 1212

Binary Search Review
• High-Low game

 I’m thinking of a number between 1-100
You want to guess the number as quickly as

possible
For every number you guess, I’ll tell you whether

you’re too high or too low or if you got it right
• What is your best strategy?

3

Nov 28, 2007Nov 28, 2007 Sprenkle - CS111Sprenkle - CS111 1313

Strategy: Eliminate Half the
Possibilities

• Repeat until find value (or looked through all
values):
Guess middle value of possibilities
 If match, found!
Otherwise, find out too high or too low
Modify your possibilities

• Eliminate the possibilities from your number and
(higher or lower, as appropriate)

Nov 28, 2007Nov 28, 2007 Sprenkle - CS111Sprenkle - CS111 1414

Searching for 8
• Find the middle of the list

Positions: 0 -- 7, so mid is 3 (7/2)
• Check if the key equals the value at mid (1)

 If so, report the location
• Check if the key is higher or lower than value

at mid
Search the appropriate half of the list

76543210
9872100-3 8 > 1, so look

in upper half

76543210
9872100-3

Nov 28, 2007Nov 28, 2007 Sprenkle - CS111Sprenkle - CS111 1515

Binary Search
• mid is 5 ((7+4)/2), list[5] is 7

• mid is 6 ((6+7)/2), list[6] is 8

• What if searched for 6 instead of 8?

4
2

765
987

7
9

6
8

8 > 7, so look
in lower half

8==8, FOUND IT!

Nov 28, 2007Nov 28, 2007 Sprenkle - CS111Sprenkle - CS111 1616

Searching for 6
• Will follow some of same program flow, but 6

is not in the list
• mid is 5, list[5] is 7

• mid is 4, list[4] is 2
6 > 2, so will try to look in upper
half of the list, but we’ve already
determined it’s not there.
How do we know to stop looking?

4
2

765
987

4
2

76543210
9872100-3

6 < 7, so will try in lower half
of list

Nov 28, 2007Nov 28, 2007 Sprenkle - CS111Sprenkle - CS111 1717

Implementation Group Work

• Trace through your program using examples
Start simple (small lists)
Do what the program says exactly, not what you
think the program says

def search(searchlist, key):
“””Pre: searchlist is in sorted order.

Returns the position of key (an integer) in the
list of integers (searchlist) or -1 if not found”””

Nov 28, 2007Nov 28, 2007 Sprenkle - CS111Sprenkle - CS111 1818

One Solution
def search(searchlist, key):

low=0
high = len(searchlist)-1
while low <= high :

mid = (low+high)/2
if searchlist[mid] == key:

return mid # return True
elif searchlist[mid] < key:

low=mid+1
else:

high = mid-1
return -1 # return False

search.py

If you just want to
know if it’s in the list

4

Nov 28, 2007Nov 28, 2007 Sprenkle - CS111Sprenkle - CS111 1919

Binary Search
• Divide and Conquer algorithm

Break into smaller pieces that you can solve
• Benefits:

Faster to find elements (especially with larger
lists)

• Drawbacks:
Requires that data can be compared

• __cmp__ method implemented in our classes
List must be sorted before searching

• Takes time to search

