
1

Nov 5, 2007Nov 5, 2007 Sprenkle - CS111Sprenkle - CS111 11

Objectives
• Midterm prep
• Defining our own classes

Some more tricks
• Designing our own classes

Nov 5, 2007Nov 5, 2007 Sprenkle - CS111Sprenkle - CS111 22

Midterm Prep
• Midterm: Friday
• Prep document online
• Similar problems to last exam

Very short answer
Short answer
Reading code (what’s the output)
Writing code, comments

• Slightly more emphasis on writing code

Nov 5, 2007Nov 5, 2007 Sprenkle - CS111Sprenkle - CS111 33

Creating a Counter Class
• Has a fixed range
• Starts at some low value, increments by 1,

loops back around to low value if gets
beyond some maximum value

• Example application of the counter: Caesar
cipher for letters ‘a’ to ‘z’

Object o
of type
Counter

What is the API
for this

object/class?

• What are the attributes
of an object in the class?
• What data should be
used to represent an
object in the class?

Nov 5, 2007Nov 5, 2007 Sprenkle - CS111Sprenkle - CS111 44

Creating a Counter Class
• Data: Instance variables that represent

High, Low, Current Value
• Methods (API)

Counter(low, high)
 increment([amount])
decrement([amount])
setValue(value)
getValue()
getLow()
getHigh()

counter.py

Defaults to 1,

-1

Nov 5, 2007Nov 5, 2007 Sprenkle - CS111Sprenkle - CS111 55

Applying the Counter Class
• To the Caesar Cipher program

• Compare implementations, with and without
using the counter

• Any drawbacks from using Counter class?

caesar2.py Nov 5, 2007Nov 5, 2007 Sprenkle - CS111Sprenkle - CS111 66

Applying the Counter Class
• Creating a Clock class

Model the hours, minutes, seconds
Default: starts at 12:00:00

• Operations:
Ticking
Set the Time

clock.py

2

Nov 5, 2007Nov 5, 2007 Sprenkle - CS111Sprenkle - CS111 77

Discussing the Clock Class
• Do we have to worry about user setting

hours to > 12?
Add test

Nov 5, 2007Nov 5, 2007 Sprenkle - CS111Sprenkle - CS111 88

Discussing the Clock Class
• Do we have to worry about user setting

hours to > 12?
No. Counter object handles.

• Separation of functionality
Building code on top of other classes
Smaller chunk of code, well-tested that handles

some set of functionality

Nov 5, 2007Nov 5, 2007 Sprenkle - CS111Sprenkle - CS111 99

Summary: Designing Classes
• What does the object/class represent?
• How to model/represent the class’s data?

 Instance variable
Data type

• What functionality should objects of the class
have?
How will others want to use the class?
Put into methods for others to call (API)

Nov 5, 2007Nov 5, 2007 Sprenkle - CS111Sprenkle - CS111 1010

Benefits of Classes
• Package/group related data into one object
• Reusing code

E.g., Don’t need to check if user put in valid time
• Provide interface, can change underlying

implementation
e.g., Counter’s increment -- could implement like

in Caesar Ciphers instead

Nov 5, 2007Nov 5, 2007 Sprenkle - CS111Sprenkle - CS111 1111

Considerations for using Classes
• Only use class if you’re using most of its

functionality/information
Don’t use Counter for validating if a number is

within the valid range; not using the wrapping/
current value

• Since don’t know implementation, may
inadvertently duplicate code
Redo something done by class
Could have efficiency penalties
But time saved reusing code is usually worth it

Nov 5, 2007Nov 5, 2007 Sprenkle - CS111Sprenkle - CS111 1212

Comparing Objects of the Same Type
• Special __cmp__ method

 Header: _cpm__(self,other)
• other is another object of the same type

 Returns
• Negative integer if self < other
• 0 if self==other
• Positive integer if self > other

• Similar to implementing Comparable interface in
Java

• Can now use objects in comparison expressions
 <,>,==, etc.

3

Nov 5, 2007Nov 5, 2007 Sprenkle - CS111Sprenkle - CS111 1313

Comparing Objects of the Same Type
• Example Code:

def __cmp__(self, other):
 """ Compares Card objects by their ranks """
 # Could compare by black jack value or rummy value

 if self.rank < other.getRank():
return -1

 elif self.rank > other.getRank():
return 1

 else:
 return 0

card3.py Nov 5, 2007Nov 5, 2007 Sprenkle - CS111Sprenkle - CS111 1414

Lab 7 Feedback
• Good things:

Use of functions
Closing files
Creative pictures, animations

• Efficiency issue: Reading in whole file and
saving all words in list
Better: line by line reading/processing

