
1

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 11

Objectives
• Search strategies
• Broader Issues: One Laptop Per Child

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 22

Search Using in Review
• Iterates through a list, checking if the

element is found
• Known as linear search
• Implementation:
def inSearch(searchlist, key):

for elem in searchlist:
if elem == key:

return True
return False

search.py

3210pos

7358value

What are the strengths and weaknesses of
implementing search this way?

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 33

Search Using in Review
• Iterates through a list, checking if the

element is found
• Known as linear search
• Benefits:

Works on any list
• Drawbacks:

Slow -- needs to check each element of list if the
element is not in the list

Current implementation of in does not tell us
where in the list it is
• What if wanted to do something to that element?

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 44

Binary Search Review
• High-Low game

 I’m thinking of a number between 1-100
You want to guess the number as quickly as

possible
For every number you guess, I’ll tell you whether

you’re too high or too low or if you got it right
• What is your best strategy?

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 55

Strategy: Eliminate Half the
Possibilities

• Repeat until find value (or looked through all
values):
Guess middle value of possibilities
 If match, found!
Otherwise, find out too high or too low
Modify your possibilities

• Eliminate the possibilities from your number and
(higher or lower, as appropriate)

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 66

Searching for 8
• Find the middle of the list

Positions: 0 -- 7, so mid is 3 (7/2)
• Check if the key equals the value at mid (1)

 If so, report the location
• Check if the key is higher or lower than value

at mid
Search the appropriate half of the list

76543210
9872100-3 8 > 1, so look

in upper half

76543210
9872100-3

2

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 77

Binary Search
• mid is 5 ((7+4)/2), list[5] is 7

• mid is 6 ((6+7)/2), list[6] is 8

• What if searched for 6 instead of 8?

4
2

765
987

7
9

6
8

8 > 7, so look
in lower half

8==8, FOUND IT!

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 88

Searching for 6
• Will follow some of same program flow, but 6

is not in the list
• mid is 5, list[5] is 7

• mid is 4, list[4] is 2
6 > 2, so will try to look in upper
half of the list, but we’ve already
determined it’s not there.
How do we know to stop looking?

4
2

765
987

4
2

76543210
9872100-3

6 < 7, so will try in lower half
of list

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 99

Implementation Group Work

• Trace through your program using examples
Start simple (small lists)
Do what the program says exactly, not what you
think the program says

def search(searchlist, key):
“””Pre: searchlist is in sorted order.

Returns the position of key (an integer) in the
list of integers (searchlist) or -1 if not found”””

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 1010

One Solution
def search(searchlist, key):

low=0
high = len(searchlist)-1
while low <= high :

mid = (low+high)/2
if searchlist[mid] == key:

return mid # return True
elif searchlist[mid] < key:

low=mid+1
else:

high = mid-1
return -1 # return False

search.py

If you just want to
know if it’s in the list

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 1111

Binary Search
• Example of a Divide and Conquer algorithm

Break into smaller pieces that you can solve
• Benefits:

Faster to find elements (especially with larger
lists)

• Drawbacks:
Requires that data can be compared (rather than

just equal)
• __cmp__ method implemented by the class

List must be sorted before searching
• Takes time to search

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 1212

Empirical Study of Search Techniques
• Goal: Determine which technique is better

under various circumstances

• How long does it take to find various keys?
Measure by the number of comparisons
Vary the size of the list and the keys
What are good tests for the lists and the keys?

search_compare.py

3

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 1313

Modifying Solution
def search(searchlist, key):

low=0
high = len(searchlist)-1
mid = (low+high)/2
while low <= high :

if searchlist[mid] == key:
return mid # return True

elif searchlist[mid] < key:
low=mid+1

else:
high = mid-1

mid = (low+high)/2
return -1 # return False

What if we had a list of Cards
instead of a list of integers?
• What needs to be changed?
• What has to be done in the
Card class?

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 1414

Comparing Card Objects
• What order do we want the cards in?

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 1515

Previously…
• Why isn’t this sufficient for use with search?

def __cmp__(self, other):
if self.getRank() < other.getRank():

return -1
if self.getRank() > other.getRank():

return 1
return 0

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 1616

Comparing Card Objects

card5.py

def __cmp__(self, other):
if self.getSuit() < other.getSuit():

return -1
if self.getSuit() > other.getSuit():

return 1
if self.getRank() < other.getRank():

return -1
if self.getRank() > other.getRank():

return 1
return 0

Comparing by suit then rank; order is 2 Clubs,
3 Clubs, …, Ace Clubs, 2 Diamonds, 3 Diamonds, …

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 1717

Extensions to Solution
def search(searchlist, key):

low=0
high = len(searchlist)-1
mid = (low+high)/2
while low <= high :

if searchlist[mid] == key:
return mid # return True

elif searchlist[mid] < key:
low=mid+1

else:
high = mid-1

mid = (low+high)/2
return -1 # return False

What if we had a list of Songs
instead of a list of integers?
• What if we wanted to check
if the song’s title matched the
key and give the song back?

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 1818

Extensions to Solution
def search(searchlist, key):

low=0
high = len(searchlist)-1
mid = (low+high)/2
while low <= high :

if searchlist[mid] == key:
return mid # return True

elif searchlist[mid] < key:
low=mid+1

else:
high = mid-1

mid = (low+high)/2
return -1 # return False

What if we had a list of Songs
instead of a list of integers?
• What if we wanted all songs
that matched the title?

4

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 1919

Summary of Extensions to Solution
• Check the title of the Song at the midpoint
• Get the songs before and after that song in

list that have the same title and put in a list
• Represent, handle when no song matches
• For “most intuitive” results:

Strip, lowercase the key
• Which means what for your algorithm?

• Note: we’re not just doing “contains”
How could we implement that?

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 2020

Search Strategies Summary
• Which search strategy should I use under the

various circumstances?
 I have a short list

 I have a long list

 I have a long sorted list

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 2121

Search Strategies Summary
• Which search strategy should I use under the

various circumstances?
 I have a short list

• How short? Linear (in)
 I have a long list

• Linear (in) -- because don’t know if in order,
compararable

 I have a long sorted list
• Binary

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 2222

A Scientific Application

Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 2323

Broader Issues
• One Laptop Per Child

An experiment on bringing cheap technology to
poor children

Give 1, Get 1 program is on until Dec 31
• What challenges did OLPC face and how did

that affect their design decisions?
• What are some other unusual features of the

laptop?
• What does this technology mean for better-

off countries?
Nov 30, 2007Nov 30, 2007 Sprenkle - CS111Sprenkle - CS111 2424

Discussion

Linux, Python, open-source tools;
cheaper battery; no harddrive, CD/DVD
drive

Cost

Simple user interfaces; tiny keyboard;
light; applications keep students
interested

Users - children

Dust proof, drop proof, lightEnvironment

Rewrite code more compactly, efficientlySoftware bloat

New, cheap battery; Consumes less
power; Alternative power sources: solar
power, pull cord

Lack of Power
Design DecisionChallenge

