
1

•  Code Readability
•  Intro to conditional statements
• sys module
•  Broader Issue: 4 Puzzles from Cyberspace

import random	

winningNum = ""	

for x in xrange(3):	
 numChosen = random.randint(0,9)	
 winningNum += str(numChosen) +"-"	

numChosen = random.randint(0,9)	
winningNum += str(numChosen)	

print "The number is", winningNum	

•  To play: you pick 4 numbers between 0 and
9

•  To win: select the numbers that are selected
by the magic ping-pong ball machine

•  Your job: Simulate the magic ping-pong ball
machines
 Revision: display number as #-#-#-#

pick4.nocomments.py

•  Modify your Pick 4 to simulate Mega Millions
•  To play: you pick 5 numbers between 1 and

56
 Ignoring rule: 1 Mega Ball number between 1

and 46
•  Your job: Simulate the result of the magic

ping-pong ball machines, displayed as
#-#-#-#-#
 How difficult to modify the last program?
 What could we do to make easier?

•  Comments
 Clarify what the program is doing
 We wrote the program Wednesday

•  Already unclear on the details

•  Constants
 Give meaning to “magic numbers”

•  What were 0, 9, 3?

•  Comments
 Describe blocks of code at a high level

•  Output/Display
 Descriptive, explains what program outputs

•  Constants
 Change one value (at top of program) to change

value everywhere in program
 Flexible programs
 Gets rid of “magic numbers”

•  Give a clear name and purpose to values

2

• What does this program do?
 How would you figure it out?

• What would you do to improve the program’s
readability and usability?

program_before.py
program_after.py

• constant_compare.out	
•  Note good use of comments

 Define sections of code
•  Compare with and without constants

•  Input, Output
•  Primitive operations

 What data you have, what you can do to the data
•  Naming

  Identify things we’re using
•  Sequence of operations
•  Conditionals

 Handle special cases
•  Repetition/Loops
•  Subroutines

 Call, reuse similar techniques

•  Sometimes, we do things only if some other
condition holds (i.e., “is true”)

•  Examples
  If the PB is new (has a safety seal)

•  Then, I will take off the safety seal
  If it is raining and it is cold

•  Then, I will wear a raincoat
  If it is Saturday or it is Sunday

•  Then, I will wake up at 10 a.m.
•  Otherwise, I wake up at 7 a.m.

  If the shirt is purple or the shirt is on sale and blue
•  Then, I will buy the shirt

•  Sometimes, we only want to execute a
statement in certain cases
 Example: Finding the absolute value of a

number
•  |4| = 4
•  |-10| = 10

 To get the answer, we multiply the number by -1
only if it’s a negative number

 Code: if x < 0 :	
	abs = x*-1	

fahr = input(“…”)	

celsius = (5/9.0)*(fahr-32)	

print “celsius=”, celsius	

So far, we’ve thought of
programs as a sequence
of statements.

Statements execute
in order.

3

•  Change the control flow of the program

fahr = input(“…”)	

celsius = (5/9.0)*(fahr-32)	

print “celsius=”, celsius	

 x = input(“…”)	

x < 0	

abs = x * -1	 abs = x	

print “abs=”, abs	

True False

Choose
the path

• for loops
 Repeats a loop body a fixed number of times

before going to the next statement after the for
loop for x in xrange(10):	

print “Hello”	

print “Goodbye”	

…

for x in xrange(10):	
	print “Hello”	
	print “Goodbye”	

next_statement …	

•  Function calls
 “Go execute some other code and then come

back with the result”

x = function():	
…	

…	

…	

function()	

if condition :	
statement1	
statement2	
…	
statementn	 English Examples:

“then” Body
•  Note indentation

ke
yw

or
d

•  Syntax:
 <expr> <relational_operator> <expr>	

•  Evaluates to either True or False	
 Boolean type

•  Syntax:
 <expr> <relational_operator> <expr>	

Relational
Operator

Meaning

<	 Less than?
<=	 Less than or equal to?
>	 Greater than?
>=	 Greater than or equal to?
==	 Equals?
!=	 Not equals?

Use Python shell

4

•  Determine if a number is even or odd

evenorodd.py

x = input(“Enter a number: “)	
remainder = x%2	
if remainder == 0 :	

	print x, “is even”	
if remainder == 1:	

	print x, “is odd”

•  Assignment operator: =
•  Equality operator: ==
x = input(“Enter a number: “)	
remainder = x%2	
if remainder = 0 :	

	print x, “is even.”	

Syntax error

if condition :	
statement1	
statement2	
…	
statementn	

else :	
statement1	
statement2	
…	
statementn	

English Example:

“then” Body

“else” Body

ke
yw

or
ds

x < 0 	

x = x * -1	

print “x=”, x	

True

x < 0 	

abs = x * -1	 abs = x	

print “abs=”, abs	

True False False: jump to
next statement

If statement If-else statement

if x < 0 :	
	x *= -1	

print “x=“, x	

if x < 0 :	
	abs = x * -1	

else :	
	abs = x	

print “abs=“, abs	

•  Determine if a number is even or odd
•  More efficient implementation

 Don’t need to check if remainder is 1 because if
it’s not 0, it must be 1

x = input(“Enter a number: “)	
remainder = x % 2	
if remainder == 0:	

	print x, “is even”	
else:	

	print x, “is odd”	

print "This program determines your birth year”	
print "given your age and current year”	
print	
age = input("Enter your age >> ")	

if age > 110:	
 print "Don't be ridiculous, you can't be that old.”
else:	
 currentYear = input("Enter the current year >> ”)	
 birthyear = currentYear – age	
 print	
 print "You were either born in", birthyear, "or",	
 print birthyear-1	

5

•  Has useful “system” functions
•  Use the exit([status]) function

 Exits the whole program
 If status is empty, defaults to 0
 Status of 0 means success
 Other values are various failures

•  Another example of changing control flow

import sys 	
print "This program determines your birth year"	
print "given your age and current year"	
print	
age = input("Enter your age >> ")	
if age > 110:	
	print "Don't be ridiculous, you can't be that old.”	
	sys.exit(1)	

# input is reasonable …	
currentYear = input("Enter the current year >> ")	
birthyear = currentYear - age	
print	
print "You were either born in", birthyear, "or”,	
print birthyear-1	

Ejector seat

•  Any speed clocked over the limit results in a
fine of at least $50, plus $5 for each mph
over the limit, plus a penalty of $200 for any
speed over 90mph.

•  Our program
 Input: speed limit and the clocked speed
 Output: either (a) that the clocked speed was

under the limit or (b) the appropriate fine

•  Give you “Exam prep document” with the topics/
concepts by Monday

•  Format:
 Very short answer
 Short answer
 What does the code do? (output)
 Writing code
 Problem-solving

•  To Review:
  In-class problems/handouts
 Labs

•  Context: Book Code v2 by Lawrence Lessig
•  You read Chapter 2

 Presents the problems, not the author’s
proposed solutions

Collier
Dave
Harrison
CJ

Jeni
Nick
Shannon
James

George
Will
Hank
Kelly Mae

Luke
Amy
Dalena
Logan

Andrew
Taylor
Ben
Phil

6

• What are the four puzzles of Cyberspace?
• What is the most important puzzle to solve?
• Which is the most difficult puzzle to solve?
• Which is the most unsettling puzzle?
• What are other examples of online

regulation?
 How successful were the attempts at regulation?

