
1

Nov 12, 2007Nov 12, 2007 Sprenkle - CS111Sprenkle - CS111 11

Objectives
• Command-line arguments
• Calls to UNIX tools
• Designing Classes, Larger Programs

Nov 12, 2007Nov 12, 2007 Sprenkle - CS111Sprenkle - CS111 22

Summary: Designing Classes
• What does the object/class represent?
• How to model/represent the class’s data?

 Instance variable
Data type

• What functionality should objects of the class
have?
How will others want to use the class?
Put into methods for others to call (API)

Nov 12, 2007Nov 12, 2007 Sprenkle - CS111Sprenkle - CS111 33

Benefits of Classes
• Package/group related data into one object
• Reusing code

E.g., Don’t need to check if user put in valid time
• Provide interface, can change underlying 

implementation
e.g., Counter’s increment -- could implement like

in Caesar Ciphers instead

Nov 12, 2007Nov 12, 2007 Sprenkle - CS111Sprenkle - CS111 44

Considerations for using Classes
• Only use class if you’re using most of its

functionality/information
Don’t use Counter for validating if a number is

within the valid range; not using the wrapping/
current value

• Since don’t know implementation, may
inadvertently duplicate code
Redo something done by class
Could have efficiency penalties
But time saved reusing code is usually worth it

Nov 12, 2007Nov 12, 2007 Sprenkle - CS111Sprenkle - CS111 55

Command-line Arguments
• Using the sys module

• How to reference (get value) “<filename>”?

command_line_args.py

python command_line_args.py <filename>

List of arguments, named sys.argv

Nov 12, 2007Nov 12, 2007 Sprenkle - CS111Sprenkle - CS111 66

Command-line Arguments
• Using the sys module

• How to reference (get value of) “<filename>”?
 sys.argv[1]
 sys.argv[0] is the name of the program

• Have to run from command-line (not from IDLE)
 Can edit program in IDLE though

command_line_args.py

python command_line_args.py <filename>

List of arguments, named sys.argv



2

Nov 12, 2007Nov 12, 2007 Sprenkle - CS111Sprenkle - CS111 77

Calling UNIX Commands from Python
•commands module

getoutput(<command_str>)
• Example use

output = getoutput(“ls *.py”)

output is what you’d get in terminal from calling
that command

python_list.py Nov 12, 2007Nov 12, 2007 Sprenkle - CS111Sprenkle - CS111 88

Top-Down Design
• Break down larger problems into pieces that you

can solve
 Smaller pieces: classes, methods, functions
 Create stubs, implement smallest pieces and build up

• We’ve been doing this most of the semester
 Typically, program was 1) read input, 2) process input, 3)

print result
• Started putting Step 2 into >= 1 functions
• Steps 1 and 3 were sometimes a function

 Now: on larger scale

Nov 12, 2007Nov 12, 2007 Sprenkle - CS111Sprenkle - CS111 99

Distributed Programming

• Server application provides a service
• Client program(s) communicates with server application

Client

ServerClient

Client

Network

Application
code

Nov 12, 2007Nov 12, 2007 Sprenkle - CS111Sprenkle - CS111 1010

Web Servers/Applications

• Specialized network programming
• Web browser: makes requests, renders responses;

executes JavaScript, client-side code
• Web Server: handles static requests
• Web Application: handles dynamic requests

 Response may change based on user input or other state

Client ServerNetwork

Web Browser Web
Server

Web 
Application

Nov 12, 2007Nov 12, 2007 Sprenkle - CS111Sprenkle - CS111 1111

Web Servers/Applications

• May be useful to know who (what clients) are accessing
the web application or web server
 Our next lab

Client ServerNetwork

Web Browser Web
Server

Web 
Application

Nov 12, 2007Nov 12, 2007 Sprenkle - CS111Sprenkle - CS111 1212

Network Addresses
• A computer on a network has an address.

address is used to uniquely identify the
computer (also known as a host) on the network

• The most common address system in use
today is the Internet Protocol (IPv4)
addressing system
a 32-bit address, typically written as a “dotted-

quad”: four numbers, 0 through 255, separated
by dots, e.g.,

137.113.48.2



3

Nov 12, 2007Nov 12, 2007 Sprenkle - CS111Sprenkle - CS111 1313

DNS: Domain Name System
• Translate IP addresses to human-

understandable host names and vice versa
Example: going from www.cnn.com to IP

address 64.236.16.20

Nov 12, 2007Nov 12, 2007 Sprenkle - CS111Sprenkle - CS111 1414

DNS: Domain Name System
• Unique names for computers
• Hierarchical system (tree structure)

root

Top-level domains …edu com zn

……wlu vmi

…cs

perl … perl.cs.wlu.edu

Host name comes from
following path from leaf to
root, e.g.,

Has IP addresses
for leaf nodes

Nov 12, 2007Nov 12, 2007 Sprenkle - CS111Sprenkle - CS111 1515

Using the UNIX host command

• host <ipaddress>
• Examples:

host 64.236.16.20
• For www2.cnn.com

host 137.113.48.2
• BSC-5000.wlu.edu

host 209.249.86.17
• Host 17.86.249.209.in-addr.arpa not found:

3(NXDOMAIN)
• Doesn’t have a mapping

Nov 12, 2007Nov 12, 2007 Sprenkle - CS111Sprenkle - CS111 1616

Top-Level Domains
• Generic:

edu, com, net, org, gov, mil
Many others now

• Country
us, ca, de, se, …

Nov 12, 2007Nov 12, 2007 Sprenkle - CS111Sprenkle - CS111 1717

Lab: Parsing Web Access Log
• Problem: Given the IP addresses of requests

to a web application, what is the distribution
of requests from top-level domains?
Show results in graphical way

• Example of real scientific processing
Simplified version of my research

Nov 12, 2007Nov 12, 2007 Sprenkle - CS111Sprenkle - CS111 1818

Overview: Parsing a Web Access Log

Web
Access

Log

<ipaddr>
<ipaddr>
<ipaddr>

…

Gnuplot Data File

<domain> <#reqs>
<domain> <#reqs>
<domain> <#reqs>

…

Gnuplot

PNG File
(graph)

Put image on
Web page

Gnuplot
Plot File



4

Nov 12, 2007Nov 12, 2007 Sprenkle - CS111Sprenkle - CS111 1919

Pseudocode for Main Function
• Top-down Design

Nov 12, 2007Nov 12, 2007 Sprenkle - CS111Sprenkle - CS111 2020

Pseudocode for Main Function
• Get input file from user (command-line)
• Create output file name
• Process input file

 Read each line of input file
• Convert IP address into host name
• Compute top-level domain
• Update mapping of top-level domains to number of

requests
 Print number of lines read

• Write output file
 Sort domains by number of requests
 For each top-level domain

• Print domain id, number of requests

What data
structures
needed?

Nov 12, 2007Nov 12, 2007 Sprenkle - CS111Sprenkle - CS111 2121

Pseudocode for Main Function
• Get input file from user (command-line)
• Create output file name
• Process input file

 Read each line of input file
• Convert IP address into host name
• Compute top-level domain
• Update mapping of top-level domains to number of

requests
 Print number of lines read

• Write output file
 Sort domains by number of requests
 For each top-level domain

• Print domain id, number of requests

Will utilize
several built-in

modules and our
own classes

Mapping: Tld-name
 DomainRequests

Nov 12, 2007Nov 12, 2007 Sprenkle - CS111Sprenkle - CS111 2222

Classes
• WebClientInfo

Data:
Functionality:

• DomainRequests
Data:
Functionality:

Nov 12, 2007Nov 12, 2007 Sprenkle - CS111Sprenkle - CS111 2323

Classes
• WebClientInfo

Data: ip address, hostname, top-level domain
Functionality: methods to “get” data,

constructor, string representation
• DomainRequests

Data: name, number of requests
Functionality: methods to “get” data, update

number of requests, constructor, comparator,
string representation

Nov 12, 2007Nov 12, 2007 Sprenkle - CS111Sprenkle - CS111 2424

Broader Issue
• Facebook’s News Feed

• Brought to you by Sue Lister
One Laptop Per Child
http://laptop.org


