
1

•  Search strategies

•  No one will get hurt … •  Reminder to me: take out the jokers
•  Challenge: who can find the card first

 (Most efficient algorithm)
•  Need rest of class to keep searchers honest

and help me determine who found the card
first

•  3 of Hearts
•  2 of Diamonds
•  4 of Clubs
•  Queen of Spades
•  King of Queens

•  Given a deck of cards and a card to find,
describe the algorithm for how you would find
that card.
 Present several algorithms (naïve ones too!)
 Discuss the strengths and weaknesses of each

2

•  Iterates through a list, checking if the
element is found

•  Known as linear search
•  Implementation:
def linearSearch(searchlist, key):	

	for elem in searchlist:	
	 	if elem == key:	
	 	 	return True	
	return False	

search.py	

8 5 3 7

0 1 2 3

What are the strengths and weaknesses
of implementing search this way?

value

pos

•  Overview: Iterates through a list, checking if the
element is found

•  Known as linear search
•  Benefits:

 Works on any list
•  Drawbacks:

 Does not tell us where in the list it is
•  What if wanted to do something to that element?
•  Could implement our own version that returns the position

 Slow -- needs to check every element of list if the item
we’re searching for is not in the list

•  I’m thinking of a number between 1-100
•  You want to guess the number as quickly as

possible (in fewest guesses)
•  For every number you guess, I’ll tell you if

you got it right. If you didn’t, I’ll tell you
whether you’re too high or too low

Reminder: write down guesses

•  I’m thinking of a number between 0-100
•  You want to guess the number as quickly as

possible (in fewest guesses)
•  For every number you guess, I’ll tell you if

you got it right. If you didn’t, I’ll tell you
whether you’re too high or too low

 What is your best guessing strategy?

•  Repeat until find value or looked through all
values
 Guess middle value of possibilities
 If match, found!
 Otherwise, find out too high or too low
 Modify your possibilities

•  Eliminate the possibilities from your number and
higher/lower, as appropriate

•  Known as Binary Search

-3 0 0 1 2 7 8 9
0 1 2 3 4 5 6 7

value

pos

Use algorithm to search for key = 8

3

•  Find the middle of the list
 Positions: 0-7, so mid position is ((7+0)/2) = 3

•  Check if the key equals the value at mid (1)
 If so, report the location

•  Check if the key is higher or lower than value
at mid
 Search the appropriate half of the list

-3 0 0 1 2 7 8 9
0 1 2 3 4 5 6 7

8 > 1, so look
in upper half

-3 0 0 1 2 7 8 9
0 1 2 3 4 5 6 7

mid low high

•  mid is 5 ((7+4)/2), list[5] is 7
2 7 8 9
4 5 6 7

8>7, so look in
upper half

mid low high

•  mid is 5 ((7+4)/2), list[5] is 7

•  mid is 6 ((7+6)/2), list[6] is 8

2 7 8 9
4 5 6 7

8 9
6 7

8>7, so look in
upper half

8==8, FOUND IT at
position 6!

What if searched for 6 instead of 8?

• Will follow same program flow, but 6 is not in
the list

•  mid is 6, list[5] is 7

•  mid is 4, list[4] is 2

2
4

6>2, so will try to look in upper half of
the list, but we’ve already determined
it’s not there.
How do we know to stop looking?

-3 0 0 1 2 7 8 9
0 1 2 3 4 5 6 7

2 7 8 9
4 5 6 7

6 < 7, so will try to look in lower
half of the list

•  Trace through your program using examples
 Start simple (small lists)
 Do what the program says exactly, not what you

think the program says

def search(searchlist, key):	
	“””Pre: searchlist is a list of

integers in sorted order. Returns the
position of key (an integer) in the list
of integers (searchlist) or -1 if not
found”””	

def search(searchlist, key):	
	low=0	
	high = len(searchlist)-1	
	while low <= high :	
	 	mid = (low+high)/2	
	 	if searchlist[mid] == key:	
	 	 	return mid 	 # return True	
	 	elif key > searchlist[mid]:	
	 	 	low = mid+1	
	 	else:	
	 	 	high = mid-1	
	return -1 	# return False	

search2.py

If you just want to
know if it’s in the list

4

•  Example of a Divide and Conquer algorithm
 Break into smaller pieces that you can solve

•  Benefits:
 Faster to find elements (especially with larger

lists)
•  Limitations:

 Requires that data can be compared
• __cmp__ method implemented by the class

 List must be sorted before searching
•  Takes time to search

•  How long does it take to find various keys?
 Measure by the number of comparisons
 Vary the size of the list and the keys
 What are good tests for the lists and the keys?

search_compare.py

Goal: Determine which technique is
better under various circumstances

•  Analyzing Results …
 By how much did the number of comparisons for

linear search vary?
 By how much did the number of comparisons for

binary search vary?

• What conclusions can you draw from these
results?

search_compare.py

•  Broader Issue
 One of 3 social networking articles

•  Lab 10

