
1

•  Handling exceptions
•  Two-dimensional lists

•  Do you understand what a class is and its
purpose? What is a class made up of?

•  Can you implement a class (of "reasonable"
size), given what it is supposed to represent and
what it is supposed to do?

•  Given a class's API, can you solve problems
with it?
 When you write the UI for FaceSpace, you are using

the API for the SocialNetwork class
•  Do you understand the strengths and

weaknesses of linear and binary search? When
would you use one over the other?

•  Using try/except statements
•  Syntax:

•  Example:

try:	
	<body>	

except [<errorType>] :	
	<handler>	

try:	
	age = input(“Enter your age: ”)	
currentyear = input(“Enter the current year: ”) 	

except:	
	print “ERROR: Your input was not in the correct form.”
	print “Enter integers for your age and the current year”	
	return	

yearborn.py	

Optional: use this to
handle specific error
types appropriately

•  Could put try/except statements in a
loop to make sure user enters valid input
 Example: birthyear3.py 	

•  Other types of exceptions
 File exceptions:

•  File doesn’t exist
•  Don’t have permission to read/write file

file_handle.py	

• We’ve used lists that contain
 Integers
 Strings
 Cards (Deck class)
 Persons (your Person class)

• We discussed that lists can contain multiple
types of objects within the same list
 Wheel of Fortune: [“Bankrupt”, 250, 350, …]

•  Lists can contain any type of object
 Even LISTS!

•  Create a list

• len(onedlist) is 3
• onedlist[2] is 23

onedlist = [7, -1, 23]	

Elements in the list

2

list	
twod	

twod = [[1,2,3,4], [5,6], [7,8,9,10,11]]	

list	

list	

list	

twod[0]	

twod[1]	

twod[2]	

twod[0]	 twod[1]	 twod[2]	

1st dimension

•  “Rows” within 2-dimensional list do not need to be
same length

•  However, it’s often easier to have them the same
length!
 We’ll focus on “rectangular” 2-d lists

list	
twod	

twod = [[1,2,3,4], [5,6], [7,8,9,10,11]]	

list	

list	

list	

twod[0]	

twod[1]	

twod[2]	

•  What does each component of twod[1][2] mean?
•  How many rows does twod have, in general?
•  How many columns does twod have, in general?

list	
twod	

list	

list	

list	

twod[0]	

twod[1]	

twod[2]	

twod[1][2] = 42	

twod[2][3]	

twod[0][0]	

•  What does each component of twod[1][2] mean?
•  How many rows does twod have, in general?

  rows = len(twod)
•  How many columns does twod have, in general?

  cols = len(twod[0])	

list	
twod	

list	

list	

list	

twod[0]	

twod[1]	

twod[2]	

 42

twod[1][2] = 42	

twod[2][3]	

twod[0][0]	

Row pos

Col pos
2-d list var

Assignment

Starting with the 2d list twod
shown here, what are the
values in twod after running
this code?

def mystery(twod):	
 """ ‘run’ this on twod, at right """	

	for row in xrange(len(twod)):	
	 	for col in xrange(len(twod[0])):	
	 	if row == col:	
	 	 	 	twod[row][col] = 42	
	 	else:	
	 	 	 	twod[row][col] += 1	

 1 2 3 4	
 5 6 7 8	
 9 10 11 12	

twod Before

twod After

row 0

row 1

row 2

col 0 col 1 col 2 col 3

mystery.py

Starting with the 2d list twod
shown here, what are the
values in twod after running
this code?

 1 2 3 4	
 5 6 7 8	
 9 10 11 12	

twod Before

twod After

row 0

row 1

row 2
col 0 col 1 col 2 col 3

mystery.py

42 3 4 5	
 6 42 8 9	
10 11 42 13	

def mystery(twod):	
 ""” ‘run’ this on twod, at right """	

	for row in xrange(len(twod)):	
	 	for col in xrange(len(twod[0])):	
	 	if row == col:	
	 	 	 	twod[row][col] = 42	
	 	else:	
	 	 	 	twod[row][col] += 1	

3

twod = []	
•  Need to create a row of the list

row = [1, 2, 3, 4]	
•  Then append that row to the list

twod.append(row)	
print twod	

•  [[1, 2, 3, 4]]
•  Repeat

row = [1, 2, 3, 4]	
twod.append(row)	
print twod	

•  [[1, 2, 3, 4], [1, 2, 3, 4]]

•  Create a function that returns a 2D list with
width cols and height rows
 Initialize each element in list to 0

•  Create a function that returns a 2D list with
width cols and height rows
 Initialize each element in list to 0

def create2DList(rows, cols):	
	twodlist = []	
	# for each row	

 for row in xrange(rows):	
	 	row = []	
	 	# for each column, in each row	
	 	for col in xrange(cols):	
	 	 	row.append(0)	
	 	twodlist.append(row)	

 return twodlist	

list	
twodlist	

row = []

list	
twodlist	

list	
twodlist[0]	

 0 0 0 0

row For every column, append 0

Append row to twodlist

list	
twodlist	

list	
twodlist[0]	

 0 0 0 0

row = []

4

list	
twodlist	

list	
twodlist[0]	

 0 0 0 0

row
 0 0 0 0

list	
twodlist	

list	

list	

list	

twodlist[0]	

twodlist[1]	

twodlist[2]	

 0 0 0 0

 0 0 0 0

 0 0 0 0

•  The following code won’t work. Why?
•  Explain output from example program

def noCreate2DList(rows, cols):	
 twodlist = []	
 row = []	

	# create a row with appropriate columns	
 for col in xrange(cols):	
 row.append(0)	

	# append the row rows times	
 for row in xrange(rows):	

	 	twodlist.append(row)	
 return twodlist	

twod_exercises.py

•  Each row points to the same row in memory

list	
twodlist	

list	

list	

list	

twodlist[0]	

twodlist[1]	

twodlist[2]	

row

# create row …	
twodlist.append(row)	
twodlist.append(row)	
twodlist.append(row)	

•  Returns a 2-d list that represents a tic-tac-toe
board
 What elements should be in the 2D list?

•  How do we represent player’s moves?
 How do we update the board to say “Player X

goes into the bottom right corner.”

5

•  Print the board in a “nice” way, such as

 x | | 	

o

tictactoe.py

•  Module: csplot	
•  Allows you to visualize your 2D list

 Numbers are represented by different colors
import csplot	
…	
# create 2D list…	
twodlist=[[0,0,0], [1,1,1], [2,2,2]]	
# display list graphically	
csplot.show(twodlist)	

•  Can assign colors to numbers
import csplot	
…	
# create 2D list…	
twodlist=[[0,0,0], [1,1,1], [2,2,2]]	
# create optional dictionary of numbers to their color rep	
numToColor={0:”purple”, 1:”blue”, 2:”green”}	
csplot.show(twodlist, numToColor)	

•  Note that representation of rows is
backwards from how we’ve been visualizing

matrix = [[0,0,0], [1,1,1], [0,1,2]]	

Row 0

Row 1

Row 2
What values map to

which colors?

•  6 rows, 7 columns board
•  Players alternate dropping red/black checker

into slot/column
•  Player wins when have four checkers in a

row vertically, horizontally, or diagonally

How do we represent the board as a 2D list,
using a graphical representation?

•  How to represent board in 2D list, using
graphical representation?

Number Meaning Color

0 Free Yellow

1 Player 1 Red

2 Player 2 Black

6

•  How to represent board in 2D list, using
graphical representation?

Number Meaning Color
0 Free Yellow
1 Player 1 Red
2 Player 2 Black

Row 0

Row 5

•  User clicks on a column
 “Checker” is filled in at that column

# gets the column of where user clicked	
col = csplot.sqinput()	

•  Need to enforce valid moves
 In physical game, run out of spaces for checkers

if not a valid move

•  How can we determine if a move is valid?
 How do we know when a move is not valid?

•  Solution: check the “top” spot
 If the spot is FREE, then it’s a valid move

•  Data
 Board

•  Methods
 Constructor
 Display the board
 Play the game

•  Repeat:
 Get input/move from user
 Check if valid move
 Display board
 Check if win
 Change player

•  The player clicks on a column, meaning
that’s where the player wants to put a
checker

•  How do we update the board?

7

•  Final Exam: Comprehensive
 Lists, dictionaries
 Defining & using classes
 Searches: Linear, Binary
 Two-dimensional lists
 …
 See FinalPrep document on line
 Take-home question about broader issues

•  Formula for final grade is on course Web
page

•  Tomorrow: Lab 11
 SocialNetwork - binary search, exceptions
 2D list practice

• Wednesday:
 Security vulnerabilities, handling
 Course evaluations: completed by Sunday at

midnight
•  Friday

 Programs in other programming languages
 Broader Issue – One Laptop Per Child

If 70% of class responds, 2% off lab
possible points (~24 pts)
For each additional 10%, additional 1%
off. Max ~60 pts, nearly one free lab.

