
1

•  Defining classes
•  Using our classes
•  __cmp__ method
•  Helper methods
•  Broader Issue: Environmental Monitoring

from graphics import *	

win = GraphWin(“Picture”)	
win.setBackground(“black”)	

from card import *	

c = Card(7, “diamonds”)	
print c.getRank()	

•  Same programming as before
•  Just defining our own classes

• Where do we define the data that is needed
to represent every object of a class?
 How do we access that data?

•  How do we create a new method?

•  Has a fixed range
•  Starts at some low value, increments by 1,

loops back around to low value if gets
beyond some maximum value

•  Example application of the counter: Caesar
cipher for letters ‘a’ to ‘z’

Object o
of type
Counter

What is the API
for this object/

class?

•  What are the attributes
of an object in the
class?

•  What data should be
used to represent an
object in the class?

•  Data: Instance variables that represent
 Start, Stop, Current Value

•  Methods (API)
 Counter(start, stop)
 increment([incValue])
 setValue(value)
 getValue()
 getLow()
 getHigh()

counter.py

Defaults to 1

•  To the Caesar Cipher program
•  Plug in the Counter object and call its

methods as appropriate…

2

•  To the Caesar Cipher program

•  Compare implementations, with and without
using the counter

•  Any drawbacks from using Counter class?

caesar_with_counter.py

•  Header: def __cmp__(self, other)	
 other is another object of the same type

•  Returns
 Negative integer if self < other
 0 if self==other
 Positive integer if self > other

•  Similar to implementing Comparable interface
in Java

•  Can now use objects in comparison expressions
 <,>,==, sort	 How would you compare

2 Card objects? card3.py

def __cmp__(self, other):	
	""" Compares Card objects by their ranks """	

	if self.rank < other.getRank():	
	 	 return -1	
	elif self.rank > other.getRank():	
	 	 return 1	
	else:	
	 	 return 0	

# Could compare by black jack or rummy value	

def __cmp__(self, other):	
 """Compares this object with another object.

	Used in a sort method.""”	
 if self.count == other.count:	

	 	return cmp(self.key, other.key)	
 return cmp(self.count, other.count)	

3

•  Part of the class
•  Not part of the API

•  Make your code easier but others outside the
class shouldn’t use

•  Convention: method name begins with “_”

•  Only loosely enforces that other can’t use
 Doesn’t show up in help	
 Does show up in dir	

def _isFaceCard(self):	
	if self.rank > 10 and self.rank < 14:	
	 	return True	
	return False	

Helper Method:

def rummyValue(self):	
	if self._isFaceCard():	
	 	return 10	
elif self.rank == 10:	

	 	return 10	
	elif self.rank == 14:	
	 	return 15	
	else:	
	 	return 5	

In use:

card4.py

• What does the object/class represent?
•  How to model/represent the class’s data?

 Instance variable
 Data type

• What functionality should objects of the class
have?
 How will others want to use the class?
 Put into methods for others to call (API)

•  Package/group related data into one object
 Deck can have list of Card objects rather than

a list of ranks and a list of suits
•  Reusing code

 E.g., Don’t need to check if user put in valid key
•  Provide interface, can change underlying

implementation without affecting calling code

 Don’t use Counter for validating if a number is
within the valid range
•  Because not using the wrapping/current value

 Redo something done by class
 Could have efficiency penalties
 But time saved reusing code is usually worth it

Only use class if you’re using most of its
functionality/information

Since don’t know implementation, may
inadvertently duplicate code

•  Same API, different implementations
def __init__(self, rank, suit):	

	self.rank = rank	
	self.suit = suit	

def getRank(self):	
	return self.rank	

def getSuit(self):	
	return self.suit	

def __init__(self, rank, suit):	
	self.cardid=rank	
	if suit == “clubs”:	
	 	self.cardid += 13	
	elif suit == “hearts”:	
	 	self.cardid += 26	
	elif suit == “diamonds”:	
	 	self.cardid += 39	

def getRank(self):	
	return (self.cardid-2) % 13 + 2	

def getSuit(self):	
	suits = ["spades", "clubs", "hearts", "diamonds"]	

 whichsuit = (self.cardid-2)/13	
 return suits[whichsuit]	

Tradeoff: Saving
information (memory);
Computing information

card_byid.py

4

•  Compare counter.py and counter2.py’s
increment implementations

•  Return the card’s color (Red/Black), using a
constant defined at the top for each color
 What game is this useful for?

•  Boolean methods: isBlack(), isRed()
•  Boolean method: isOppositeColor(card)
•  Boolean method: isSameSuit(card)
•  Create a Hand class (very similar to Deck class)

 Methods that check if all same suit, all same rank

•  Player class for various games …
•  Test/Demonstrate your methods

Due Tuesday before lab

•  Interdisciplinary projects involving sensor
networks
 Important new-ish CS research area

•  Disclaimer:
 Not a seismologist or a biologist

•  Groups
Zebra:
Sirocco
Harrison
James
Amy

Volcano:
Andrew
Nick
Shannon
Hank

Volcano:
Ben
Dave
Luke
Taylor

Zebra:
George
Kelly Mae
Dalena
Phil

Zebra:
Will
Logan
Collier
Jeni

• What are the CS challenges to the projects?
 Any challenges only applicable to one project?

•  How does the environment impact the CS
research problems/solutions?

•  How did the researchers address these
challenges?
 How would you address the challenges?

•  Some programmers thought that efficiency
didn’t matter anymore
 GB of memory, terabytes of storage on

machines
•  Now: small and embedded devices

 Need to be efficient!
•  Energy in battery powered nodes
•  Amount of data stored (when to delete?)
• When, amount of data transferred

5

•  Data delivery
 Missing data
 Connectivity (good signal?)
 Duplicate data (different sources?)
 Dead sensor nodes
 Calibration of data (time synchronization)

•  Nodes
 Withstand extreme weather, conditions
 Battery life

•  Robustness: recover from software failure/
malfunction or bad data

•  Testing
 Accurately simulate conditions (which will vary

widely over long periods of time)
•  Different goals from domain scientists

 CS: push boundaries of sensor networks
•  Example: Improve reliability of data to 95%
•  Seismologists: need 100% reliable data

