
1

Objectives

•  Defining classes
•  Using our classes
•  Broader Issue: Environmental Monitoring

Creating a Counter Class

•  Has a fixed range
•  Starts at some low value, increments by 1,

loops back around to low value if gets
beyond some maximum value

•  Example application of the counter: Caesar
cipher for letters ‘a’ to ‘z’

Object o
of type
Counter

What is the API
for this object/

class?

•  What are the attributes
of an object in the
class?

•  What data should be
used to represent an
object in the class?

Creating a Counter Class
•  Data: Instance variables that represent

 High, Low, Current Value
•  Methods (API)

 Counter(low, high)
 increment([amount])
 setValue(value)
 getValue()
 getLow()
 getHigh()

counter.py

Defaults to 1

Applying the Counter Class

•  To the Caesar Cipher program
•  Plug in the Counter object and call its

methods as appropriate…

Applying the Counter Class

•  To the Caesar Cipher program

•  Compare implementations, with and without
using the counter

•  Any drawbacks from using Counter class?

caesar2.py

Extra Credit Functionality Ideas
•  Return the card’s color (Red/Black), using a

constant defined at the top for each color
 What game is this useful for?

•  Boolean methods: isBlack(), isRed()
•  Boolean method: isOppositeColor(card)
•  Boolean method: isSameSuit(card)
•  Create a Hand class (very similar to Deck class)

 Methods that check if all same suit, all same rank

•  Player class for various games …
•  Test/Demonstrate your methods

Due Tuesday before lab

2

•  This is the guy who has to get it done for
Binghamton. He’s their CPU if this is a
computer…. He’s the operating system….
He’s the processing unit, the one that makes
everything happen.
 -- Clark Kellogg on Emanuel Mayben

Quote of the NCAA Tourney

BROADER ISSUE

Broader Issues: Environmental
Monitoring

•  Interdisciplinary projects involving sensor
networks
 Important new-ish CS research area

•  Disclaimer:
 Not a seismologist or a biologist

•  Groups
Overview: Chen, Sara, Ben
Volcano: Aaron, Kevin, Michelle, Mike, Greg, Dylan
Zebra: Charles, Carrie, Russ, Craig, Taylor
Zebra: Thomas, Camille, David, Mallory

Discussion

• What are the CS challenges to the projects?
 Any challenges only applicable to one project?

•  How does the environment impact the CS
research problems/solutions?

•  How did the researchers address these
challenges?
 How would you address the challenges?

Overview of Challenges: Efficiency

•  Some programmers thought that efficiency
didn’t matter anymore
 GB of memory, terabytes of storage on

machines
•  Now: small and embedded devices

 Need to be efficient!
•  Energy in battery powered nodes
•  Amount of data stored (when to delete?)
• When, amount of data transferred

Overview of Challenges: Reliability
•  Data delivery

  Missing data
  Connectivity (good signal?)
  Duplicate data (different sources?)
  Dead sensor nodes
  Calibration of data (time synchronization)

•  Nodes
  Withstand extreme weather, conditions
  Battery life

•  Robustness: recover from software failure/malfunction or
bad data

3

Overview of Challenges

•  Testing
 Accurately simulate conditions (which will vary

widely over long periods of time)
•  Different goals from domain scientists

 CS: push boundaries of sensor networks
•  Example: Improve reliability of data to 95%
•  Seismologists: need 100% reliable data

Overview of Solutions: Efficiency

•  Energy in battery powered nodes
 Solar-powered batteries
 Only transmit if new data

•  Amount of data stored (when to delete?)
 Notify all when data gets to base station

• When, amount of data transferred
 ZebraNet: only transmit if new data

•  Only transmit if zebra gives data to base
 Volcano: only when “interesting” data

Overview of Solutions: Reliability

•  Data delivery
 Redundancy of data -- verify/validate it is correct
 Only send to zebras with history of reporting

back to base station
•  Nodes

 Weather proofing
 Batteries: solar-panels to recharge

Overview of Solutions: Testing

•  Novel simulations!
•  Emulate environment/scenarios on computer
•  Emulate zebras with horses

•  Push software to make sure it “recovers”
appropriately from errors or bad information

