
1

Objectives

•  Search strategies: wrap up
•  Exceptions
•  Broader Issue: Social Network Issues

Apr 1, 2011 Sprenkle - CSCI111 1

Reviewing Lab 10

•  Created two classes
 Used one class within another class
 Tested them

•  Hopefully created .dot file and then graph to see
what you were capable of

•  For a real purpose
•  Extension on User Interface: due Tuesday

before lab
 Need to submit electronic version of your code to

get the extension
Apr 1, 2011 Sprenkle - CSCI111 2

Debugging Note
•  I am an excellent debugger
•  I have made most of your mistakes

 Have seen students make the rest
•  Program doctor

 Symptom: Why would X happen?
•  No output, certain error message, printing on

separate lines, …
 Sometimes need to run some more tests

•  E.g., Print Z … what additional information does that
tell me?

 Diagnosis: They must have Y!
•  No main() function call, …

Apr 1, 2011 Sprenkle - CSCI111 3

Final Exam Details

•  Discuss content later
 Focus since last exam

•  All CS exams are taken in Parmly 405 (our
lab)

•  At your specified time, someone brings the
tests to Parmly 405

•  You have 3 hours to take the exam
•  Can change exam time by using sheet

outside of department office (Parmly 407)

Apr 1, 2011 Sprenkle - CSCI111 4

Course Evaluations

•  Next Wednesday, on Sakai
•  General questions about the course
•  Specific questions

 Feedback on improving the broader issues
component of the course

Apr 1, 2011 Sprenkle - CSCI111 5

Review: Search Using in Review

•  Iterates through a list, checking if the
element is found

•  Known as linear search
•  Implementation:

Apr 1, 2011 Sprenkle - CSCI111 6

def linearSearch(searchlist, key):	
	for elem in searchlist:	
	 	if elem == key:	
	 	 	return True	
	return False	

search.py	

8 5 3 7

0 1 2 3

What are the strengths and weaknesses
of implementing search this way?	

value

pos

2

Review: Linear Search
•  Overview: Iterates through a list, checking if

the element is found
•  Benefits:

 Works on any list
•  Drawbacks:

 Does not tell us where in the list it is
•  What if wanted to do something to that element?
•  Could implement our own version that returns the

position
 Slow, on average: needs to check each element

of list if the element is not in the list
Apr 1, 2011 Sprenkle - CSCI111 7

Review

• What was the other search approach?
• What is the algorithm to search that way?

Apr 1, 2011 Sprenkle - CSCI111 8

Review: Binary Search: Eliminate Half
the Possibilities
•  Repeat until find value (or looked through all

values)
 Guess middle value of possibilities

•  (not middle position)
 If match, found!
 Otherwise, find out too high or too low
 Modify your possibilities

•  Eliminate the possibilities from your number and
higher/lower, as appropriate

•  Known as Binary Search
Apr 1, 2011 Sprenkle - CSCI111 9

Binary Search Implementation

Apr 1, 2011 Sprenkle - CSCI111 10

def search(searchlist, key):	
	low=0	
	high = len(searchlist)-1	
	while low <= high :	
	 	mid = (low+high)/2	
	 	if searchlist[mid] == key:	
	 	 	return mid 	 # return True	
	 	elif key > searchlist[mid]:	
	 	 	low = mid+1	
	 	else:	
	 	 	high = mid-1	
	return -1 	# return False	

search2.py

If you just want to
know if it’s in the list

Binary Search

•  Example of a Divide and Conquer algorithm
 Break into smaller pieces that you can solve

•  Benefits:
 Faster to find elements (especially with larger

lists)
•  Drawbacks:

 Requires that data can be compared
•  __cmp__ method implemented by the class

 List must be sorted before searching
•  Takes time to sort

Apr 1, 2011 Sprenkle - CSCI111 11

Modifying Solution

Apr 1, 2011 Sprenkle - CSCI111 12

def search(searchlist, key):	
	low=0	
	high = len(searchlist)-1	
	while low <= high :	
	 	mid = (low+high)/2	
	 	if searchlist[mid] == key:	
	 	 	return mid 	 # return True	
	 	elif key > searchlist[mid]: # look in upper half	
	 	 	low = mid+1	
	 	else: # look in lower half	
	 	 	high = mid-1	
	return -1 	# return False	

What if we had a list of Cards
instead of a list of integers and
key was a Card?
•  What needs to change?
•  What has to be done/verified

in the Card class?

3

Extensions to Solution

Apr 1, 2011 Sprenkle - CSCI111 13

def search(searchlist, key):	
	low=0	
	high = len(searchlist)-1	
	while low <= high :	
	 	mid = (low+high)/2	
	 	if searchlist[mid] == key:	
	 	 	return mid 	 # return True	
	 	elif key > searchlist[mid]: # look in upper half	
	 	 	low = mid+1	
	 	else: # look in lower half	
	 	 	high = mid-1	
	return -1 	# return False	

Consider what happens when
searchlist is a list of Persons
and key is a network name	

• What if we wanted to check if the
Person’s network matched the key
and return the Person?	

Extensions to Solution

Apr 1, 2011 Sprenkle - CSCI111 14

def search(searchlist, key):	
	low=0	
	high = len(searchlist)-1	
	while low <= high :	
	 	mid = (low+high)/2	
	 	if searchlist[mid] == key:	
	 	 	return mid 	 # return True	
	 	elif key > searchlist[mid]: 	
	 	 	# look in upper half	
	 	 	low = mid+1	
	 	else:	
	 	 	# look in lower half	
	 	 	high = mid-1	
	return -1 	# return False	

Consider what happens when
searchlist is a list of
Persons	
• What if we wanted all the
Persons with the network
that matched the key?

Summary of Extensions to Solution
•  Check the network of the Person at the midpoint
•  Get the Persons before and after that Person in

the list that have the same network and put in a list
•  Represent, handle when no Person matches

•  Note: we’re not implementing “network contains”
 How could we implement that?

Apr 1, 2011 Sprenkle - CSCI111 15

Search Strategies Summary

• Which search strategy should I use under the
various circumstances?
 I have a short list

 I have a long list

 I have a long sorted list

Apr 1, 2011 Sprenkle - CSCI111 16

Search Strategies Summary

• Which search strategy should I use under the
various circumstances?
 I have a short list

•  How short? How many searches? Linear (in)
 I have a long list

•  Linear (in) - because don’t know if in order,
comparable

 I have a long sorted list
•  Binary

Apr 1, 2011 Sprenkle - CSCI111 17

Broader Issue

•  Facebook’s News Feed
•  Privacy/Security

Apr 1, 2011 Sprenkle - CSCI111 18

Callie, Jean Paul, Meng

Yates, Ola, Lida, Nick

Will, Anh, Minh

4

Facebook Stats

•  Facebook is #2 property on Internet—measured
by time users spend on site

•  Over 200 billion monthly page views
•  >3.9 trillion feed actions processed per day
•  Over 15,000 websites use Facebook content
•  In 2004, the shape of the curve plotting user

population as a function of time showed
exponential growth to 2M users. 5 years
later they have stayed on the same exponential
curve with >300M users.

•  Facebook is a global site, with 70% of users
outside US

Apr 1, 2011 Sprenkle - CSCI111 19

From a talk by Jeff Rothschild,
Vice President of Technology at
Facebook in Oct 2009 at UCSD

Broader Issue
•  How does Facebook’s newsfeed work?

 What data structures would you use to implement it?
•  What are the pros and cons of the News Feed?

 Anything addressed since the article?
•  What are a Social Network’s privacy and security

issues?
 How do Facebook/MySpace address these issues?
 Does knowledge of these issues change your

perspective/use of the tools?
•  What about Facebook’s terms of service?
•  Know of any other companies whose algorithms

improved business?
Apr 1, 2011 Sprenkle - CSCI111 20

Discussion

•  Good algorithm  Business success
 Google’s PageRank algorithm

•  Revenue: $16 billion (2007)
 Facebook’s Newsfeed algorithm

•  Revenue: $150 million/year
 Others?

•  Good algorithm  cost savings
 Walmart, FedEx

•  Good analysis  better usability
 Travelocity

Apr 1, 2011 Sprenkle - CSCI111 21

Discussion
•  Algorithm uses

 Lots of data  how is it organized?
 Fancy frequency tables

•  We have used simplified versions
 Data mining, information retrieval
 Weight factors (Deal or No Deal offer)
 AI to adapt the weights

•  Frequency algorithms, most-recent
algorithms: commonly used in OS,
Architecture (caching)

•  Be careful with Facebook (and MySpace and
others) when you’re job hunting

Apr 1, 2011 Sprenkle - CSCI111 22

Next Week

•  Tuesday: Finish UI for Social Networking
App
 Continuing development in Tuesday’s lab

•  Friday: One Laptop Per Child project

Apr 1, 2011 Sprenkle - CSCI111 23

