
1

Objectives

•  __cmp__ method
•  Helper methods
•  Command-line arguments
•  Group Work: Designing Classes

Comparing Objects of the Same Type
•  Special __cmp__ method

 Header: def __cmp__(self, other)	
• other is another object of the same type

 Returns
•  Negative integer if self < other
•  0 if self==other
•  Positive integer if self > other

•  Similar to implementing Comparable interface in
Java

•  Can now use objects in comparison expressions
 <,>,==, sort	

How Would You Compare 2 Cards? Comparing Objects of the Same Type
•  Example Code:

card3.py

def __cmp__(self, other):	
	""" Compares Card objects by their ranks """	

	if self.rank < other.getRank():	
	 	 return -1	
	elif self.rank > other.getRank():	
	 	 return 1	
	else:	
	 	 return 0	

# Could compare by black jack or rummy value	

Helper Methods

•  Sometimes, you may need helper methods
that are part of the class but are not meant to
be part of the class’s API
 Make your code easier but others outside the

class shouldn’t use
•  Convention: method name begins with “_”

Example Helper Methods

•  Only loosely enforces that other can’t use
 Doesn’t show up in help	
 Does show up in dir	

def _isFaceCard(self):	
	if self.rank > 10 and self.rank < 14:	
	 	return True	
	return False	

Helper Method:

def rummyValue(self):	
	if self._isFaceCard():	
	 	return 10	
	elif self.rank == 14:	
	 	return 15	
	else:	
	 	return 5	

In use:

card4.py

2

Summary: Designing Classes

• What does the object/class represent?
•  How to model/represent the class’s data?

 Instance variable
 Data type

• What functionality should objects of the class
have?
 How will others want to use the class?
 Put into methods for others to call (API)

Benefits of Classes

•  Package/group related data into one object
 Can have list of Card objects rather than a list

of ranks and a list of suits
•  Reusing code

 E.g., Don’t need to check if user put in valid key
•  Provide interface, can change underlying

implementation without affecting calling code

Considerations for Using Classes

•  Only use class if you’re using most of its
functionality/information
 Don’t use Counter for validating if a number is

within the valid range
•  Because not using the wrapping/current value

•  Since don’t know implementation, may
inadvertently duplicate code
 Redo something done by class
 Could have efficiency penalties
 But time saved reusing code is usually worth it

Changing Implementations

•  Same API, different implementations
def __init__(self, rank, suit):	

	self.rank = rank	
	self.suit = suit	

def getRank(self):	
	return self.rank	

def getSuit(self):	
	return self.suit	

def __init__(self, rank, suit):	
	self.cardid=rank	
	if suit == “clubs”:	
	 	self.cardid += 13	
	elif suit == “hearts”:	
	 	self.cardid += 26	
	elif suit == “diamonds”:	
	 	self.cardid += 39	

def getRank(self):	
	return (self.cardid-2) % 13 + 2	

def getSuit(self):	
	suits = ["spades", "clubs", "hearts", "diamonds"]	

 whichsuit = (self.cardid-2)/13	
 return suits[whichsuit]	

Tradeoff: Saving
information (memory);
Computing information

card_byid.py

Two Counter Implementations

•  Compare counter.py and counter2.py’s
increment and decrement implementations

COMMAND-LINE
ARGUMENTS

3

Command-line Arguments

• We can run programs from terminal (i.e., the
“command-line”) and from IDLE

•  Can pass in arguments from the command-
line, similar to how we use Unix commands
 Ex: cp <source> <dest>	

 Ex: python maptest.py 3	
•  Makes input easier

 don’t have to retype each time executed

Command-line arguments

Command-line Arguments

•  Using the sys module
 What else did we use from the sys module?

•  How to reference (get value) “<filename>”?

python command_line_args.py <filename>	

List of arguments, named sys.argv	

python maptest.py 3	

Command-line Arguments
•  Using the sys module

•  How to reference (get value) “<filename>”?
 sys.argv is a list of the arguments	
 sys.argv[1] is the filename 	
 sys.argv[0] is the name of the program

command_line_args.py

python command_line_args.py <filename>	

sys.argv	 command_line_args.py <filename>
0 1

Using Command-line Arguments
•  In general in Python:

 sys.argv[0] is the Python program’s name
•  Have to run program from terminal (not from

IDLE)
 Can edit program in IDLE though

 Useful trick:
 If can’t figure out bug in IDLE, try running from

command-line
•  May get different error message

DESIGNING CLASSES

Summary: Designing Classes
• What does the object/class represent?
•  How to model/represent the class’s data?

 Instance variable
 Data type

• What functionality should objects of the class
have?
 How will others want to use the class?
 Put into methods for others to call (API)

•  General Class Design:
 nouns in a problem are classes/objects
 verbs are methods

4

Top-Down Design
•  Break down larger problems into pieces that

you can solve
 Smaller pieces: classes, methods, functions
 Implement smallest pieces and build up

• We’ve been doing this most of the semester
 Typically, program was 1) read input, 2) process

input, 3) print result
•  Started putting Step 2 into >= 1 functions
•  Steps 1 and 3 were sometimes a function

 Now: on larger scale

Design a Social Network Application

•  Reads social network from two files
 One file contains people
 One file contains connections between people

•  Add connections between people
 Symmetric relationship

•  Creates a file to show social network
graphically

•  Provides a user interface to do these things
• What else?

Designing a Social Network Application

•  Break down into pieces
• What classes do we need?

 What data needed to model those classes?
 What functionality do each of those classes

need?
• What does our driver program (user

interface) do?
•  How should we implement those classes/

program?

Designs

•  For each of your classes
 Data
 API

Group 1: Sara, Chen, Michelle, Aaron, Taylor
Group 2: Camille, Mike, Dylan, Craig
Group 3: David, Carrie, Charles, Kevin
Group 4: Russ, Greg, Benjamin, Mallory, Thomas

Social Network Classes/Driver Data
•  Person

  Id
 Name
 Network
 Friends

•  Social Network
 People in network

•  Driver (UI)
 Social network

What are the data types for each
class’s data?

SN Classes/Driver Functionality
•  Person

 Getters (accessors)
 String rep
 Setters

•  Social Network
 Getters
 String rep
 Add people to network
 Add connections
 Writing to a file

•  Driver
 Getting user input to

•  Read people,
connections files

•  Store social network to
file

•  Add a person
•  Add connections

 Summary: call
appropriate methods on
classes to do above

5

Lab 10 Design

•  3 files: person.py, socialnetwork.py,
facespace.py

SocialNetwork
(test functions)

socialnetwork.py

Driver

•  Uses SocialNetwork object
•  Gets command-line arguments
•  Handles UI
•  Calls methods on the SN object

facespace.py

Person
(test functions)

person.py

Problem: People Files
•  Given an people file that has the format

 <num_users>
 <user_id>
 <name>
 <network>
 …
 <user_id_n>
 <name_n>
 <network_n>

•  Write algorithm to create Person objects to
represent each person, add to SocialNetwork object

Problem: Connection Files

•  Given a connection file that has the format
 <user_id> <user_id>
 <user_id> <user_id>
 …
 <user_id> <user_id>

•  Each line represents a friend/connection
 Symmetric relationship
 Each is a friend of the other

•  Update SocialNetwork object

UI Specification
•  Checks if user entered command-line argument

 Default files otherwise
•  Read people, connections from files
•  Repeatedly gets selected options from the user,

until quits
•  Repeatedly prompts for new selection if invalid

option
•  Executes the appropriate code for the selection
•  Stops when user quits
•  Stores the social network into the file

Write pseudocode

UI Pseudocode

Use default files if only one command-line argument
Read people, connections from files
while True:

 display menu options
 prompt for selection
 while invalid option
 print error message
 prompt for selection
 break if selected quit
 otherwise, do selected option

Store library to designated file

Implementation Plan
•  Implement Person class

 Test (write test functions, e.g., testPerson())
•  Implement SocialNetwork class

 Example runs in lab write up
 Note: in general, methods for classes will not prompt for

input (Use input parameters)
 Test

•  Implement driver program

6

Plan for Implementing a Class
• Write the constructor and string

representation/print methods first
• Write function to test them
• While more methods to implement …

 Write method
 Test

•  See counter.py and card.py for example test
functions

Writing Data To File
•  I will provide method that prints your social

network to a file in a particular format (dot)
•  Can display network graphically using dot

program, e.g.,

Broader Issue

•  One of Social Network articles
 News feed
 Privacy/security

