
1

Objectives

• Wrap up dictionaries
•  Default parameters
•  Defining our own classes

Mar 16, 2011 Sprenkle - CSCI111 1

Review: Dictionaries

• What is the syntax for creating a new
dictionary?

•  How do we access a key’s value from a
dictionary?
 What happens if there is no mapping for that

key?
•  How do we create a key  value mapping in

a dictionary?
•  How do we iterate through a dictionary?

Mar 16, 2011 Sprenkle - CSCI111 2

Dictionary: Textbook’s Index

Mar 16, 2011 Sprenkle - CSCI111 3

20

60

45

25

“integer”

“string”

“float”

“list”

Keys

Values

-  Not in alphabetical order	

-  Not in order added to dictionary	

Review: Creating Dictionaries

Syntax:
{<key>:<value>, …, <key>:<value>}

Mar 16, 2011 Sprenkle - CSCI111 4

empty = {}
ascii = { ‘a’:97, ‘b’:98, ‘c’:99, …, ‘z’:122 }

Review: Accessing Values Using Keys

•  Typically, you should check if dictionary has
a key before trying to access the key

•  Or handle if get default back

Mar 16, 2011 Sprenkle - CSCI111 5

if ‘z’ in ascii:	
	value = ascii[‘z’]	

Know mapping exists
before trying to access

val = ascii.get(‘z’) 	
if val is None:	

	# do something …	

Equivalent Solutions

Mar 16, 2011 Sprenkle - CSCI111 6

if key not in dictionary : 	
	dictionary[key] = 1	

else: 	
	value = dictionary[key] + 1	

 dictionary[key] = value	

if key not in dictionary : 	
	dictionary[key] = 1	

else: 	
 dictionary[key] += 1	

2

Lists vs. Dictionaries

Mar 16, 2011 Sprenkle - CSCI111 7

Lists Dictionaries
integer positions (0, …) to

any type of value
Map immutable keys (int, float,

string) to any type of value

Ordered Unordered

Slower to find a value
(in) Fast to find a value (use key)

Fast to print in order Slower to print in order (by key)

Only as big as you
make it

Takes up a lot of space (so can
add elements in the middle)

PARAMETER DEFAULTS

Mar 16, 2011 Sprenkle - CSCI111 8

Defaults for Parameters

•  Can assign a default value to a parameter
 In general, in function header, default

parameter(s) should come after all the
parameters that need to be defined

•  Example: xrange function
 Didn’t have to specify start or increment

when calling the function
 Default start = 0
 Default increment = 1

Mar 16, 2011 Sprenkle - CSCI111 9

Using Default Parameters

•  By default, the rollDie function could
assume that a die has 6 sides

Mar 16, 2011 Sprenkle - CSCI111 10

def rollDie(sides=6):	
	return random.randint(1,sides)	

Assigns a value to sides
ONLY IF not passed a parameter

Examples of calling the function:
rollDie(6)	
rollDie()	
rollDie(12)	

game.py

Show help	

Getting Documentation

• dir: function that returns a list of methods
and attributes in an object
 dir(<type>)

• help: get documentation

•  In the Python shell
 help(<type>)	
 import <modulename>	
 help(<modulename>)	

Mar 16, 2011 Sprenkle - CSCI111 11

Where is Documentation Coming
From?
•  Comes from the code itself in “doc strings”

 i.e., “documentation strings”
•  Doc strings are simply strings after the

function header
 Typically use triple-quoted strings because

documentation goes across several lines

Mar 16, 2011 Sprenkle - CSCI111 12

def verse(animal, sound): 	
	"""prints a verse of Old MacDonald,

filling in the strings for animal and
sound """ 	

3

ABSTRACTIONS

Mar 16, 2011 Sprenkle - CSCI111 13

Abstractions
•  Provide ways to think about program and its

data
 Get the jist without the details

•  Examples we’ve seen
 Functions and methods

•  Used to perform some operation but we don’t need to
know how they’re implemented

 Dictionaries
•  Know they map keys to values
•  Don’t need to know how the keys are organized/

stored in the computer’s memory
 Just about everything we do in this class…

Mar 16, 2011 Sprenkle - CSCI111 14

encodeMessage(phrase, key)	

Classes and Objects

•  Provide an abstraction for how to organize
and reason about data

•  Example: GraphWin class
 Had attributes (i.e., data or state) background

color, width, height, and title
 Each GraphWin object had these attributes

•  Each GraphWin object had its own values for
these attributes

 Used methods (API) to modify the object’s state,
get information about attributes

Mar 16, 2011 Sprenkle - CSCI111 15

Defining Our Own Classes

•  Often, we want to represent data or
information that we do not have a way to
represent using built-in types or libraries

•  Classes provide way to organize and
manipulate data
 Organize: data structures used

•  E.g., ints, lists, dictionaries, other objects, etc.
 Manipulate: methods

Mar 16, 2011 Sprenkle - CSCI111 16

What is a Class?

•  Defines a new data type
•  Defines the class’s attributes (i.e., data or

state) and methods
 Methods are like functions within a class and

are the class’s API

Mar 16, 2011 Sprenkle - CSCI111 17

Object o of
type

Classname

Internal
data hidden
from others

Other objects
manipulate using

methods

Defining a Card Class

•  Create a class that represents a playing card
 How can we represent a playing card?
 What information do we need to represent a

playing card?

Mar 16, 2011 Sprenkle - CSCI111 18

4

Representing a Card object

•  Every card has two attributes:
 Suite (one of “hearts”, “diamonds”, “clubs”,
“spades”)

 Rank
•  2-10: numbered cards
•  11: Jack
•  12: Queen
•  13: King
•  14: Ace

Mar 16, 2011 Sprenkle - CSCI111 19

Defining a New Class

•  Syntax:

Mar 16, 2011 Sprenkle - CSCI111 20

class ClassName:	
	<method definitions>	

Typically starts with
a capital letter	

Keyword	

Card Class (Incomplete)

Mar 16, 2011 Sprenkle - CSCI111 21

class Card:	
 """ A class to represent a standard playing card.	
 The ranks are ints: 2-10 for numbered cards, 11=Jack,
12=Queen, 13=King, 14=Ace.	
 The suits are strings: 'clubs', 'spades', 'hearts',
'diamonds’."""	
 def __init__(self, rank, suit):	
 """Constructor for class Card takes int rank and 	

	 	string suit."""	
 self.rank = rank	
 self.suit = suit	
	
 def getRank(self):	
 "Returns the card’s rank." 		
 return self.rank	
	
 def getSuit(self):	
 "Returns the card’s suit."	
 return self.suit	

Doc String

card.py	

M
et

h
o

d
s Methods are like functions

defined in a class	

Defining the Constructor

• __init__ method is like the constructor
•  In constructor, define instance variables

 Data contained in every object
 Also called attributes or fields

•  Constructor never returns anything

Mar 16, 2011 Sprenkle - CSCI111 22

def __init__(self, rank, suit):	
 """Constructor for class Card takes int rank 	

	 	and string suit."""	
 self.rank = rank	
 self.suit = suit	

First parameter of every method is self	
-  pointer to the object that method

acts on

Instance
variables

Using the Constructor

•  As defined, constructor is called using
Card(<rank>,<suit>)	
 Do not pass anything for the self parameter
 Python handles for us

•  Passes the parameter
automatically

Mar 16, 2011 Sprenkle - CSCI111 23

Object card
of type Card	

rank = ?
suit = ?

def __init__(self, rank, suit):	

Using the Constructor

•  As defined, constructor is called using
Card(<rank>,<suit>)	
 Do not pass anything for the self parameter
 Python handles underneath, passing the

parameter for us automatically
•  Example:

 card = Card(2, “hearts”)	
 Creates a 2 of Hearts card
 Python passes card as self for us

Mar 16, 2011 Sprenkle - CSCI111 24

def __init__(self,	
 	rank, suit):	

Object card
of type Card	

rank = 2
suit = “hearts”

5

Accessor Methods
•  Need to be able to get information about the

object

•  These will get called as card.getRank()
and card.getSuit()	
 Python plugs card in for self	

Mar 16, 2011 Sprenkle - CSCI111 25

def getRank(self):	
	"Returns the card’s rank."	
	return self.rank	

	
def getSuit(self):	
	"Returns the card’s suit."	
	return self.suit	

•  Have self
parameter
•  Return data/

information

Another Special Method: __str__	
•  Returns a string

that describes the
object

•  Whenever you
print an object,
Python checks if the
object’s __str__
method is defined
 Prints result of calling
__str__ method

• str(<object>)
also calls __str__
method

Mar 16, 2011 Sprenkle - CSCI111 26

def __str__(self):	
 """Returns a string
describing the card as 'rank of
suit'."""	
 result = ""	
 if self.rank == 11:	
 result += "Jack"	
 elif self.rank == 12:	
 result += "Queen"	
 elif self.rank == 13:	
 result += "King"	
 elif self.rank == 14:	
 result += "Ace"	
 else:	
 result += str(self.rank)	
 result += " of " + self.suit	
 return result	

Using the Card Class

Mar 16, 2011 Sprenkle - CSCI111 27

def main():	
 c1 = Card(14, "spades")	
 print c1	
 c2 = Card(13, "hearts")	
 print c2	
 	

Invokes the
__str__ method

Displays:
Ace of spades
King of hearts

Object c1 of
type Card	

rank = 14
suit = “spades”

Object c2 of
type Card	

rank = 13
suit = “hearts”

Example: Rummy Value
•  Problem: Add a method to the Card class

called rummyValue that returns the value of
the card in the game of Rummy

•  Procedure for defining a method (similar to
functions)
 What is the input?
 What is the output?
 What is the method header?
 What does the method do?

•  How do we call the method?
Mar 16, 2011 Sprenkle - CSCI111 28 card2.py	

Card API

•  Based on what we’ve seen/done so far, what
does the Card class’s API look like?

Mar 16, 2011 Sprenkle - CSCI111 29

Card API

• Card(<rank>, <suit>)	
• getRank()	
• getSuit()	
• rummyValue()	
• __str__()	

Mar 16, 2011 Sprenkle - CSCI111 30

Instance
Variables:

rank, suit	
Object o of
type Card	

Implementation of
methods is hidden

API

6

Defining a Card Class

•  Create a class that represents a playing card
 How can we represent a playing card?
 What information do we need to represent a

playing card?

Mar 16, 2011 Sprenkle - CSCI111 31

• Do we need a class to
represent a card?
 Does any built-in data

type naturally represent a
card?

Using the Card class

•  Having the Card class means that we can
represent a Card in code

Mar 16, 2011 Sprenkle - CSCI111 32

Now that we have the Card class,
how can we use it?

Using the Card class

•  Let’s write a simplified version of the game of
War
 Basically just part of a round

• What are the rules of War?

Mar 16, 2011 Sprenkle - CSCI111 33 war.py	

Now that we have the Card class,
how can we use it?

Using the Card class

•  Can make a Deck class
 What data should a Deck contain?
 How can we represent that data?

•  To start: write methods __init__ and
__str__	
 What do the method headers look like?

Mar 16, 2011 Sprenkle - CSCI111 34

Now that we have the Card class,
how can we use it?

This Week

•  Jan Cuny’s talk – TODAY at 4 p.m., Science
Center Addition G14
 Optional reception at 3 p.m. in Great Hall
 Answer questions on handout during talk
 No class on Monday – study for exam

•  Lab 8 due Friday
•  Broader Issue: environmental monitoring

using sensor networks

Mar 16, 2011 Sprenkle - CSCI111 35

Creating a Deck Class (Partial)

•  List of Card objects

Mar 16, 2011 Sprenkle - CSCI111 36

from card import *	
	
class Deck:	
 def __init__(self):	
 self.cards = []	
 for suit in ["clubs","hearts","diamonds","spades"]:	
 for rank in xrange(2,15):	
 self.cards.append(Card(rank, suit))	
	
 def __str__(self):	
 deckRep= ""	
 for c in self.cards:	
 deckRep += str(c) + "\n"	
 return deckRep	

Displays cards on
separate lines

Initialize instance variable,
self.cards	

Creates and returns a string

7

Using the Deck Class

•  How can we use the Deck that we just
wrote?

Mar 16, 2011 Sprenkle - CSCI111 37

Deck API

• What methods should our Deck class
provide?

• What do the method headers look like?
• What should they return?
•  How do we implement them?

Mar 16, 2011 Sprenkle - CSCI111 38

Adding Deck Functionality

•  Functionality:
 Shuffle the cards
 Deal one card
 Number of cards remaining

• What do the method headers look like?
• What should they return?
•  How do we implement them?

Mar 16, 2011 Sprenkle - CSCI111 39

Deck API

• Deck()	
• shuffle()	
• draw()	
• deal(num_players, num_cards)	
• numRemaining()	
• isEmpty()	
• __str__()	

Mar 16, 2011 Sprenkle - CSCI111 40

Constructor

Algorithm for Creating Classes

1.  Identify need for a class
2.  Identify state or attributes of a class/an

object in that class
  Write the constructor (__init__) and

__str__ methods
3.  Identify methods the class should provide

  How will a user call those methods
(parameters, return values)?

•  Develop API
  Implement methods

Mar 16, 2011 Sprenkle - CSCI111 41

