
1

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 11

Objectives

• Creating your own functions

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 22

Why write functions?
• Allows you to break up a hard problem into smaller,

more manageable parts

• Makes your code easier to understand

• Hides implementation details (abstraction)
 Provides interface (input, output)

• Makes part of the code reusable so that you:
 Only have to type it out once

 Can debug it all at once

• Isolates errors

 Can make changes in one function (maintainability)

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 33

Functions
• Function is a black box

 Implementation doesn’t matter
Only care that function generates appropriate

output, given appropriate input

• Example:
Didn’t care how raw_input function was

implemented

raw_inputinput output
prompt user_input

We saved output
in a variable

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 44

Syntax of Function Definition

def ftpsToMPH(ftps) :
SECOND_TO_HOUR = 3600

FEET_TO_MILE = (1.0/5280)

result = ftps * SECOND_TO_HOUR * FEET_TO_MILE
return result

Keyword Function
Name

Input Name/
Parameter

B
o

d
y

(o
r

fu
n

ct
io

n
d

ef
in

it
io

n
)

Keyword:
How to give output

Function header

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 55

Where are functions in the code?

• Can be defined in script before use (calling it)

• Could be in separate module
 Import to use in script

Example: menu.py

Define in modules when functions are reusable
for many different programs
• Benefits: shorter code (no function defns), isolate

testing of function, write “test driver” scripts to test
functions separately from use in script

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 66

Parameters

• The inputs to a function are called
parameters or arguments

• When calling/using functions, parameters
must appear in same order as in the function
header
Example: round(x, n)

• x is float to round

• n is integer of decimal places to round to

2

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 77

Parameters
• Formal Parameters are the variables named

in the the function definition.
• Actual Parameters are the variables or

literals that really get used when the function
is called.

 def round(x, n) :
roundCelc = round(celc,2)

Formal & actual parameters must match in
order, number, and type!

Formal Actual

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 88

Practice: Old McDonald
• A verse of the song goes

Old McDonald had a farm, E-I-E-I-O
And on that farm he had a dog, E-I-E-I-O
With a ruff, ruff here
And a ruff, ruff there
Here a ruff, there a ruff, everywhere a ruff, ruff
Old McDonald had a farm, E-I-E-I-O

• Write a function to print a verse
 Why does it make sense to write a function for the

verse?
 What is input?
 What is output?

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 99

Function Output

• When the code reaches a statement like

return x

x is the output returned to the place where
function called and the function stops
For functions that don’t have explicit output,

return does not have a value with it
• return

• Optional: don’t need to have output/return

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 1010

Flow of Control

print “The max is”, z

z=max(x, y)

Gets replaced with
function’s output

x=2

y = input(“Enter …”)

To
input
function

result=num1

num1 >= num2

result=0

True False

result=num2

return result

def max(num1, num2) :

num1 gets the value of x
num2 gets the value of y

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 1111

Flow of Control: Using return
def max(num1, num2) :

if num1 >= num2 :
return num1

return num2

x=2
y=6
z = max(x, y)

return num1

num1 >= num2

True

return num2

def max(num1, num2) :

return to caller

Implicit false branch:
Only way got here is
if the condition was

not true

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 1212

Using return

• Use return to “shortcut” function
Return output as soon as know answer

Compare efficiency of two functions in
binaryToDecimal.py

3

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 1313

Passing Parameters

• Only copies of the actual parameters are
given to the function

• The actual parameters in the calling code do
not change.
Showed example with swap function

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 1414

Program Organization

• Functions can go inside of program script
Defined before use

• Functions can go inside a separate module
Reduces code in main script

Easier to reuse by importing from a module

Maintains the “black box”

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 1515

Writing a main function

• In many languages, you put the “driver” for
your program in a main function
You can (and should) do this in Python as well

• Typically main methods go at the top of your
program
Readers can quickly see what program does

• main usually takes no arguments
Example: def main():

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 1616

Using a main Function

• Call main() at the bottom of your program

• Side-effect:
Do not need to define functions before main

function

main can “see” other functions

Note that main is a function that calls other
functions
• Any function can call other functions

oldmac.py

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 1717

Example program with a main()

• oldmac.py

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 1818

Function Variables
def main() :

x=2
y=6
max = max(x, y);

def max(num1, num2) :
max = num1
if num2 >= num1 :

max = num2
return max

main()

Why can we name two
variables max?

4

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 1919

Function Variables
def main() :

x=2
y=6
max = max(x, y);

def max(num1, num2) :
max = num1
if num2 >= num1 :

max = num2
return max

main()
main

The stack

x 2
y 6
max --

Function names are like last names

Variable names are
like first names

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 2020

Function Variables
def main() :

x=2

y=6

max = max(x, y);

def max(num1, num2) :

max = num1

if num2 >= num1 :
max = num2

return max

main()

main
x 2
y 6
max --

max
num1 2
num2 6

Called the function max, so need
to add its parameters to the stack

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 2121

Function Variables
def main() :

x=2

y=6

max = max(x, y);

def max(num1, num2) :

max = num1

if num2 >= num1 :
max = num2

return max

main()

main
x 2
y 6
max --

max
num1 2
num2 6
max 2

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 2222

Function Variables
def main() :

x=2

y=6

max = max(x, y);

def max(num1, num2) :

max = num1

if num2 >= num1 :
max = num2

return max

main()

main
x 2
y 6
max --

max
num1 2
num2 6
max 6

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 2323

Function Variables
def main() :

x=2

y=6

max = max(x, y);

def max(num1, num2) :

max = num1

if num2 >= num1 :
max = num2

return max

main()

main
x 2
y 6
max 6

Function max returned, so we no
longer have to keep track of its
variables on the stack.

The lifetime of those variables is
over.

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 2424

Variable Scope
• Functions can have the same parameter and

variable names as other functions
 Need to look at the variable’s scope to determine which

one you’re looking at

 Use the stack to figure out which variable you’re using

• Scope levels
 Local scope (also called function scope)

• Can only be seen within the function

 Global scope (also called file scope)
• Whole program can access

• More on these later

scope.py

5

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 2525

Practice

• What is the output of this program?
Example: user enters 4

def square(n):
 return n * n

def main():
 num = input("Enter a number to be squared: ")
 square(num)
 print "The square is: ", num

main()

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 2626

Writing a “good” function

• Should be an “intuitive chunk”
Doesn’t do too much or too little

• Should be reusable

• Always have comment that tells what
the function does

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 2727

Writing a “good” function
• Precondition: Things that must be true in order for

the function to work correctly
 E.g., num must be even

• Postcondition: Things that will be true when
function finishes (if precondition is true)
 E.g., the returned value is the max

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 2828

Writing good comments for functions

• Good style: Each function must have a
comment
Written at a high-level

 Include the precondition, postcondition

Describe the parameters (their types) and the
result (precondition and postcondition may cover
this)

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 2929

Goals of Good Programs: Extensibility

• Should be able to easily extend your
program’s use
Constants

User-input

Functions

• Modularity
Functions that can be reused in other code

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 3030

Creating Modules

• Unlike functions, no special keyword to
define a module
Modules are named by the filename

Example, oldmac.py
• In Python shell: import oldmac

• Explain what happened

6

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 3131

Creating Modules

• So that our program doesn’t execute when it
is imported in a program, at bottom, add
if __name__ == '__main__’ :

 main()

• Then, to call main function
oldmac.main()

• Note the files now listed in the directory

Not important how
this works; just know
when to use

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 3232

Creating Modules

• Then, to call main function
oldmac.main()

• Why would you want to do this?
Use main function as driver to test functions in

module

• To access one of the defined constants
oldmac.EIEIO

Oct 15, 2007Oct 15, 2007 Sprenkle - CS111Sprenkle - CS111 3333

Broader Issues Reading

• Microsoft Excel 2007 bug

