
Oct 31, 2007 Sprenkle - CS111 1

Objectives

• Defining our own classes

Oct 31, 2007 Sprenkle - CS111 2

Lots of Different Ways to Do Things

• Input/Output files for Problem 2

• Writing numbers to file

Oct 31, 2007 Sprenkle - CS111 3

Lots of Different Ways to Do Things

• Input/Output files for Problem 2

!Hardcode into file

!Make a loop

! Input from user

• Change extension from “txt” to “dat”

• Request output file

• Writing numbers to file

!Use str constructor

!Use format specifier

Oct 31, 2007 Sprenkle - CS111 4

Classes

• Made up of data and methods

• Methods are functions within a class

!Putting a function inside a class makes it a
method

• Methods are our API

Oct 31, 2007 Sprenkle - CS111 5

Defining a Card Class

• Create a class that represents a playing card

!What do we need to represent a playing card?

!What information do we need?

Oct 31, 2007 Sprenkle - CS111 6

Defining a Card Class

• Create a class that represents a playing card

!Suite (hearts, diamonds, clubs, spades)

!Rank

• 2-10: numbered cards

• 11: Jack

• 12: Queen

• 13: King

• 14: Ace

• Syntax:
class <class-name>:
 <method definitions>

Typically starts with
a capital letter

Oct 31, 2007 Sprenkle - CS111 7

Card Class (Partial)
class Card:
 """
 A class to represent a standard playing card. The ranks are ints:
 2-10 for numbered cards, 11=Jack, 12=Queen, 13=King, 14=Ace.
 The suits are strings: 'clubs', 'spades', 'hearts', 'diamonds'.
 """
 def __init__(self, rank, suit):
 "Constructor for class Card takes int rank and string suit."
 self.rank = rank
 self.suit = suit

 def getRank(self):
 "Returns rank."
 return self.rank

 def getSuit(self):
 "Returns suit."
 return self.suit

Doc String

Methods with special
meaning begin and end with

two underscores

card.py Oct 31, 2007 Sprenkle - CS111 8

Defining the Constructor

• __init__ method is the constructor

• In constructor, define instance variables

!Data contained in every object

!Also called attributes or fields

• For our Card objects, the data is the rank
and suit

def __init__(self, rank, suit):

 "Constructor for class Card takes int rank and string suit."

 self.rank = rank

 self.suit = suit

First parameter of every method is self

- pointer to the object that
method acts on

Instance variables

Oct 31, 2007 Sprenkle - CS111 9

Using the Constructor

• In this case, constructor is called using

!Card(<rank>,<suit>)

• Do not pass anything for the self parameter

• Python handles underneath, passing the

parameter for us automatically

• Example:

!card = Card(2, “hearts”)

!Underneath, Python passes card for us for

self parameter

Oct 31, 2007 Sprenkle - CS111 10

Another Special Method: __str__

• Returns a string that
describes the object

• Whenever you print
an object, Python
checks if you have
defined the __str__
method to see what
should be printed

 def __str__(self):
 “””Returns a string describing
 the card as 'rank of suit'.”””
 result = ""
 if self.rank == 11:
 result += "Jack"
 elif self.rank == 12:
 result += "Queen"
 elif self.rank == 13:
 result += "King"
 elif self.rank == 14:
 result += "Ace"
 else:
 result += str(self.rank)
 result += " of " + self.suit
 return result

Oct 31, 2007 Sprenkle - CS111 11

Using the Card Class

def main():
 c1 = Card(14, "spades")
 print c1
 c2 = Card(13, "hearts")
 print c2

Invokes the
__str__ method

Outputs:

Ace of spades
King of hearts

Oct 31, 2007 Sprenkle - CS111 12

Example: Black Jack Value

• Add a method to the Card class called
blackJackValue that returns the value of the
card in the game of black jack.

!Have Jack, Queen, and King be worth 10

!Ace is worth 1

!All the other cards have the value of their rank

• What is the method header?

card2.py

Oct 31, 2007 Sprenkle - CS111 13

Example: Rummy Value

• Add a method to the Card class called
rummyValue that returns the value of the
card in the game of Rummy

card2.py Oct 31, 2007 Sprenkle - CS111 14

Card API

Oct 31, 2007 Sprenkle - CS111 15

Card API

• Card(<rank>, <suit>)

• getRank()

• getSuit()

• blackJackValue()

• rummyValue()

Object o of
type Card

suit
rank

Instance
Variables

Implementation hidden

Oct 31, 2007 Sprenkle - CS111 16

Using the Card class

• Now that we have the Card class, how can
we use it?

• Can now make a Deck class

!What data should a Deck contain?

!How can we represent that data?

• First, write methods __init__ and __str__

!What do the function headers look like?

Oct 31, 2007 Sprenkle - CS111 17

Creating a Deck Class (Partial)

• List of Card objects

from card import *

class Deck:
 def __init__(self):
 self.cards = []
 for suit in ["clubs","hearts","diamonds","spades"]:
 for rank in range(2,15):
 self.cards.append(Card(rank, suit))

 def __str__(self):
 result = ""
 for c in self.cards:
 result += c.__str__() + "\n"
 return result

Oct 31, 2007 Sprenkle - CS111 18

Adding Deck Functionality

• Functionality:

!Shuffle the cards

!Deal one card

!Number of cards remaining

• What do the method headers look like?

• Any special cases to check?

Oct 31, 2007 Sprenkle - CS111 19

Deck API

Oct 31, 2007 Sprenkle - CS111 20

Looking Ahead …

• I’m going to a conference next Tuesday

!Should have email access after I arrive

!Ask questions before I leave!

• Guest lecturer for lab -- a different type of lab

• Wednesday: no class

! finish up lab or study for second midterm

• Friday: midterm

Oct 31, 2007 Sprenkle - CS111 21

Midterm Topics

• Everything on first midterm

!Keep using those building blocks

• Defining/using our own functions

• Creating/using modules

• Files - opening, reading, writing

• Lists - creating, processing, using

• Dictionaries - creating, processing, using

• Using an API

• Defining/using our own classes

