
1

Objectives

•  Defining Functions

Feb 28, 2011 Sprenkle - CSCI111 1

Functions

• We've used functions
 Built-in functions: len, input, raw_input
 Functions from modules, e.g., math and random	

•  Today, we'll learn how to define our own

functions!

Feb 28, 2011 Sprenkle - CSCI111 2

Review: Functions
•  Function is a black box

 Implementation doesn't matter
 Only care that function generates appropriate

output, given appropriate input
•  Example:

 Didn't care how raw_input function was
implemented

 Use: user_input = raw_input(prompt)	

Feb 28, 2011 Sprenkle - CSCI111 3

prompt user_input	
Saved output in a variable

raw_input	Input
(arguments)

Output
(return value)

Creating Functions

• A function can have
 0 or more inputs
 0 or 1 outputs

• When we define a function, we know its
inputs and if it has output

Feb 28, 2011 Sprenkle - CSCI111 4

function	Input
(arguments)

Output
(return value)

Writing a Function

•  I want a function that averages two numbers

Feb 28, 2011 Sprenkle - CSCI111 5

• What is the input to this function?	

• What is the output to this function?	

Writing a Function

•  I want a function that averages two numbers
• What is the input to this function?

 The two numbers
• What is the output to this function?

 The average of those two numbers, as a float

Feb 28, 2011 Sprenkle - CSCI111 6

These are key questions to ask yourself when
designing your own functions.	

•  Inputs: parameters	

• Output: what is getting returned	

2

Comparison of Code Using Functions

• Without functions: menu_withoutfunc.py	
• With functions: menu_withfunctions.py	

Feb 28, 2011 Sprenkle - CSCI111 7

How do the two programs compare in terms of	

•  Length? (all code and just the “main” code)	

•  Readability?	

Why Write Functions?
•  Allows you to break up a hard problem into smaller,

more manageable parts
•  Makes your code easier to understand
•  Hides implementation details (abstraction)

 Provides interface (input, output)
•  Makes part of the code reusable so that you:

 Only have to write function code once
 Can debug it all at once

•  Isolates errors
 Can make changes in one function (maintainability)

Feb 28, 2011 Sprenkle - CSCI111 8

Similar to benefits of OO Programming	

Refactoring

•  Duplicated code is often a symptom of when
we should make a function
 Called a “code smell”

•  Example code – lab2, prob4
 Any place to make a function?
 Any place that has some useful code that we

may want to reuse?

Feb 28, 2011 Sprenkle - CSCI111 9

Convert meters to miles

•  Input: meters
•  Output: miles

Feb 28, 2011 Sprenkle - CSCI111 10

metersToMiles	input output
meters miles

Syntax of Function Definition

Feb 28, 2011 Sprenkle - CSCI111 11

def metersToMiles(meters):	
	METERS_TO_MILES = .0006215 	
	miles = meters * METERS_TO_MILES	
	return miles	

Keyword Function
Name

Input Name/
Parameter

B
od

y
(o

r
fu

nc
tio

n
de

fin
iti

on
)

Keyword:
How to give output

Function header

Output

Calling your own functions

miles = metersToMiles(100)	
	
	
	
	

Feb 28, 2011 Sprenkle - CSCI111 12

Output is
assigned to

miles	
Function

Name
Input

Same as calling someone else's functions …	

3

Functions: Similarity to Math

•  In math, a function definition looks like:
 f(x) = x2 + 2

•  Plug values in for x
 f(3) = 32 + 2 = 11
 3 is your input, assigned to x
 11 is output

Feb 28, 2011 Sprenkle - CSCI111 13

Parameters

•  The inputs to a function are called
parameters or arguments, depending on
the context

• When calling/using functions, arguments
must appear in same order as in the function
header
 Example: round(x, n)	

•  x is the float to round
•  n is int of decimal places to round x to

Feb 28, 2011 Sprenkle - CSCI111 14

Parameters

•  Formal Parameters are the variables named
in the function definition

•  Actual Parameters or Arguments are the
variables or literals that really get used when
the function is called.

Feb 28, 2011 Sprenkle - CSCI111 15

Formal
Actual

Defined: def round(x, n) :	
Use: roundCelc = round(celc, 2)	

Formal & actual parameters must match
in order, number, and type!	

Passing Parameters

•  Only copies of the actual parameters are
given to the function for immutable data
types
 Immutable types: what we've talked about so far

•  Strings, integers, floats

•  The actual parameters in the calling code do
not change

Feb 28, 2011 Sprenkle - CSCI111 16

Function Output

• When the code reaches a statement like
	 	return x	

 The function stops executing
 x is the output returned to the place where the

function was called
•  For functions that don't have explicit output,
return does not have a value with it, e.g.,

 Optional: don't need to have return	
•  Function automatically returns at the end

Feb 28, 2011 Sprenkle - CSCI111 17

return	

Example Functions
• userPBPref(username)	

 For the given user, returns the amount of PB
they want on their sandwich

 Input: ?
 Output: ?	

• spread(condiment, amount_in_TB,
sandwich)	
 Spreads given amount of condiment on

sandwich
 Input: ?
 Output: ?

Feb 28, 2011 Sprenkle - CSCI111 18

4

Example Functions
• userPBPref(username)	

 For the given user, returns the amount of PB they
want on their sandwich

  Input: username	
 Output: the user’s PB preference	

• spread(condiment, amount_in_TB, sandwich)	
 Spreads given amount of condiment on sandwich
  Input: condiment, amount_in_TB, sandwich	
 Output: no output

•  State of sandwich changes  now has condiment on
it

Feb 28, 2011 Sprenkle - CSCI111 19

CONTROL FLOW WITH
FUNCTIONS

Feb 28, 2011 Sprenkle - CSCI111 20

Flow of Control
• When code calls a function, the program

jumps to the function and executes it
•  After executing the function, the computer

returns to the same place in the calling code
where it left off

Feb 28, 2011 Sprenkle - CSCI111 21

# Make conversions	
dist1 = 100	
miles1 = metersToMiles(dist1)	

dist1 (100) is assigned to meters
Calling code: def metersToMiles(meters) :	

	M2MI=.0006215	
	miles = meters * M2MI	
	return miles	

Flow of Control

Feb 28, 2011 Sprenkle - CSCI111 22

def max(num1, num2):	
	result = 0	
	if num1 >= num2:	
	 	result = num1	
	else:	
	 	result = num2	
	return result	

	
x = 2	
y = input(“Enter a number: ”)	
z = max(x, y)	
print “The max is”, z	

flow_example.py	

Flow of Control

Feb 28, 2011 Sprenkle - CSCI111 23

def max(num1, num2):	
	result = 0	
	if num1 >= num2:	
	 	result = num1	
	else:	
	 	result = num2	
	return result	

	
x = 2	
y = input(“Enter a number: ”)	
z = max(x, y)	
print “The max is”, z	

What does this function do?	

Program starts executing here

Function definitions:	

Save functions for later use, ���

nothing executed	

Flow of Control

Feb 28, 2011 Sprenkle - CSCI111 24

def max(num1, num2):
 result = 0
 if num1 >= num2:
 result = num1
 else:
 result = num2
 return result

x = 2
y = input(“Enter a number”)
z = max(x, y)
print “The max is”, z

def max(num1, num2):	
	result = 0	
	if num1 >= num2:	
	 	result = num1	
	else:	
	 	result = num2	
	return result	

	
x = 2	
y = input(“Enter a number: ”)	
z = max(x, y)	
print “The max is”, z	

Program starts executing here z=max(x, y)

x=2

y = input(“Enter …”)

To
input
function

5

Flow of Control

Feb 28, 2011 Sprenkle - CSCI111 25

print “The max is”, z

z=max(x, y)

Gets assigned	

max's output	

x=2

y = input(“Enter …”)

To input
function	

result=num1

num1 >= num2

result=0

True False

result=num2

return result	

def max(num1, num2):	

num1 is set to value of x	
num2 is set to value of y	

def max(num1, num2):	
	result = 0	
	if num1 >= num2:	
	 	result = num1	
	else:	
	 	result = num2	
	return result	

“ca
lls”

 max

functio
n	

return to caller	

Flow of Control: Using return

Feb 28, 2011 Sprenkle - CSCI111 26

return num1	

num1 >= num2
True False

return num2	

def max(num1, num2):	

return to caller

def max(num1, num2):	
	if num1 >= num2:	
	 	return num1	
	else:	
	 	return num2	

Is this implementation of
the function correct?	

Flow of Control: Using return	

Feb 28, 2011 Sprenkle - CSCI111 27

return num1	

num1 >= num2
True

return num2	

def max(num1, num2):	

return to caller

Implicit false branch:
Only way got here is
if the condition was

not True	

def max(num1, num2):	
	if num1 >= num2:	
	 	return num1	
	return num2	

Is this implementation of
the function correct?	

Function Input and Output

Feb 28, 2011 Sprenkle - CSCI111 28

def printVerse(animal, sound):	
 print BEGIN_END + EIEIO	
 print "And on that farm he had a " + animal + EIEIO	
 print "With a " + sound + ", " + sound + " here"	
 print "And a " + sound + ", " + sound + " there"	
 print "Here a", sound	
 print "There a", sound	
 print "Everywhere a " + sound + ", " + sound	
 print BEGIN_END + EIEIO	
 print	

•  What does this function do?	

•  Identify function's input and output	

Function Input and Output

•  2 inputs: animal and sound
•  0 outputs

 Displays something but does not return
anything

Feb 28, 2011 Sprenkle - CSCI111 29

def printVerse(animal, sound):	
 print BEGIN_END + EIEIO	
 print "And on that farm he had a " + animal + EIEIO	
 print "With a " + sound + ", " + sound + " here"	
 print "And a " + sound + ", " + sound + " there"	
 print "Here a", sound	
 print "There a", sound	
 print "Everywhere a " + sound + ", " + sound	
 print BEGIN_END + EIEIO	
 print	

Function exits here

PROGRAM ORGANIZATION

Feb 28, 2011 Sprenkle - CSCI111 30

6

Where are Functions Defined?

•  Functions can go inside of program script
 If no main() function, defined before use/called

•  Example from lab2.4.py
 If main() function, defined anywhere in script

•  More in a bit…

•  Functions can go inside a separate module
 Example: menu.py	
 More on Wednesday

Feb 28, 2011 Sprenkle - CSCI111 31

Program Organization: main function

•  In many languages, you put the “driver” for
your program in a main function
 You can (and should) do this in Python as well

•  Typically main functions are defined at the
top of your program
 Readers can quickly see overview of what

program does
• main usually takes no arguments

 Example:

Feb 28, 2011 Sprenkle - CSCI111 32

def main():	

Using a main Function

•  Call main() at the bottom of your program

•  Side effects:
 Do not need to define functions before main

function
 main can “see” other functions
 Note that main is a function that calls other

functions
•  Any function can call other functions

Feb 28, 2011 Sprenkle - CSCI111 33

Example program with a main()

•  oldmac.py

Feb 28, 2011 Sprenkle - CSCI111 34

REFACTORING

Feb 28, 2011 Sprenkle - CSCI111 35

Refactoring

•  After you’ve written some code and it passes
all your test cases, the code is probably still
not “perfect”

•  Refactoring is the process of improving your
code without changing its functionality
 Organization
 Abstraction

•  Example: Easier to read, change
 Easier to test

•  Part of iterative design/development process
Feb 28, 2011 Sprenkle - CSCI111 36

7

Refactoring: Converting Functionality
into Functions
1.  Identify functionality that should be put into a

function
 What is the function’s input?
 What is the function’s output?

2. Define the function
 Write comments (more in a bit)

3. Call the function where appropriate
4. Create a main function that contains the

“driver” for your program
 Put at top of program

5. Call main at bottom of program
binaryToDecimal.py	

Feb 28, 2011 Sprenkle - CSCI111 37

Refactoring: Converting Functionality
into Functions
• binaryToDecimal.py Functionality

1.  Converting from binary to decimal
2.  Checking if a string contains only binary

numbers

Feb 28, 2011 Sprenkle - CSCI111 38

Summary: Why Write Functions?
•  Allows you to break up a hard problem into smaller,

more manageable parts
•  Makes your code easier to understand
•  Hides implementation details (abstraction)

 Provides interface (input, output)
•  Makes part of the code reusable so that you:

 Only have to write function code once
 Can debug it all at once

•  Isolates errors
 Can make changes in one function (maintainability)

Feb 28, 2011 Sprenkle - CSCI111 39

Similar to benefits of OO Programming	

This Week

•  Tuesday: Lab 6
 More String practice: methods and more
 Encryption – Caesar Ciphers
 Functions

•  No class Friday: SSA
 No Broader Issue
 Opportunities for extra credit

Feb 28, 2011 Sprenkle - CSCI111 40

Alternative Approach to Development

•  Create overview, define functions later
 Top-down approach

•  More later…
Feb 28, 2011 Sprenkle - CSCI111 41

def main():	
 # get the binary number from the user, as a string	
 binNum = raw_input("Please enter a binary number: ")	
 isBinary = checkBinary(binNum)	
 while not isBinary : # equivalent to isBinary == False	
 print binNum, "is not a binary number."	
 binNum = raw_input("Please enter a binary number: ")	
 isBinary = checkBinary(binNum)	
 	
 decVal = binaryToDecimal(binNum) 	
 print binNum, "is", decVal 	

Writing Comments for Functions

•  Good style: Each function must have a
comment
 Describes functionality at a high-level
 Include the precondition, postcondition
 Describe the parameters (their types) and the

result of calling the function (precondition and
postcondition may cover this)

Feb 28, 2011 Sprenkle - CSCI111 42

8

Writing Comments for Functions

•  Include the function's pre- and post-
conditions

•  Precondition: Things that must be true for
function to work correctly
 E.g., num must be even

•  Postcondition: Things that will be true when
function finishes (if precondition is true)
 E.g., the returned value is the max

Feb 28, 2011 Sprenkle - CSCI111 43

Example Comment

•  Describes at high-level
•  Describes parameters

Feb 28, 2011 Sprenkle - CSCI111 44

# prints a verse of Old MacDonald, plugging in the	
# animal and sound parameters (which are strings), 	
# as appropriate	
def printVerse(animal, sound):	
 print BEGIN_END + EIEIO	
 print "And on that farm he had a " + animal + EIEIO	
 …	

# pre: binary_string is a string that contains only	
# 0s and 1s	
# post: returns the decimal value for the binary	
# string	
def binaryToDecimal(binary_string):	
	 	dec_value = 0	

 for pos in xrange(len(binNum)):	
		 	exp = len(binNum) - pos – 1	
		 	bit = int(binNum[pos])	

 	
 	 	# compute the decimal value of this bit	
 	 	val = bit * 2 ** exp	
 	
 	 	# add it to the decimal value	
 	 	decVal += val	
	
 return dec_value	

Pre/Post Conditions

Feb 28, 2011 Sprenkle - CSCI111 45

Review: Wheel of Fortune
•  Practice: Modify displayed puzzle to handle

punctuation
 Include punctuation in displayed puzzle
 Original code:

Feb 28, 2011 Sprenkle - CSCI111 46

displayedPuzzle = ””	
for char in puzzle:	
 if char.isalpha():	
 displayedPuzzle += "_"	
 else:	
 displayedPuzzle += char	
 return displayedPuzzle	

Program with main() and Functions
def main():	
	print 	
	print "This program converts from binary to decimal numbers.”	
	print	

	
	binary_string = raw_input("Enter a number in binary: ")	

 	
	while not isBinary(binary_string) :	
		 	print "Sorry, that is not a binary string”	
		 	binary_string = raw_input("Enter a number in binary: ")	

	
	decValue = binaryToDecimal(binary_string)	
	print "The decimal value is”, decValue	

	

Feb 28, 2011 Sprenkle - CSCI111 47

Presents overview of what program does (hides details)	

Program’s driver goes at top

