
1

Objectives

•  More on Functions
 Scope, variable lifetime

•  Modules

March 2, 2011 Sprenkle - CSCI111 1

Lab Review

•  Combinations of building blocks
•  Faster recognition of how to solve

 String without spaces  accumulate string!
•  Iterative problem solving

March 2, 2011 Sprenkle - CSCI111 2

Assign.

print	

import	

for	

String���
Operations	

Numeric���
Operations	

functions	

if	 while	

methods	objects	

Review: Functions

• What is the keyword to create a new
function?

• What is the keyword to give output from a
function?

•  How do we give input to a function?
• Why write functions?

March 2, 2011 Sprenkle - CSCI111 3

Review: Functions

•  In general, a function can have
 0 or more inputs (the parameters)
 0 or 1 outputs (what is returned)

• When we define a function, we know its
inputs and if it has output

March 2, 2011 Sprenkle - CSCI111 4

function_name	input output

Review: Syntax of Function Definition

March 2, 2011 Sprenkle - CSCI111 5

def metersToMiles(meters):	
	METERS_TO_MILES = .0006215 	
	miles = meters * METERS_TO_MILES	
	return miles	

Keyword Function
Name

Input Name/
Parameter

B
od

y
(o

r
fu

nc
tio

n
de

fin
iti

on
)

Keyword:
How to give output

Function header

Output

Review: Parameters

•  Formal Parameters are the variables named
in the function definition

•  Actual Parameters or Arguments are
variables or literals that really get used when
the function is called.

March 2, 2011 Sprenkle - CSCI111 6

Formal
Actual

Defined: def round(x, n) :	
Use: roundCelc = round(celc, 2)	

Formal & actual parameters must match
in order, number, and type!	

2

Review: Function Output

• When the code reaches a statement like
	 	return x	
 the function stops executing and
 x is the output returned to the place where
function was called

•  For functions that don’t have explicit output,
return does not have a value with it, e.g.,
 return	
 Optional: don’t need to have return	

March 2, 2011 Sprenkle - CSCI111 7

Function Input and Output

• What is the input and output to this function?

March 2, 2011 Sprenkle - CSCI111 8

def metersToMiles(meters) :	
	METERS_TO_MILES = .0006215 	
	miles = meters * METERS_TO_MILES	
	return miles	

Function Input and Output

•  1 input: meters
•  1 output: the converted miles

March 2, 2011 Sprenkle - CSCI111 9

def metersToMiles(meters) :	
	METERS_TO_MILES = .0006215 	
	miles = meters * METERS_TO_MILES	
	return miles	

Function Input and Output

•  Identify input and output

March 2, 2011 Sprenkle - CSCI111 10

def printVerse(animal, sound):	
 print BEGIN_END + EIEIO	
 print "And on that farm he had a " + animal + EIEIO	
 print "With a " + sound + ", " + sound + " here"	
 print "And a " + sound + ", " + sound + " there"	
 print "Here a", sound	
 print "There a", sound	
 print "Everywhere a " + sound + ", " + sound	
 print BEGIN_END + EIEIO	
 print	

Function Input and Output

•  2 inputs: animal and sound
•  0 outputs

 Displays something but does not return
anything

March 2, 2011 Sprenkle - CSCI111 11

def printVerse(animal, sound):	
 print BEGIN_END + EIEIO	
 print "And on that farm he had a " + animal + EIEIO	
 print "With a " + sound + ", " + sound + " here"	
 print "And a " + sound + ", " + sound + " there"	
 print "Here a", sound	
 print "There a", sound	
 print "Everywhere a " + sound + ", " + sound	
 print BEGIN_END + EIEIO	
 print	

Function Input and Output

•  Input? Output?

March 2, 2011 Sprenkle - CSCI111 12

def printMenu():	
 print "You have some options for what to do: "	
 print "Enter an 'F' to find a song"	
 print "Enter an 'S' to sort by Song title"	
 print "Enter an 'A' to sort by Album"	
 print "Enter an 'R' to sort by aRtist name"	
 print "Enter an 'H' to list your options again"	
 print "Enter a 'Q' to quit"	

3

Function Input and Output

•  0 inputs and 0 outputs
 Again, it displays something but does not
return anything

March 2, 2011 Sprenkle - CSCI111 13

def printMenu():	
 print "You have some options for what to do: "	
 print "Enter an 'F' to find a song"	
 print "Enter an 'S' to sort by Song title"	
 print "Enter an 'A' to sort by Album"	
 print "Enter an 'R' to sort by aRtist name"	
 print "Enter an 'H' to list your options again"	
 print "Enter a 'Q' to quit"	

Alternative Approach to Development

•  Create overview, define functions later
 Top-down approach

•  More later…
Feb 28, 2011 Sprenkle - CSCI111 14

def main():	
 # get the binary number from the user, as a string	
 binNum = raw_input("Please enter a binary number: ")	
 isBinary = checkBinary(binNum)	
 while not isBinary : # equivalent to isBinary == False	
 print binNum, "is not a binary number."	
 binNum = raw_input("Please enter a binary number: ")	
 isBinary = checkBinary(binNum)	
 	
 decVal = binaryToDecimal(binNum) 	
 print binNum, "is", decVal 	

Review: Why write functions?
•  Allows you to break up a hard problem into smaller,

more manageable parts
•  Makes your code easier to understand
•  Hides implementation details (abstraction)

 Provides interface (input, output)
•  Makes part of the code reusable so that you:

 Only have to write function code once
 Can debug it all at once

•  Isolates errors
 Can make changes in one function (maintainability)

March 2, 2011 Sprenkle - CSCI111 15

Similar to benefits of OO Programming	

VARIABLE LIFETIMES AND
SCOPE

March 2, 2011 Sprenkle - CSCI111 16

What does this program output?
def main():  

x = 10	
	sum = sumEvens(x)	
	print “The sum of even #s up to”, x, “is”, sum	

	
def sumEvens(limit):	
	total = 0	
	for x in xrange(0, limit, 2):	
	 	total += x 		
	return total	

	
main()	

March 2, 2011 Sprenkle - CSCI111 17 mystery.py

Function Variables

March 2, 2011 Sprenkle - CSCI111 18

def main():  
x = 10	

	sum = sumEvens(x)	
	print “The sum of even #s up to”, x, “is”, sum	

	
def sumEvens(limit):	
	total = 0	
	for x in xrange(0, limit, 2):	
	 	total += x 		
	return total	

	
main()	

Why can we name two
different variables x?	

mystery.py

4

Tracing through Execution

March 2, 2011 Sprenkle - CSCI111 19

def main():  
x = 10	
	sum = sumEvens(x)	
	print “The sum of even #s up to”, x, “is”, sum	

	
def sumEvens(limit):	
	total = 0	
	for x in xrange(0, limit, 2):	
	 	total += x 		
	return total	

	
main()	

D
ef

in
es

 f
un

ct
io

ns
 When you call main(), that means

you want to execute this function
def main() :  

x=10	
	sum = sumEvens(x)	
	print “The sum of even #s up to”, x, “is”, sum	

	
def sumEvens(limit) :	
	total = 0	
	for x in xrange(0, limit, 2):	
	 	total += x 		
	return total	

	
main()	

Function Variables

March 2, 2011 Sprenkle - CSCI111 20

main

The stack

 x 10
Function names are

like last names

Variable names are
like first names

def main() :  
x=10	
	sum = sumEvens(x)	
	print “The sum of even #s up to”, x, “is”, sum	

	
def sumEvens(limit) :	
	total = 0	
	for x in xrange(0, limit, 2):	
	 	total += x 		
	return total	

	
main()	

Function Variables

March 2, 2011 Sprenkle - CSCI111 21

main x 10

sum
Evens limit 10

Called the function sumEvens 	
Add its parameters to the stack

def main() :  
x=10	
	sum = sumEvens(x)	
	print “The sum of even #s up to”, x, “is”, sum	

	
def sumEvens(limit) :	
	total = 0	
	for x in xrange(0, limit, 2):	
	 	total += x 		
	return total	

	
main()	

Function Variables

March 2, 2011 Sprenkle - CSCI111 22

main x 10

sum
Evens

total 0
limit 10

def main() :  
x=10	
	sum = sumEvens(x)	
	print “The sum of even #s up to”, x, “is”, sum	

	
def sumEvens(limit) :	
	total = 0	
	for x in xrange(0, limit, 2):	
	 	total += x 		
	return total	

	
main()	

Function Variables

March 2, 2011 Sprenkle - CSCI111 23

main x 10

sum
Evens

x 0
total 0
limit 10

def main() :  
x=10	
	sum = sumEvens(x)	
	print “The sum of even #s up to”, x, “is”, sum	

	
def sumEvens(limit) :	
	total = 0	
	for x in xrange(0, limit, 2):	
	 	total += x 		
	return total	

	
main()	

Function Variables

March 2, 2011 Sprenkle - CSCI111 24

main x 10

sum
Evens

x 8
total 20
limit 10

5

def main() :  
x=10	
	sum = sumEvens(x)	
	print “The sum of even #s up to”, x, “is”, sum	

	
def sumEvens(limit) :	
	total = 0	
	for x in xrange(0, limit, 2):	
	 	total += x 		
	return total	

	
main()	

Function Variables

March 2, 2011 Sprenkle - CSCI111 25

main sum 20
 x 10

Function sumEvens returned
• no longer have to keep track

of its variables on stack
•  lifetime of those variables is

over

def main() :  
x=10	
	sum = sumEvens(x)	
	print “The sum of even #s up to”, x, “is”, sum	

	
def sumEvens(limit) :	
	total = 0	
	for x in xrange(0, limit, 2):	
	 	total += x 		
	return total	

	
main()	

Function Variables

March 2, 2011 Sprenkle - CSCI111 26

main x 10
sum 20

Variable Scope
•  Functions can have the same parameter and

variable names as other functions
 Need to look at the variable’s scope to determine which

one you’re looking at
 Use the stack to figure out which variable you’re using

•  Scope levels
 Local scope (also called function scope)

•  Can only be seen within the function
 Global scope (also called file scope)

•  Whole program can access
•  More on these later

March 2, 2011 Sprenkle - CSCI111 27

Function Scope

• What variables can we “see” (i.e., use)?

March 2, 2011 Sprenkle - CSCI111 28

def main():	
 binary_string = raw_input("Enter a binary #: ")	
 if not isBinary(binary_string):	
 print "That is not a binary string"	
 sys.exit()	
 decVal = binaryToDecimal(binary_string)	
 print "The decimal value is", decVal	

def isBinary(string):	
 for bit in string:	
 if bit != "0" and bit != "1":	
 return False	
 return True	

Variable Scope

•  Practice: scope.py	
 Trace through program--what does it do?

•  Answer questions in program…

March 2, 2011 Sprenkle - CSCI111 29 March 2, 2011 Sprenkle - CSCI111 30

Practice

• What is the output of this program?
 Example: user enters 4

def main():	
 num = input("Enter a number to be squared: ")	
 square = square(num)	
 print "The square is:", square	
	
def square(n):	
 return n * n	
	
main()	

practice1.py

6

March 2, 2011 Sprenkle - CSCI111 31

Practice

• What is the output of this program?
 Example: user enters 4

def main():	
 num = input("Enter a number to be squared: ")	
 squared = square(num)	
 print "The square is:", squared	
 print “The original num was:”, n	
	
def square(n):	
 return n * n	
	
main()	

practice2.py

def main():	
 num = input("Enter a number to be squared: ")	
 squared = square(num)	
 print "The square is:", squared	
 print “The original num was:”, n	
	
def square(n):	
 return n * n	
	
main()	

March 2, 2011 Sprenkle - CSCI111 32

Practice

• What is the output of this program?
 Example: user enters 4

Error! n does not
have a value in
function main()	

March 2, 2011 Sprenkle - CSCI111 33

Variable Scope

•  Know “lifetime” of variable
 Only during execution of function
 Related to idea of “scope”

• What about variables outside of functions?
 Example: non_function_vars.py

March 2, 2011 Sprenkle - CSCI111 34

Passing Parameters

•  Only copies of the actual parameters are
given to the function
 For immutable data types (which are what

we’ve talked about so far)
•  The actual parameters in the calling code do

not change
•  Swap example:

 Swap two values in script
 Then, put into a function

x = 5	
y = 7	

x = 7	
y = 5	

swap.py	

Swapping Characters

•  Had this team:

• Wanted this team (temporarily):

Mar 5, 2010 Sprenkle - CSCI111 35

? WHAT MAKES A FUNCTION
GOOD?

March 2, 2011 Sprenkle - CSCI111 36

7

March 2, 2011 Sprenkle - CSCI111 37

Writing a “Good” Function

• Should be an “intuitive chunk”
 Doesn’t do too much or too little

• Should be reusable
• Always have comment that tells what

the function does

March 2, 2011 Sprenkle - CSCI111 38

Good vs. Bad Functions

•  Bad: Does too little

•  Good: Validates the input

def getUserInput():	
	input = input(“Enter a number”)	
	return input	

def getUserInput():	
	input = input(“Enter a number”)	
	while input <= 0:	
	 	print “Number must be positive”	
	 	input = input(“Enter a number”)	
	return input	

March 2, 2011 Sprenkle - CSCI111 39

Debugging Advice

•  Build up your program in steps
 Always write only small pieces of code
 Test, debug. Repeat

• Write function body as part of main, test
 Then, separate out into its own function
 Similar to process using in lab probs

•  Test function separately from other code
 Comment out irrelevant code to make sure that

the function behaves as expected

CREATING MODULES

March 2, 2011 Sprenkle - CSCI111 40

Where are Functions Defined?

•  Functions can go inside of program script
 Defined before use/called (if no main() function)
 Or, below the main() function

•  Functions can go inside a separate module

March 2, 2011 Sprenkle - CSCI111 41

Benefits of Defining Functions in Separate
Module

•  Reduces code in primary driver script
•  Easier to reuse by importing from a module
•  Maintains the “black box”

 Abstraction
•  Isolates testing of function
• Write “test driver” scripts to test functions

separately from use in script

March 2, 2011 Sprenkle - CSCI111 42 menu.py	

8

March 2, 2011 Sprenkle - CSCI111 43

Creating Modules

•  Modules group together related functions
and constants

•  Unlike functions, no special keyword to
define a module
 A module is named by its filename

•  Example, oldmac.py	
 In Python shell: import oldmac
 Explain what happened

Just a
Python file!	

if __name__ == '__main__’ : 	
 main()	

March 2, 2011 Sprenkle - CSCI111 44

Creating Modules

•  So that our program doesn’t execute when it
is imported in a program, at bottom, add

•  Then, to call main function
 oldmac.main()	

•  Note the files now listed in the directory

Not important how
this works;

just know when to use

March 2, 2011 Sprenkle - CSCI111 45

Creating Modules

•  Then, to call main function
 oldmac.main()	

• Why would you want to call a module’s main
function?
 Automation
 Use main function as driver to test functions in

module
•  To access one of the defined constants

 oldmac.EIEIO	

March 2, 2011 Sprenkle - CSCI111 46

Defining Constants in Modules

•  Constant in menu.py	
 STOP_OPTION	

•  Show use in menu_withfunctions.py	

March 2, 2011 Sprenkle - CSCI111 47

Summary: Program Organization
•  Larger programs require functions to maintain

readability
 Use main() and other functions to break up program

into smaller, more manageable chunks
  “Abstract away” the details

•  As before, can still write smaller scripts without any
functions
 Can try out functions using smaller scripts

•  Need the main() function when using other
functions to keep “driver” at top
 Otherwise, functions need to be defined before use

This Week

•  Lab 6 due Friday
•  SSA – Friday

 Opportunities for Extra Credit
 Truth Values play requires tickets—Free!

March 2, 2011 Sprenkle - CSCI111 48

9

Writing Comments for Functions

•  Good style: Each function must have a
comment
 Describes functionality at a high-level
 Include the precondition, postcondition
 Describe the parameters (their types) and the

result of calling the function (precondition and
postcondition may cover this)

March 2, 2011 Sprenkle - CSCI111 49

Writing Comments for Functions

•  Include the function’s pre- and post-
conditions

•  Precondition: Things that must be true for
function to work correctly
 E.g., num must be even

•  Postcondition: Things that will be true when
function finishes (if precondition is true)
 E.g., the returned value is the max

March 2, 2011 Sprenkle - CSCI111 50

Example Comment

•  Describes at high-level
•  Describes parameters

March 2, 2011 Sprenkle - CSCI111 51

# prints a verse of Old MacDonald, plugging in the	
# animal and sound parameters (which are strings), 	
# as appropriate	
def printVerse(animal, sound):	
 print BEGIN_END + EIEIO	
 print "And on that farm he had a " + animal + EIEIO	
 …	

Writing a Function

• Write a function that determines if a string is
a binary string

• Write comments for that function

March 2, 2011 Sprenkle - CSCI111 52

# pre: binary_string is a string that contains only	
# 0s and 1s	
# post: returns the decimal value for the binary	
# string	
def binaryToDecimal(binary_string):	
 exponent = len(binary_string)-1	
 dec_value = 0	
 	
 for bit in binary_string:	
 bit = int(bit)	
 # print bit,"* 2^%d" % exponent	
 dec_value += bit * (2 ** exponent)	
 exponent -= 1	
	
 return dec_value	

Pre/Post Conditions

March 2, 2011 Sprenkle - CSCI111 53

