
1/16/12

1

Objectives

•  Continuing fundamentals of programming
•  Numeric Operations
•  Introduction to design patterns
•  Software development practices

Ø Testing
Ø Debugging
Ø Iteration

Jan 16, 2012 Sprenkle - CSCI111 1

Parts of an Algorithm
•  Input, Output
•  Primitive operations

Ø What data you have, what you can do to the data
•  Naming

Ø  Identify things we’re using
•  Sequence of operations
•  Conditionals

Ø Handle special cases
•  Repetition/Loops
•  Subroutines

Ø Call, reuse similar techniques

Jan 16, 2012 Sprenkle - CSCI111 2

Review

• What are Python’s primitive data types and
what do they represent?

Jan 16, 2012 Sprenkle - CSCI111 3

Recap of Programming Fundamentals
•  Most important data types (for us, for now):
int, float, str, bool	
Ø Use these types to represent various information

•  Variables have identifiers, (implicit) types
Ø Should have “good” names
Ø Names: start with lowercase letter; can have

numbers, underscores
•  Assignments

Ø x = y means “x set to value y” or “x is
assigned value of y”

Ø Only variable on LHS of statement changes
Jan 16, 2012 Sprenkle - CSCI111 4

Review: Assignment statements

•  Assignment statements are NOT math
equations!

•  These are commands!
x = 2	
y = x	
x = x + 3	

Jan 16, 2012 Sprenkle - CSCI111 5

count = count + 1	

What is the value of y?	

Review: What are the values?

•  After executing the following statements,
what are the values of each variable?
Ø a = 5	
Ø y = a + -1 * a	
Ø z = a + y / 2	
Ø a = a + 3	
Ø y = (7+x)*z	
Ø x = z*2 	

Jan 16, 2012 Sprenkle - CSCI111 6

Runtime error: 	

	

x doesn’t have a value yet!	

•  We say “x was not initialized”	

•  Can’t use a variable on RHS until

seen on LHS!*	

1/16/12

2

More on Arithmetic Operations

Jan 16, 2012 Sprenkle - CSCI111 7

Symbol Meaning Associativity

+	 Addition Left

-	 Subtraction Left
*	 Multiplication Left
/	 Division Left

%	 Remainder (“mod”) Left

**	 Exponentiation (power) Right

Precedence rules: P E - DM% AS

negation	

Associativity matters
when you have the same
operation multiple times	

NOT Math Class

•  Need to write out all operations explicitly
Ø In math class, a (b+1) meant a * (b+1)	

Jan 16, 2012 Sprenkle - CSCI111 8

Write this way in Python	

Math Practice

Jan 16, 2012 Sprenkle - CSCI111 9

5+3*2	
2 * 3 ** 2	
-3 ** 2	
2 ** 3 ** 3	

How should we verify our answers?	

Two Division Operators

/ Float Division
•  Result is a float	
•  Examples:	

Ø  6/3 à 2.0	
Ø  10/3 à

3.3333333333333335	
Ø  3.0/6.0 à 0.5	

// Integer Division
•  Result is an int
•  Examples:

Ø  6//3 à 2	
Ø  10//3 à 3	
Ø  3.0//6.0 à 0	

Jan 16, 2012 Sprenkle - CSCI111 10

Integer division is the
division used in most

programming languages	

Integer Division Practice

• x = 6//4	
• y = 4 // 6 * 5.0 	
• a = 6/12.0	
• b = 6.0//12	
• z = x / a	
• z = x // a	

Jan 16, 2012 Sprenkle - CSCI111 11

• What is the result? 	

• What is the type of the LHS variable?	

What is integer division good for?	

Parts of an Algorithm
•  Input, Output
•  Primitive operations

Ø What data you have, what you can do to the data
•  Naming

Ø  Identify things we’re using
•  Sequence of operations
•  Conditionals

Ø Handle special cases
•  Repetition/Loops
•  Subroutines

Ø Call, reuse similar techniques

Jan 16, 2012 Sprenkle - CSCI111 12

1/16/12

3

Review: Printing Output

• print is a special function
Ø Displays the result of expression(s) to the

terminal
• print("Hello, class")	

• print("Your answer is", 4*4)	

Jan 16, 2012 Sprenkle - CSCI111 13

string literal	

print automatically
adds a '\n' (carriage
return) after it’s printed	

Syntax: comma���
Semantics: print multiple “things” in one line 	

Interactive Programs

•  Meaningful programs often need input from
users

•  Demo: input_demo.py	

Jan 16, 2012 Sprenkle - CSCI111 14

Getting Input From User

• input is a function
Ø Function: A command to do something

•  A “subroutine”
Ø Prompts user for input, gets the user’s input
Ø input: reads input in as strings/text

•  Syntax:
Ø input(<string_prompt>)	

Jan 16, 2012 Sprenkle - CSCI111 15

Getting Input From User
•  Typically used in assignments
•  Examples:

Ø name=input("What is your name? ")	
• name is assigned the string the user enters

Ø width=eval(input("Enter the width:"))	
•  What the user enters is evaluated (as a

number) and assigned to width 	
•  Use eval function because expect a number

from user	

Jan 16, 2012 Sprenkle - CSCI111 16

Prompt displayed to user	

What do you think the code looks like for input_demo.py?

Getting Input from User

color = input("What is your favorite color? ")	

Jan 16, 2012 Sprenkle - CSCI111 17

> python3 input_demo.py	
What is your favorite color? blue	
Cool! My favorite color is _light_ blue !	

Terminal:	

Grabs every character up to
the user presses “enter”	

Semantics: Sets the variable color to the user’s input	

input_demo.py	

Documenting Your Code

•  Use English to describe what your program is doing
in comments
Ø Everything after a # is a comment

•  Color-coded in IDLE, jEdit
Ø Python does not execute comments

•  Does not affect the correctness of your program
•  Improves program’s readability

Ø Easier for someone else to read and update your code

Jan 16, 2012 Sprenkle - CSCI111 18

“Programs should be written for people to read, ���
and only incidentally for machines to execute.”	

from "Structure and Interpretation of Computer Programs"
by Abelson and Sussman

1/16/12

4

When to Use Comments
•  Document the author, high-level description

of the program at the top of the program
•  Provide an outline of an algorithm

Ø Separates the steps of the algorithm
•  Describe difficult-to-understand code

Jan 16, 2012 Sprenkle - CSCI111 19

Identify the Parts of a Program

Jan 16, 2012 Sprenkle - CSCI111 20

# Demonstrate numeric and string input	
# by Sara Sprenkle for CS111	
#	
	
color = input("What is your favorite color? ")	
print("Cool! My favorite color is _light_", color, "!")	
	
rating = eval(input("On a scale of 1 to 10, how much do
you like Ryan Gosling? "))	
print("Cool! I like him", rating*1.8, "much!")	
	

Identify the comments, variables, functions,
expressions, assignments, literals 	

input_demo.py	

Identify the Parts of a Program

Jan 16, 2012 Sprenkle - CSCI111 21

# Demonstrate numeric and string input	
# by Sara Sprenkle for CS111	
#	
	
color = input(“What is your favorite color? ")	
print("Cool! My favorite color is _light_" , color, "!")	
	
rating = eval(input("On a scale of 1 to 10, how much do
you like Ryan Gosling? ”)	
print("Cool! I like him” , rating*1.8, "much!")	
	

Identify the comments, variables, functions,
expressions, assignments, literals 	

expression

Formalizing Process of
Developing Computational Solutions
1. Create a sketch of how to solve the problem

(the algorithm)

Jan 16, 2012 Sprenkle - CSCI111 22

Formalizing Process of
Developing Computational Solutions
1. Create a sketch of how to solve the problem

(the algorithm)
2. Fill in the details in Python

Jan 16, 2012 Sprenkle - CSCI111 23

Errors
•  Sometimes the program doesn’t work
•  Types of programming errors:

Ø Syntax error
•  Interpreter shows where the problem is

Ø Logic/semantic error
•  answer = 2+3
•  No, answer should be 2*3

Ø Exceptions/Runtime errors
•  answer = 2/0
•  Undefined variable name

Jan 16, 2012 Sprenkle - CSCI111 24

Expose errors when Testing	

1/16/12

5

Testing Process

Jan 16, 2012 Sprenkle - CSCI111 25

Program

•  Test case: input used to test the program,
expected output given that input

•  Verify if output is what you expected

Verify output

Output Input

Expected
Output

Test Case

Testing Process

Jan 16, 2012 Sprenkle - CSCI111 26

•  Need good test cases to help determine if
program is correct
Ø Tester plays devil’s advocate
Ø Want to expose all errors!
Ø Find before customer/professor!

Input Program Output

Expected
Output

Verify output
Test Case

If output is not what you expect…	

Debugging
•  After identifying errors during testing
•  Identify the problems in your code

Ø Edit the program to fix the problem
Ø Re-execute/test until all test cases pass

•  The error is called a “bug” or a “fault”
•  Diagnosing and fixing error is called debugging

Jan 16, 2012 Sprenkle - CSCI111 27

Interpreter
(python)

Program
text file

program.py
Output

Text Editor
(jEdit or IDLE)

ERROR! (from testing)	

Identify bug, fix	

debug_practice.py	

Formalizing Process of
Developing Computational Solutions

1. Create a sketch of how to solve the problem
(the algorithm)

2. Fill in the details in Python
3. Test the Python program with good test

cases
a.  If errors found, debug program
b.  Repeat step 3

Jan 16, 2012 Sprenkle - CSCI111 28

Practice: Our First Computational
Algorithm
•  Find the area of a rectangle, which has a

width and height
•  Test cases:

Jan 16, 2012 Sprenkle - CSCI111 29

Input Expected Output

Our First Computational Algorithm

•  Algorithm for finding the area of a rectangle:
Ø Optional: get the width and height from user

•  Alternative: “hard-code” width and height
Ø Calculate area
Ø Print area

•  Test cases for finding the area of a rectangle
Ø Test both integers
Ø Test with at least one float for width, height
Ø Test numbers less than or equal to 0

•  Shouldn’t compute area for those
Jan 16, 2012 Sprenkle - CSCI111 30 area.py	

1/16/12

6

Design Patterns

•  General, repeatable solution to a commonly
occurring problem in software design
Ø Template for solution

Jan 24, 2011 Sprenkle - CS111 31

Design Patterns

•  General, repeatable solution to a commonly
occurring problem in software design
Ø Template for solution

•  Example (Standard Algorithm)
Ø Get input from user
Ø Do some computation
Ø Display output

Jan 24, 2011 Sprenkle - CS111 32

print	
Assign.
Assign. x = input(“…”)	

ans = …	
print(ans)	

Good Development Practices
•  Design the algorithm

Ø Break into pieces

•  Implement and Test each piece separately
Ø Identify the best pieces to make progress
Ø Iterate over each step to improve it

• Write comments FIRST for each step
Ø Elaborate on what you’re doing in comments

when necessary

Jan 16, 2012 Sprenkle - CSCI111 33

This Week

•  Tuesday: Lab 1
Ø Bring your lecture notes and handouts!
Ø Due Friday

•  For Friday, read up to (but not including)
“Themes" of Four Puzzles from Cyberspace
Ø Post summary on Sakai
Ø To paste from Word, click on the icon “Paste

from Word”
•  Looks like a clipboard with Word’s W

Jan 16, 2012 Sprenkle - CSCI111 34

