
1

Mar 13, 2012 Sprenkle - CSCI111 1

Lab 7 Feedback

• Missing function comments
Ø Others need to know how to use the function
Ø Good comments in lab description

Comment Example

Mar 13, 2012 Sprenkle - CSCI111 2

# Encodes a single character.	
# PRE: Input parameters are a single, lowercase	
# character string (char) and an integer key 	
# (between -25 and 25, inclusive)	
# POST: returns the encoded character	
def translateLetter(char, key):	

•  Does not say who called function,
where parameters came from, or where returned to

•  Any code can call the function and pass in input from
anywhere (e.g., hardcoded, from user input, …)

•  Does not say variable name returned

Mar 13, 2012 Sprenkle - CSCI111 3

Commenting Exercise

• Write a comment for this function:

def encode(toEncode, key):	

Mar 13, 2012 Sprenkle - CSCI111 4

Commenting Exercise

• Write a comment for this function:

# Encodes a lowercase string using a key, 	
# preserving spaces in the string.	
# PRE: a lowercase string to be encoded 	
# (toEncode) and the integer key (between -25 	
# and 25, inclusive)	
# POST: returns the encoded string	
def encode(toEncode, key):	

Mar 13, 2012 Sprenkle - CSCI111 5

Commenting Notes
• Well-named parameters make

documentation easier
•  I’m not strict on the pre/post format.
•  Just need to be clear on

Ø what the function does (at high level)
Ø types of parameters
Ø type of the output

è The caller knows what to pass to the
function and if they should assign the output
to a variable

Caesar Cipher w/Functions

Mar 13, 2012 Sprenkle - CSCI111 6

def main():	
 text = raw_input("Enter some text: ")	
 key = input("Enter an integer key (between -25 and 25): ")	

	# make sure it's a valid key	
	if key < -KEY_BOUND or key > KEY_BOUND:	

 print "Invalid key!"	
 sys.exit(1)	
	
 message = encoder(text,key)	
 print “The encoded message is”, message	
	
# encoder takes in some text and integer key and returns	
# encoded message	
# PRE: Key must be between -25 and 25 inclusive	
def encoder(text,key):	
 message=""	
 for ch in text:	
 if ch == " ":	
 encode= " "	
 message+=encode	
 else:	
 message += translateLetter(ch,key)	
 return messagekey	

Note: no “side effects”
 e.g., no printing

More efficient: constants
not defined in function

2

Fines

Mar 13, 2012 Sprenkle - CSCI111 7

Define a function that takes as parameters the speed limit
and the clocked speed and returns the computed fine. 	

def computeFine(clocked_speed,speed_limit):	
 if clocked_speed <= speed_limit:	
	 	fine=0	

 else:	
	 	if clocked_speed > 90:	
	 	 	fine = 50+5*(clocked_speed - speed_limit) + 200	

 else:	
	 	 	fine = 50+5*(clocked_speed - speed_limit)	

 	
 return fine	

Missing comments	

Fines

Mar 13, 2012 Sprenkle - CSCI111 8

def main():	
 speed_limit = eval(input("What is the speed limit? "))	
 clocked_speed = eval(input("What was the speed? "))	
 fine = computeFine(clocked_speed, speed_limit)	
 if fine > 0:	
 print("You were speeding. Your fine is", fine)	
 else:	
 print("The clocked speed is under the speed limit.")	
 print("No fine. Continue safe driving.")	

Missing comments	

The code that calls the function will print an appropriate message
based on the returned fine. 	

Then, put the driver part of the program (i.e., the part that gets
input from the user, calls the function, and displays the output)
into a main function.	

Printing Cases Left

Mar 13, 2012 Sprenkle - CSCI111 9

print("Cases Left to Choose from:")	
# number of columns printed	
colCount = 0	
for casePos in range(len(cases)):	
 # only print if the case hasn't been chosen yet	
 if cases[casePos] != CHOSEN :	
 print("%3d" % casePos,end='')	
 colCount += 1	
 # print a newline after every fourth printed case	
 if colCount % 4 == 0:	
 print()	
print()	

Printing Board

Mar 13, 2012 Sprenkle - CSCI111 10

 border = "*****"*6	
 print()	
 print(border)	
 print(" The Board: ")	
	
 for count in range(len(amounts)//2):	
 if amounts[count] != CHOSEN:	
 print("$%10.2f " % amounts[count], end='')	
 else:	
 print("%11s " % "----", end='')	
	
 second_col = len(amounts)//2 + count	
 if amounts[second_col] != CHOSEN:	
 print("$%10.2f" % amounts[second_col])	
 else:	
 print("%11s" % "----")	
 print(border)	

Checking Valid Case

Mar 13, 2012 Sprenkle - CSCI111 11

 if choice < 0 or choice > len(cases)-1:	
 return False	
 if cases[choice] == CHOSEN:	
 return False	
 return True	

Note that something is returned in all cases	

if choice >= 0 and choice <= len(cases)-1 and  
 cases[choice] == CHOSEN:	
 return False	

Risky to not return True at the end of function so that something
is returned in all cases	

Review

• How do you create a module?
• How do you use functions defined in a

module?
• How do you make something repeat until a

certain condition is true?
• How do you write code to do exception

handling?
Ø What are examples of exceptions?

Mar 13, 2012 Sprenkle - CSCI111 12

3

Mar 13, 2012 Sprenkle - CSCI111 13

Lab 8 Overview

• Creating and using a module
•  Indefinite Loops
• Exception Handling

