
1

Objectives

•  Defining your own functions
Ø Control flow
Ø Scope, variable lifetime

•  Defining your own modules

Feb 29, 2012 Sprenkle - CSCI111 1

DEFINING FUNCTIONS

Feb 27, 2012 Sprenkle - CSCI111 2

Functions

• We've used functions
Ø Built-in functions: len, input, eval
Ø Functions from modules, e.g., math and random

•  Benefits
Ø Reuse, reduce code
Ø Easier to read, write (because of abstraction)

Feb 27, 2012 Sprenkle - CSCI111 3

Today, we'll learn how to���
define our own functions!	

Review: Functions
•  Function is a black box

Ø Implementation doesn't matter
Ø Only care that function generates appropriate

output, given appropriate input
•  Example:

Ø Didn't care how input function was
implemented

Ø Use: user_input = input(prompt)	

Feb 27, 2012 Sprenkle - CSCI111 4

prompt user_input	
Saved output in a variable	

input	Input
(arguments)

Output
(return value)

Creating Functions

• A function can have
Ø 0 or more inputs
Ø 0 or 1 outputs

• When we define a function, we know its
inputs and if it has output

Feb 27, 2012 Sprenkle - CSCI111 5

function	Input
(arguments)

Output
(return value)

Writing a Function

•  I want a function that averages two numbers

Feb 27, 2012 Sprenkle - CSCI111 6

• What is the input to this function?	

• What is the output to this function?	

2

Writing a Function

•  I want a function that averages two numbers
• What is the input to this function?

Ø The two numbers
• What is the output to this function?

Ø The average of those two numbers, as a float

Feb 27, 2012 Sprenkle - CSCI111 7

These are key questions to ask yourself when
designing your own functions.	

•  Inputs: parameters	

• Output: what is getting returned	

Comparison of Code Using Functions

• Without functions:
wheeloffortune.wfiles.py	

• With functions:
wheeloffortune.wfiles_functions.py	

Feb 27, 2012 Sprenkle - CSCI111 8

How do the two programs compare in terms of	

•  Length? (all code and just the “main” code)	

•  Readability?	

Why Write Functions?
•  Allows you to break up a hard problem into smaller,

more manageable parts
•  Makes your code easier to understand
•  Hides implementation details (abstraction)

Ø Provides interface (input, output)
•  Makes part of the code reusable so that you:

Ø Only have to write function code once
Ø Can debug it all at once

•  Isolates errors
Ø Can make changes in one function (maintainability)

Feb 27, 2012 Sprenkle - CSCI111 9

Similar to benefits of OO Programming	

Averaging Two Numbers

•  Input: the two numbers
•  Output: the average of two numbers

Feb 27, 2012 Sprenkle - CSCI111 10

average2	input output
average	num1,	

num2	

Syntax of Function Definition

Feb 27, 2012 Sprenkle - CSCI111 11

def average2(num1, num2):	
	average = (num1 + num2)/2	
	return average	

Keyword Function
Name

Input Name/
Parameter

B
od

y
(o

r
fu

nc
tio

n
de

fin
iti

on
)

Keyword:
How to give output

Function header

Output

Calling your own functions

average = average2(100, 4.34)	
	
	
	
	

Feb 27, 2012 Sprenkle - CSCI111 12

Output is
assigned to
average	

Function
Name

Input

Same as calling someone else's functions …	

average2.py	

3

Functions: Similarity to Math

•  In math, a function definition looks like:
Ø f(x) = x2 + 2

•  Plug values in for x
Ø f(3) = 32 + 2 = 11
Ø 3 is your input, assigned to x
Ø 11 is output

Feb 27, 2012 Sprenkle - CSCI111 13

Parameters

•  The inputs to a function are called
parameters or arguments, depending on
the context

• When calling/using functions, arguments
must appear in same order as in the function
header
Ø Example: round(x, n)	

•  x is the float to round
•  n is int of decimal places to round x to

Feb 27, 2012 Sprenkle - CSCI111 14

Parameters

•  Formal Parameters are the variables named
in the function definition

•  Actual Parameters or Arguments are the
variables or literals that really get used when
the function is called.

Feb 27, 2012 Sprenkle - CSCI111 15

Formal
Actual

Defined: def round(x, n) :	
Use: roundCelc = round(celc, 2)	

Formal & actual parameters must match
in order, number, and type!	

Passing Parameters

•  Only copies of the actual parameters are
given to the function for immutable data
types
Ø Immutable types: most of what we've talked

about so far
•  Strings, integers, floats

Ø The actual parameters in the calling code do not
change

•  (Lists are mutable and have different rules)
Feb 27, 2012 Sprenkle - CSCI111 16

Function Output

• When the code reaches a statement like
	 	return x	

Ø The function stops executing
Ø x is the output returned to the place where the

function was called
•  For functions that don't have explicit output,
return does not have a value with it, e.g.,

Ø Optional: don't need to have return	
•  Function automatically returns at the end

Feb 27, 2012 Sprenkle - CSCI111 17

return	

Example Functions
• userPBPref(username)	

Ø For the given user, returns the amount of PB
they want on their sandwich

Ø Input: ?
Ø Output: ?	

• spread(condiment, amount_in_TB,
sandwich)	
Ø Spreads given amount of condiment on

sandwich
Ø Input: ?
Ø Output: ?

Feb 27, 2012 Sprenkle - CSCI111 18

4

Example Functions
• userPBPref(username)	

Ø For the given user, returns the amount of PB they
want on their sandwich

Ø  Input: username	
Ø Output: the user’s PB preference	

• spread(condiment, amount_in_TB, sandwich)	
Ø Spreads given amount of condiment on sandwich
Ø  Input: condiment, amount_in_TB, sandwich	
Ø Output: no output

•  State of sandwich changes à now has condiment on
it

Feb 27, 2012 Sprenkle - CSCI111 19

CONTROL FLOW WITH
FUNCTIONS

Feb 27, 2012 Sprenkle - CSCI111 20

Flow of Control
• When program calls a function, the program

jumps to the function and executes it
•  After executing the function, the program

returns to the same place in the calling code
where it left off

Feb 27, 2012 Sprenkle - CSCI111 21

# Make conversions	
dist1 = 100	
miles1 = metersToMiles(dist1)	

dist1 (100) is assigned to meters
Calling code: def metersToMiles(meters) :	

	M2MI=.0006215	
	miles = meters * M2MI	
	return miles	

Flow of Control

Feb 27, 2012 Sprenkle - CSCI111 22

def max(num1, num2):	
	result = 0	
	if num1 >= num2:	
	 	result = num1	
	else:	
	 	result = num2	
	return result	

	
x = 12	
y = eval(input("Enter a number: "))	
z = max(x, y)	
print("The max is", z)	

flow_example.py	

Flow of Control

Feb 27, 2012 Sprenkle - CSCI111 23

def max(num1, num2):	
	result = 0	
	if num1 >= num2:	
	 	result = num1	
	else:	
	 	result = num2	
	return result	

	
x = 12	
y = eval(input("Enter a number: "))	
z = max(x, y)	
print("The max is", z)	

What does this function do?	

Program starts “doing stuff”	

Function definitions:	

• Save functions for later use, ���

nothing executed	

• Similar to adding a contact

into your phone book ���
à not actually calling	

Flow of Control

Feb 27, 2012 Sprenkle - CSCI111 24

def max(num1, num2):
 result = 0
 if num1 >= num2:
 result = num1
 else:
 result = num2
 return result

x = 2
y = input(“Enter a number”)
z = max(x, y)
print “The max is”, z

def max(num1, num2):	
	result = 0	
	if num1 >= num2:	
	 	result = num1	
	else:	
	 	result = num2	
	return result	

	
x = 12	
y = eval(input("Enter a number: "))	
z = max(x, y)	
print("The max is", z)	

Program starts “doing stuff”	

z=max(x, y)

x=12

y = eval(input("…"))

To
input
function

5

Flow of Control

Feb 27, 2012 Sprenkle - CSCI111 25

print(“The max is”, z)

z=max(x, y)

Gets assigned	

max's output	

x=2

y = eval(input(“”))

To input
function	

result=num1

num1 >= num2

result=0

True False

result=num2

return result	

def max(num1, num2):	

num1 is set to value of x	
num2 is set to value of y	

def max(num1, num2):	
	result = 0	
	if num1 >= num2:	
	 	result = num1	
	else:	
	 	result = num2	
	return result	

“ca
lls”
 max

functio
n	

return to caller	

Flow of Control: Using return

Feb 27, 2012 Sprenkle - CSCI111 26

return num1	

num1 >= num2
True False

return num2	

def max(num1, num2):	

return to caller	

def max(num1, num2):	
	if num1 >= num2:	
	 	 return num1	
	else:	
	 	 return num2	

Is this implementation of
the function correct?	

Flow of Control: Using return	

Feb 27, 2012 Sprenkle - CSCI111 27

return num1	

num1 >= num2
True

return num2	

def max(num1, num2):	

return to caller

Implicit false branch:	

Only way got here is if

the condition was ���
not True	

def max(num1, num2):	
	if num1 >= num2:	
	 	 return num1	
	return num2	

Is this implementation of
the function correct?	

Function Input and Output

Feb 27, 2012 Sprenkle - CSCI111 28

def printVerse(animal, sound):	
 print(BEGIN_END + EIEIO)	
 print("And on that farm he had a " + animal + EIEIO)	
 print("With a " + sound + ", " + sound + " here")	
 print("And a " + sound + ", " + sound + " there")	
 print("Here a", sound)	
 print("There a", sound)	
 print("Everywhere a " + sound + ", " + sound)	
 print(BEGIN_END + EIEIO)	
 print()	

•  What does this function do?	

•  Identify function's input and output	

Function Input and Output
•  2 inputs: animal and sound
•  0 outputs

Ø Displays something but does not return anything

Feb 27, 2012 Sprenkle - CSCI111 29

def printVerse(animal, sound):	
 print(BEGIN_END + EIEIO)	
 print("And on that farm he had a " + animal + EIEIO)	
 print("With a " + sound + ", " + sound + " here")	
 print("And a " + sound + ", " + sound + " there")	
 print("Here a", sound)	
 print("There a", sound)	
 print("Everywhere a " + sound + ", " + sound)	
 print(BEGIN_END + EIEIO)	
 print()	 Function exits here	

PROGRAM ORGANIZATION

Feb 27, 2012 Sprenkle - CSCI111 30

6

Where are Functions Defined?

•  Functions can go inside of program script
Ø If no main() function, defined before use/called
• wheeloffortune_wfiles_functions.py	
• average2.py	

Ø If main() function, defined anywhere in script
•  More in a bit…

•  Functions can go inside a separate module	

Feb 27, 2012 Sprenkle - CSCI111 31

Program Organization: main function

•  In many languages, you put the “driver” for
your program in a main function
Ø You can (and should) do this in Python as well

•  Typically main functions are defined at the
top of your program
Ø Readers can quickly see overview of what

program does
• main usually takes no arguments

Ø Example:

Feb 27, 2012 Sprenkle - CSCI111 32

def main():	

Using a main Function

•  Call main() at the bottom of your program

•  Side effects:
Ø Do not need to define functions before main

function
Ø main can “see” other functions
Ø Note that main is a function that calls other

functions
•  Any function can call other functions

Feb 27, 2012 Sprenkle - CSCI111 33

Example program with a main()

Feb 27, 2012 Sprenkle - CSCI111 34

def main():	
 printVerse("dog", "ruff")	
 printVerse("duck", "quack")	
 	
 animal_type = "cow"	
 animal_sound = "moo”	
 printVerse(animal_type, animal_sound)	
	
def printVerse(animal, sound):	
 print(BEGIN_END + EIEIO)	
 print("And on that farm he had a " + animal + EIEIO)	
 print("With a " + sound + ", " + sound + " here")	
 print("And a " + sound + ", " + sound + " there")	
 print("Here a", sound)	
 print("There a", sound)	
 print("Everywhere a " + sound + ", " + sound)	
 print(BEGIN_END + EIEIO)	
 print()	
	
main()	

oldmac.py	

Constants, comments
are in example program	

In what order does this program execute?	

What is output from this program?	

Example program with a main()

Feb 27, 2012 Sprenkle - CSCI111 35

def main():	
 printVerse("dog", "ruff")	
 printVerse("duck", "quack")	
 	
 animal_type = "cow"	
 animal_sound = "moo”	
 printVerse(animal_type, animal_sound)	
	
def printVerse(animal, sound):	
 print(BEGIN_END + EIEIO)	
 print("And on that farm he had a " + animal + EIEIO)	
 print("With a " + sound + ", " + sound + " here")	
 print("And a " + sound + ", " + sound + " there")	
 print("Here a", sound)	
 print("There a", sound)	
 print("Everywhere a " + sound + ", " + sound)	
 print(BEGIN_END + EIEIO)	
 print()	
	
main()	 oldmac.py	

1. Set definition of main	
2. Set definition of printVerse	
3. Call main function	

4. Execute main function	

5. Call, execute printVerse	

	

 	

…	

1

2

3

4

5

Feb 29, 2012 Sprenkle - CSCI111 36

Summary: Program Organization
•  Larger programs require functions to maintain

readability
Ø Use main() and other functions to break up program

into smaller, more manageable chunks
Ø  “Abstract away” the details

•  As before, can still write smaller scripts without any
functions
Ø Can try out functions using smaller scripts

•  Need the main() function when using other
functions to keep “driver” at top
Ø Otherwise, functions need to be defined before use

7

VARIABLE LIFETIMES AND
SCOPE

Feb 29, 2012 Sprenkle - CSCI111 37

What does this program output?
def main():  

x = 10	
	sum = sumEvens(x)	
	print(“The sum of even #s up to”, x, “is”, sum)	

	
def sumEvens(limit):	
	total = 0	
	for x in range(0, limit, 2):	
	 	total += x 		
	return total	

	
main()	

Feb 29, 2012 Sprenkle - CSCI111 38 mystery.py	

Function Variables

Feb 29, 2012 Sprenkle - CSCI111 39

def main():  
x = 10	
	sum = sumEvens(x)	
	print(“The sum of even #s up to”, x, “is”, sum)	

	
def sumEvens(limit):	
	total = 0	
	for x in range(0, limit, 2):	
	 	total += x 		
	return total	

	
main()	

Why can we name two
different variables x?	

mystery.py	

Tracing through Execution

Feb 29, 2012 Sprenkle - CSCI111 40

def main():  
x = 10	

	sum = sumEvens(x)	
	print(“The sum of even #s up to”, x, “is”, sum)	

	
def sumEvens(limit):	
	total = 0	
	for x in range(0, limit, 2):	
	 	total += x 		
	return total	

	
main()	

D
efi

ne
s

fu
nc

tio
ns
	

 When you call main(), that means you

want to execute this function	

def main() :  
x=10	
	sum = sumEvens(x)	
	print(“The sum of even #s up to”, x, “is”, sum)	

	
def sumEvens(limit) :	
	total = 0	
	for x in range(0, limit, 2):	
	 	total += x 		
	return total	

	
main()	

Function Variables

Feb 29, 2012 Sprenkle - CSCI111 41

main

The stack	

 x 10
Function names ���

are like last names	

Variable names ���
are like first names	

def main() :  
x=10	
	sum = sumEvens(x)	
	print(“The sum of even #s up to”, x, “is”, sum)	

	
def sumEvens(limit) :	
	total = 0	
	for x in range(0, limit, 2):	
	 	total += x 		
	return total	

	
main()	

Function Variables

Feb 29, 2012 Sprenkle - CSCI111 42

main x 10

sum
Evens limit 10

Called the function sumEvens 	

Add its parameters to the stack	

8

def main() :  
x=10	
	sum = sumEvens(x)	
	print(“The sum of even #s up to”, x, “is”, sum)	

	
def sumEvens(limit) :	
	total = 0	
	for x in range(0, limit, 2):	
	 	total += x 		
	return total	

	
main()	

Function Variables

Feb 29, 2012 Sprenkle - CSCI111 43

main x 10

sum
Evens

total 0
limit 10

def main() :  
x=10	
	sum = sumEvens(x)	
	print(“The sum of even #s up to”, x, “is”, sum)	

	
def sumEvens(limit) :	
	total = 0	
	for x in range(0, limit, 2):	
	 	total += x 		
	return total	

	
main()	

Function Variables

Feb 29, 2012 Sprenkle - CSCI111 44

main x 10

sum
Evens

x 0
total 0
limit 10

def main() :  
x=10	
	sum = sumEvens(x)	
	print(“The sum of even #s up to”, x, “is”, sum)	

	
def sumEvens(limit) :	
	total = 0	
	for x in range(0, limit, 2):	
	 	total += x 		
	return total	

	
main()	

Function Variables

Feb 29, 2012 Sprenkle - CSCI111 45

main x 10

sum
Evens

x 8
total 20
limit 10

def main() :  
x=10	
	sum = sumEvens(x)	
	print(“The sum of even #s up to”, x, “is”, sum)	

	
def sumEvens(limit) :	
	total = 0	
	for x in range(0, limit, 2):	
	 	total += x 		
	return total	

	
main()	

Function Variables

Feb 29, 2012 Sprenkle - CSCI111 46

main sum 20
 x 10

Function sumEvens returned	

• no longer have to keep track of

its variables on stack	

•  lifetime of those variables is over	

def main() :  
x=10	
	sum = sumEvens(x)	
	print(“The sum of even #s up to”, x, “is”, sum)	

	
def sumEvens(limit) :	
	total = 0	
	for x in range(0, limit, 2):	
	 	total += x 		
	return total	

	
main()	

Function Variables

Feb 29, 2012 Sprenkle - CSCI111 47

main x 10
sum 20

Variable Scope
•  Functions can have the same parameter and

variable names as other functions
Ø Need to look at the variable’s scope to determine which

one you’re looking at
Ø Use the stack to figure out which variable you’re using

•  Scope levels
Ø Local scope (also called function scope)

•  Can only be seen within the function
Ø Global scope (also called file scope)

•  Whole program can access
•  More on these later

Feb 29, 2012 Sprenkle - CSCI111 48

9

Function Scope

• What variables can we “see” (i.e., use)?

Feb 29, 2012 Sprenkle - CSCI111 49

def main():	
 binary_string = input("Enter a binary #: ")	
 if not isBinary(binary_string):	
 print("That is not a binary string”)	
 sys.exit()	
 decVal = binaryToDecimal(binary_string)	
 print("The decimal value is", decVal)	

def isBinary(string):	
 for bit in string:	
 if bit != "0" and bit != "1":	
 return False	
 return True	

Variable Scope

•  Practice: scope.py	
Ø Trace through program--what does it do?

•  Answer questions in program…

Feb 29, 2012 Sprenkle - CSCI111 50

Summary: Why Write Functions?
•  Allows you to break up a hard problem into smaller,

more manageable parts
•  Makes your code easier to understand
•  Hides implementation details (abstraction)

Ø Provides interface (input, output)
•  Makes part of the code reusable so that you:

Ø Only have to write function code once
Ø Can debug it all at once

•  Isolates errors
Ø Can make changes in one function (maintainability)

Feb 27, 2012 Sprenkle - CSCI111 51

Similar to benefits of OO Programming	

This Week

•  Lab 6 due Monday
Ø I leave later today

•  Friday – broader issue analysis

Feb 29, 2012 Sprenkle - CSCI111 52

