
1

Objectives

•  Group Work: Designing a Social Network
•  Prep for Lab 10

Mar 26, 2012 Sprenkle - CSCI111 1

Review

• What methods can we implement to compare
two objects of the same type?

• What does each method header look like?
• What does each return?
•  How can we use each?
•  How do you create a method meant only to

be used by the class?

Mar 26, 2012 Sprenkle - CSCI111 2

Review:
Comparing Objects of the Same Type

Mar 26, 2012 Sprenkle - CSCI111 3 card.py

def __lt__(self, other):	
	""" Compares Card objects by their ranks ""”	
	if type(self) != type(other):	
	 	return False	

	
	return self.rank < other.rank	

def __eq__(self, other):	
	""" Compares Card objects by their ranks and suits ""”	
	if type(self) != type(other):	
	 	return False	

	
	return self.rank == other.rank and self.suit == other.suit	
		

# Could compare by black jack or rummy value	

Review: Helper Methods

•  Only loosely enforces that other can’t use
Ø Doesn’t show up in help	
Ø Does show up in dir	

Mar 26, 2012 Sprenkle - CSCI111 4

def _isFaceCard(self):	
	if self.rank > 10 and self.rank < 14:	
	 	return True	
	return False	

Helper Method:

def rummyValue(self):	
	if self._isFaceCard():	
	 	return 10	
elif self.rank == 10:	

	 	return 10	
	elif self.rank == 14:	
	 	return 15	
	else:	
	 	return 5	

In use:

DESIGNING CLASSES

Mar 26, 2012 Sprenkle - CSCI111 5

Summary: Designing Classes
• What does the object/class represent?
•  How to model/represent the class’s data?

Ø Instance variable
Ø Data type

• What functionality should objects of the class
have?
Ø How will others want to use the class?
Ø Put into methods for others to call (API)

Mar 26, 2012 Sprenkle - CSCI111 6

General Class Design:
•  nouns in a problem are classes/objects
•  verbs are methods

2

Top-Down Design

• We’ve been doing this most of the semester

Ø Typically, program was 1) read input, 2) process
input, 3) print result
•  Started putting Step 2 into >= 1 functions
•  Steps 1 and 3 were sometimes a function

Ø Now: on larger scale
Mar 26, 2012 Sprenkle - CSCI111 7

Break down larger problems into pieces that
you can solve	

•  Smaller pieces: classes, methods, functions	

•  Implement smallest pieces and build up	

Requirements for a Social Network Application

•  Reads social network from two files
Ø One file contains people
Ø One file contains connections between people

•  Add connections between people
Ø Symmetric relationship

•  Creates a file to show social network as a
graph

•  Provides a user interface to do these things
• What else?

Mar 26, 2012 Sprenkle - CSCI111 8

Designing a Social Network Application

•  Break down into pieces
• What classes do we need?

Ø What data needed to model those classes?
Ø What functionality do each of those classes

need?
• What does our driver program (user

interface) do?
•  How should we implement those classes/

program?

Mar 26, 2012 Sprenkle - CSCI111 9

Recall: General Class Design:
•  nouns in a problem are classes/objects
•  verbs are methods

Designs

•  For each of your classes
Ø Data
Ø API

Mar 26, 2012 Sprenkle - CSCI111 10

Social Network Classes/Driver Data
•  Person

Ø  Id
Ø Name
Ø Network
Ø Friends

•  Social Network
Ø People in network

•  Driver (UI)
Ø Social network

Mar 26, 2012 Sprenkle - CSCI111 11

What are the data types ���
for each class’s data?	

SN Classes/Driver Functionality
•  Person

Ø Getters (accessors)
Ø String rep
Ø Setters

•  Social Network
Ø Getters
Ø String rep
Ø Add people to network
Ø Add connections
Ø Writing to a file

•  Driver
Ø Getting user input to

•  Read people,
connections files

•  Store social network to
file

•  Add a person
•  Add connections

Ø Summary: call
appropriate methods on
classes to do above

Mar 26, 2012 Sprenkle - CSCI111 12

How should we test these?	

3

Lab 10 Design

•  3 files: person.py, socialnetwork.py,
facespace.py	

Mar 26, 2012 Sprenkle - CSCI111 13

SocialNetwork
(test functions)

socialnetwork.py	

Driver

•  Uses SocialNetwork object
•  Gets command-line arguments
•  Handles UI
•  Calls methods on the SN object

facespace.py	

Person
(test functions)

person.py	

Problem: People Files
•  Given a people file that has the format

•  Write algorithm to create Person objects to
represent each person, add to SocialNetwork
object

Mar 26, 2012 Sprenkle - CSCI111 14

<num_users>	
<user_id>	
<name>	
<network>	
…	
<user_id_n>	
<name_n>	
<network_n>	

Problem: Connection Files

•  Given a connection file that has the format

•  Each line represents a friend/connection
Ø Symmetric relationship
Ø Each is a friend of the other

•  Update SocialNetwork object

Mar 26, 2012 Sprenkle - CSCI111 15

<user_id> <user_id>	
<user_id> <user_id>	
…	
<user_id> <user_id>	

UI Specification
•  Checks if user entered command-line arguments

Ø Default files otherwise

•  Read people, connections from files
•  Repeatedly gets selected options from the user,

until user quits
•  Repeatedly prompts for new selection if invalid

option
•  Executes the appropriate code for the selection
•  Stops when user quits
•  Stores the social network into the file

Mar 26, 2012 Sprenkle - CSCI111 16
Write pseudocode

UI Pseudocode

Mar 26, 2012 Sprenkle - CSCI111 17

Use default files if only one command-line argument
Read people, connections from files
while True:

 display menu options
 prompt for selection
 while invalid option
 print error message
 prompt for selection
 break if selected quit
 otherwise, do selected option

Store social network to designated file

Implementation Plan
1.  Implement Person class

Ø Test (write test functions, e.g., testPerson())

2.  Implement SocialNetwork class
Ø Example runs in lab write up
Ø Note: Methods for classes will not prompt for input; Use

input parameters
Ø Test

3.  Implement driver program

Mar 26, 2012 Sprenkle - CSCI111 18

4

Mar 26, 2012 Sprenkle - CSCI111 19

Plan for Implementing a Class
• Write the constructor and string

representation/print methods first
• Write function to test them

Ø See card.py, deck.py, and your freqobj.py for
example test functions

• While more methods to implement …
Ø Write method
Ø Test
Ø REMINDER: methods should not be using
input function but getting the input as
parameters to the method

Goal Output
•  You will create two graphs that look something

like this and put them on a new web page for
Lab 10

Mar 26, 2012 Sprenkle - CSCI111 20

This Week

•  Lab 10
•  Broader Issue: Facebook’s News Feed

Ø Optional: employers requesting passwords

Mar 26, 2012 Sprenkle - CSCI111 21

