
1

Objectives

•  Search strategies

Mar 28, 2012 Sprenkle - CSCI111 1

Lab 10

•  Trying to solve a real problem
•  Started with designing the solution from a

vague specification
•  Broke into smaller problems (different

classes, different responsibilities)
•  Implementing smaller components
•  Building to large component

Mar 28, 2012 Sprenkle - CSCI111 2

Lab 10 Discussion

• What is the API for the Person class?
Ø How much code did it require?
Ø How complex was the code?

•  How do the SocialNetwork class and
Person class work together?

Mar 28, 2012 Sprenkle - CSCI111 3

APIs
Person	
•  Person(id)	
•  str(person)	
•  getName()	
•  getNetwork()	
•  getFriends()	
•  getNumberOfFriends()	
•  getId()	
•  setName(newName)	
•  setNetwork

(newNetwork)	
•  addFriend(person)	

SocialNetwork	
•  SocialNetwork()	
•  str(socialNetwork)	
•  getPerson(id)	
•  getPeople()	
•  getUserIds()	
•  printNetwork()	
•  addConnection(id1,

id2)	
•  addConnections

(filename)	
•  …	

Mar 28, 2012 Sprenkle - CSCI111 4

Need 5 Volunteers

•  No one will get hurt …

Mar 28, 2012 Sprenkle - CSCI111 5

Find the Card in Your Deck

•  Reminder to me: take out the jokers
•  Challenge: who can find the card first

Ø (Most efficient algorithm)
•  Need rest of class to keep searchers honest

and help me determine who found the card
first

Mar 28, 2012 Sprenkle - CSCI111 6

2

The Race is On!

•  3 of Hearts
•  2 of Diamonds
•  4 of Clubs
•  Queen of Spades
•  King of Queens

Mar 28, 2012 Sprenkle - CSCI111 7

Searching for a Playing Card

•  Given a deck of cards and a card to find,
describe the algorithm for how you would find
that card.
Ø Present several algorithms (naïve ones too!)
Ø Discuss the strengths and weaknesses of each

Mar 28, 2012 Sprenkle - CSCI111 8

Search Using in Review

•  Iterates through a list, checking if the
element is found

•  Known as linear search
•  Implementation:

Mar 28, 2012 Sprenkle - CSCI111 9

def linearSearch(searchlist, key):	
	for elem in searchlist:	
	 	if elem == key:	
	 	 	return True	
	return False	

search.py	

8 5 3 7

0 1 2 3

What are the strengths and weaknesses
of implementing search this way?	

value

pos

Linear Search
•  Overview: Iterates through a list, checking if

the element is found
•  Benefits:

Ø Works on any list
•  Drawbacks:

Ø Slow -- needs to check each element of list if the
element is not in the list

Mar 28, 2012 Sprenkle - CSCI111 10

High-Low Game/TPIR Clock Game

•  I’m thinking of a number between 1-100
•  You want to guess the number as quickly as

possible, i.e., in fewest guesses
•  For every number you guess, I’ll tell you if

you got it right. If you didn’t, I’ll tell you
whether you’re too high or too low

Mar 28, 2012 Sprenkle - CSCI111 11

Reminder: write down guesses

High-Low Game/TPIR Clock Game

•  I’m thinking of a number between 1-100
•  You want to guess the number as quickly as

possible, i.e., in fewest guesses
•  For every number you guess, I’ll tell you if

you got it right. If you didn’t, I’ll tell you
whether you’re too high or too low

Mar 28, 2012 Sprenkle - CSCI111 12

è What is your best guessing strategy?

3

Strategy: Eliminate Half the Possibilities

•  Repeat until find value or looked through all
values
Ø Guess middle value of possibilities
Ø If match, found!
Ø Otherwise, find out too high or too low
Ø Modify your possibilities

•  Eliminate the possibilities from your number and
higher/lower, as appropriate

•  Known as Binary Search

Mar 28, 2012 Sprenkle - CSCI111 13

Searching…

Mar 28, 2012 Sprenkle - CSCI111 14

-3 0 0 1 2 7 8 9
0 1 2 3 4 5 6 7

value

pos

Use algorithm to search for key = 8

Searching for 8

•  Find the middle of the list
Ø Positions: 0-7, so mid position is ((7+0)//2) = 3

•  Check if the key equals the value at mid (1)
Ø If so, report the location

•  Check if the key is higher or lower than value
at mid
Ø Search the appropriate half of the list

Mar 28, 2012 Sprenkle - CSCI111 15

-3 0 0 1 2 7 8 9
0 1 2 3 4 5 6 7

8 > 1, so look
in upper half

-3 0 0 1 2 7 8 9
0 1 2 3 4 5 6 7

mid low high

Searching for 8
•  mid is 5 ((7+4)//2), list[5] is 7

Mar 28, 2012 Sprenkle - CSCI111 16

2 7 8 9
4 5 6 7

8>7, so look in
upper half

mid low high

Searching for 8
•  mid is 5 ((7+4)//2), list[5] is 7

•  mid is 6 ((7+6)//2), list[6] is 8

Mar 28, 2012 Sprenkle - CSCI111 17

2 7 8 9
4 5 6 7

8 9
6 7

8>7, so look in
upper half

8==8, FOUND IT at
position 6!

What if searched for 6 instead of 8?	

Searching for 6
• Will follow same execution flow, but 6 is not

in the list
•  mid is 6, list[5] is 7

•  mid is 4, list[4] is 2

Mar 28, 2012 Sprenkle - CSCI111 18

2
4

6>2, so will try to look in upper half of
the list, but we’ve already determined
it’s not there.
How do we know to stop looking?

-3 0 0 1 2 7 8 9
0 1 2 3 4 5 6 7

2 7 8 9
4 5 6 7

6 < 7, so will try to look in lower
half of the list

4

Implementation Group Work

•  Trace through your program using examples
Ø Start simple (small lists)
Ø Do what the program says exactly, not what you

think the program says
Mar 28, 2012 Sprenkle - CSCI111 19

def search(searchlist, key):	
	"""Pre: searchlist is a list of

integers in sorted order. Returns the
position of key (an integer) in the list
of integers (searchlist) or -1 if not
found"""	

One Solution

Mar 28, 2012 Sprenkle - CSCI111 20

Cutting list in half
Discuss tradeoffs

def altBinarySearch(searchlist, key): 	
 # Base Case: ran out of elements in the list 	
 if len(searchlist) == 0:	
 return NOT_FOUND	
	
 low = 0	
 high = len(searchlist)-1	
 mid = (low+high)//2	
 	
 valueAtMid = searchlist[mid]	
 if valueAtMid == key:	
 return mid	
 if low == high:	
 return NOT_FOUND 	
	
 if searchlist[mid] < key: # search upper half	
 return altBinarySearch(searchlist[mid+1:], key)	
 else: # search lower half	
 return altBinarySearch(searchlist[:mid], key)	

Creating a new list	

Unnecessary memory use	

search_divide.py	

One Solution

Mar 28, 2012 Sprenkle - CSCI111 21

def search(searchlist, key):	
	low=0	
	high = len(searchlist)-1	
	while low <= high :	
	 	mid = (low+high)//2	
	 	if searchlist[mid] == key:	
	 	 	return mid 	 # return True	
	 	elif key > searchlist[mid]:	
	 	 	low = mid+1	
	 	else:	
	 	 	high = mid-1	
	return -1 	# return False	

search2.py	

If you just want to
know if it’s in the list	

Binary Search
•  Example of a Divide and Conquer algorithm

Ø Break into smaller pieces that you can solve
•  Benefits:

Ø Faster to find elements (especially with larger
lists)

•  Limitations:
Ø Requires that data can be compared
• __lt__, __eq__ methods implemented by the

class
Ø List must be sorted before searching

•  Takes time to sort beforehand
Mar 28, 2012 Sprenkle - CSCI111 22

Exam 2 Results
A B C Total

Median 80 81 89 83
Average 76 77 83 81

Mar 28, 2012 Sprenkle - CSCI111 23

•  Common issues
Ø Identifying data types (int, str, dictionary, list)
Ø Tracing functions, describing what they do

•  Formal, actual parameters
Ø What code outputs

Reading from a File

Mar 28, 2012 Sprenkle - CSCI111 24

delFile = open(“delegates.dat”, “r”)	
total = 0	
for delegates in delFile:	

	total += delegates	
delFile.close()	
print(“The total number of delegates earned
is”, total) 	

5

What is the pattern?

Mar 28, 2012 Sprenkle - CSCI111 25

MAX = 8	
x = 1	
a = 0	
while x <= MAX:	

	print(“x is”, x)	
	a += x	
	x += 3	

print(“a is”, a)	

Sustainability Initiative

Mar 28, 2012 Sprenkle - CSCI111 26

def main():	
 numAttend = eval(input("Enter the number of attendees: "))	
 	
 numBuses = numAttend//75	
 if numAttend % 75 > 0:	
 numBuses += 1	
 busPerPerson = numBuses * 200 / numAttend	
 	
 numCars = numAttend//4	
 if numAttend % 4 > 0:	
 numCars += 1	
 carPerPerson = numCars * 20 / numAttend	
 	
 if busPerPerson < carPerPerson:	
 print("The bus is more cost-effective")	
 elif carPerPerson < busPerPerson:	
 print("The car is more cost-effective")	
 else:	
 print("It's a toss up.”)	

Refactoring:	

Identify functionality

for calculating the per-
person cost of a

vehicle	

Sustainability Initiative

Mar 28, 2012 Sprenkle - CSCI111 27

def main():	
 numAttend = eval(input("Enter the number of attendees: "))	
 	
 busPerPerson = calcCost(numAttend, 75, 200)	
 carPerPerson = calcCost(numAttend, 4, 20)	
 	
 if busPerPerson < carPerPerson:	
 print("The bus is more cost-effective")	
 elif carPerPerson < busPerPerson:	
 print("The car is more cost-effective")	
 else:	
 print("It's a toss up.”)	
 	
def calcCost(numAttend, capacity, cost):	
 numVehicles = numAttend//capacity	
 if numAttend % capacity > 0:	
 numVehicles += 1	
 perPerson = numVehicles * cost / numAttend	
 return perPerson	
	
main()	

For Friday

•  Broader Issue
Ø FB’s NewsFeed

•  Lab 10

Mar 28, 2012 Sprenkle - CSCI111 28

