
1

Objectives

• Wrap up dictionaries
•  Defining our own classes

Mar 16, 2012 Sprenkle - CSCI111 1

CSCI Courses

•  CSCI 112: Fundaments of Programming II -
MWF 11:15a-12:10p, R 9:05a-12:10p

•  Spring 2013: CSCI 250: Introduction to
Robotics (prereq: CSCI111)

•  Spring 2014: CSCI 251: iPhone
Development (prereq: CSCI112)

•  CSCI minor: 6 CSCI courses
•  CSCI major: 10 CSCI courses + 2 math

courses
Mar 16, 2012 Sprenkle - CSCI111 2

Review: Dictionaries
• What is a dictionary in Python?
• What is the syntax for creating a new

dictionary?
•  How do we access a key’s value from a

dictionary?
Ø What happens if there is no mapping for that

key?
•  How do we create a key à value mapping in

a dictionary?
•  How can we iterate through a dictionary?

Mar 16, 2012 Sprenkle - CSCI111 3 Mar 16, 2012 Sprenkle - CSCI111 4

Review

•  Given a file of the form
Ø <lastname> <year>

•  Create a mapping between the last name
and year, i.e., I want to be able to quickly find
out what a student’s class year is
Ø How do we want to model the data?
Ø What is the key? What is the value?
Ø How to display the mapping in a pretty way?
Ø What order is the data printed in?

years_dictionary.py	

Mar 16, 2012 Sprenkle - CSCI111 5

Problem

•  Modify the previous program to keep track of
the number of students of each year
Ø How do we want to model the data?
Ø What is the key? What is the value?

Ø Could we solve this using a list?

years_dictionary2.py	
Mar 16, 2012 Sprenkle - CSCI111 6

Analyzing years_dictionary2.py

•  Anything useful/general that we could put in
a function?

2

Equivalent Solutions

Mar 16, 2012 Sprenkle - CSCI111 7

if key not in dictionary : 	
	dictionary[key] = 1	

else: 	
	value = dictionary[key] + 1	

 dictionary[key] = value	

if key not in dictionary : 	
	dictionary[key] = 1	

else: 	
 dictionary[key] += 1	

Discussion

•  Compare lists and dictionaries
Ø What are their properties?
Ø How are they similar?
Ø How are they different?
Ø When do you use one or the other?

Mar 16, 2012 Sprenkle - CSCI111 8

Lists vs. Dictionaries

Mar 16, 2012 Sprenkle - CSCI111 9

Lists Dictionaries
integer positions (0, …) to

any type of value
Map immutable keys (int, float,

string) to any type of value

Ordered Unordered

Slower to find a value
(in) Fast to find a value (use key)

Fast to print in order Slower to print in order (by key)

Only as big as you
make it

Takes up a lot of space (so can
add elements in the middle)

ABSTRACTIONS

Mar 16, 2012 Sprenkle - CSCI111 10

Abstractions
•  Provide ways to think about program and its

data
Ø Get the jist without the details

•  Examples we’ve seen
Ø Functions and methods

•  Used to perform some operation but we don’t need to
know how they’re implemented

Ø Dictionaries
•  Know they map keys to values
•  Don’t need to know how the keys are organized/

stored in the computer’s memory
Ø Just about everything we do in this class…

Mar 16, 2012 Sprenkle - CSCI111 11

encodeMessage(phrase, key)	

Classes and Objects

•  Provide an abstraction for how to organize
and reason about data

•  Example: GraphWin
Ø Has attributes (i.e., data or state) background

color, width, height, and title
Ø Each GraphWin object has these attributes and

its own values for these attributes
Ø Used methods (API) to modify the object’s state,

get information about attributes

Mar 16, 2012 Sprenkle - CSCI111 12

GraphWin	

3

Defining Our Own Classes

•  Often, we want to represent data or
information that we do not have a way to
represent using built-in types or libraries

•  Classes provide way to organize and
manipulate data
Ø Organize: data structures used

•  E.g., ints, lists, dictionaries, other objects, etc.
Ø Manipulate: methods

Mar 16, 2012 Sprenkle - CSCI111 13

What is a Class?

•  Defines a new data type
•  Defines the class’s attributes (i.e., data or

state) and methods
Ø Methods are like functions within a class and

are the class’s API

Mar 16, 2012 Sprenkle - CSCI111 14

Object o of
type

Classname

Internal
data hidden
from others

Other objects
manipulate using

methods

Defining a Card Class

•  Create a class that represents a playing card
Ø How can we represent a playing card?
Ø What information do we need to represent a

playing card?

Mar 16, 2012 Sprenkle - CSCI111 15

Defining a Card Class

•  Create a class that represents a playing card
Ø How can we represent a playing card?
Ø What information do we need to represent a

playing card?

Mar 16, 2012 Sprenkle - CSCI111 16

• Do we need a class to
represent a card?
Ø Does any built-in data

type naturally represent a
card?

Representing a Card object
•  Every card has two attributes:

Ø Suite – a string that’s either “hearts”,
“diamonds”, “clubs”, “spades”

Ø Rank – an integer
•  2-10: numbered cards
•  11: Jack
•  12: Queen
•  13: King
•  14: Ace

•  Alternative: use a unique string or integer
that encodes the suite and rank

Mar 16, 2012 Sprenkle - CSCI111 17

Defining a New Class

Mar 16, 2012 Sprenkle - CSCI111 18

class ClassName:	
	<method definitions>	

Typically starts with
a capital letter	

Keyword	

4

Card Class (Incomplete)

Mar 16, 2012 Sprenkle - CSCI111 19

class Card:	
 """ A class to represent a standard playing card.	
 The ranks are ints: 2-10 for numbered cards, 11=Jack,
12=Queen, 13=King, 14=Ace.	
 The suits are strings: 'clubs', 'spades', 'hearts',
'diamonds’."""	
 def __init__(self, rank, suit):	
 """Constructor for class Card takes int rank and 	

	 	string suit."""	
 self.rank = rank	
 self.suit = suit	
	
 def getRank(self):	
 "Returns the card’s rank." 		
 return self.rank	
	
 def getSuit(self):	
 "Returns the card’s suit."	
 return self.suit	

Doc String	

card.py	

M
et

h
o

d
s Methods are like functions

defined in a class	

Defining the Constructor

• __init__ method is like the constructor
•  In constructor, define instance variables

Ø Data contained in every object
Ø Also called attributes or fields

•  Constructor never returns anything

Mar 16, 2012 Sprenkle - CSCI111 20

def __init__(self, rank, suit):	
 """Constructor for class Card takes int rank 	

	 	and string suit."""	
 self.rank = rank	
 self.suit = suit	

First parameter of every method is self	
-  pointer to the object that method acts on	

Instance
variables	

Using the Constructor

•  As defined, constructor is called using
Card(<rank>,<suit>)	
Ø Do not pass anything for the self parameter
Ø Python handles for us

•  Passes the parameter
automatically

Mar 16, 2012 Sprenkle - CSCI111 21

Object card
of type Card	

rank = ?
suit = ?

def __init__(self, rank, suit):	

Using the Constructor

•  As defined, constructor is called using
Card(<rank>,<suit>)	
Ø Do not pass anything for the self parameter
Ø Python handles for us, passing the parameter

automatically
•  Example:

Ø card = Card(2, “hearts”)	
Ø Creates a 2 of Hearts card
Ø Python passes card as self for us

Mar 16, 2012 Sprenkle - CSCI111 22

def __init__(self,	
 	rank, suit):	

Object card
of type Card	

rank = 2
suit = “hearts”

Accessor Methods
•  Need to be able to get information about the

object

•  These will get called as card.getRank()
and card.getSuit()	
Ø Python plugs card in for self	

Mar 16, 2012 Sprenkle - CSCI111 23

def getRank(self):	
	"Returns the card’s rank."	
	return self.rank	

	
def getSuit(self):	
	"Returns the card’s suit."	
	return self.suit	

•  Have self
parameter	

•  Return data/

information	

Another Special Method: __str__	
•  Returns a string

that describes the
object

•  Whenever you
print an object,
Python checks if the
object’s __str__
method is defined
Ø Prints result of calling
__str__ method

• str(<object>)
also calls __str__
method

Mar 16, 2012 Sprenkle - CSCI111 24

def __str__(self):	
 """Returns a string

	describing the card as  
	'rank of suit'."""	

 result = ""	
 if self.rank == 11:	
 result += "Jack"	
 elif self.rank == 12:	
 result += "Queen"	
 elif self.rank == 13:	
 result += "King"	
 elif self.rank == 14:	
 result += "Ace"	
 else:	
 result += str(self.rank)	
 result += " of " + self.suit	
 return result	

self is a
Card object	

5

Using the Card Class

Mar 16, 2012 Sprenkle - CSCI111 25

def main():	
 c1 = Card(14, "spades")	
 print(c1)	
 c2 = Card(13, "hearts")	
 print(c2)	
 	

Invokes the
__str__ method

Displays:
Ace of spades
King of hearts

Object c1 of
type Card	

rank = 14
suit = “spades”

Object c2 of
type Card	

rank = 13
suit = “hearts”

Broader Issues: Environmental Monitoring

•  Interdisciplinary projects involving sensor
networks
Ø Important new-ish CS research area

•  Disclaimer:
Ø Not a seismologist or a biologist

•  Groups:

Mar 18, 2011 Sprenkle - CSCI111 26

Volcano:
Mary
Josh
Gabi
Colby
Will

Zebra:
Kari
John K
Drew
Liu

Zebra:
John G
Haley
Phil
Trang

Zebra:
Sam
Hang
Cory
Deirdre

Discussion
• What is the project?
• What are the CS challenges to the projects?

Ø Any challenges only applicable to one project?
•  How does the environment impact the CS

research problems/solutions?
•  How did the researchers address these

challenges?
Ø How would you address the challenges?

• What are other projects where we could
apply sensor networks?

Mar 18, 2011 Sprenkle - CSCI111 27

Overview of Challenges: Efficiency

•  Some programmers thought that efficiency
didn’t matter anymore
Ø GB of memory, terabytes of storage on

machines
•  Now: small and embedded devices

Ø Need to be efficient!
•  Energy in battery powered nodes
•  Amount of data stored (when to delete?)
• When, amount of data transferred

Mar 18, 2011 Sprenkle - CSCI111 28

Overview of Challenges: Reliability
•  Data delivery

Ø Missing data
Ø Connectivity (good signal?)
Ø Duplicate data (different sources?)
Ø Dead sensor nodes
Ø Calibration of data (time synchronization)

•  Nodes
Ø Withstand extreme weather, conditions
Ø Battery life

•  Robustness: recover from software failure/
malfunction or bad data

Mar 18, 2011 Sprenkle - CSCI111 29

Overview of Challenges

•  Testing
Ø Accurately simulate conditions (which will vary

widely over long periods of time)
•  Different goals from domain scientists

Ø CS: push boundaries of sensor networks
•  Example: Improve reliability of data to 95%
•  Seismologists: need 100% reliable data

Mar 18, 2011 Sprenkle - CSCI111 30

6

Looking ahead to next week

•  Tuesday: Lab
Ø Practice with dictionaries, object-oriented

programming
•  Friday

Ø Exam, in class, on paper
Ø Review document on line

•  No creating your own classes
Ø No broader issue

Mar 18, 2011 Sprenkle - CSCI111 31

