
1

Objectives

•  Designing our own classes
Ø Representing attributes/data
Ø What functionality to provide

•  Using our defined classes
•  Broader Issue: environmental monitoring

Mar 19, 2012 Sprenkle - CSCI111 1

Review

•  Compare properties of dictionaries and lists
Ø When should you use one over the other?

•  Problem from last week
Ø Missing a JR from the lastnameàyear mapping

•  Reason: two students have the same last
name!

Mar 19, 2012 Sprenkle - CSCI111 2

Where We Are

• With what you now know (OO programming)
Ø Opens up the possibilities for what you kinds of

programs you can write
Ø Just about anything computational is possible

•  Example: Car
Ø Data to model for a Car?
Ø API for a Car?

Mar 19, 2012 Sprenkle - CSCI111 3

Review: Classes and Objects
•  Car class
•  Each car has these attributes:

Ø Make
Ø Model
Ø Year
Ø Transmission
Ø Exterior color

•  Methods
Ø getYear()
Ø setGear()
Ø …

Mar 19, 2012 Sprenkle - CSCI111 4

Cars all have these attributes, ���
different values for the attributes	

Each car is an instance of
the Car class	

Review: Object-Oriented Programming

• Why do we want to define classes/new data
types?

• What is the keyword to create a new class?
•  How do you define a method?

Ø What parameter is needed in every method?
•  How do you create a new object of a given

class?
Ø What method does this call?

•  How do we access instance variables in
other methods?

Mar 19, 2012 Sprenkle - CSCI111 5

Review: Classes and Objects
c1 = Card(14, "spades")	
c2 = Card(13, "hearts")	

Mar 19, 2012 Sprenkle - CSCI111 6

Instance variables,
attributes, or fields	

Object c1 of
type Card	

rank = 14
suit = “spades”

Object c2 of
type Card	

rank = 13
suit = “hearts”

c1 and c2 are
instances of the

Card class

2

Card Class (Incomplete)

Mar 19, 2012 Sprenkle - CSCI111 7

class Card:	
 """ A class to represent a standard playing card.	
 The ranks are ints: 2-10 for numbered cards, 11=Jack,
12=Queen, 13=King, 14=Ace.	
 The suits are strings: 'clubs', 'spades', 'hearts',
'diamonds’."""	
 def __init__(self, rank, suit):	
 """Constructor for class Card takes int rank and 	

	 	string suit."""	
 self.rank = rank	
 self.suit = suit	
	
 def getRank(self):	
 "Returns the card’s rank." 		
 return self.rank	
	
 def getSuit(self):	
 "Returns the card’s suit."	
 return self.suit	

Doc String	

card.py	

M
et

h
o

d
s Methods are like functions

defined in a class	

Defining the Constructor

• __init__ method is like the constructor
•  In constructor, define instance variables

Ø Data contained in every object
Ø Also called attributes or fields

•  Constructor never returns anything

Mar 19, 2012 Sprenkle - CSCI111 8

def __init__(self, rank, suit):	
 """Constructor for class Card takes int rank 	

	 	and string suit."""	
 self.rank = rank	
 self.suit = suit	

First parameter of every method is self	
-  pointer to the object that method acts on	

Instance
variables	

Using the Constructor

•  As defined, constructor is called using
Card(<rank>,<suit>)	
Ø Do not pass anything for the self parameter
Ø Python handles for us, passing the parameter

automatically
•  Example:

Ø card = Card(2, “hearts”)	
Ø Creates a 2 of Hearts card
Ø Python passes card as self for us

Mar 19, 2012 Sprenkle - CSCI111 9

def __init__(self,	
 	rank, suit):	

Object card
of type Card	

rank = 2
suit = “hearts”

Accessor Methods
•  Need to be able to get information about the

object

•  These will get called as card.getRank()
and card.getSuit()	
Ø Python plugs card in for self	

Mar 19, 2012 Sprenkle - CSCI111 10

def getRank(self):	
	"Returns the card’s rank."	
	return self.rank	

	
def getSuit(self):	
	"Returns the card’s suit."	
	return self.suit	

•  Have self
parameter	

•  Return data/

information	

Another Special Method: __str__	
•  Returns a string

that describes the
object

•  Whenever you
print an object,
Python checks if the
object’s __str__
method is defined
Ø Prints result of calling
__str__ method

• str(<object>)
also calls __str__
method

Mar 19, 2012 Sprenkle - CSCI111 11

def __str__(self):	
 """Returns a string

	describing the card as  
	'rank of suit'."""	

 result = ""	
 if self.rank == 11:	
 result += "Jack"	
 elif self.rank == 12:	
 result += "Queen"	
 elif self.rank == 13:	
 result += "King"	
 elif self.rank == 14:	
 result += "Ace"	
 else:	
 result += str(self.rank)	
 result += " of " + self.suit	
 return result	

self is a
Card object	

Using the Card Class

Mar 19, 2012 Sprenkle - CSCI111 12

def main():	
 c1 = Card(14, "spades")	
 print(c1)	
 c2 = Card(13, "hearts")	
 print(c2)	
 	

Invokes the
__str__ method

Displays:
Ace of spades
King of hearts

Object c1 of
type Card	

rank = 14
suit = “spades”

Object c2 of
type Card	

rank = 13
suit = “hearts”

3

Example: Rummy Value
•  Problem: Add a method to the Card class

called rummyValue that returns the value of
the card in the game of Rummy

•  Procedure for defining a method (similar to
functions)
Ø What is the input?
Ø What is the output?
Ø What is the method header?
Ø What does the method do?

•  How do we call the method?
Mar 19, 2012 Sprenkle - CSCI111 13 card2.py	

Card API

•  Based on what we’ve seen/done so far, what
does the Card class’s API look like?

Mar 19, 2012 Sprenkle - CSCI111 14

Card API

• Card(<rank>, <suit>)	
• getRank()	
• getSuit()	
• rummyValue()	
• __str__()	

Mar 19, 2012 Sprenkle - CSCI111 15

Instance
Variables:

rank, suit	
Object o of
type Card	

Implementation of
methods is hidden

API Using the Card class

•  Having the Card class means that we can
represent a Card in code

Mar 19, 2012 Sprenkle - CSCI111 16

Now that we have the Card class,
how can we use it?

Review

Mar 26, 2010 Sprenkle - CSCI111 17

from graphics import *	
	
win = GraphWin(“Picture”)	
win.setBackground(“black”)	

from card import *	
	
c = Card(7, “diamonds”)	
print(c.getRank())	

•  Same programming as before
•  Just defining our own classes

Using the Card class

•  Let’s write a simplified version of the game of
War
Ø Basically just part of a round

• What are the rules of War?

Mar 19, 2012 Sprenkle - CSCI111 18 war.py	

Now that we have the Card class,
how can we use it?

4

Using the Card class

•  Can make a Deck class
Ø What data should a Deck contain?
Ø How can we represent that data?

•  Consider other functionality we may want to
implement

•  To start: write methods __init__ and
__str__	
Ø What do the method headers look like?

Mar 19, 2012 Sprenkle - CSCI111 19

Now that we have the Card class,
how can we use it?

Creating a Deck Class (Partial)

•  List of Card objects

Mar 19, 2012 Sprenkle - CSCI111 20

from card import *	
	
class Deck:	
 def __init__(self):	
 self.listOfCards = []	
 for suit in ["clubs","hearts","diamonds","spades"]:	
 for rank in range(2,15):	
 self.listOfCards.append(Card(rank, suit))	
	
 def __str__(self):	
 deckRep= ""	
 for c in self.listOfCards:	
 deckRep += str(c) + "\n"	
 return deckRep	

Displays cards on
separate lines

Initialize instance variable,
self.listOfCards	

Creates and returns a string

Deck Class

• What does the Deck API look like so far?

Mar 19, 2012 Sprenkle - CSCI111 21

Deck API

• Deck()	
• __str__()	

Mar 19, 2012 Sprenkle - CSCI111 22

How could we test these methods?	

Constructor

Using the Deck Class

•  How can we use the Deck that we just
wrote?

Mar 19, 2012 Sprenkle - CSCI111 23

Deck API

Mar 19, 2012 Sprenkle - CSCI111 24

• What additional methods should our
Deck class provide?	

• What do the method headers look like?	

• Deck’s API	

• What should they return?	

• How do we implement them?	

5

Adding Deck Functionality

•  Shuffle the cards
•  Number of cards remaining
•  Draw one card
•  Deal out cards

Mar 19, 2012 Sprenkle - CSCI111 25

Algorithm for Creating Classes

1.  Identify need for a class
2.  Identify state or attributes of a class/an

object in that class
Ø  Write the constructor (__init__) and

__str__ methods
3.  Identify methods the class should provide

Ø  How will a user call those methods
(parameters, return values)?

•  Develop API
Ø  Implement methods

Mar 19, 2012 Sprenkle - CSCI111 26

Looking Ahead

•  Lab 9: Analysis of student names
•  Fri: Exam 2
• Wed: Bring your questions about the exam

Mar 19, 2012 Sprenkle - CSCI111 27

