
1

Objectives

•  Review
•  Lab 1

Ø Linux practice
Ø Programming practice

•  Numeric operations
•  Getting input from the user

Jan 17, 2012 Sprenkle - CSCI111 1

Advice from Previous Students
•  Push yourself on labs. They are a great opportunity

to try out the concepts you're learning.
•  Get help from the student assistants during lab.
•  Focus on key concepts and don't fret the details.

Make sure you understand what's going on before
moving on.

•  Everything in this class builds on everything before it.
•  Don't settle on a program just because it runs. You

can probably still make it better.
•  Think about how the course material applies to your

interests. Try to see how the work we're doing is
similar to how CS is used in the "real world”.

Jan 17, 2012 Sprenkle - CSCI111 2

Review

• What are the two different types of division?
•  How do we get input from the user?

Ø Numerical vs textual (string)
• What is our process for solving problems?
• What is the two-part verification process we

need to do after we implement a program?

Jan 17, 2012 Sprenkle - CSCI111 3

Review: Formalizing Process of
Developing Computational Solutions
1. Create a sketch of how to solve the problem

(the algorithm)
2. Fill in the details in Python
3. Test the Python program with good test

cases
a.  If errors found, debug program
b.  Repeat step 3

Jan 16, 2012 Sprenkle - CSCI111 4

Review: Arithmetic Operations

Jan 17, 2012 Sprenkle - CSCI111 5

Symbol Meaning Associativity

+	 Addition Left

-	 Subtraction Left
*	 Multiplication Left
/	 Division Left

%	 Remainder (“mod”) Left

**	 Exponentiation (power) Right

Precedence rules: P E - DM% AS

negation

Associativity matters when
you have the same

operation multiple times	

Review: Two Division Operators

/ Float Division
•  Result is a float	
•  Examples:	

Ø  6/3 à 2.0	
Ø  10/3 à

3.3333333333333335	
Ø  3.0/6.0 à 0.5	
Ø  10/9 à 1.9	

// Integer Division
•  Result is an int
•  Examples:

Ø  6//3 à 2	
Ø  10//3 à 3	
Ø  3.0//6.0 à 0	
Ø  10//9 à 1	

Jan 17, 2012 Sprenkle - CSCI111 6

2

Review: Design Patterns

•  General, repeatable solution to a commonly
occurring problem in software design
Ø Template for solution

•  Example (Standard Algorithm)
Ø Get input from user
Ø Do some computation
Ø Display output

Jan 24, 2011 Sprenkle - CS111 7

print	
Assign.
Assign. x = input(“…”)	

ans = …	
print(ans)	

Review: Testing Process

•  Test case: input used to test the program,
expected output given that input

•  Verify if output is what you expected
•  Need good test cases

Ø Good that you know the “problematic” test
cases, even if we don’t know how to address
them yet

Jan 17, 2012 Sprenkle - CSCI111 8

Input Program Output

Expected
Output

Verify output
Test Case

Review: Debugging
•  After identifying errors during testing
•  Identify the problems in your code

Ø Edit the program to fix the problem
Ø Re-execute/test until all test cases pass

•  The error is called a “bug” or a “fault”
•  Diagnosing and fixing errors is called debugging

Jan 17, 2012 Sprenkle - CSCI111 9

Interpreter
(python)

Program
text file

program.py
Output

Text Editor
(jEdit or IDLE)

ERROR!	

Identify bug, fix	

debug_practice.py	

Good Development Practices
•  Design the algorithm

Ø Break into pieces

•  Implement and Test each piece separately
Ø Identify the best pieces to make progress
Ø Iterate over each step to improve it

• Write comments FIRST for each step
Ø Elaborate on what you’re doing in comments

when necessary

Jan 17, 2012 Sprenkle - CSCI111 10

General Announcements

•  CS Issues Grading/Expectations
Ø 6 pts for blog entry

•  Common issue – missing answers to one of
questions

Ø 4 pts for participation in class

•  Example programs posted for each day on
course web site

Jan 17, 2012 Sprenkle - CSCI111 11

Lab 0 Feedback
•  Overall, did well

Ø Often lost points because missed some
directions
•  E.g., broken Web page links, documentation in

programs, output of programs
Ø Generally, lab grades should be high

•  Interesting article links
Ø Consider reviewing for extra credit

•  Missed Sakai extra credit

Jan 17, 2012 Sprenkle - CSCI111 12

3

Lab 0 Feedback
• ls -l option

Ø Demonstrate how different from -1 option

•  Need electronic as well as printed
submission
Ø I can execute your program, help find mistakes
Ø Copy your lab directory into your turnin

directory
Ø How do you copy a directory?

Jan 17, 2012 Sprenkle - CSCI111 13

Linux Command Conventions
• <arg> means fill in the appropriate thing
• [arg] means optional argument
•  Example: Move or Rename a file

Ø mv <sourcefile> <destination>	

•  Moves file.py to current directory with a new name
Ø  If <destination> is a directory, keeps the original

source file’s name

•  File file.py will be in labs/lab1 directory
Jan 17, 2012 Sprenkle - CSCI111 14

mv ~/labs/file.py ~/labs/lab1/ directory

mv ~/labs/file.py newfilename.py

Lab 1: Linux Practice
•  Setting up directories
•  Renaming/moving files
•  Note: terminal tells you which directory

you’re in

Jan 17, 2012 Sprenkle - CSCI111 15

IDLE Review

•  Run using idle3 & 	

Jan 17, 2012 Sprenkle - CSCI111 16

Lab 1: Programming Practice
•  Name program files lab1.n.py, where n is

the problem you’re working on
•  After completed, demonstrate that your

program works
1.  Close IDLE/Python interpreter, rerun program

•  Get rid of the output from when you were developing/
debugging (“scratch work”)

2.  Execute using good test cases
•  More than one test case if dealing with user input
•  Don’t need to exhaustively test

3.  Save output for each program in file named
lab1.n.out where n is the problem you’re working on

Jan 17, 2012 Sprenkle - CSCI111 17

Lab 1 Expectations
•  Comments in programs

Ø High-level comments, author
Ø Notes for your algorithms, implementation

•  Testing programs
Ø What are good test cases for your programs?
Ø Show the output from those test cases
Ø But don’t go overboard by testing every possible

number!
•  Nice, readable, understandable output
•  Honor System

Ø Pledge the Honor Code on printed sheets

Jan 17, 2012 Sprenkle - CSCI111 18

