
1

Objectives

• Wrap up defining classes
• __lt__ , __eq__method
•  Helper methods
•  Command-line arguments

Mar 21, 2012 Sprenkle - CSCI111 1

Review

• Where do we define the data that is needed
to represent every object of a class?
Ø How do we access that data?

•  How do we create a new method?
• What method do you define for the object’s

constructor?
• What method do you define to be called by

print?

Mar 21, 2012 Sprenkle - CSCI111 2

Implementing Deck Functionality

Mar 21, 2012 Sprenkle - CSCI111 3

• What functionality do we have so far?	

• What additional methods should our
Deck class provide?	

• What do the method headers look like?	

• Deck’s API	

• What should they return?	

• How do we implement them?	

 __LT__ and __EQ__

METHODS

Mar 21, 2012 Sprenkle - CSCI111 4

__eq__:
Compare Objects of Same Type

•  Header: def __eq__(self, other)	
Ø Assumption: other is another object of the same

type
•  Returns

Ø True if self is equivalent to other	
Ø False otherwise

•  Similar to implementing Comparable interface
in Java

•  Can now use objects in comparison expressions
Ø ==	

Mar 21, 2012 Sprenkle - CSCI111 5

How would you determine if two
Card objects are equivalent?	

__lt__:
Compare Objects of Same Type

•  Header: def __lt__(self, other)	
Ø Assumption: other is another object of the same

type
•  Returns

Ø True if self < other	
Ø False otherwise

•  Similar to implementing Comparable interface
in Java

•  Can now use objects in comparison expressions
Ø <, sort	

Mar 21, 2012 Sprenkle - CSCI111 6

How do you compare ���
two Card objects?	

2

Comparing Objects of the Same Type

Mar 21, 2012 Sprenkle - CSCI111 7 card.py

def __lt__(self, other):	
	""" Compares Card objects by their ranks ""”	
	if type(self) != type(other):	
	 	return False	

	
	return self.rank < other.rank	

def __eq__(self, other):	
	""" Compares Card objects by their ranks and suits ""”	
	if type(self) != type(other):	
	 	return False	

	
	return self.rank == other.rank and self.suit == other.suit	
		

# Could compare by black jack or rummy value	

Frequency Object

Mar 21, 2012 Sprenkle - CSCI111 8

def __lt__(self, other):	
 """Compares this object with other, which is  
	also a FrequencyObject. Used when using the  
	list's sort method.""" 	

	
	return self.count < other.count	

HELPER METHODS

Mar 21, 2012 Sprenkle - CSCI111 9

Helper Methods

•  Part of the class
•  Not part of the API

•  Make your code easier but others outside the
class shouldn’t use

•  Convention: method name begins with “_”

Mar 21, 2012 Sprenkle - CSCI111 10

Example Helper Methods

•  Only loosely enforces that other can’t use
Ø Doesn’t show up in help	
Ø Does show up in dir	

Mar 21, 2012 Sprenkle - CSCI111 11

def _isFaceCard(self):	
	if self.rank > 10 and self.rank < 14:	
	 	return True	
	return False	

Helper Method:

def rummyValue(self):	
	if self._isFaceCard():	
	 	return 10	
elif self.rank == 10:	

	 	return 10	
	elif self.rank == 14:	
	 	return 15	
	else:	
	 	return 5	

In use:

card2.py	

Summary: Designing Classes

• What does the object/class represent?
•  How to model/represent the class’s data?

Ø Instance variable
Ø Data type

• What functionality should objects of the class
have?
Ø How will others want to use the class?
Ø Put into methods for others to call (API)

Mar 21, 2012 Sprenkle - CSCI111 12

3

Discussion

•  How did we represent a bug in Lab 6?
•  How did we manipulate the bug?
• What was tricky about the implementation?

Mar 21, 2012 Sprenkle - CSCI111 13

Refactoring Bug Class

• What is a bug’s data?
• What methods should a Bug object

implement?

Mar 21, 2012 Sprenkle - CSCI111 14 bug.py	

Benefits of Classes

•  Package/group related data into one object
Ø Deck can have list of Card objects rather than

a list of ranks and a list of suits
•  Reuse code

Ø Card class used in war.py and deck.py	
•  Provide interface, can change underlying

implementation without affecting calling code

Mar 21, 2012 Sprenkle - CSCI111 15

Changing Implementations

•  Same API, different implementations

Mar 21, 2012 Sprenkle - CSCI111 16

def __init__(self, rank, suit):	
	self.rank = rank	
	self.suit = suit	

	
def getRank(self):	

	return self.rank	
	
def getSuit(self):	

	return self.suit	

def __init__(self, rank, suit):	
	self.cardid=rank	
	if suit == “clubs”:	
	 	self.cardid += 13	
	elif suit == “hearts”:	
	 	self.cardid += 26	
	elif suit == “diamonds”:	
	 	self.cardid += 39	

	
def getRank(self):	

	return (self.cardid-2) % 13 + 2	
	
def getSuit(self):	

	suits = ["spades", "clubs", "hearts", "diamonds"]	
 whichsuit = (self.cardid-2)/13	
 return suits[whichsuit]	

Tradeoff: Saving
information (memory);	

Computing information	

card_byid.py	

Considerations for Using Classes

Ø Redo something done by class
Ø Could have efficiency penalties
Ø But time saved reusing code is usually worth it

Mar 21, 2012 Sprenkle - CSCI111 17

Only use class if you’re using most of its
functionality/information

Since you don’t know implementation,
may inadvertently duplicate code

COMMAND-LINE
ARGUMENTS

Mar 21, 2012 Sprenkle - CSCI111 18

4

Command-line Arguments

• We can run programs from terminal (i.e., the
“command-line”) and from IDLE

•  Can pass in arguments from the command-
line, similar to how we use Unix commands
Ø Ex: cp <source> <dest>	

Ø Ex: python3 maptest.py 3	
•  Makes input easier

Ø Don’t have to retype each time executed
Mar 21, 2012 Sprenkle - CSCI111 19

Command-line arguments

Command-line Arguments

•  Using the sys module
Ø What else did we use from the sys module?

•  How to reference (get value) “<filename>”?

Mar 21, 2012 Sprenkle - CSCI111 20

python3 command_line_args.py <filename>	

List of arguments, named sys.argv	

python3 maptest.py 3	

Command-line Arguments
•  Using the sys module

•  How to reference (get value) “<filename>”?

Ø sys.argv is a list of the arguments	
Ø sys.argv[1] is the filename 	
Ø sys.argv[0] is the name of the program

Mar 21, 2012 Sprenkle - CSCI111 21 command_line_args.py

python command_line_args.py <filename>	

sys.argv	 command_line_args.py <filename>
0 1

Using Command-line Arguments
•  In general in Python:

Ø sys.argv[0] is the Python program’s name
•  Have to run program from terminal (not from

IDLE)
Ø Can edit program in IDLE though

è Useful trick:
Ø If can’t figure out bug in IDLE, try running from

command-line
•  May get different error message

Mar 21, 2012 Sprenkle - CSCI111 22

Questions about Exam 2?

Mar 21, 2012 Sprenkle - CSCI111 23

Looking Ahead

•  Lab 9 Extension
Ø Submit everything but graphs, web page by

Friday
Ø Graphs, web page due Monday

•  Exam Friday

Mar 21, 2012 Sprenkle - CSCI111 24

