
1

Feb 15, 2012 Sprenkle - CSCI111 1

Objectives

•  A new data type: Lists

Review

•  The data type of the loop variable depends
on what’s after in 	

Feb 15, 2012 Sprenkle - CSCI111 2

string = “some string”	
	
for x in range(len(string)):	

	# loop body …	
	
for x in string:	

	# loop body …	

What is the data
type of the loop

variable x?	

Review

•  The data type of the loop variable depends
on what’s after in 	

Feb 15, 2012 Sprenkle - CSCI111 3

string = “some string”	
	
for x in range(len(string)):	

	# loop body …	
	
for x in string:	

	# loop body …	

Integer	

String	

Review

• What are the various things we can do with
strings?

Feb 15, 2012 Sprenkle - CSCI111 4

Feb 15, 2012 Sprenkle - CSCI111 5

Sequences of Data
•  Sequences so far …

Ø str: sequence of characters
Ø range: generator (sequence of numbers)

• We commonly group a sequence of data
together and refer to them by one name
Ø Days of the week: Sunday, Monday, Tuesday, …
Ø Months of the year: Jan, Feb, Mar, …
Ø Shopping list

•  Can represent this data as a list in Python
Ø Similar to arrays in other languages

Feb 15, 2012 Sprenkle - CSCI111 6

Lists: A Sequence of Data Elements

“Sun”	 “Mon”	 “Tue”	 “Wed”	 “Thu”	 “Fri”	 “Sat”	
0	 1	 2	 3	 4	 5	 6	

element	

Position	

in the list	

 len(daysInWeek) is 7

daysInWeek	

•  Elements in lists can be any data type

What does does this look similar to, in structure?	

2

Feb 15, 2012 Sprenkle - CSCI111 7

Example Lists in Python

•  List of strs:
Ø daysInWeek=["Sun", "Mon", "Tue", "Wed",
"Thu”, “Fri”, “Sat”]	

•  List of floats
Ø highTemps=[60.4, 70.2, 63.8, 55.7, 54.2]	

•  Lists can contain >1 type
Ø wheelOfFortune=[250, 1000, "Bankrupt",
"Free Play”]	

Feb 15, 2012 Sprenkle - CSCI111 8

Benefits of Lists

•  Group related items together
Ø Instead of creating separate variables
• sunday = “Sun”	
• monday = “Mon”	

•  Convenient for dealing with large amounts of
data
Ø Example: could keep all the temperature data in

a list if needed to reuse later
•  Functions and methods for handling,

manipulating lists

Feb 15, 2012 Sprenkle - CSCI111 9

List Operations

Concatenation <seq> + <seq>	
Repetition <seq> * <int-expr>	
Indexing <seq>[<int-expr>]	
Length len(<seq>)	
Slicing <seq>[:]	
Iteration for <var> in <seq>:	
Membership <expr> in <seq>	

Similar to operations for strings	

Feb 15, 2012 Sprenkle - CSCI111 10

Lists: A Sequence of Data Elements

• <listname>[<int_expr>]	
Ø Similar to accessing characters in a string
Ø daysInWeek[-1] is “Sat”
Ø daysInWeek[0] is “Sun”

“Sun”	 “Mon”	 “Tue”	 “Wed”	 “Thu”	 “Fri”	 “Sat”	
0	 1	 2	 3	 4	 5	 6	

element	

Position	

in the list	

 len(daysInWeek) is 7

daysInWeek	

Feb 15, 2012 Sprenkle - CSCI111 11

Iterating through a List

•  Read as
Ø For every element in the list …

•  Equivalent to

for item in list:	
	print(item)	

An item in the list	

 list object	

for x in range(len(list)):	
	print(list[x])	

Iterates through
positions in list 	

Iterates through
items in list 	

daysOfWeek.py	 Feb 15, 2012 Sprenkle - CSCI111 12

Practice

•  Get the list of weekend days from the days of
the week list
Ø daysInWeek=["Sun", "Mon”, “Tue”,
“Wed”, “Thu”, “Fri”, “Sat”]	

3

Feb 15, 2012 Sprenkle - CSCI111 13

Practice

•  Get the list of weekend days from the days of
the week list
Ø daysInWeek=["Sun", "Mon”, “Tue”,
“Wed”, “Thu”, “Fri”, “Sat”]	

Ø weekend = daysInWeek[:1] +
daysInWeek[-1:]	

or
Ø weekend = [daysInWeek[0]] +
[daysInWeek[-1]]	

Gives back a list	

Gives back an
element of list, ���
which is a str	

Feb 15, 2012 Sprenkle - CSCI111 14

Membership
•  Check if a list contains an element
•  Example problem

Ø enrolledstudents is a list of students who are
enrolled in the class

Ø Want to check if a student who attends the class is
enrolled in the class

if student not in enrolledstudents:	
	print(student, “is not enrolled”)	

Problem: If have a list attendingstudents,
check if each attending student is an enrolled student

Feb 15, 2012 Sprenkle - CSCI111 15

List Methods
Method Name Functionality
<list>.append(x)	 Add element x to the end
<list>.sort()	 Sort the list
<list>.reverse()	 Reverse the list

<list>.index(x)	 Returns the index of the first occurrence
of x, Error if x is not in the list

<list>.insert(i, x)	 Insert x into list at index i

<list>.count(x)	 Returns the number of occurrences of x
in list

<list>.remove(x)	 Deletes the first occurrence of x in list

<list>.pop(i)	 Deletes the i th element of the list and
returns its value

Note: methods do not return a copy of the list …	

Fibonacci Sequence

•  Goal: Solve using list
•  F0=F1=1
•  Fn=Fn-1+ Fn-2
•  Example sequence: 1, 1, 2, 3, 5, 8, 13, 21, …

Feb 15, 2012 Sprenkle - CSCI111 16

Feb 15, 2012 Sprenkle - CSCI111 17

Fibonacci Sequence
•  Create a list of the 1st 15 Fibonacci

numbers
Ø F0=F1=1; Fn=Fn-1+ Fn-2

fibs = [] 	 	# create an empty list	
fibs.append(1) 	# append the first two Fib numbers	
fibs.append(1)	
for x in range(2, 16): # compute the next 13 nums	

	newfib = fibs[x-1]+fibs[x-2]	
	fibs.append(newfib)	

	
print(fibs)	 	# print out the list	

fibs.py	

Grow list as we go	

Feb 15, 2012 Sprenkle - CSCI111 18

Fibonacci Sequence
•  Create a list of the 1st 15 Fibonacci

numbers
Ø F0=F1=1; Fn=Fn-1+ Fn-2

fibs = list(range(15)) # creates a list of size 15,	
	 	 	 	# containing nums 0 to 14	

fibs[0] = 1	
fibs[1] = 1	
for x in range(2, len(fibs)):	

	newfib = fibs[x-1]+fibs[x-2]	
	fibs[x] = newfib	

	
for num in fibs: 	# print each num on sep line	

	print(num)	

fibs2.py	

•  Create list	

•  Update values	

4

Feb 15, 2012 Sprenkle - CSCI111 19

Lists vs. Arrays

•  Briefly, lists are similar to arrays in other
languages
Ø More similar to Vectors in C++ and ArrayLists in

Java
•  Typically, arrays have static lengths

Ø Can’t insert and remove elements from arrays so
that the length of the array changes

Ø Need to make the array as big as you’ll think
you’ll need

Lists vs. Strings
•  Strings are immutable

Ø Can’t be mutated?
Ø Er, can’t be modified/

changed

•  Lists are mutable
Ø Can be changed
Ø Changes how we call/

use methods

Feb 15, 2012 Sprenkle - CSCI111 20

groceryList=[“milk”, “eggs”, “bread”, “Doritos”, “OJ”, \
	 	 “sugar”]	

groceryList[0] = “skim milk”	
groceryList[3] = “popcorn”	

groceryList is now [“skim milk”, “eggs”, “bread”, \
	 	 	“popcorn”, “OJ”, “sugar”]	

Feb 15, 2012 Sprenkle - CSCI111 21

Practice in Interactive Mode
• list = [7,8,9]	
• string = “abc”	
• list[1]	
• string[1]	
• string.upper()	
• list.reverse()	
• string	
• list	
• string = string.upper()	
• list = list.reverse()	
• string	
• list	

Feb 15, 2012 Sprenkle - CSCI111 22

Special Value: None

•  Special value we can use
Ø E.g., Return value from function when there is an

error
•  Similar to null in Java

•  If you execute
list = list.sort()	
print(list)	
Ø Prints None because list.sort() does not

return anything

Feb 15, 2012 Sprenkle - CSCI111 23

Practice: Wheel of Fortune

•  Modify to keep track of previous guesses
Ø If user made that guess before, print message

• What are the data types of the data we’re
modeling?

Feb 15, 2012 Sprenkle - CSCI111 24

Practice: Wheel of Fortune

•  Model the wheel
Ø Money
Ø Bankruptcy, lose a turn, free spin

•  Simulate spinning the wheel

5

Practice: Wheel of Fortune

•  Big set of puzzles
Ø How do we represent?
Ø How do we pick a puzzle?
Ø How do we ensure no repeating of puzzle?

Feb 15, 2012 Sprenkle - CSCI111 25

Practice: Wheel of Fortune
•  Big set of puzzles

Ø How do we represent?
•  List of strings; each string is a puzzle

Ø How do we pick a puzzle?
Ø How do we ensure no repeating of puzzle?

•  Alt 1:
Ø Start at beginning of list, move to the next one

until reach the end; repeat
•  Alt 2:

Ø Randomly pick a puzzle; remove puzzle from list
(either using pop or remove); Repeat

Feb 15, 2012 Sprenkle - CSCI111 26

Feb 15, 2012 Sprenkle - CSCI111 27

Copies of Lists

• What does the following code output?
x = [1, 2, 3]	
y = x	
y[0] = -1	
print(y)	
print(x)	

Feb 15, 2012 Sprenkle - CSCI111 28

List Identifiers are Pointers

•  y is not a copy of x
Ø Points to what x points to

•  How to make a copy of y?

1 2 3
x	

y	

y = x + []	 y = []	
y.extend(x)	

OR	

Empty list	

x = [1, 2, 3]	
y = x	

Wrap Up

•  Similarity and differences between lists and
strings

Feb 15, 2012 Sprenkle - CSCI111 29

Assignments

•  For Friday
Ø Lab 5 due
Ø A Comparison of bugs due (Broader Issue)

•  Extra credit opportunities
Ø Lab problems
Ø Review articles (similar to broader issues)

Feb 15, 2012 Sprenkle - CSCI111 30

