Objectives

More on functions
Prep for lab

Mar 5, 2012 Sprenkle - CSCI111 1

Review

What is the keyword we use to create a new
function?

How do we get output from a function?

What happens in the program execution
when a function reaches a return
statement?

Why do we write functions?

Mar 5, 2012 Sprenkle - CSCI111 2

Review: Functions

CONSTANT = 12 What does this program do?
What is the control flow/execution path?

def main():
first = eval(input("Enter the first number: "))
second = eval(input("Enter the second number: "))
computedVal = myFunction(first, second)
print("The answer is", computedVal)

def myFunction(x, y):
result = x*x + y*y + CONSTANT function “see” here?
return result —

main()

Mar 5, 2012 Sprenkle - CSCI111 3

What variables can

What vars can't it see!

Review: Why Functions?

Organize code
Easier to read
Easier to change
Easier to reuse

Mar 5, 2012 Sprenkle - CSCI111 4

Practice

What is the output of this program?
Example: user enters 4

def main():
num = eval(input("Enter a number to be squared: "))
square = square(num)
print("The square is", square)

def square(n):
return n * n

main()

Mar 5, 2012 sprenkie-cscitt practicel.py s

Practice

What is the output of this program?
Example: user enters 4
def main():
num = eval(input("Enter a number to be squared: "))
squared = square(hum)

print("The square is", squared)
print(“The original num was”, n)

def square(n):
return n * n

main()

Mar 5, 2012 sprenkie-cscittt practiceZ2.py

Practice

What is the output of this program?
» Example: user enters 4

def main():
num = eval(input("Enter a number to be squared: "))
squared = square(num)
print("The square is", squared)

print(“The original num was”, n) ‘__-_-

def square(n): Error! n does not
return n * n have a value in

nainG) function main()

Mar 5, 2012 Sprenkle - CSCI111 7

Variable Scope

Know “lifetime” of variable
» Only during execution of function
» Related to idea of “scope”

What about variables outside of functions?
> Example: non_function_vars.py

Mar 5, 2012 Sprenkle - CSCI111 8

Variable Scope

non_func = 2
non_func_string = "aardvark"

def main(Q):
funcQ)
print(non_func)
print(non_func_string)

def func():
print("In func: nf =", non_func)
print("In func: nfs =", non_func_string)
main(Q)
non_func = 6
non_func_string = "dog"

print(non_func)
print(non_func_string) non_function_vars.py

Mar 5, 2012 Sprenkle - CSCI111 9

WHAT MAKES A
GOOD FUNCTION?

Mar 5, 2012 Sprenkle - CSCI111 10

Writing a “Good” Function

Should be an “intuitive chunk”
»Doesn’t do too much or too little

»If does too much, try to break into more
functions

Should be reusable

Always have comment that tells what
the function does

Mar 5, 2012 Sprenkle - CSCI111 "

Writing Comments for Functions

Good style: Each function must have a
comment

» Describes functionality at a high-level

» Include the precondition, postcondition

» Describe the parameters (their types) and the
result of calling the function (precondition and
postcondition may cover this)

Mar 5, 2012 Sprenkle - CSCI111 12

Writing Comments for Functions Example Comment

Include the function's pre- and post- Describes at high-level
conditions Describes parameters
Precondition: Things that must be true for

. def printVerse(animal, sound):
function to work correctly

Prints a verse of Old MacDonald, plugging in the

» E.g., num must be even animal and sound parameters (which are strings),
Postcondition: Things that will be true when B A A Comment style: Docstring
function finishes (if precondition is true) print(BEGIN_END + EIEIO) documentation string

. print("And on that farm he had a " + animal + EIEIO)
» E.g., the returned value is the max

Comments from docstrings show up when you use help function

Mar 5, 2012 Sprenkle - CSCI111 13 Mar 5, 2012 Sprenkle - CSCI111 14
Pre/Post Conditions Getting Documentation
def binaryToDecimal(binary_string): . . .
y' c Y . ’ ' dir: function that returns a list of methods
g;%y génggz,irmg is a string that contains and attributes in an object
t: € the decimal 1 for the bi .
gg?ingl"e urns e decimal value Tor e pbinary > dlr‘(<type>)

dec_value = 0 help: get documentation
for pos in range(len(binNum)):
exp = len(binNum) - pos - 1
bit = int(binNum[pos
¢ [pos]y In the Python shell
compute the decimal value of this bit
val = bit * 2 ** exp > help(<type>)
add it to the decimdl value > import <modulename>

ecvalpeival > help(<modulename>)

return dec_value
Mar 5, 2012 Sprenkle - CSCI111 15 Mar 5, 2012 Sprenkle - CSCI111 16

Where is Documentation Coming
From?

Comes from the code itself in “doc strings”
> i.e., “documentation strings”

Doc strings are simply strings after the
function header

> Typically use triple-quoted strings because
documentation goes across several lines

def printVerse(animal, sound): REFACTORING

"""prints a verse of 0ld MacDonald,
filling in the strings for animal and
sound """

Mar 5, 2012 Sprenkle - CSCI111 17 Mar 5, 2012 Sprenkle - CSCI111 18

Refactoring

After you've written some code and it passes all your
test cases, the code is probably still not perfect
Refactoring is the process of improving your code
without changing its functionality
» Organization
» Abstraction
Example: Easier to read, change
» Easier to test
Part of iterative design/development process
Where to refactor with functions
» Duplicated code
“Code smell”
» Reusable code
» Multiple lines of code for one purpose

Mar 5, 2012 Sprenkle - CSCI111 19

Refactoring:

Converting Functionality into Functions
Identify functionality that should be putinto a
function
» What is the function’s input?

» What is the function’s output?

Define the function

» Write comments

Call the function where appropriate
Create a main function that contains the
“driver” for your program

» Put at top of program

Call main at bottom of program

Mar 5, 2012 Sprenkle - CSCI111 20

Refactoring Practice
pick4num.py

Where are places that we can refactor and
add functions?

Mar 5, 2012 Sprenkle - CSCI111 21

Generate Winning Number

winning num
input generateWinningNum output

Input:

» Options: none; number of digits; range on
random numbers

» Tradeoffs: more general (more parameters),
more difficult to use

Output: winning number

Mar 5, 2012 Sprenkle - CSCI111 22

TESTING FUNCTIONS

Mar 5, 2012 Sprenkle - CSCI111 23

Testing Functions

Functions make it easier for us to test our
code
We can write code to test the functions
» Input: parameters
» Output: what is returned
We can verify programmatically

What are good tests for
binaryToDecimal(binnum) and isBinary(candidate)?

binaryToDecimal.test.py

Mar 5, 2012 Sprenkle - CSCI111 24

Debugging Advice

Build up your program in steps
~ Always write small pieces of code
» Test, debug. Repeat
Write function body as part of main, test
» Then, separate out into its own function
» Similar to process using in lab probs
Test function separately from other code

Mar 5, 2012 Sprenkle - CSCI111 25

TOP DOWN DESIGN

Mar 5, 2012 Sprenkle - CSCI111 26

Designing Code

1st Approach
» Create functions
» Call functions
2" Approach
» Write code
~ Refactor code to have functions
» Call those functions
Time for 3 approach...
» Write code, calling functions
» Write “stub” functions
» Fill-in functions later

Mar 5, 2012 Sprenkle - CSCI111 27

Top-Down Design:
Alternative Approach to Development
Create overview

Define functions later

def main(Q):
get the binary number from the user, as a string
binNum = input("Please enter a binary number: ")
isBinary = checkBinary(binNum)
if not isBinary : # equivalent to isBinary == False
print(binNum, "is not a binary number.")
sys.exit()

decVal = binaryToDecimal(binNum)
print(binNum, "is", decval)

Mar 5, 2012 Sprenkle - CSCI111 28

DEAL OR NO DEAL

Mar 5, 2012 Sprenkle - CSCI111 29

Lab 7: Deal or No Deal Overview

Have 26 cases with various amounts of money
» Amounts are known
Player selects a case (hope has the big jackpot)
In each round, player opens up cases
» Reveals amounts that are not in the case they chose
Banker makes an offer to buy the case
Player decides if want to take the deal
> |s the offer more than what is in the case?

» Make decision based on amounts that haven’t been
opened yet

Game ends when only one more case to open (two
amounts on board) or player takes the deal.

Mar 5, 2012 Sprenkle - CSCI111 30

Implementing Deal or No Deal

Given: partial solution in code

Complete main() function, some additional
functions

Your job:
Read, understand given code
Fill in the functions for a complete solution

Mar 5, 2012 Sprenkle - CSCI111 31

Modeling Deal or No Deal

How can we represent that

Cases, numbered 010 25 |, .. has been —

Have dollar amounts in them

1000000 |1000 5 750000
0 1 2 |25
Board

Which dollar amounts have been chosen, which
are still in play

Modeling Deal or No D¢~ CHOSEN = -1

means case opened:

Don't display on board, Don’t

Cases, numbered 0 to 25 allow user to select again
Have dollar amounts in them

1000000 |1000 |5
0 1 2 |25

Board
Which dollar amounts have been chosen, which
are still in play

.01 5 1000000

0 1 2 |25

Mar 5, 2012 Sprenkle - CSCI111 33

01 [1 5 1000000
0 |t 2 |25

Mar 5, 2012 Sprenkle - CSCI111 32
Functionality

Read in values contained in cases from a file
What data type should these numbers be?
Have user select from remaining cases
Make sure choice is valid
Display remaining cases
Print four to a row
Display remaining amounts on board
Left column is smaller amounts

Mar 5, 2012 Sprenkle - CSCI111 34

How to print remaining cases?

Cases, numbered 0 to 25
Have dollar amounts in them

1000000 |1000 |5
0 1 2 |25

Board
Which dollar amounts have been chosen, which
are still in play

.01 1000 -1

0 1 2 |25

Mar 5, 2012 Sprenkle - CSCI111 35

This Week
Lab 7

Functions
Refactoring, testing
Deal or no deal
Lists, top-down design
Broader Issue: Digital Humanities

Monday, March 12

Katherine Crowley talk at 7:30 p.m. in
Stackhouse

10 pts extra credit for write up on Sakai

Mar 5, 2012 Sprenkle - CSCI111 36

PASSING PARAMETERS

Mar 5, 2012 Sprenkle - CSCI111 37

Passing Parameters

Only copies of the actual parameters are
given to the function
» For immutable data types Which are?

The actual parameters in the calling code do
not change

Swap example:

» Swap two values in script X = ? :l>x = ;
» Then, put into a function — M
Mar 5, 2012 Sprenkle - CSCI111 Swap . py 38

Lists as Parameters to Functions

If a list that is passed as a parameter into a
function is modified in the function, the list
is modified outside the function

» Lists are not passed-by-value/copied
» Different from immutable types (e.g., numbers,

strings)
Parameter is actually a pointer to the list in
memory
Mar 5, 2012 Sprenkle - CSCI111 39

Problem: Sort a list of 3 numbers, in
descending order

order list such that 1ist3[0] >= list3[1] >= list3[2]
def descendSort3Nums(list3):

Called as:

list = ..
descendSort3Nums(list)
print(list)

How implemented with list methods?
Can we do this using only 3 comparisons?

Mar 5, 2012 Sprenkle - CSCI111 deSCEHdSOI"t.py 40

Descend Sort a List w/ 3 elements

def descendSort3Nums(list3):

if list3[1] > list3[0]:
swap 'em
tmp = 1ist3[0Q]
Tist3[0] = 1list3[1]
1ist3[1] = tmp

if list3[2] > 1ist3[1]:
tmp = list3[1]
1ist3[1] = 1ist3[2]
list3[2] = tmp

if 1ist3[1] > list3[0]:
tmp = list3[e]

def main():
list = [1,2,3]
descendSort3Nums(list)
print(list)

Function does not
return anything.

list3[0] = list3[1] Simply modifies the
List3[1] = tmp 1ist3 parameter.

Mar 5, 2012 Sprenkle - CSCI111 41

