Objectives

Wrap up defining classes
__1t__, __eq__method
Helper methods

Command-line arguments

Review

Where do we define the data that is needed
to represent every object of a class?
How do we access that data?

How do we create a new method?

What method do you define for the object’s
constructor?

What method do you define to be called by
print?

Mar 21, 2012 Sprenkle - CSCI111 1

Mar 21, 2012 Sprenkle - CSCI111 2

Implementing Deck Functionality

* What functionality do we have so far?
* What additional methods should our
Deck class provide?
* What do the method headers look like?
* Deck’s API
* What should they return?
* How do we implement them?

Mar 21, 2012 Sprenkle - CSCI111 3

_ LT and__EQ__
METHODS

Mar 21, 2012 Sprenkle - CSCI111 4

—_eq__:
Com?)are Objects of Same Type
Header: def __eq__(self, other)
Assumption: other is another object of the same
type
Returns
True if self is equivalent to other
False otherwise
Similar to implementing interface
in Java

Can now use objects in comparison expressions

How would you determine if two
Card objects are equivalent?
Mar 21, 2012 pre

__lt__:
Compare Objects of Same Type

Header: def __1t__(self, other)
Assumption: other is another object of the same
type

Returns
True if self < other
False otherwise

Similar to implementing interface

in Java

Can now use objects in comparison expressions
<, sort

How do you compare
two Card objects?
Mar 21, 2012 Sprenkle - CSC.

Comparing Objects of the Same Type

def __eq__(self, other):
""" Compares Card objects by their ranks and suits ""”
if type(self) != type(other):
return False

return self.rank == other.rank and self.suit == other.suit
Could compare by black jack or rummy value
def __1t__(self, other):

""" Compares Card objects by their ranks

if type(self) != type(other):
return False

niy

return self.rank < other.rank

Mar 21, 2012 sprenkle -csci1t1 card.py 7

Frequency Object

def __1t__(self, other):
"""Compares this object with other, which is
also a FrequencyObject. Used when using the
list's sort method."""

return self.count < other.count

Mar 21, 2012 Sprenkle - CSCI111 8

HELPER METHODS

Mar 21, 2012 Sprenkle - CSCI111 9

Helper Methods

Part of the class
Not part of the API

Make your code easier but others outside the
class shouldn’t use

Convention: method name begins with “_

Mar 21, 2012 Sprenkle - CSCI111 10

Example Helper Methods

Only loosely enforces that other can’t use
> Doesn’t show up in help

> Does show up in dir
Helper Method:
def _isFaceCard(self):
if self.rank > 10 and self.rank < 14:

return True
return False def rummyValue(self):

if self._isFaceCard():

. return 10
In use: elif self.rank == 10:
return 10
elif self.rank == 14:
return 15
else:
Mar 21, 2012 cqr‘dz,py Sprenkle - CS(return 5

Summary: Designing Classes

What does the object/class represent?
How to model/represent the class’s data?
» Instance variable
» Data type
What functionality should objects of the class
have?
» How will others want to use the class?
» Put into methods for others to call (API)

Mar 21, 2012 Sprenkle - CSCI111 12

Discussion Refactoring Bug Class

How did we represent a bug in Lab 67? What is a bug’s data?
How did we manipulate the bug? What methods should a Bug object
implement?

What was tricky about the implementation?

Mar 21, 2012 Sprenkle - CSCI111 13 Mar 21, 2012 Sprenkle - CSCI111 bug . py 14
Benefits of Classes Changing Implementations
Package/group related data into one object Same API, different implementations
> Deck can have list of Card objects rather than def _init_Cself, rank, suit):
a list of ranks and a list of suits self.suit = suit def _init__(self, rank, suit):
R d def getRank(self): solf candidrank .
euse coade return self.rank fself.cardid +=’ 13
. . 1if suit = “h "
» Card class used in war.py and deck. py def getsuitCselr): o selrarati o
Provide interface, can change underlying self.cardid += 39
implementation without affecting calling code o et Coelcordid-2) % 13 + 2
def get_Suit(seIlF): o . o .
Tradeoff: Saving et SPCaett cordtaozy s oSt eemene]
information (memory); return suits[whichsuit]
Computing information
Mar 21, 2012 Sprenkle - CSCI111 15 Mar 21, 2012 Sprenkle - CSCI111 card_byid.py 1
Considerations for Using Classes
» Redo something done by class
» Could have efficiency penalties COMMAND-LINE
» But time saved reusing code is usually worth it ARGUMENTS
Mar 21, 2012 Sprenkle - CSCI111 17 Mar 21, 2012 Sprenkle - CSCI111 18

Command-line Arguments

We can run programs from terminal (i.e., the
“command-line”) and from IDLE

Can pass in arguments from the command-
line, similar to how we use Unix commands
> Ex: cp <source> <dest>

Command-line arguments

» Ex: python3 maptest.py 3
Makes input easier
» Don’t have to retype each time executed

Mar 21, 2012 Sprenkle - CSCI111 19

Command-line Arguments

Using the sys module
» What else did we use from the sys module?

python3 maptest.py 3

python3 command_line_args.py <filename>
Iy

. ~
List of arguments, named sys.argv
How to reference (get value) “<filename>"?

Mar 21, 2012 Sprenkle - CSCI111 20

Command-line Arguments
Using the sys module

python command_line_args.py <filename>

command_line_args.py | <filename>
0 1

sys.argv

How to reference (get value) “<filename>"?
»sys.argv is a list of the arguments
»sys.argv[1] is the filename
»sys.argv[@] isthe name of the program

Mar 21, 2012 Sprenkle - CSCI111 command_line_args.py 21

Using Command-line Arguments

In general in Python:
> sys.argv[@] is the Python program’s name

Have to run program from terminal (not from
IDLE)

» Can edit program in IDLE though

=> Useful trick:

» If can’t figure out bug in IDLE, try running from
command-line
May get different error message

Mar 21, 2012 Sprenkle - CSCI111 22

Questions about Exam 2?

Mar 21, 2012 Sprenkle - CSCI111 23

Looking Ahead

Lab 9 Extension

» Submit everything but graphs, web page by
Friday

» Graphs, web page due Monday
Exam Friday

Mar 21, 2012 Sprenkle - CSCI111 24

