
1 

Objectives 

•  More on functions 
•  Prep for lab 

Mar 5, 2012 Sprenkle - CSCI111 1 

Review 

• What is the keyword we use to create a new 
function? 

•  How do we get output from a function? 
• What happens in the program execution 

when a function reaches a return 
statement? 

• Why do we write functions? 

Mar 5, 2012 Sprenkle - CSCI111 2 

Review: Functions 

Mar 5, 2012 Sprenkle - CSCI111 3 

CONSTANT = 12	
	
def main():	
    first = eval(input("Enter the first number: "))	
    second = eval(input("Enter the second number: "))	
    computedVal = myFunction(first, second)	
    print("The answer is", computedVal)	
    	
def myFunction(x, y):	
    result = x*x + y*y + CONSTANT	
    return result	
    	
main()	

What does this program do?	


What is the control flow/execution path?	



What variables can 
function “see” here?	



What vars can’t it see?	



Review: Why Functions? 

•  Organize code 
•  Easier to read 
•  Easier to change 
•  Easier to reuse 

Mar 5, 2012 Sprenkle - CSCI111 4 

Mar 5, 2012 Sprenkle - CSCI111 5 

Practice 

• What is the output of this program? 
Ø Example: user enters 4 

def main():	
    num = eval(input("Enter a number to be squared: "))	
    square = square(num)	
    print("The square is", square)	
	
def square(n):	
    return n * n	
	
main()	

practice1.py	 Mar 5, 2012 Sprenkle - CSCI111 6 

Practice 

• What is the output of this program? 
Ø Example: user enters 4 

def main():	
    num = eval(input("Enter a number to be squared: "))	
    squared = square(num)	
    print("The square is", squared)	
    print(“The original num was”, n)	
	
def square(n):	
    return n * n	
	
main()	

practice2.py	



2 

def main():	
    num = eval(input("Enter a number to be squared: "))	
    squared = square(num)	
    print("The square is", squared)	
    print(“The original num was”, n)	
	
def square(n):	
    return n * n	
	
main()	

Mar 5, 2012 Sprenkle - CSCI111 7 

Practice 

• What is the output of this program? 
Ø Example: user enters 4 

Error!  n does not 
have a value in 
function main()	

Mar 5, 2012 Sprenkle - CSCI111 8 

Variable Scope 

•  Know “lifetime” of variable 
Ø Only during execution of function 
Ø Related to idea of “scope” 

• What about variables outside of functions? 
Ø Example: non_function_vars.py	

Variable Scope 

Mar 5, 2012 Sprenkle - CSCI111 9 

non_func = 2	
non_func_string = "aardvark"	
	
def main():	
    func()	
    print(non_func)	
    print(non_func_string)	
	
def func():	
    print("In func: nf =", non_func)	
    print("In func: nfs =", non_func_string)	
    	
main()	
non_func = 6	
non_func_string = "dog"	
print(non_func)	
print(non_func_string)	 non_function_vars.py	

WHAT MAKES A 
GOOD FUNCTION? 

Mar 5, 2012 Sprenkle - CSCI111 10 

Mar 5, 2012 Sprenkle - CSCI111 11 

Writing a “Good” Function 

• Should be an “intuitive chunk” 
Ø Doesn’t do too much or too little 
Ø If does too much, try to break into more 

functions 
• Should be reusable 
• Always have comment that tells what 

the function does 

Writing Comments for Functions 

•  Good style: Each function must have a 
comment 
Ø Describes functionality at a high-level 
Ø Include the precondition, postcondition 
Ø Describe the parameters (their types) and the 

result of calling the function (precondition and 
postcondition may cover this) 

Mar 5, 2012 Sprenkle - CSCI111 12 



3 

Writing Comments for Functions 

•  Include the function's pre- and post- 
conditions 

•  Precondition: Things that must be true for 
function to work correctly 
Ø E.g., num must be even 

•  Postcondition: Things that will be true when 
function finishes (if precondition is true) 
Ø E.g., the returned value is the max 

Mar 5, 2012 Sprenkle - CSCI111 13 

Example Comment 

•  Describes at high-level 
•  Describes parameters 

Mar 5, 2012 Sprenkle - CSCI111 14 

def printVerse(animal, sound):	
    """	
    Prints a verse of Old MacDonald, plugging in the 	
    animal and sound parameters (which are strings), 	
    as appropriate.	
    """	
    print(BEGIN_END + EIEIO)	
    print("And on that farm he had a " + animal + EIEIO)	
    …	

Comment style: Docstring	


	

“documentation string”	



Comments from docstrings show up when you use help function	



def binaryToDecimal( binary_string ):	
	 	"""	
	 	pre: binary_string is a string that contains	
	 	only 0s and 1s	
	 	post: returns the decimal value for the binary	
	 	string	
	 	"""	
	 	dec_value = 0	
    for pos in range( len( binNum ) ):	
	 	 	exp = len(binNum) - pos – 1	
	 	 	bit = int(binNum[pos])	
    	
    	# compute the decimal value of this bit	
    	val = bit * 2 ** exp	
    	
   	 	# add it to the decimal value	
    	decVal += val	
	
    return dec_value	

Pre/Post Conditions 

Mar 5, 2012 Sprenkle - CSCI111 15 

Getting Documentation 

• dir: function that returns a list of methods 
and attributes in an object 
Ø dir(<type>)	

• help: get documentation 

•  In the Python shell 
Ø help(<type>)	
Ø import <modulename>	
Ø help(<modulename>)	

Mar 5, 2012 Sprenkle - CSCI111 16 

Where is Documentation Coming 
From? 
•  Comes from the code itself in “doc strings” 

Ø i.e., “documentation strings” 
•  Doc strings are simply strings after the 

function header 
Ø Typically use triple-quoted strings because 

documentation goes across several lines 

Mar 5, 2012 Sprenkle - CSCI111 17 

def printVerse(animal, sound): 	
	"""prints a verse of Old MacDonald, 

filling in the strings for animal and 
sound """ 	

REFACTORING 

Mar 5, 2012 Sprenkle - CSCI111 18 



4 

Refactoring 
•  After you’ve written some code and it passes all your 

test cases, the code is probably still not perfect 
•  Refactoring is the process of improving your code 

without changing its functionality 
Ø Organization 
Ø Abstraction 

•  Example: Easier to read, change 
Ø Easier to test 

•  Part of iterative design/development process 
•  Where to refactor with functions 

Ø Duplicated code 
•  “Code smell” 

Ø Reusable code 
Ø Multiple lines of code for one purpose 

Mar 5, 2012 Sprenkle - CSCI111 19 

Refactoring:  
Converting Functionality into Functions 
1.  Identify functionality that should be put into a 

function 
Ø What is the function’s input? 
Ø What is the function’s output? 

2. Define the function 
Ø Write comments 

3. Call the function where appropriate 
4. Create a main function that contains the 

“driver” for your program 
Ø Put at top of program 

5. Call main at bottom of program 
Mar 5, 2012 Sprenkle - CSCI111 20 

Refactoring Practice 

• pick4num.py	

• Where are places that we can refactor and 
add functions? 

Mar 5, 2012 Sprenkle - CSCI111 21 

Generate Winning Number 

•  Input: 
Ø Options: none; number of digits; range on 

random numbers 
Ø Tradeoffs: more general (more parameters), 

more difficult to use 
•  Output: winning number 

Mar 5, 2012 Sprenkle - CSCI111 22 

generateWinningNum	input output 
winning num 

TESTING FUNCTIONS 

Mar 5, 2012 Sprenkle - CSCI111 23 

Testing Functions 

•  Functions make it easier for us to test our 
code 

• We can write code to test the functions 
Ø Input: parameters 
Ø Output: what is returned 

•  We can verify programmatically 

Mar 5, 2012 Sprenkle - CSCI111 24 

binaryToDecimal.test.py	

What are good tests for ���
binaryToDecimal(binnum) and isBinary(candidate)?	





5 

Mar 5, 2012 Sprenkle - CSCI111 25 

Debugging Advice 

•  Build up your program in steps 
Ø Always write small pieces of code 
Ø Test, debug. Repeat 

• Write function body as part of main, test 
Ø Then, separate out into its own function 
Ø Similar to process using in lab probs 

•  Test function separately from other code TOP DOWN DESIGN 

Mar 5, 2012 Sprenkle - CSCI111 26 

Designing Code 
•  1st Approach 

Ø Create functions 
Ø Call functions 

•  2nd Approach 
Ø Write code 
Ø Refactor code to have functions 
Ø Call those functions 

•  Time for 3rd approach… 
Ø Write code, calling functions 
Ø Write “stub” functions 
Ø Fill-in functions later 

Mar 5, 2012 Sprenkle - CSCI111 27 

Top-Down Design: 
Alternative Approach to Development 
1. Create overview 
2. Define functions later 

Mar 5, 2012 Sprenkle - CSCI111 28 

def main():	
    # get the binary number from the user, as a string	
    binNum = input("Please enter a binary number: ")	
    isBinary = checkBinary(binNum)	
    if not isBinary : # equivalent to isBinary == False	
        print(binNum, "is not a binary number.")	

	 	sys.exit()	
                	
    decVal = binaryToDecimal(binNum) 	
    print(binNum, "is", decVal)	

DEAL OR NO DEAL 

Mar 5, 2012 Sprenkle - CSCI111 29 Mar 5, 2012 Sprenkle - CSCI111 30 

Lab 7: Deal or No Deal Overview 
•  Have 26 cases with various amounts of money 

Ø Amounts are known 
•  Player selects a case (hope has the big jackpot) 
•  In each round, player opens up cases 

Ø Reveals amounts that are not in the case they chose 
•  Banker makes an offer to buy the case 
•  Player decides if want to take the deal 

Ø  Is the offer more than what is in the case? 
Ø Make decision based on amounts that haven’t been 

opened yet 
•  Game ends when only one more case to open (two 

amounts on board) or player takes the deal. 



6 

Mar 5, 2012 Sprenkle - CSCI111 31 

Implementing Deal or No Deal 
•  Given: partial solution in code 

Ø Complete main() function, some additional 
functions 

•  Your job: 
Ø Read, understand given code 
Ø Fill in the functions for a complete solution 

Mar 5, 2012 Sprenkle - CSCI111 32 

Modeling Deal or No Deal 
•  Cases, numbered 0 to 25 

Ø Have dollar amounts in them 

•  Board 
Ø Which dollar amounts have been chosen, which 

are still in play 

.01 1 5 
… 

1000000 
0 1 2 25 

How can we represent that 
a case has been opened?	



1000000 1000 5 
… 

750000 
0 1 2 25 case/	



position	



value	



position	



value	



Mar 5, 2012 Sprenkle - CSCI111 33 

Modeling Deal or No Deal 
•  Cases, numbered 0 to 25 

Ø Have dollar amounts in them 

•  Board 
Ø Which dollar amounts have been chosen, which 

are still in play 

.01 CHOSEN 5 
… 

1000000 
0 1 2 25 

CHOSEN = -1	
means case opened: 

Don’t display on board, Don’t 
allow user to select again 

1000000 1000 5 
… 

CHOSEN 
0 1 2 25 case/	



position	



value	



position	



value	



Mar 5, 2012 Sprenkle - CSCI111 34 

Functionality 

•  Read in values contained in cases from a file 
Ø What data type should these numbers be? 

•  Have user select from remaining cases 
Ø Make sure choice is valid 

•  Display remaining cases  
Ø Print four to a row 

•  Display remaining amounts on board 
Ø Left column is smaller amounts 

Mar 5, 2012 Sprenkle - CSCI111 35 

How to print remaining cases? 

•  Cases, numbered 0 to 25 
Ø Have dollar amounts in them 

•  Board 
Ø Which dollar amounts have been chosen, which 

are still in play 

.01 CHOSEN 1000 
… 

-1 
0 1 2 25 

1000000 1000 5 
… 

CHOSEN 
0 1 2 25 case/ 

position 

value 

position 

value 

This Week 

•  Lab 7 
Ø Functions 

•  Refactoring, testing 
Ø Deal or no deal 

•  Lists, top-down design 

•  Broader Issue: Digital Humanities 
•  Monday, March 12 

Ø Katherine Crowley talk at 7:30 p.m. in 
Stackhouse 

Ø 10 pts extra credit for write up on Sakai 
Mar 5, 2012 Sprenkle - CSCI111 36 



7 

PASSING PARAMETERS 

Mar 5, 2012 Sprenkle - CSCI111 37 Mar 5, 2012 Sprenkle - CSCI111 38 

Passing Parameters 

•  Only copies of the actual parameters are 
given to the function 
Ø For immutable data types 

•  The actual parameters in the calling code do 
not change 

•  Swap example: 
Ø Swap two values in script 
Ø Then, put into a function 

x = 5	
y = 7	

x = 7	
y = 5	

swap.py	

Which are?	



Mar 5, 2012 Sprenkle - CSCI111 39 

Lists as Parameters to Functions 

Ø Lists are not passed-by-value/copied 
Ø Different from immutable types (e.g., numbers, 

strings) 
•  Parameter is actually a pointer to the list in 

memory  

If a list that is passed as a parameter into a 
function is modified in the function, the list 

is modified outside the function	



Problem: Sort a list of 3 numbers, in 
descending order 

Mar 5, 2012 Sprenkle - CSCI111 40 

# order list such that list3[0] >= list3[1] >= list3[2] 	
def descendSort3Nums( list3 ):	
	

descendSort.py	

Called as: 	



list = …	
descendSort3Nums(list)	
print(list)	

How implemented with list methods?	


Can we do this using only 3 comparisons? 	



Mar 5, 2012 Sprenkle - CSCI111 41 

Descend Sort a List w/ 3 elements 
def descendSort3Nums(list3):	
	if list3[1] > list3[0]:	
	    # swap 'em	

      tmp = list3[0]	
      list3[0] = list3[1]	
      list3[1] = tmp	
	
	if list3[2] > list3[1]:	
	 	tmp = list3[1]	

      list3[1] = list3[2]	
      list3[2] = tmp	
    	
	if list3[1] > list3[0]:	
	 	tmp = list3[0]	

      list3[0] = list3[1]	
      list3[1] = tmp	

Function does not 
return anything.	


Simply modifies the 
list3 parameter.	



def main():	
    list = [1,2,3]	
    descendSort3Nums(list)	
    print(list)	


