Objectives

Design in the Small: Code Smells

Refactoring

Oct 24, 2008 Sprenkle - CS209 1

Reflection on Project 1

What were the difficult parts of Project 1?
Did they get any easier?

Did you develop a system or any techniques
to make the process easier?

In the future, how could you make the
process easier?

Oct 24, 2008 Sprenkle - CS209 2

Review

What is guaranteed in software

development?

What are some principles of design in Object-
oriented Programming to address the
challenge posed by that guarantee?

What is the underlying theme of how to

achieve those principles?

Oct 24, 2008 Sprenkle - CS209 3

Review: Best Practices

(DRY): Don’t repeat yourself
Shy
Avoid Coupling
Tell, Don’t Ask
Open-closed principle
Avoid code smells

Oct 24, 2008 Sprenkle - CS209 4

Code Smells

Duplicated code

Long method

Large class

Long parameter list
Very similar subclasses

Too many public
variables

Empty catch clauses

Switch statements/long
if statements

Shotgun surgery
Literals

Global variables
Side effects

Using instanceof

Oct 24, 2008 Sprenkle - CS209 5

Duplicated Code

Example: same expression in 2 methods of
the same class

Extract method

Call method from those two places

MediaItem class example in Eclipse
Example: duplicated code in 2 sibling
subclasses

u Parent

——1

.J Sib1 ‘ .l Sib2
Oct 24, 2008 Sprenkle - CS209




Duplicated Code

Example: duplicated code in 2 sibling
subclasses
Extract method, put into parent class
If similar but not duplicate, extract the duplicate
code (or parameterize)

Example: duplicated code in unrelated
classes

Oct 24, 2008 Sprenkle - CS209 7

Duplicated Code

Example: duplicated code in unrelated
classes
Ask: where does method belong?
One solution:
Extract class
Use new class in classes
Another solution:
Keep in one class
Other class calls that method

Oct 24, 2008 Sprenkle - CS209 8

Refactoring: Solution to Code Smells

Updating a program to improve its design and
maintainability without changing its current
functionality significantly
Example
Creating a single function that replaces 2 or more
sections of similar code
Reduces redundant code
Makes code easier to debug, test

After refactoring your code, what should you do next?

Oct 24, 2008 Sprenkle - CS209 9

Long Methods

What's the problem with long methods?
What made us write them?

Oct 24, 2008 Sprenkle - CS209 10

Long Methods

Hard to understand (see) what method does
Smaller methods have reader overhead
Look at code for called methods
But, should use descriptive names

Solutions:

Find lines of code that go together (may be
identified by a comment) and extract method

Oct 24, 2008 Sprenkle - CS209 "

Large Class

Too many instance variables - trying to do
too much

Solutions:

Bundle groups of variables together into another
class

Look for common prefixes or suffixes
If includes optional instance variables (only
sometimes used), create subclasses
Look at how users use the class for ideas of how
to break it up

Oct 24, 2008 Sprenkle - CS209 12




Long Parameter List

More difficult to use (do | have everything?)
If method signature changes, have a lot of
places to change

Solutions: Use objects

Instead of separate parameters for an object’s
data

Group parameters together

Oct 24, 2008 Sprenkle - CS209 13

Literals or Magic Numbers

If a number has a special meaning, make it a
constant

Distinguish between 0 and
NO_VALUE_ASSIGNED

If value changes (-1 instead of 0), only one place
to change

Oct 24, 2008 Sprenkle - CS209 14

Divergent Change & Shotgun Surgery

Problem: when make a change,
can’t identify single point to make change

Divergent Change Shotgun Surgery
Problem: one class Problem: a change
commonly changed in causes changes in many

different ways for different classes

reasaons Solution:
Solution: Identify class that changes
Identify changes for a should belong to

particular cause
Put into a class

Oct 24, 2008 Sprenkle - CS209 15

Data Clumps

You have some data that always “hangs out
together”
Maybe they should be an object

Check: if you deleted one of those pieces of
data. Would the others make sense?
If answer is no, should be an object

Oct 24, 2008 Sprenkle - CS209 16

Message Chaining

Dynamic coupling:
getOrder().getCustomer().getAddress().getState()
Problem: others have too much knowledge of
how your class works
Order class has a Customer object...
Depends on too many other classes
Fix: add delegate method
Example: add method getShippingState()
Can go too far if adding too many methods

Oct 24, 2008 Sprenkle - CS209 17

Lazy Class

Problem
Classes cost time, money to maintain &
understand
Class doesn’t do much
How could this happen?
Refactoring!
Planned to be implemented but never happened
Solution
Get rid of class
May need to collapse subclass into parent class

Oct 24, 2008 Sprenkle - CS209 18




Speculative Generality

Beware of too much abstraction, allowing for
too much flexibility that isn’t required

Solution: Collapse classes

Oct 24, 2008 Sprenkle - CS209 19

Comments

Should be reserved for why, not what
Problem:
Lots of comments about what the code or
method is doing
Solutions:

If need a comment for a block of code (or a long
statement) - create a method with a descriptive
name

If need a comment to describe method, rename
method with more descriptive name

Oct 24, 2008 Sprenkle - CS209 20

Other Code Smells

Discuss more code smells and solutions
(Design Patterns) later

Oct 24, 2008 Sprenkle - CS209 21

Rules of Thumb

Code smells are not always bad

Do not always mean code is poorly designed
Open code is not always bad
Need to use your judgment

Good judgment comes from experience.

How do you get experience? Bad judgment
works every time

Oct 24, 2008 Sprenkle - CS209 22

Eclipse’s Refactor Menu
Medialtem class, getPadding

Oct 24, 2008 Sprenkle - CS209 23

Discussion of Abstraction

What does abstraction allow?

Are there any limitations to abstraction?

Oct 24, 2008 Sprenkle - CS209 24




Metrics Plugin

Provides information about your classes
# of classes
# of lines of code per method
Coupling

http://metrics.sourceforge.net

Oct 24, 2008 Sprenkle - CS209

25

Bin-Fitting Problem

Classic CS problem: fit as many of something
(A) into as few (B) as possible
Example

A: Files, which have a size

B: CDs or DVDs (Disks)

bvp

File | ————(1g)

Oct 24, 2008 Sprenkle - CS209 26

Heuristics

Worst fit

Store file in disk with most free space
In-order worst fit

Put files on disk, in order seen
In-decreasing-order worst fit

Sort files by size

Put on disks

Oct 24, 2008 Sprenkle - CS209

27

Finding the Disk With Most Free Space

Keep the disks in sorted order by their free
space
Java class: PriorityQueue
Uses compareTo method or Comparator

Oct 24, 2008 Sprenkle - CS209 28

Getting A Solution

Import > General - Existing project into
Workspace

Archive file: /Thome/courses/cs209/handouts/
bins.tar

Try running Bin.java
Run options
Argument: data/example.txt

Oct 24, 2008 Sprenkle - CS209

29

Refactoring Discussion

Looking at the main method on the handout...
How clearly written is the code?

What, if any, comments might be helpful
within the code?

Does it satisfy its role as a tutorial?

What, if any, suggestions does this code
make about how the remaining parts of the
assignment will be written?

How would you test this code for bugs?

Oct 24, 2008 Sprenkle - CS209 30




Assignment 10: Code Critique &
Refactoring

Given: a problem specification and a solution to
the problem

You refactoring your own code is emotional

More objective with someone else’s solution

Goals
Read and understand someone else’s code
Haven’t done much of this is Java
Critique code (do you smell something?)
Identify, articulate problems
Refactor code to solve problems identified
Write tests to verify the code

Oct 24, 2008 Sprenkle - CS209 31




