Objectives

Unix Commands
Software Development

Oct 15, 2008 Sprenkle - CS209

Review

Why do we need Comparators?
What is the benefit of using jar files?
How do we create a jar file? Extract the contents of a
jar file?
What are the 3 preconnected streams?
How do we access them in Java?
What is the regular expression that represents one of
a set of characters?
What does this command do?
cp assign{8,9}.html
What is the Unix command to
Find a file?
Find out which files contain some text?

Oct 15, 2008 Sprenkle - CS209 2

Find Files that Contain Something: grep

Shows all the lines in the file(s) that contain
some expression
Example: grep System.out *.java
What is the syntax for the command?
Options:
-V if you want all the lines without the
expression
grep —v System.out *.java
-w if you want whole words

Oct 15, 2008 Sprenkle - CS209

Find Files that Contain Something: grep

Can use regular expressions and special
symbols
A: begins with
$: ends with
.. wildcard
Examples:
grep c...h /usr/share/dict/words
grep -w c...h /usr/share/dict/words

Oct 15, 2008 Sprenkle - CS209 4

More grep

-r: recursively goes through directories (all
files in those directories)
Example:
grep —r System.out .
Special characters
2N . [1 A~ 3$0

Need to be escaped with \ if used literally

Oct 15, 2008 Sprenkle - CS209

diff: Show differences between files

Show lines of files that have differences
Displays line numbers of differences

Example use
diff filel file2

Oct 15, 2008 Sprenkle - CS209 6

Summary of New Commands

find find . -name “*.java” Find all the files in the
current directory that
end in java

grep grep System.out *.java Find all the lines in all

the .java files in this
directory that contain
System.out

diff diff filel filel.bak Show the lines of the
files where there are
differences between the
files

Use man to learn more about the commands and its options
Oct 15, 2008 Sprenkle - CS209 7

Pipe Operator |

Take output from previous command and
“pipe it” as input to next command
Advice on using pipe
Build up long commands, looking at output along
the way
Practice problems:
How can we determine the number of Java files
we have in a directory?
How could we determine the number of
System.out.println’s ina Java file?

Oct 15, 2008 Sprenkle - CS209 8

Using commands in commands: "~

Syntax: ~ command”

Backtick: on same key as ~
Example: | want to check the permissions on
all my shell scripts (which end in .sh)

Verify that they’re executable by me and no one

else

1s -1 “find . -name "*.sh""

Note that these commands will take a little
longer to execute because getting answer for
“inner” command first

Oct 15, 2008 Sprenkle - CS209 9

head & tail

Show the beginning or ending of the file
(usually 10 lines)

head filename

tail filename
-n for how many lines to show, where nis a
number

tail -100 filename
-f to watch a file

tail -f filename

Oct 15, 2008 Sprenkle - CS209 10

Homework: Due Friday

Writing intermediate Unix commands

Goal: See the power of these simple, flexible
commands

Announcement: we will be in room P405 on
Friday

Oct 15, 2008 Sprenkle - CS209 "

SOFTWARE LIFE CYCLE

Oct 15, 2008 Sprenkle - CS209 12

Traditional Software Engineering
Process: Waterfall Model

Requirements

Implementation
Integration

Validate at each step
Goal: A stage is 100%

complete before moving Release/

Oct 15, 2008 Sprenkle - CS209 13

Feedback in Waterfall Model

Requirements

~
Maintenance

Oct 15, 2008 Sprenkle - CS209 14

* Problems may be
revealed in later stages W
» What happens if
problems aren’t revealed
until Acceptance?

Iterative Design

Design
Get feedback
from users
Evaluate Implement
Oct 15, 2008 Sprenkle - CS209 15

Spiral Model Steps

Design a {method, class, package}
Implement the {method, class, package}
Test the {method, class, package}
Fix the {method, class, package}
Deploy the {method, class, package}
Get feedback

Probably will require modifications to design
Repeat

Oct 15, 2008 Sprenkle - CS209 17

Spiral Model

Idea: smaller prototypes
to test/fix/throw away

Finding problems early
costs less

In general...

Break functionality into
smaller pieces
Implement most
depended-on or highest
-priority features first

Evaluate

Design

Implement

Radial dimension: cost

SOFTWARE TESTING
PROCESS

Why Test Programs?

Consider an online bookstore

Site Goes Down
for Maintenance

(a.k.a., a fault)

Oct 15, 2008 Sprenkle - CS209 19

Microsoft & 7 Windows Vista Testing

Beyond their internal testing ...

~ 5 million people beta tested

» 60+ years of performance testing

~ 1 Billion+ Office 2007 sessions

Still, users found correctness, stability,
robustness, and security bugs

Oct 15, 2008 Sprenkle - CS209

20

Type 1 Bugs: Compile-Time

NN

A

Syntax errors

» Missing semicolon, parentheses
Compiler notifies of error
Cheap, easy to fix

Oct 15, 2008 Sprenkle - CS209 21

Type 2 Bugs: Run-Time

Usually logic errors
Expensive to locate, fix

Oct 15, 2008 Sprenkle - CS209

22

Aside: Objections to “Bug” Terminology

“Bug” 96
» Sounds like it’s just an annoyance A
Can simply swat away
» Minimizes potential problems
» Hides programmer’s responsibility
Alternative terms
» Defect
» Fault

Oct 15, 2008 Sprenkle - CS209 23

Software Testing Process

Test Case Program

Under Test

o

Test Suite: set of test cases

Oct 15, 2008 Sprenkle - CS209

pass or fail

24

Software Testing Process

‘ Input M Program M Output ‘

Test Case

Tester plays devil’'s advocate

Hopes to reveal problems in the program
using “good” test cases
Better tester finds than a customer!

How is testing different from debugging?

Oct 15, 2008 Sprenkle - CS209 25

How Would You Test a Calculator
Program?

Calculator
‘ Test case M e H Output ‘

Operands, adds, subtracts, Numerical
operators multiplies, divides Answer

What test cases/input?

Oct 15, 2008 Sprenkle - CS209 26

Example Test Cases for Calculator
Program

Basic Functionality “Tricky” Cases

Addition Divide by 0
Subtraction Negative Numbers
Multiplication Long sequences of
Division operands, operators

VERY large, VERY
small numbers

Order of operations
Invalid Input

Letters, not-operation
characters (&,$, ...)

Oct 15, 2008 Sprenkle - CS209 27

Types of Testing

Black-box testing Non-functional testing

Test functionality (e.g., the Performance testing

calculator) Usability testing (CS397:

No knowledge of the code HCI)

Examples of testing: Security testing

boundary values Internationalization,
localization

White-box testing
Have access to code
Goal: execute all code

Acceptance testing

If customer accepts the
product

Oct 15, 2008 Sprenkle - CS209 28

Levels of Testing

Unit
Tests minimal software component
For us, Class-level testing
Integration
Tests interfaces & interaction of classes
System
Tests that completely integrated system meets
requirements
System Integration

Test system works with other systems, e.g.,
third-party systems

Oct 15, 2008 Sprenkle - CS209 29

