Objectives

Event Handling
Design Patterns

Nov 10, 2008 Sprenkle - CS209

Assignment 12 Questions

Nov 10, 2008 Sprenkle - CS209 2

Animation Review

How do we “draw” in Java?
What did we use to trigger animation?

Nov 10, 2008 Sprenkle - CS209

EVENT HANDLING

Nov 10, 2008 Sprenkle - CS209 4

Window Events

Not every event is as simple to handle as a
button click
When a user closes a window, the window
simply stops being displayed

Program will not end
Suppose we want our program to end when
a certain frame is closed
Closing a frame is a window event

In contrast to an action event

Nov 10, 2008 Sprenkle - CS209

Catching Window Events

To catch window events, create an object of a
class that implements WindowL.istener
interface
WindowListener is registered with frame using
its addWindowL1istener() method
Note the parallels with action events

Change listener type and register it using a
different (but similar) method call

Nov 10, 2008 Sprenkle - CS209 6

The WindowListener Interface

Contains seven methods
One for each type of window event

A class that implements WindowListener
must implement all seven methods

public interface WindowListener {

void windowOpened(WindowEvent e);

void windowClosing(WindowEvent e);
void windowClosed(WindowEvent e);

void windowIconified(WindowEvent e);
void windowDeiconified(WindowEvent e);
void windowActivated(WindowEvent e);
void windowDeactivated(WindowEvent e);

Implementing a WindowListener

To create an object that can listen for
window events on a frame and end the
program when the frame is closed...

class Terminator implements WindowListener {
public void windowClosing(WindowEvent evt) {
System.exit(0);

For JFrames use setDefaultClosedOperation

public void windowOpened(WindowEvent e) {}
public void windowClosed(WindowEvent e) {}
public void windowIconified(WindowEvent e) {}
public void windowDeiconified(WindowEvent e) {}
public void windowActivated(WindowEvent e) {}
public void windowDeactivated(WindowEvent e) {}

}

Nov 10, 2008 Sprenkle - CS209 8

Adapter Classes

Writing the code for 6 methods that don’t do
anything is somewhat tedious
Most AWT listener interfaces have a
corresponding adapter class
Implements interface’s methods but does nothing
inside all of them
No adapter classes for AWT interfaces with only
one method (such as ActionListener)

Nov 10, 2008 Sprenkle - CS209 9

Adapter Classes

If you want a WindowListener class that
does nothing with 6 of the 7 window events
but ends program when window is closed

Create a new class that extends
WindowAdapter and override relevant
method(s)

When could extending a class be a problem?

How big of a concern is that for this specific
caseltype of class?

Nov 10, 2008 Sprenkle - CS209 10

Extending an Adapter Class

Redefine Terminator in much less code...

class Terminator extends WindowAdapter {
public void windowClosing(WindowEvent evt) {
System.exit(@);

// all other methods are the same as in
// WindowAdapter, all do nothing.

Nov 10, 2008 Sprenkle - CS209 "

Registering a WindowL1istener

Register Terminator to listen for window
events

Assuming that our “main” window frame is
named framel (e.g., if frame1 is closed the
program should exit)...

WindowListener listenerl = new Terminator();
framel.addWindowListener(listenerl);

Nov 10, 2008 Sprenkle - CS209 12

Anonymous Inner Class

framel.addWindowListener(new
WindowAdapter() {
public void windowClosing(WindowEvent evt) {
System.exit(0);

LDR

Defines a new class without a name that extends
WindowAdapter class

Adds windowClosing() method to anonymous class
Inherits other 6 methods from WindowAdapter
Creates an object of this new class

Object also does not have a name

Passes new no-name object to addWindowListener
method of framel

Nov 10, 2008 Sprenkle - CS209 13

AWT Event Hierarchy
10 different types of events in AWT

Semantic events
Low-level events

Nov 10, 2008 Sprenkle - CS209 14

AWT Event Types: Semantic Events

Semantic event: event that expresses what a
user did, such as clicking a button.

ActionEvent — button click, menu selection,
selecting a list item, pressing ENTER in a text
field

AdjustmentEvent — user adjusted a scroll bar

ItemEvent — user made a selection from a set of
checkboxes or list items

TextEvent — the contents of a text field or text
area were changed

Nov 10, 2008 Sprenkle - CS209 15

AWT Event Types: Low-Level Events

Low-level event: makes a semantic event
possible

ComponentEvent — component changed
(resized, moved, shown, etc...)

KeyEvent — a key pressed or released

MouseEvent — mouse moved or dragged, or
mouse button pressed

FocusEvent — component got or lost focus
WindowEvent — window activated, closed, etc.
ContainerEvent — component added or deleted

Nov 10, 2008 Sprenkle - CS209 16

AWT Event Types

Example: adjusting a scrollbar is a semantic
event
Made possible by some low-level events such as
dragging the mouse
As a general rule, low-level events cause
semantic events to happen

Nov 10, 2008 Sprenkle - CS209 17

AWT Event Listeners

11 Event Listener Interfaces

ActionListener, AdjustmentListener,
ItemListener, TextlListener,
ComponentListener, ContainerListener,
FocusListener, KeylListener,
Mouselistener, MouseMotionListener, and
WindowListener

See Javadocs for interfaces and their methods

Each listener interface with > 1 method has a
corresponding adapter class
Implements interface with all empty methods

Nov 10, 2008 Sprenkle - CS209 18

Components and ComponentEvents

A component is a user interface element
Ex: button, textfield, or scrollbar

All low-level events inherit from

ComponentEvent

getComponent() returns component that
originated event
Similar to getSource() but returns object as a
Component and not an Object
Example: if a key event was generated because
of an input into a text field, then getComponent
returns a reference to that text field

Nov 10, 2008 Sprenkle - CS209 19

Containers and ContainerEvents

A container is a screen area or component
Can contain components, such as a window or a
panel

A ContainerEvent is generated whenever a

component is added or removed from the

container
Supports programming dynamically-changing
user interfaces

Nov 10, 2008 Sprenkle - CS209 20

FocusEvents

A FocusEvent is generated when a
component gains or loses focus
FocusListener must implement two
methods:

focusGained(): called whenever listener’s
event source gains focus

focusLost(): called whenever listener’s
event source loses focus

Nov 10, 2008 Sprenkle - CS209 21

KeyEvents

A KeyEvent is generated when a key is

pressed or released

A KeyListener must implement 3 methods:
keyPressed() will run whenever a key is pressed
keyReleased() will run whenever that key is
released
keyTyped() combines the two — it runs when key
is pressed and then released and signifies a
keystroke

Nov 10, 2008 Sprenkle - CS209 22

KeyEvents

With what type of object does a KeyListener
register with?

What is an event source for a KeyEvent?
Any Component can be an event source for a
KeyEvent

A component generates a KeyEvent whenever a
key is typed in that component

For example, if user types into a textfield that
textfield will generate appropriate KeyEvents

Nov 10, 2008 Sprenkle - CS209 23

MouseEvents

MouseEvents are generated like KeyEvents
mousePressed()

mouseReleased()

mouseClicked()

You can ignore first 2 if you only care about clicking
Call getClickCount() on a MouseEvent object to
distinguish between a single and a double click
Distinguish between mouse buttons by calling
getModifiers() on a MouseEvent object

E.g., middle button

Nov 10, 2008 Sprenkle - CS209 24

MouseEvents

MouseEvents are also generated when
mouse pointer enters and leaves components
(mouseEntered() and mouseExited()).

All of those methods are part of
Mouselistener interface

Actual movement of mouse is handled with
MouseMotionListener interface.

Most applications only care about where you
click and not how and where you move mouse
pointer around

Nov 10, 2008 Sprenkle - CS209 25

DESIGN PATTERNS

Nov 10, 2008 Sprenkle - CS209 26

Design Pattern

General reusable solution to a commonly
occurring problem in software design

Not a finished design that can be transformed
directly into code

Description or template for how to solve a
problem that can be used in many different
situations

Nov 10, 2008 Sprenkle - CS209 27

Defined Design Patterns

Software best practices
Catalogued and discussed in Design
Patterns: Elements of Reusable Object-
Oriented Software

Written by the “Gang of Four”

Erich Gamma, Richard Helm, Ralph Johnson
and John Vlissides

Erich Gamma also co-wrote JUnit framework

Nov 10, 2008 Sprenkle - CS209 28

Applying Design Patterns

Recognize problem as one that can be
solved be a design pattern

Apply pattern to your problem

Danger: overapplying design patterns
Fall back: Identify and resolve code smells

Nov 10, 2008 Sprenkle - CS209 29

Design Pattern: Factory Methods

Deals with problem of creating objects
without specifying exact (concrete) class of
created object

Defines a method for creating objects

Subclasses can override method to specify the
derived type of product that will be created

Often used to refer to any method whose
main purpose is creating objects

Nov 10, 2008 Sprenkle - CS209 30

Factory Method Pattern

Product Creator
factoryMethod()
anOperation()
ConcreteProduct |« ConcreteCreator
factoryMethod()
UML Diagram

Nov 10, 2008 Sprenkle - CS209 31

Mapping to Screen Savers

How does the screen saver application use
factory methods?

What would be the alternative solution?

What problems are the factories addressing?

Nov 10, 2008 Sprenkle - CS209 32

Mapping to Screen Savers

How does the screen saver application use
factory methods?
What would be the alternative solution?

What problems are the factories addressing?
Delegate creation of concrete Movers
Likely to change
Encapsulate change in factory
Using abstraction instead of specifying concrete
classes
Reduces dependencies to concrete classes

Nov 10, 2008 Sprenkle - CS209 33

Dependency Inversion Principle

High-level components should not depend on
low-level components

Both should depend on abstractions
Abstractions should not depend upon details.
Details should depend upon abstractions
“Inversion” from the way you think
Other techniques besides Factory Method for
adhering to principle

Nov 10, 2008 Sprenkle - CS209 34

Dependency Inversion Principle

How would we build/design the screen saver
application?
Know we need to view/display a screen saver
Buttons, slider, objects that move
Top-down
Know we need to create a bunch of types of
screen savers
Abstraction
Bottom-up

Nov 10, 2008 Sprenkle - CS209 35

Traditional Screen Saver
Dependencies

[BouncingBaH] [Walker]

High-level component is dependent on concrete classes.
If implementations change, GUI may have to change

Nov 10, 2008 Sprenkle - CS209 36

Screen Saver Dependencies

ButtonPanel

[Mover]
A

A

[Canvas] [Factor'y]
y

BouncerFactory

BouncingBall

Nov 10, 2008 Sprenkle - CS209 37

Screen Saver Dependencies

ButtonPanel

Factory

\
[Mover](—[Canvas
N]

BouncingBall BouncerFactory

Nov 10, 2008 Sprenkle - CS209 38

Guidelines to Follow DIP

No variable should hold a reference to a
concrete class
Using new -> holding reference to concrete class
Use factory instead
No class should derive from a concrete class
Depending on a concrete class
Derive from an interface or abstract class instead
No method should override an implemented
method of any of its base classes
Base class wasn’t an abstraction

Those methods are meant to be shared by
subclasses

What's the problem with following
Nov 10, 2008 all of these guidelines?

Midterm Prep

Document posted online
Software Development
Models
Testing
Design Principles
Code smells
Refactoring
GUI programming
Event handling, inner classes, animation
Jar files
Unix commands

Nov 10, 2008 Sprenkle - CS209 40

