Objectives

Metrics Plugin
Liskov Substitution Principle
Code Critique

Identifying smells
Refactoring

Oct 27, 2008 Sprenkle - CS209 1

Review

What goal are we designing to?
What is the typical fix for code smells?
What is a limitation of those fixes?

Oct 27, 2008 Sprenkle - CS209 2

Metrics Plugin

Provides information about your classes
of classes
of lines of code per method
of attributes
Coupling (to/from package)

http://metrics.sourceforge.net

Oct 27, 2008 Sprenkle - CS209 3

Example: Lack of Cohesion of Methods
(LCOM)
A measure for a class’s cohesiveness
Calculated with the Henderson-Sellers
method:

If m(A) is the number of methods accessing an
attribute A, calculate the average of m(A) for all
attributes, subtract the number of methods m and
divide the result by (1-m)

Low value - a cohesive class
Value close to 1 = a lack of cohesion

Suggests class might better be split into a
number of (sub)classes

Oct 27, 2008 Sprenkle - CS209 4

Liskov Substitution Principle (LSP)

Named after Barbara Liskov
Professor of Engineering at MIT
The substitution principle:

If for each object o, of type S there is an object o, of type

T such that for all programs P defined in terms of T, the

behavior of P is unchanged when o, is substituted for o,,
then S is a subtype of T.

In other words...
Functions that use pointers or references to base

classes must be able to use objects of derived
classes without knowing it.
Oct 27, 2008 Sprenkle - CS209 5

Code Smell: Using instanceof

public void drawShape(Shape shape) {
if (shape instanceof Square) {
drawSquare(shape);

else if(shape instanceof Circle) {
drawCircle(shape);

}

3
Why isn’t this good code?
How could we write this in a better way?

Oct 27, 2008 Sprenkle - CS209 6

Code Smell: Using instanceof

Previous example: had to know all of the
Shape classes
Update whenever a Shape is added or removed

Better code:

public void drawShape(Shape shape) {
shape.draw();

Oct 27, 2008 Sprenkle - CS209 7

Another Example: Rectangle Class

public class Rectangle {
private int myHeight;
private int myWidth;

public void setWidth(int w) {
myWeight = w;

public void setHeight(int h) {
myHeight = h;

// getters..

Oct 27 } 8

Square Class

A square is a rectangle
But a rectangle is not a square

In the interest of code reuse
\public class Square extends Rectangle\
Any problems with this implementation?
Inherits

private int myHeight;
private int myWidth;
public void setWidth(int w);
public void setHeight(int h);

Oct 27, 2008 Sprenkle - CS209 9

To Keep Square Consistent...

public void setWidth(int w) {
super.setWidth(w);
super.setHeight(w);

public void setHeight(int h) {
super.setWidth(h);
super.setHeight(h);

3

Oct 27, 2008 Sprenkle - CS209 10

But What About Users of Classes?

Consider the function:

public void testFunction(Rectangle r) {
r.setWidth(5);
r.setHeight(4);
assertEquals(20, r.getWidth(Q*r.getHeight());

What happens if it's called with a Square?

Oct 27, 2008 Sprenkle - CS209 "

The Problem

A Square object is not a Rectangle object
Behaviors are different
Clients depend on behaviors

All derivatives of class must have the same
behavior

Oct 27, 2008 Sprenkle - CS209 12

Design by Contract

Methods of classes declare preconditions
and postconditions
Preconditions must be met for method to execute
After executing, postconditions must be true
Example for Rectangle’s setWidth:
myWidth == newWidth && myHeight == oldHeight
For derivatives
Preconditions can only be weakened
Postconditions can only be strengthened

= Derivatives must adhere to constraints for base
class

Oct 27, 2008 Sprenkle - CS209 13

Summary of LSP

Open-closed principle (OCP) is fundamental

to Object-oriented Design

Liskov Substitution Principle (a.k.a. design by
contract) is an important feature of programs
that conform to OCP

Derived types must be completely substitutable
for their base types

Derived types can then be modified without
consequence

Oct 27, 2008 Sprenkle - CS209 14

CODE CRITIQUE

Oct 27, 2008 Sprenkle - CS209 15

Discussion of Bins Solution

What does the code do?
What is the purpose/responsibility of each class?

What are the good parts of the code?

What are some of the code smells?

Oct 27, 2008 Sprenkle - CS209 16

Assignment 10: Code Critique &
Refactoring

Given: a problem specification and a solution to
the problem
You refactoring your own code is emotional
More objective with someone else’s solution
Goals
Read and understand someone else’s code
Haven’t done much of this in Java
Critique code (do you smell something?)
Identify, articulate problems
Refactor code to solve problems identified
Write tests to verify the code

Oct 27, 2008 Sprenkle - CS209 17

