Objectives

Coverage tools
Object-oriented Design Principles
Design in the Small
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Project 1 Questions?
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Project 1 Notes

Test-driven development
Incomplete comments, pre-/post conditions
Make reasonable assumptions
Document assumptions in your test code
Write the specification that code has to pass
Organizing tests
Can have multiple test classes

Organize by fixture, functionality, all pass, all
errors
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Project 1 Notes

Independent test cases
Each tests different functionality
Should only have one failure
Easier to locate the bug

Handling error cases

Sometimes an exception is the expected result
Add an “expected” attribute:
@Test(expected=Index0QutO0fBoundsException.class)
public void testIndexOutOfBoundsException() {
ArraylList emptylList = new ArraylList();
Object o = emptylList.get(0);
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Review

How do we know when we’ve tested enough?
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Coverage Tools

Coverage is used in practice

You don’t need to figure out coverage

manually

Available tools to calculate coverage
Examples for Java programs: Clover, JCoverage,

Emma
Measure statement, branch/conditional, method
coverage
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Eclipse Plugin: EcCIEmma for Coverage

Eclipse can be extended through plugins
Provide additional functionality
EclEmma Plugin

Records executing program’s (or JUnit test
case’s) coverage

Displays coverage graphically
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Demonstration ‘a~

Execute MedialtemTest with Coverage
Note: removed BookOnTape test
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Installing Emma in Eclipse

Under Help - Software Updates >
Find and Install

Search for new features to install
Create a New Remote Site
Name: EclIEmma
URL: http://update.eclemma.org/
Finish
Select to install Emma
Go through process
Restart Eclipse

Oct 22, 2008 Sprenkle - CS209 9

OBJECT-ORIENTED DESIGN
PRINCIPLES
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Designing Systems

All systems change during their life cycle
Changes in requirements
Misunderstandings in requirements

Code must be soft
Flexible
Easy to change

New or revised circumstances
New contexts
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Designing Systems

All systems change during their life cycle

Questions to consider:
How can we create designs that are stable in the
face of change?
How do we know if our designs aren’t
maintainable?
What can we do if our code isn’t maintainable?
Answers will help us
Design our own code
Understand others’ code
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Best Practices

(DRY): Don’t repeat yourself
Shy

Avoid Coupling
Tell, Don’'t Ask
Open-closed principle
Avoid code smells

A lot of similar, related fundamental principles
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DRY: Knowledge Representation

Intuition: when need to change code, make in
only one place

Every piece of knowledge must have a single,
unambiguous, and authoritative
representation within a system

Requires planning
What data needed, how represented (e.g., type)
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Shy Code

Won'’t reveal too much of itself
Otherwise: get coupling
Static, dynamic, domain, temporal

Coupling isn’t always bad...
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Static Coupling

Code requires other code to compile
Not really a bad thing
BUT don’t drag in more than you need
Example: poor use of inheritance
Brings excess baggage
Inheritance is reserved for “is-a” relationships
Base class should not include optional behavior
Not “uses-a” or “has-a”
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Dynamic Coupling

Code uses other code at runtime
getOrder().getCustomer().getAddress(
).getState()

Relies on several objects/classes and their state

Talk directly to code
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Domain Coupling

Business rules, policies are embedded in
code
Problem if change frequently
Code will have to change frequently
Put into another place (metadata)
Database, property file
Process the rules
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Temporal Coupling

Order that things occur
Occur at a certain time
Occur by a certain time
Occur at the same time

Write concurrent code
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Tell, Don't Ask

Think of methods as “sending a message”
Method call: sends a request to do something
Don’t ask about details
Return: answer
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Open-Closed Principle

Bertrand Meyer
Author of Object-Oriented Software Construction
Foundational text of OO programming
Principle: Software entities (classes,
modules, functions, etc.) should be open for
extension but closed for modification
Design modules that never change (after
completely implemented)
If requirements change, extend behavior by
adding code
Not changing existing code
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Attributes of Software that Adhere to OCP

Open for Extension

Behavior of module can be extended

Make module behave in new and different ways
Closed for Modification

No one can make changes to module

These attributes seem to be at odds with each other.
How can we resolve them?
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Using Abstraction

Abstract base classes
Fixed abstraction
Cannot be changed
Derived classes: possible behaviors

Can always create new child classes of abstract
base class
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Not Open-Closed Principle

Client uses Server class

public class Client {
public void method(Server x) {

3
3

Client Server
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Open-Closed Principle

Client uses AbstractServer class

public class Client {
public void method(AbstractServer x) {

3

Abstract
Server

extends New
Server

Client

Server
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Strategic Closure

No significant program can be completely
closed
Must choose kinds of changes to close

Requires knowledge of users, probability of
changes
Most probable changes should be closed
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Heuristics and Conventions

Member variables are private
A function that depends on a variable cannot be
closed to changes to that variable
The class itself can’t be closed to it

All other classes should be

No global variables
Every module that depends on global variable
cannot be closed to changes to that variable
What happens if someone uses variable in
unexpected way?
Counter examples: System.out, System.in

= Apply abstraction to parts you
0ct 22,2008 think are going to change 27

Code Smells

Duplicated code Switch statements/long

Long method if statements

Large class Shotgun surgery
Long parameter list Literals

Very similar subclasses Global variables
Too many public Side effects
variables Using instanceof

Empty catch clauses
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Duplicated Code

What’s the problem with duplicated code?
Why do we like it?
What made us write the duplicated code?
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Duplicated Code

Example: same expression in 2 methods of
the same class

Extract method

Call method from those two places

Medialtem class example in Eclipse
Example: duplicated code in 2 sibling
subclasses

Extract method, put into parent class

If similar but not duplicate, extract the duplicate
code (or parameterize)
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