Objectives

Coverage tools
Object-oriented Design Principles
Design in the Small

Oct 22, 2008 Sprenkle - CS209 1

Project 1 Questions?

Oct 22, 2008 Sprenkle - CS209 2

Project 1 Notes

Test-driven development
Incomplete comments, pre-/post conditions
Make reasonable assumptions
Document assumptions in your test code
Write the specification that code has to pass
Organizing tests
Can have multiple test classes

Organize by fixture, functionality, all pass, all
errors

Oct 22, 2008 Sprenkle - CS209 3

Project 1 Notes

Independent test cases
Each tests different functionality
Should only have one failure
Easier to locate the bug

Handling error cases

Sometimes an exception is the expected result
Add an “expected” attribute:
@Test(expected=Index0QutO0fBoundsException.class)
public void testIndexOutOfBoundsException() {
ArraylList emptylList = new ArraylList();
Object o = emptylList.get(0);

Oct 22, 2008 prenkle - CS209 4

Review

How do we know when we’ve tested enough?

Oct 22, 2008 Sprenkle - CS209 5

Coverage Tools

Coverage is used in practice

You don’t need to figure out coverage

manually

Available tools to calculate coverage
Examples for Java programs: Clover, JCoverage,

Emma
Measure statement, branch/conditional, method
coverage

Oct 22, 2008 Sprenkle - CS209 6




Eclipse Plugin: EcCIEmma for Coverage

Eclipse can be extended through plugins
Provide additional functionality
EclEmma Plugin

Records executing program’s (or JUnit test
case’s) coverage

Displays coverage graphically

Oct 22, 2008 Sprenkle - CS209 7

Demonstration ‘a~

Execute MedialtemTest with Coverage
Note: removed BookOnTape test

Oct 22, 2008 Sprenkle - CS209 8

Installing Emma in Eclipse

Under Help - Software Updates >
Find and Install

Search for new features to install
Create a New Remote Site
Name: EclIEmma
URL: http://update.eclemma.org/
Finish
Select to install Emma
Go through process
Restart Eclipse

Oct 22, 2008 Sprenkle - CS209 9

OBJECT-ORIENTED DESIGN
PRINCIPLES

Oct 22, 2008 Sprenkle - CS209 10

Designing Systems

All systems change during their life cycle
Changes in requirements
Misunderstandings in requirements

Code must be soft
Flexible
Easy to change

New or revised circumstances
New contexts

Oct 22, 2008 Sprenkle - CS209 "

Designing Systems

All systems change during their life cycle

Questions to consider:
How can we create designs that are stable in the
face of change?
How do we know if our designs aren’t
maintainable?
What can we do if our code isn’t maintainable?
Answers will help us
Design our own code
Understand others’ code

Oct 22, 2008 Sprenkle - CS209 12




Best Practices

(DRY): Don’t repeat yourself
Shy

Avoid Coupling
Tell, Don’'t Ask
Open-closed principle
Avoid code smells

A lot of similar, related fundamental principles

Oct 22, 2008 Sprenkle - CS209

DRY: Knowledge Representation

Intuition: when need to change code, make in
only one place

Every piece of knowledge must have a single,
unambiguous, and authoritative
representation within a system

Requires planning
What data needed, how represented (e.g., type)

Oct 22, 2008 Sprenkle - CS209 14

Shy Code

Won'’t reveal too much of itself
Otherwise: get coupling
Static, dynamic, domain, temporal

Coupling isn’t always bad...

Oct 22, 2008 Sprenkle - CS209

Static Coupling

Code requires other code to compile
Not really a bad thing
BUT don’t drag in more than you need
Example: poor use of inheritance
Brings excess baggage
Inheritance is reserved for “is-a” relationships
Base class should not include optional behavior
Not “uses-a” or “has-a”

Oct 22, 2008 Sprenkle - CS209

Dynamic Coupling

Code uses other code at runtime
getOrder().getCustomer().getAddress(
).getState()

Relies on several objects/classes and their state

Talk directly to code

Oct 22, 2008 Sprenkle - CS209 17

Domain Coupling

Business rules, policies are embedded in
code
Problem if change frequently
Code will have to change frequently
Put into another place (metadata)
Database, property file
Process the rules

Oct 22, 2008 Sprenkle - CS209




Temporal Coupling

Order that things occur
Occur at a certain time
Occur by a certain time
Occur at the same time

Write concurrent code

Oct 22, 2008 Sprenkle - CS209 19

Tell, Don't Ask

Think of methods as “sending a message”
Method call: sends a request to do something
Don’t ask about details
Return: answer

Oct 22, 2008 Sprenkle - CS209 20

Open-Closed Principle

Bertrand Meyer
Author of Object-Oriented Software Construction
Foundational text of OO programming
Principle: Software entities (classes,
modules, functions, etc.) should be open for
extension but closed for modification
Design modules that never change (after
completely implemented)
If requirements change, extend behavior by
adding code
Not changing existing code

Oct 22, 2008 Sprenkle - CS209 21

Attributes of Software that Adhere to OCP

Open for Extension

Behavior of module can be extended

Make module behave in new and different ways
Closed for Modification

No one can make changes to module

These attributes seem to be at odds with each other.
How can we resolve them?

Oct 22, 2008 Sprenkle - CS209 22

Using Abstraction

Abstract base classes
Fixed abstraction
Cannot be changed
Derived classes: possible behaviors

Can always create new child classes of abstract
base class

Oct 22, 2008 Sprenkle - CS209 23

Not Open-Closed Principle

Client uses Server class

public class Client {
public void method(Server x) {

3
3

Client Server

Oct 22, 2008 Sprenkle - CS209 24




Open-Closed Principle

Client uses AbstractServer class

public class Client {
public void method(AbstractServer x) {

3

Abstract
Server

extends New
Server

Client

Server

Oct 22, 2008 Sprenkle - CS209 25

Strategic Closure

No significant program can be completely
closed
Must choose kinds of changes to close

Requires knowledge of users, probability of
changes
Most probable changes should be closed

Oct 22, 2008 Sprenkle - CS209 26

Heuristics and Conventions

Member variables are private
A function that depends on a variable cannot be
closed to changes to that variable
The class itself can’t be closed to it

All other classes should be

No global variables
Every module that depends on global variable
cannot be closed to changes to that variable
What happens if someone uses variable in
unexpected way?
Counter examples: System.out, System.in

= Apply abstraction to parts you
0ct 22,2008 think are going to change 27

Code Smells

Duplicated code Switch statements/long

Long method if statements

Large class Shotgun surgery
Long parameter list Literals

Very similar subclasses Global variables
Too many public Side effects
variables Using instanceof

Empty catch clauses

Oct 22, 2008 Sprenkle - CS209 28

Duplicated Code

What’s the problem with duplicated code?
Why do we like it?
What made us write the duplicated code?

Oct 22, 2008 Sprenkle - CS209 29

Duplicated Code

Example: same expression in 2 methods of
the same class

Extract method

Call method from those two places

Medialtem class example in Eclipse
Example: duplicated code in 2 sibling
subclasses

Extract method, put into parent class

If similar but not duplicate, extract the duplicate
code (or parameterize)

Oct 22, 2008 Sprenkle - CS209 30




