Objectives

Introduction to Algorithms, Analysis
Course summary

Introduction to CS Research

» Presenting research

» Reviewing research papers

Jan 5, 2009 Sprenkle — CS211 1

What is an Algorithm?

Jan 5, 2009 Sprenkle — CS211 2

What are our goals when designing
algorithms?

How do we know when we’ve met our goals?

Now, everything comes down to expert knowledge of
algorithms and data structures. If you don't speak
fluent O-notation, you may have trouble getting your
next job at the technology companies in the forefront.
-- Larry Freeman

Jan 5, 2009 Sprenkle — CS211 3

Course Content: Subject to Change

Algorithm analysis
» Formal — proofs; informal
Advanced data structures, e.g., heaps,
graphs
Greedy Algorithms
Dynamic Programming
Divide and Conquer
Randomization
Hashing
Computer science research

Jan 5, 2009 Sprenkle — CS211 4

Course Notes

Textbook: Algorithm Design
» Optional: CLRS
Participation is encouraged
» Individual, group, class
Assignments:

» Proofs (Latex eventually)

» Programming

» Research readings

Jan 5, 2009 Sprenkle — CS211 5

Course Grading

40% Individual written and programming
homework assignments

20% Midterm

20% Final

9% Reading, analysis, & discussion of _
Computer Science research papers

8% Participation and attendance

3% Attending at least two seminars and_
writing a summary of each

Jan 5, 2009 Sprenkle — CS211 6




COMPUTER SCIENCE
RESEARCH

Jan 5, 2009 Sprenkle — CS211 7

Computer Science Research

Discussion:
» What are fields of computer science?

» What research problems do they answer in
those fields?

Jan 5, 2009 Sprenkle — CS211 8

Examples of CS Research

How to best manage resources—

Ozt S eis allocating to jobs

Compilers Data flow, control flow - optimizations
Software Program comprehension; Automated
Engineering techniques to help find bugs
New “learning” techniques; Applying Al
Al h ) . :
techniques to problems in various fields
Networks Better communication protocols

Managing data across multiple sites;
Distributed systems managing multiple computers across
multiple sites

Jan 5, 2009 Sprenkle — CS211 9

Computer Science Research

Generally: attempts to create something “new”
Sometimes enabled by new technology

» E.g., Internet, Multi-core processors, mobile devices
Often: new algorithms

» ldeally, faster, less memory, more efficient, or some
other benefit/metric (e.g., security, false positives/
false negatives, accurate/representative)

New representations
» Allow for easier computation/understanding
Exploring for understanding

> Program comprehension, software characteristics,
education

Jan 5, 2009 Sprenkle — CS211 10

Our Task: Select a New Faculty Member

What we’re looking for:

» Students will like candidate as professor, work with
on research

» Candidate will attract more CS students
Process

» Candidate visits for 2 days; meets with all CS
faculty, perhaps related outside faculty members,
Dean of the College, and STUDENTS; presents
research in a talk

» Make an offer to a candidate after all candidates visit
» Candidate has up to 2 weeks to accept/decline offer

Jan 5, 2009 Sprenkle — CS211 "

Your Participation

Attend at least one candidate’s talk

» Beyond Monday’s talk
Attend at least one student meeting with
candidate

If scheduling conflicts, please contact me
immediately

Read faculty candidates’ papers

» Post reviews on Sakai, in forums

» Read and fill out review form for first one for
Friday

Jan 5, 2009 Sprenkle — CS211 12




PRESENTING RESEARCH IN
COMPUTER SCIENCE

Jan 5, 2009 Sprenkle — CS211 13

Presenting Research

Goals: tell your great solutions to important
problems
» Back that talk up with evidence that your solution
is great
Written forms
» Papers to conferences, journals
» Posters
Oral forms
» Presentations

Jan 5, 2009 Sprenkle — CS211 14

General Presentation Outline

Intro/Motivation Evaluate ideas
> Problem is big, » Proof
important, difficult » Experiments —
Background Biricioy A
» Terminology, conclusions
technology, domain Related Work
Ideas » Other people working on
» Described clearly, with similar problems
examples Conclusions, Future
» Provide intuition Work

» This is what we learned
» It's not the end...

Jan 5, 2009 Sprenkle — CS211 15

READING RESEARCH PAPERS

Jan 5, 2009 Sprenkle — CS211 16

What to Look For in Your Review

Overall problem

» How large/important is the problem?
Goals of researcher
Contributions

» Keywords: new, novel
Technical approach

» Key insights (“leverage”, “utilize”)
Evaluation

» Answers all your questions about approach?
Limitations

» May not be a general-purpose solution

» Check assumptions

Jan 5, 2009 Sprenkle — CS211 17

Your Review'’s Content (Online too)

Statement of the Problem/Goals
» In one sentence in your own words, state succinctly the overall problem
being addressed in this paper.
» What particular goals do these researchers have in addressing this
problem?
» What contribution are they seeking to make to the state-of-the-art?
Technical Approach
» Inafew sentences in your own words, what is the key insight of this group's
approach to tackling the stated problem? What is their overall approach/
strategy to solving the problem?
Discussion/Critique
» How did the researchers evaluate their efforts?
What conclusions did they make from their evaluation results?
What application/useful benefit do the researchers/you see for this work?
What limitations do the researchers mention with their approach?
What additional limitations do you think there are?
Write one interesting question to ponder with regard to this paper beyond
content understanding.

Y VVVY

Jan 5, 2009 Sprenkle — CS211 18




PRACTICE

Jan 5, 2009 Sprenkle — CS211 19

Abstract 1: TERRASTREAM

We consider the problem of extracting a river network and a watershed hierarchy from
a terrain given as a set of irregularly spaced points. We describe TERRASTREAM, a
pipelined solution that consists of four main stages: construction of a digital elevation
model (DEM), hydrological conditioning, extraction of river networks, and construction
of a watershed hierarchy. Our approach has several advantages over existing
methods.

First, we design and implement the pipeline so that each stage is scalable to massive
data sets; a single non-scalable stage would create a bottleneck and limit overall
scalability. Second, we develop the algorithms in a general framework so that they
work for both TIN and grid DEMs. Furthermore, TERRASTREAM is flexible and allows
users to choose from various models and parameters, yet our pipeline is designed to
reduce (or eliminate) the need for manual intervention between stages.

We have implemented TERRASTREAM and we present experimental results on real
elevation point sets, which show that our approach handles massive multi-gigabyte
terrain data sets. For example, we can process a data set containing over 300 million
points—over 20GB of raw data—in under 26 hours, where most of the time (76%) is
spent in the initial CPU-intensive DEM construction stage.

Jan 5, 2009 Sprenkle — CS211 20

Abstract 1: TERRASTREAM — Theory, GIS

Problem/Goals
» Extracting river network, watershed hierarchy,
given irregularly spaced points
» Handle large data sets
Technical Approach
» Scalable, pipelined process
Discussion

» Evaluation: execution time on large (e.g., 20
GB), real elevation point sets

Jan 5, 2009 Sprenkle — CS211 21

Abstract 2: Proverb

We attacked the problem of solving crossword puzzles by computer:
given a set of clues and a crossword grid, try to maximize the number
of words correctly filled in. In our system, "expert modules" specialize
in solving specific types of clues, drawing on ideas from information
retrieval, database search, and machine learning. Each expert module
generates a (possibly empty) candidate list for each clue, and the lists
are merged together and placed into the grid by a centralized solver.
We used a probabilistic representation throughout the system as a
common interchange language between subsystems and to drive the
search for an optimal solution. Proverb, the complete system,
averages 95.3% words correct and 98.1% letters correct in under 15
minutes per puzzle on a sample If 370 puzzles taken from the New
York Times and several other puzzle sources. This corresponds to
missing roughly 3 words or 4 letters on a daily 15x15 puzzle, making
Proverb a better-than-average cruciverabalist (cross-word solver).

Jan 5, 2009 Sprenkle — CS211 22

Abstract 2: Proverb - Al

Problem/Goals

» Solving crossword puzzles

» Maximize # of words correctly filled in
Technical Approach

» Expert modules, lists of candidates

» IR, DB Search, ML

» Probabilistic representation
Discussion

» Evaluation: 370 NY Times puzzles

Measured: time to execute; words, letters correct

Aside: oneacross.com

Jan 5, 2009 Sprenkle — CS211 23

Abstract 3: AMAP

When writing software, developers often employ abbreviations in
identifier names. In fact, some abbreviations may never occur with
the expanded word, or occur more often in the code. However, most
existing program comprehension and search tools do little to address
the problem of abbreviations, and therefore may miss meaningful
pieces of code or relationships between software artifacts. In this
paper, we present an automated approach to mining abbreviation
expansions from source code to enhance software maintenance
tools that utilize natural language information. Our scoped approach
uses contextual information at the method, program, and general
software level to automatically select the most appropriate expansion
for a given abbreviation. We evaluated our approach on a set of 250
potential abbreviations and found that our scoped approach provides
a 57% improvement in accuracy over the current state of the art.

Jan 5, 2009 Sprenkle — CS211 24




Abstract 3: AMAP — Software Engineering

Problem/Goals
» Program comprehension, abbreviations in ids

Impact: missing abbreviations misses code
relationships

Technical Approach
» Automated, mining approach
» Natural language, contextual information
Discussion
» Evaluation: 250 potential abbreviations
Measured: accuracy, compared to SotA

Jan 5, 2009 Sprenkle — CS211 25

Abstract 4: SEDA

We propose a new design for highly concurrent Internet services, which we
call the staged event-driven architecture (SEDA). SEDA is intended to
support massive concurrency demands and simplify the construction of well-
conditioned services. In SEDA, applications consist of a network of event-
driven stages connected by explicit queues. This architecture allows services
to be well-conditioned to load, preventing resources from being
overcommitted when demand exceeds service capacity. SEDA makes use of
a set of dynamic resource controllers to keep stages within their operating
regime despite large fluctuations in load. We describe several control
mechanisms for automatic tuning and load conditioning, including thread
pool sizing, event batching, and adaptive load shedding. We present the
SEDA design and an implementation of an Internet services platform based
on this architecture. We evaluate the use of SEDA through two applications:
a high-performance HTTP server and a packet router for the Gnutella peer-
to-peer file sharing network. These results show that SEDA applications
exhibit higher performance than traditional service designs, and are robust to
huge variations in load.

Jan 5, 2009 Sprenkle — CS211 26

Abstract 4: SEDA — Distributed Systems

Problem/Goals
» Highly concurrent internet systems
Goal: well-behaved under load
Technical Approach
» Staged, event-driven architecture (SEDA)
» Automatic tuning, load conditioning
Discussion

» Evaluation: Used SEDA architecture for web
server, P2P packet router
Measured performance, robustness to load
variation

Jan 5, 2009 Sprenkle — CS211 27

Assignment: Review Paper

Read paper

» 2 hours max

Review paper

» Write on Sakai forum
Due by 10 a.m. on Friday

Friday: Discuss paper and questions

Jan 5, 2009 Sprenkle — CS211 28




