
1/5/09

1

 Now, everything comes down to expert knowledge of
algorithms and data structures. If you don't speak
fluent O-notation, you may have trouble getting your
next job at the technology companies in the forefront.

 -- Larry Freeman

1/5/09

2

Field Example Research

Operating Systems How to best manage resources—
allocating to jobs

Compilers Data flow, control flow  optimizations
Software
Engineering

Program comprehension; Automated
techniques to help find bugs

AI New “learning” techniques; Applying AI
techniques to problems in various fields

Networks Better communication protocols

Distributed systems
Managing data across multiple sites;
managing multiple computers across
multiple sites

1/5/09

3

1/5/09

4

We consider the problem of extracting a river network and a watershed hierarchy from
a terrain given as a set of irregularly spaced points. We describe TERRASTREAM, a
pipelined solution that consists of four main stages: construction of a digital elevation
model (DEM), hydrological conditioning, extraction of river networks, and construction
of a watershed hierarchy. Our approach has several advantages over existing
methods.

First, we design and implement the pipeline so that each stage is scalable to massive
data sets; a single non-scalable stage would create a bottleneck and limit overall
scalability. Second, we develop the algorithms in a general framework so that they
work for both TIN and grid DEMs. Furthermore, TERRASTREAM is flexible and allows
users to choose from various models and parameters, yet our pipeline is designed to
reduce (or eliminate) the need for manual intervention between stages.

We have implemented TERRASTREAM and we present experimental results on real
elevation point sets, which show that our approach handles massive multi-gigabyte
terrain data sets. For example, we can process a data set containing over 300 million
points—over 20GB of raw data—in under 26 hours, where most of the time (76%) is
spent in the initial CPU-intensive DEM construction stage.

We attacked the problem of solving crossword puzzles by computer:
given a set of clues and a crossword grid, try to maximize the number
of words correctly filled in. In our system, "expert modules" specialize
in solving specific types of clues, drawing on ideas from information
retrieval, database search, and machine learning. Each expert module
generates a (possibly empty) candidate list for each clue, and the lists
are merged together and placed into the grid by a centralized solver.
We used a probabilistic representation throughout the system as a
common interchange language between subsystems and to drive the
search for an optimal solution. Proverb, the complete system,
averages 95.3% words correct and 98.1% letters correct in under 15
minutes per puzzle on a sample lf 370 puzzles taken from the New
York Times and several other puzzle sources. This corresponds to
missing roughly 3 words or 4 letters on a daily 15x15 puzzle, making
Proverb a better-than-average cruciverabalist (cross-word solver).

When writing software, developers often employ abbreviations in
identifier names. In fact, some abbreviations may never occur with
the expanded word, or occur more often in the code. However, most
existing program comprehension and search tools do little to address
the problem of abbreviations, and therefore may miss meaningful
pieces of code or relationships between software artifacts. In this
paper, we present an automated approach to mining abbreviation
expansions from source code to enhance software maintenance
tools that utilize natural language information. Our scoped approach
uses contextual information at the method, program, and general
software level to automatically select the most appropriate expansion
for a given abbreviation. We evaluated our approach on a set of 250
potential abbreviations and found that our scoped approach provides
a 57% improvement in accuracy over the current state of the art.

1/5/09

5

We propose a new design for highly concurrent Internet services, which we
call the staged event-driven architecture (SEDA). SEDA is intended to
support massive concurrency demands and simplify the construction of well-
conditioned services. In SEDA, applications consist of a network of event-
driven stages connected by explicit queues. This architecture allows services
to be well-conditioned to load, preventing resources from being
overcommitted when demand exceeds service capacity. SEDA makes use of
a set of dynamic resource controllers to keep stages within their operating
regime despite large fluctuations in load. We describe several control
mechanisms for automatic tuning and load conditioning, including thread
pool sizing, event batching, and adaptive load shedding. We present the
SEDA design and an implementation of an Internet services platform based
on this architecture. We evaluate the use of SEDA through two applications:
a high-performance HTTP server and a packet router for the Gnutella peer-
to-peer file sharing network. These results show that SEDA applications
exhibit higher performance than traditional service designs, and are robust to
huge variations in load.

