
2/1/10

1

•  Directed Graphs
•  Topological Orderings
•  DAGs

•  Edge (u, v) goes from node u to node v

•  Representation
 Maintain both in and out edges of each node

•  Def. Node u and v are mutually reachable
if there is a path from u  v and also a path
from v  u

•  Def. A graph is strongly connected if every
pair of nodes is mutually reachable

•  Lemma. Let s be any node. G is strongly
connected iff every node is reachable from s
and s is reachable from every node

s

v

u

•  Determine if G is strongly connected in
O(m + n) time

strongly connected not strongly connected

Hint: We can leverage an O(m+n) algorithm

•  For any two nodes s and t in a directed
graph, their strong components are either
identical or disjoint

Hint: Consider a node in common…

•  For any two nodes s and t in a directed graph,
their strong components are either identical or
disjoint

•  Proof.
 Consider v in both strong components

•  s v; v  s; vt; tv  ts, st (mutually
reachable)

•  As soon as there is one common node, then have
identical strong components

 On the other hand, consider s and t are not mutually
reachable
•  No node v that is in the strong component of each

  What would it mean if there were?

2/1/10

2

•  Def. A DAG is a directed graph that contains no
directed cycles.

•  Example. Precedence constraints: edge (vi, vj)
means vi must precede vj
 Course prerequisite graph: course vi must be taken

before vj

 Compilation: module vi must be compiled before vj

 Pipeline of computing jobs: output of job vi needed to
determine input of job vj v2 v3

v6 v5 v4

v7 v1

a DAG:

•  Problem: Given a set of tasks with
dependencies, what is a valid order in which
the tasks could be performed?

v2 v3

v6 v5 v4

v7 v1

•  Problem: Given a set of tasks with
dependencies, what is a valid order in which the
tasks could be performed?

•  Def. A topological order of a directed graph
G = (V, E) is an ordering of its nodes as v1, v2,
…, vn so that for every edge (vi, vj), i < j.

a DAG
a topological ordering

All edges point “forward”

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7

•  Lemma. If G has a topological order, then G
is a DAG.

•  Proof: What if G has a cycle and a
topological order?

v1 vi vj vn

the supposed topological order: v1, …, vn

the directed cycle C

Why isn’t this valid?

•  Lemma. If G has a topological order, then G is a DAG.
•  Pf. (by contradiction)

  Suppose that G has a topological order v1, …, vn and that G
also has a directed cycle C.

  Let vi be the lowest-indexed node in C, and let vj be the node
on C just before vi; thus (vj, vi) is an edge

  By our choice of i (lowest-indexed node), i < j
  Since (vj, vi) is an edge and v1, …, vn is a topological order,

we must have j < i, a contradiction. ▪

v1 vi vj vn

the directed cycle C

the supposed topological order: v1, …, vn

2/1/10

3

•  Does every DAG have a topological
ordering?
 If so, how do we compute one?

•  Does every DAG have a topological
ordering?
 If so, how do we compute one?

• What would we need to be able to create a
topological ordering?
 What are some characteristics of this graph?

v1 v2 v3 v4 v5 v6 v7

•  Does every DAG have a topological
ordering?
 If so, how do we compute one?

• What would we need to be able to create a
topological ordering?
 What are some characteristics of this graph?

Need someplace to start:
a node with no incoming
edges (no dependencies)

Note that both v1 and v2
have no incoming edges

v1 v2 v3 v4 v5 v6 v7

•  Lemma. If G is a DAG, then G has a node
with no incoming edges
 This is our starting point of the topological

ordering

•  How to prove?

•  Lemma. If G is a DAG, then G has a node
with no incoming edges

•  Proof idea: Consider if there is no node
without incoming edges
 What does that mean?
 How can we get to a contradiction?

•  Lemma. If G is a DAG, then G has a node with no incoming
edges.

•  Pf. (by contradiction)
  Suppose that G is a DAG and every node has at least one incoming

edge
  Pick any node v, and follow edges backward from v.

•  Since v has at least one incoming edge (u, v), walk backward to u
  Since u has at least one incoming edge (t, u), walk backward to t
  Repeat until we visit a node, say k, twice

•  Has to happen at least by n+1 steps (Why?)
  Let C denote the sequence of nodes encountered between

successive visits to k. C is a cycle. ▪

k t u v

2/1/10

4

•  Claim: If there is a node with no incoming
edges, can create a topological ordering

•  Think about a DAG with only one node.
What is its topological ordering?

•  Only two nodes?

•  Three nodes?
 What are the DAG, TO possibilities?

• What are the possibilities?

Can’t add any
more edges

without creating
a cycle.

•  Lemma. If G is a DAG, then G has a topological
ordering.

•  Pf. (by induction on n)
 Base case: true if n = 1
 Given DAG on n > 1 nodes, find a node v with no

incoming edges
 G - { v } is a DAG, since deleting v cannot create cycles
 By inductive hypothesis, G - { v } has a topological

ordering
 Place v first in topological ordering; then append nodes

of G - { v } in topological order.
 Valid since v has no incoming edges. ▪

DAG
v

•  Lemma. If G is a DAG, then G has a
topological ordering.

•  Algorithm:

DAG
v

Find a node v with no incoming edges	
Order v first	
Delete v from G	
Recursively compute a topological ordering of G-{v}	

	and append this order after v

v1

Topological order:

v2 v3

v6 v5 v4

v7 v1

v2

Topological order: v1

v2 v3

v6 v5 v4

v7

2/1/10

5

v3

Topological order: v1, v2

v3

v6 v5 v4

v7

v4

Topological order: v1, v2, v3

v6 v5 v4

v7

v5

Topological order: v1, v2, v3, v4

v6 v5

v7

v6

Topological order: v1, v2, v3, v4, v5

v6

v7

v7

Topological order: v1, v2, v3, v4, v5, v6

v7

Topological order: v1, v2, v3, v4, v5, v6, v7.

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7

2/1/10

6

• Where are the costs?
Find a node v with no incoming edges	
Order v first	
Delete v from G	
Recursively compute a topological ordering of G-{v}	

	and append this order after v

• Where are the costs?

•  Find a node without incoming edges and
delete it: O(n)

•  Repeat on all nodes
•  O(n2)

Can we do better?

Find a node v with no incoming edges	
Order v first	
Delete v from G	
Recursively compute a topological ordering of G-{v}	

	and append this order after v

•  Theorem. Find a topological order in O(m + n)
time

•  Pf.
 Maintain the following information:

•  count[w] = remaining number of incoming edges
•  S = set of remaining nodes with no incoming edges

  Initialization: O(m + n) via single scan through graph
 Update: to delete v

•  Remove v from S
•  Decrement count[w] for all edges from v to w

  Add w to S if count[w] hits 0
•  O(1) per edge ▪

•  Talk: “A Mathematician's Year on Capitol
Hill”

•  Katherine Crowley, W&L Mathematics
Department

•  Time: Wednesday, February 3, 3:30 p.m.
•  Place: Robinson Hall, Room 6
•  10 points towards problem set grade

•  Finish reading Chapter 3
 Wikis for Wednesday

•  For Friday: Problem Set 3
•  Friday: Handout exam

 Next Wednesday – work period
•  Ask questions

