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•  Divide and Conquer 
 Integer multiplication 
 Matrix multiplication 

•  Dynamic Programming 
 Fibonacci Sequence 
 Weighted Interval Scheduling 

•  Add.  Given two n-digit integers a and b, 
compute a + b. 
 Algorithm? 
 Runtime? 
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O(n) operations 

•  Multiply.  Given two n-digit integers a and b, 
compute a × b. 
 Brute force solution: Θ(n2) bit operations 
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Goal: Faster algorithm 

•  To multiply two n-digit integers: 
 Multiply four ½ n-digit integers 
 Add two ½ n-digit integers and shift to obtain result 
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x = 2n / 2 ⋅ x1  +  x0

y = 2n / 2 ⋅ y1  +  y0

xy = 2n / 2 ⋅ x1 + x0( ) 2n / 2 ⋅ y1  + y0( ) = 2n ⋅ x1y1  + 2n / 2 ⋅ x1y0 + x0 y1( ) + x0 y0

Higher order bits Lower order bits 

What is the recurrence relation? 
•  How many subproblems? 
•  What is merge cost? 
•  What is its runtime? 

Shift 

A B C D 

•  To multiply two n-digit integers: 
 Multiply four ½ n-digit integers 
 Add two ½ n-digit integers and shift to obtain result 

  

€ 

x = 2n / 2 ⋅ x1  +  x0

y = 2n / 2 ⋅ y1  +  y0

xy = 2n / 2 ⋅ x1 + x0( ) 2n / 2 ⋅ y1  + y0( ) = 2n ⋅ x1y1  + 2n / 2 ⋅ x1y0 + x0 y1( ) + x0 y0

Higher order bits Lower order bits 

Shift 

A B C D 
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T(n)  =  4T n /2( )
recursive calls
     

 +  Θ(n)
add, shift
    ⇒  T(n) =Θ(n2 )

assumes n is a power of 2 
Not an improvement 

over brute force 

•  To multiply two n-digit integers: 
 Add two ½n digit integers 
 Multiply 3 ½n-digit integers 
 Add, subtract, and shift ½n-digit integers to 

obtain result 

  

€ 

x = 2n / 2 ⋅ x1  +  x0

y = 2n / 2 ⋅ y1  +  y0

xy = 2n ⋅ x1y1  + 2n / 2 ⋅ x1y0 + x0 y1( ) + x0 y0

= 2n ⋅ x1y1  + 2n / 2 ⋅ (x1 + x0 ) (y1 + y0 )  − x1y1 − x0 y0( ) + x0 y0

A B C A C 

What is the recurrence relation?  Runtime? 
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•  Theorem.  [Karatsuba-Ofman, 1962]  Can 
multiply two n-digit integers in O(n1.585) bit 
operations 
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x = 2n / 2 ⋅ x1  +  x0

y = 2n / 2 ⋅ y1  +  y0

xy = 2n ⋅ x1y1  + 2n / 2 ⋅ x1y0 + x0 y1( ) + x0 y0

= 2n ⋅ x1y1  + 2n / 2 ⋅ (x1 + x0 ) (y1 + y0 )  − x1y1 − x0 y0( ) + x0 y0
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T(n) ≤ T n /2⎣ ⎦( ) + T n /2⎡ ⎤( ) + T 1+ n /2⎡ ⎤( )
recursive calls

                 
+ Θ(n)

add, subtract, shift
     

⇒ T(n)  =  O(n log 2 3 )  =  O(n1.585 )

A B C A C 

•  Given two n-by-n matrices A and B, compute 
C = AB 

 Ex: c12 = a11 b12 + a12 b22 + a13 b32 + … + a1n bn2 

•  Brute force.   Θ(n3) arithmetic operations 
•  Fundamental question:  Can we improve 

upon brute force? 
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k=1
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•  Divide: partition A and B into ½n-by-½n 
blocks 

•  Conquer: multiply 8 ½n-by-½n recursively 
•  Combine: add appropriate products using 4 

matrix additions 
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C11 = A11 × B11( )  +  A12 × B21( )
C12 = A11 × B12( )  +  A12 × B22( )
C21 = A21 × B11( )  +  A22 × B21( )
C22 = A21 × B12( )  +  A22 × B22( )
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Recurrence relation?  Runtime? 

•  Divide: partition A and B into ½n-by-½n 
blocks 

•  Conquer: multiply 8 ½n-by-½n recursively 
•  Combine: add appropriate products using 4 

matrix additions 
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C11 = A11 × B11( )  +  A12 × B21( )
C12 = A11 × B12( )  +  A12 × B22( )
C21 = A21 × B11( )  +  A22 × B21( )
C22 = A21 × B12( )  +  A22 × B22( )
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T(n) = 8T n /2( )
recursive calls
     

 +  Θ(n2 )
add, form submatrices
       ⇒ T(n) =Θ(n3)

•  Multiply 2-by-2 block matrices with only 7 
multiplications and 15 additions 
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P1 = A11 × (B12 − B22 )
P2 = (A11 + A12 ) × B22
P3 = (A21 + A22 ) × B11
P4 = A22 × (B21 − B11)
P5 = (A11 + A22 ) × (B11 + B22 )
P6 = (A12 − A22 ) × (B21 + B22 )
P7 = (A11 − A21) × (B11 + B12 )  

€ 

C11 = P5 + P4 − P2 + P6
C12 = P1 + P2
C21 = P3 + P4
C22 = P5 + P1 − P3 − P7
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Trading expensive multiplication for 
less expensive addition/subtraction 
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•  Divide: partition A and B into ½n-by-½n blocks 
•  Compute: 14 ½n-by-½n matrices via 10 matrix 

additions 
•  Conquer:  multiply 7 ½n-by-½n matrices 

recursively 
•  Combine:  7 products into 4 terms using 8 

matrix additions 
•  Analysis. 

 Assume n is a power of 2. 
 T(n) = # arithmetic operations. 
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T(n) = 7T n /2( )
recursive calls
     

+ Θ(n2 )
add, subtract
     ⇒ T(n) =Θ(n log2 7 ) = O(n2.81)

•  Implementation issues: problems with putting 
theory into practice 
 Sparsity 
 Caching effects 
 Numerical stability 

•  Theoretically correct but possible problems with 
round off errors, etc 

 Odd matrix dimensions 
 Crossover to classical algorithm around n = 128 

•  Common misperception:  "Strassen is only a 
theoretical curiosity." 
 Advanced Computation Group at Apple 

Computer reports 8x speedup on G4 Velocity 
Engine when n ~ 2,500 

 Range of instances where it's useful is a subject 
of controversy 

•  Can "Strassenize" Ax=b, determinant, 
eigenvalues, and other matrix ops 

•  Q.  Multiply two 2-by-2 matrices with only 7 scalar 
multiplications? 

•  A.  Yes!   [Strassen, 1969] 
•  Q.  Multiply two 2-by-2 matrices with only 6 scalar 

multiplications? 
•  A.  Impossible  [Hopcroft and Kerr, 1971] 
•  Q.  Two 3-by-3 matrices with only 21 scalar multiplications? 
•  A.  Also impossible 
•  Q.  Two 70-by-70 matrices with only 143,640 scalar 

multiplications? 
•  A.  Yes!   [Pan, 1980] 

•  Decimal wars. 
 December, 1979:  O(n2.521813) 
  January, 1980:     O(n2.521801) 
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Θ (n log3 21) = O(n 2.77 )
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Θ (n log70 143640 ) = O(n 2.80 )
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Θ(n log2 6) = O(n 2.59 )

  

€ 

Θ(n log2 7 ) = O(n 2.81)

•  Best known.  O(n2.376)   [Coppersmith-
Winograd, 1987.] 
 But really large constant 

•  Conjecture.  O(n2+ε) for any ε > 0.  

•  Caveat.  Theoretical improvements to 
Strassen are progressively less practical. 

•  Greedy.  Build up a solution incrementally, 
myopically optimizing some local criterion 

•  Divide-and-conquer.  Break up a problem 
into sub-problems, solve each sub-problem 
independently, and combine solution to sub-
problems to form solution to original problem  

•  Dynamic programming.  Break up a 
problem into a series of overlapping sub-
problems, and build up solutions to larger 
and larger sub-problems 
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•  Richard Bellman pioneered systematic study of 
dynamic programming in 1950s 

•  Etymology 
 Dynamic programming = planning over time 

•  Not our typical use of “programming” 
 Secretary of Defense was hostile to mathematical 

research 
 Bellman sought an impressive name to avoid 

confrontation 
•  "it's impossible to use dynamic in a pejorative sense" 
•  "something not even a Congressman could object to" 

Reference:  Bellman, R. E. Eye of the Hurricane, An Autobiography. 

•  Input: the number of Fibonacci numbers, x 
•  Output: display the list of the first x Fibonacci 

numbers 

Sequence: 
 F0=F1=1 
 Fn=Fn-1+ Fn-2 

•  Typical Solution: 
fibs = [] 	 	# create an empty list	
fibs.append(1) 	# append the first two Fib numbers	
fibs.append(1)	
print fibs[0], fibs[1],	
for x in xrange(2, N):		

	newfib = fibs[x-1]+fibs[x-2]	
	print newfib,	
	fibs.append(newfib)	

print fibs 	 	# print out the list	

Do we need a whole list? 

Building up solution 

Running time?  Space cost? 

•  Only need the solutions to the last two 
problems (F[k-1], F[k-2]) 

lastNum = 1	
twoAgo = 1	
print twoAgo, lastNum,	

for n in xrange(2, N):	

    nthNum = twoAgo + lastNum	
    print nthNum,	

    twoAgo = lastNum	
    lastNum = nthNum	

Write as a recurrence 

• What is the running time of this algorithm? 

def fibonacci(n):	
	return fibonacci(n-1) + fibonacci(n-2)	
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•  Create a table with the possible inputs 
•  If the value is in the table, return it (without 

recomputing it) 
•  Otherwise, call function recursively 

 Add value to table for future reference 

How does this template map to our Fibonnaci problem? 

memoized_fibonacci(n):	
	for j = 1 to n:	
	 	results[i] = -1     # -1 means undefined	

	return memoized_fib_recurs(results, n)	

memoized_fib_recurs(results, n):	
	if results[n] != -1:   # value is defined	
	 	return results[n]	
	if n == 1:	
	 	val = 1	
	elif n == 2:	
	 	val = 1	
	else:	
	 	val = memoized_fib_recurs(results, n-2)	
	 	val = val + memoized_fib_recurs(results, n-1)	
	results[n] = val	
	return val	

Runtime? 

memoized_fibonacci(n):	
	for j = 1 to n:	
	 	results[i] = -1 # -1 means undefined	
	results[1] = 1	
	results[2] = 1	

	return memoized_fib_recurs(results, n)	

memoized_fib_recurs(results, n):	
	if results[n] != -1: # value is defined	
	 	return results[n]	

	val = memoized_fib_recurs(results, n-2)	
	val = val + memoized_fib_recurs(results, n-1)	
	results[n] = val	
	return val	

Alternative version… 

•  Job j starts at sj, finishes at fj, and has weight or value vj   
•  Two jobs are compatible if they don't overlap 
•  Goal:  find maximum weight subset of mutually 

compatible jobs 

Time 
0 1 2 3 4 5 6 7 8 9 10 11 

f 

g 

h 

e 

a 

b 

c 

d 

•  Recall.  Greedy algorithm works if all weights 
are 1 (or equivalent). 
 Consider jobs in ascending order of finish time 
 Add job to subset if it is compatible with 

previously chosen jobs 

What happens to Greedy algorithm 
if we add weights to the problem? 
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•  Recall.  Greedy algorithm works if all weights 
are 1. 
 Consider jobs in ascending order of finish time 
 Add job to subset if it is compatible with 

previously chosen jobs 
•  Observation.  Greedy algorithm can fail 

spectacularly if arbitrary weights are allowed 

Time 
0 1 2 3 4 5 6 7 8 9 10 11 

a 

weight = 999 

weight = 1 

b 

Notation. Label jobs by finishing time: f1  ≤  f2  ≤ . . . ≤ fn  
Def.  p(j) = largest index i < j such that job i is compatible 

with j 
Ex:  p(8) = 5, p(7) = 3, p(2) = 0 
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•  Assume we have an optimal solution 
•  Notation. OPT(j) = value of optimal solution 

to the problem consisting of job requests 1, 
2, ..., j 
 What is something obvious we can we say about 

the optimal solution with respect to job j? 

•  Notation. OPT(j) = value of optimal solution 
to the problem consisting of job requests 1, 
2, ..., j 
 Case 1:  OPT selects job j 

 Case 2:  OPT does not select job j 

Explore both of these cases… 
• What jobs are in OPT?  Which are not? 

Keep in mind our definition of p  

Notation. Label jobs by finishing time: f1  ≤  f2  ≤ . . . ≤ fn  
Def.  p(j) = largest index i < j such that job i is compatible 

with j 
Ex:  p(8) = 5, p(7) = 3, p(2) = 0 

Time 
0 1 2 3 4 5 6 7 8 9 10 11 
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•  Notation. OPT(j) = value of optimal solution to 
the problem consisting of job requests 1, 2, ..., j 
 Case 1:  OPT selects job j 

•  can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 } 
•  must include optimal solution to problem consisting of 

remaining compatible jobs 1, 2, ...,  p(j) 
 Case 2:  OPT does not select job j 

•  must include optimal solution to problem consisting of 
remaining compatible jobs 1, 2, ...,  j-1 

optimal substructure 

Formulate OPT(j) as a recurrence relation 
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•  Notation. OPT(j) = value of optimal solution to 
the problem consisting of job requests 1, 2, ..., j 
 Case 1:  OPT selects job j 

•  can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 } 
•  must include optimal solution to problem consisting of 

remaining compatible jobs 1, 2, ...,  p(j) 
 Case 2:  OPT does not select job j 

•  must include optimal solution to problem consisting of 
remaining compatible jobs 1, 2, ...,  j-1 

Formulate OPT(j) in terms 
of smaller subproblems 

Which should we choose? 

Two options:  Opt(j) = vj + OPT(p(j)) 
    Opt(j) = Opt(j-1)  

optimal substructure 

•  Notation. OPT = value of optimal solution to the 
problem consisting of job requests 1, 2, ..., j 
 Case 1:  OPT selects job j 

•  can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 } 
•  must include optimal solution to problem consisting of 

remaining compatible jobs 1, 2, ...,  p(j) 
 Case 2:  OPT does not select job j 

•  must include optimal solution to problem consisting of 
remaining compatible jobs 1, 2, ...,  j-1 
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OPT( j) =
0 if  j = 0

max v j + OPT( p( j)), OPT( j −1){ } otherwise
⎧ 
⎨ 
⎩ 

Choose the better of 
the two solutions 

•  Finish reading Chapter 5,  start Chapter 6 
 5.2-5.5 
 6 – front matter, 6.1 

•  PS6 due Friday 


