Objectives

Minimum Spanning Tree
Union-Find data structure
Clustering
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Review: Laying Cable

Comcast knows how to make money and how to save
money
They want to lay cable in a neighborhood

» Reach all houses

Least cost ;
g Neighborhood Layout Cost of laying cable btw
houses depends on amount

of cable, landscaping,
obstacles, etc.
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Review: Minimum Spanning Tree

Given a connected graph G = (V, E) with
positive edge weights c,, an MST is a subset of
the edges T C E such that T is a spanning tree
whose sum of edge weights is minimized

» Spanning tree: spans all nodes in graph
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Review: Greedy Algorithms

Simplifying assumption: All edge costs c, are distinct
-» MST is unique

Cut property. Let S be any subset of nodes, and let e
be the min cost edge with exactly one endpoint in S.
Then MST contains e.

Cycle property. Let C be any cycle, and let f be the
max cost edge belonging to C. Then MST does not
contain f.
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Cut Property: e is in MST Cycle Property: f is not in MST
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Kruskal’s Algorithm [1956]

Start with T = ¢
Consider edges in ascending order of cost

Insert edge e in T unless doing so would
create a cycle
» Add edge as long as “compatible”

‘ How can we prove algorithm's correctness?
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Kruskal's Algorithm:

Proof of Correctness
Consider edges in ascending order of weight
Case 1: If adding e to T creates a cycle, discard e
according to cycle property (e must be max weight)

Case 2: Otherwise, insert e = (u, v) into T according to
cut property where S = set of nodes in u's connected
component

R

Case 1 Case 2
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Implementing Kruskal’s Algorithm

What is tricky about implementing
Kruskal's algorithm?

How do we know when adding an edge will
create a cycle?
» What are the properties of a graph/
its nodes when adding an edge will
create a cycle?
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UNION-FIND DATA
STRUCTURE
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Union-Find Data Structure

Keeps track of a graph as edges are added
» Cannot handle when edges are deleted
Maintains disjoint sets
» E.g., graph’s connected components
Operations:
» Find(u): returns name of set containing u
How utilized to see if two nodes are in the same set?
Goal implementation: O(log n)
»UnionCA, B): merge sets A and B into one set
Goal implementation: O(log n)

Best darn U-F Data Structure
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Implementing Kruskal's Algorithm

Using the union-find data structure
» Build set T of edges in the MST
» Maintain set for each connected component

Costs?

Sort edges weights so that ¢; < ¢, < ... s ¢,
T

foreach (u € V) make a set containing singleton u
fori=1tom are uand v in different connected components?
V) = e o
if (u and v are in different sets)
T=TuU {e}
merge the sets containing u and v
return T
merge two components
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Implementing Kruskal's Algorithm

Using best implementation of union-find
» Sorting: O(m log n) «—— m <2 = log m is O(log n)
» Union-find: O(m o (m, n))

» O(m log n)

essentially a constant

Sort edges weights so that ¢; <= ¢, = ... = ¢,
T

foreach (u € V) make a set containing singleton u

fori=1tom
w,v) = e
if (u and v are in different sets)
T=TuU {e}
merge the sets containing u and v
return T

are uand v in different connected components?

merge two components
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Limitations to Applying MST?

Motivating Example: Comcast laying cable

Neighborhood Layout
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Intersections \X
.

with polluted wells oo

<N

Outbreak of cholera deaths in London in 1850s.
Reference: Nina Mishra, HP Labs

CLUSTERING
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Clustering

Given a set U of n objects (or points) labeled

P+, ..., Pn Classify into coherent groups

» Example objects: photos, documents, micro-
organisms

Distance function. Numeric value specifying

"closeness" of two objects
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Clustering Problem

Divide objects into clusters so that points in
different clusters are far apart
Applications

» Routing in mobile ad hoc networks

» ldentify patterns in gene expression

» ldentifying patterns in web application use cases

Sets of URLs
» Similarity searching in medical image databases

» Skycat: cluster 109 sky objects into stars,
quasars, galaxies
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Clustering

k-clustering. Divide objects into k non-empty
groups

Distance function. Assume it satisfies
several natural properties

»d(p;, py) = 0iff p; = p; (identity of indiscernibles)

»d(p;, p) =0 (nonnegativity)
»d(p;, py) = d(p;, py) (symmetry)
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Clustering of Maximum Spacing

k-clustering. Divide objects into k non-empty
groups

Spacing. Min distance between any pair of
points in different clusters

Clustering of maximum spacing. Given an
integer k, find a k-clustering of maximum
spacing 00

k=4 o
®e° o000
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Ideas about Solving?

Greedy algorithm?
How relates to the minimum spanning tree?
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Greedy Clustering Algorithm

Single-link k-clustering algorithm
» Form a graph on the vertex set U, corresponding
to n clusters

» Find the closest pair of objects such that each
object is in a different cluster, and add an edge
between them

» Repeat n-k times until there are exactly k
clusters

How is this related to the MST?
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Greedy Clustering Algorithm

Key observation. Same as Kruskal's
algorithm

» Except we stop when there are k connected
components

Remark. Equivalent to finding an MST and
deleting the k-7 most expensive edges
+—® 1—@
< ;e
Toed P a
J o J °
MST

20 Feb 17,2010 CSCI211 - Sprenkle

Greedy Clustering Algorithm: Analysis

Theorem. Let C denote the clustering C,, ..., C,
formed by deleting the k-7 most expensive edges of a
MST. Cis a k-clustering of max spacing.

Pf Intuition:

» What can we say about C’s spacing?
Within clusters and between clusters
» What if C isn’t optimal?
What does that mean about C’s clusters vs (optimal) C*'s

clusters?
< i °
s\’\ 9 6
5 0 5
j To— , ;e .\7
21 MmsT Feb 17,2010

CSCI211 - Sprenkle

Greedy Clustering Algorithm: Analysis

Theorem. Let C denote the clustering C,, ..., C, formed by
deleting the k-1 most expensive edges of a MST. C is a k-
clustering of maximum spacing.

Pf Sketch. Let C* denote some other clustering C*,, ..., C*,.
C* and C must be different; otherwise we’re done.
» The spacing of C is length d of (k-1)st most expensive edge
~ Let p, p; be in the same cluster in C (say C,) but different
clusters in C*, say C*;and C*

~ Some edge (p, q) on pqp;path in C, spans two differentx
clusters in C* s e

‘ What do we know about (p, ¢ ‘

Greedy Clustering Algorithm: Analysis

Theorem. Let C denote the clustering C,, ..., C, formed by
deleting the k-1 most expensive edges of a MST. Cis a k-
clustering of maximum spacing.

Pf. Let C* denote some other clustering C*;, ..., C*,.
C* and C must be different; otherwise we're done.

» The spacing of C is length d of (k-1)*t most expensive edge

~ Let p;, p; be in the same cluster in C (say C,) but different
clusters in C*, say C*; and C*

~ Some edge (p, q) on pqp;path in C, spans two different
clusters in C* [

~ All edges on p-p;path have length <d ¢,

+

since Kruskal chose them o A e o
» Spacing of C* is at most =< d since < % o
p and q are in different clusters e P P TP
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Assignments
PS 4 due Friday
Continue reading chapter 4
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Problem: Clustering of Maximum Spacing

k-clustering. Divide objects into k non-empty

groups

Spacing. Min distance between any pair of

points in different clusters

Clustering of maximum spacing. Given an

integer k, find a k-clustering of maximum

spacing
k=4

o
o 0000
0000
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Our Proposed Solution

Start with each node in its own cluster
Sort edges by their distance, ascending

For each edge, combine its nodes’ clusters
into one cluster until we have k clusters
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