
3/3/10

1

•  Divide and conquer
 Solving recurrence relations
 Counting inversions

•  Divide-and-conquer process
 Break up problem into several parts
 Solve each part recursively
 Combine solutions to sub-problems into overall

solution
•  Most common usage

 Break up problem of size n into two equal parts
of size ½n

 Solve two parts recursively
 Combine two solutions into overall solution

Divide et impera.
Veni, vidi, vici.
 - Julius Caesar

•  Use recurrences to analyze/determine the
run time of divide and conquer algorithms
 Number of sub problems
 Size of sub problems
 Number of times divided (number of levels)
 Cost of merging problems

•  How to solve
 Unrolling
 Substitution

•  Instead of recursively solving 2 problems,
solve q problems
 Size of problems is still n/2

•  Combining solutions is still O(n)
•  Recurrence relation:

 For some constant c,
T(n) ≤ q T(n/2) + cn when n > 2
T(2) ≤ c

Intuition about running time?

•  First level:
q T(n/2) + cn

cn

T(n/2) T(n/2) … q

3/3/10

2

•  Next level:
q T(n/4) + c(n/2)

cn

c n/2 c n/2 … q

T(n/4) T(n/4) T(n/4) T(n/4) … q … q …

cn

c n/2 c n/2 … q

T(n/4) T(n/4) T(n/4) T(n/4) … q … q
qk problems at level k
Size: n/2k

Each level takes qk * c * (n/2k) = (q/2)kcn
 Total work per level is increasing as level increases

Number of levels: log2n

How much does each level
cost, in terms of the level?

Number of levels?
What is the total run time?

0

1

cn

c n/2 c n/2 … q

T(n/4) T(n/4) T(n/4) T(n/4) … q … q

How much does each level
cost, in terms of the level?

Number of levels?
What is the total run time?

0

1

T(n) ≤ Σj=0,logn (q/2)j cn

Geometric series: O(n log2 q) for q > 2

•  Use recurrences to analyze the run time of
divide and conquer algorithms
 Number of sub problems
 Size of sub problems
 Number of times divided (number of levels)
 Cost of merging problems

Recurrence Algorithm Running Time
T(n) = T(n/2) + O(1)
T(n) = T(n-1) + O(1)
T(n) = 2 T(n/2) + O(1)
T(n) = T(n-1) + O(n)
T(n) = 2 T(n/2) + O(n) Merge Sort O(n log n)

What algorithm has this recurrence relation?
What is that algorithm’s running time?

Recurrence Algorithm Running Time
T(n) = T(n/2) + O(1) Binary Search O(log n)

T(n) = T(n-1) + O(1) Sequential/
Linear Search O(n)

T(n) = 2 T(n/2) + O(1) Binary Tree
Traversal O(n)

T(n) = T(n-1) + O(n) Selection Sort O(n2)
T(n) = 2 T(n/2) + O(n) Merge Sort O(n log n)

What algorithm has this recurrence relation?
What is that algorithm’s running time?

3/3/10

3

•  Movie site tries to match your movie
preferences with others
 You rank n movies
 Movie site consults database to find people with

similar tastes
•  Collaborative filtering

•  Meta-search tools
 Do same query on several search engines
 Synthesize results by looking for similarities and

differences in search engines’ results rankings

•  To determine similarity of rankings, need a
metric

•  Similarity metric: number of inversions
between two rankings
 My rank: 1, 2, …, n
 Your rank: a1, a2, …, an
 Movies i and j inverted if i < j, but ai > aj

You

Me

1 4 3 2 5

1 3 2 4 5

A B C D E

Movies

What are the
inversions?

Discuss this metric

•  To determine similarity of rankings, need a
metric

•  Similarity metric: number of inversions between
two rankings
 My rank: 1, 2, …, n
 Your rank: a1, a2, …, an
 Movies i and j inverted if i < j, but ai > aj

You

Me

1 4 3 2 5

1 3 2 4 5

A B C D E

Movies
Inversions:
3-2, 4-2

Naïve/Brute force
solution?

•  Look at every pair (i,j) and determine if they
are an inversion

•  Requires Θ(n2) time
 Note: Already an efficient algorithm but trying to

improve upon runtime

•  Voting theory
•  Collaborative filtering
•  Measuring the "sortedness" of an array
•  Sensitivity analysis of Google's ranking

function
•  Rank aggregation for meta-searching on the

Web
•  Nonparametric statistics (e.g., Kendall's Tau

distance)

3/3/10

4

•  Look at every pair (i,j) and determine if they
are an inversion

•  Requires Θ(n2) time
 Note: Already an efficient algorithm but trying to

improve upon runtime

Forming a Better Solution…
• Can’t look at each inversion individually

4 8 10 2 1 5 12 11 3 7 6 9

Assume number represents where item should be in the list

•  Divide: separate list into two pieces

4 8 10 2 1 5 12 11 3 7 6 9

4 8 10 2 1 5 12 11 3 7 6 9

Divide: O(1)

What are the inversions in blue and green halves?

•  Divide: separate list into two pieces
•  Conquer: recursively count inversions in

each half

4 8 10 2 1 5 12 11 3 7 6 9

4 8 10 2 1 5 12 11 3 7 6 9

5 blue-blue inversions 8 green-green inversions

Divide: O(1)

Conquer: 2T(n / 2)

5-4, 5-2, 4-2, 8-2, 10-2 6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7

•  Divide: separate list into two pieces.
•  Conquer: recursively count inversions in each half.
•  Combine: count inversions where ai and aj are in

different halves, and return sum of three quantities

4 8 10 2 1 5 12 11 3 7 6 9

4 8 10 2 1 5 12 11 3 7 6 9

5 blue-blue inversions 8 green-green inversions

Divide: O(1)

Conquer: 2T(n / 2)

Combine: ???
9 blue-green inversions
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22
What would make figuring out
blue-green inversions easier?

seems like Θ(n2)

Combine: count blue-green inversions
 Assume each half is sorted
 Count inversions where ai and aj are in different halves
 Merge two sorted halves into sorted whole

10 14 18 19 3 7 16 17 23 25 2 11

to maintain sorted invariant

What does sorting do for us?
What is our algorithm for counting the
inversions and merging?

3/3/10

5

Combine: count blue-green inversions
 Assume each half is sorted
 Count inversions where ai and aj are in different halves
 Merge two sorted halves into sorted whole

13 blue-green inversions: 6 + 3 + 2 + 2 + 0 + 0

Count: O(n)

Merge: O(n)

10 14 18 19 3 7 16 17 23 25 2 11

7 10 11 14 2 3 18 19 23 25 16 17

to maintain sorted invariant

We’ll run through this example in a bit…

Merge-and-Count(A,B):	
	i=0 (front of list A)	
	j=0 (front of list B)	
	inversions = 0 	
	output = []	

 	while A not empty and B not empty:	
	 	output.append(min(A[i], B[j]))	
	 	if B[j] < A[i]:	

 	 	 inversions += A.size – i (remaining elements in A)	
 	update i or j (whichever had smaller element)	

•  Given two sorted halves, count number of
inversions where ai and aj are in different
halves

•  Combine two sorted halves into sorted whole

10 14 18 19 3 7 16 17 23 25 2 11 two sorted
halves

Output array

Total:

A B

•  Given two sorted halves, count number of
inversions where ai and aj are in different
halves

•  Combine two sorted halves into sorted whole

10 14 18 19 3 7 16 17 23 25 2 11
two sorted

halves

2 Output array

Total: 6

6

•  Given two sorted halves, count number of
inversions where ai and aj are in different
halves

•  Combine two sorted halves into sorted whole

10 14 18 19 3 7 16 17 23 25 2 11
two sorted

halves

2 Output array

Total: 6

6

•  Given two sorted halves, count number of
inversions where ai and aj are in different
halves

•  Combine two sorted halves into sorted whole

10 14 18 19 3 7 16 17 23 25 2 11
two sorted

halves

2 3 Output array

Total: 6

6

3/3/10

6

•  Given two sorted halves, count number of
inversions where ai and aj are in different
halves

•  Combine two sorted halves into sorted whole

10 14 18 19 3 7 16 17 23 25 2 11
two sorted

halves

2 3 Output array

Total: 6

6

•  Given two sorted halves, count number of
inversions where ai and aj are in different
halves

•  Combine two sorted halves into sorted whole

10 14 18 19 3 7 16 17 23 25 2 11

7 2 3

Total: 6

two sorted
halves

Output array

6

•  Given two sorted halves, count number of
inversions where ai and aj are in different
halves

•  Combine two sorted halves into sorted whole

10 14 18 19 3 7 16 17 23 25 2 11

7 2 3

Total: 6

two sorted
halves

Output array

6

•  Given two sorted halves, count number of
inversions where ai and aj are in different
halves

•  Combine two sorted halves into sorted whole

10 14 18 19 3 7 16 17 23 25 2 11

7 10 2 3

Total: 6

two sorted
halves

Output array

6

•  Given two sorted halves, count number of
inversions where ai and aj are in different
halves

•  Combine two sorted halves into sorted whole

10 14 18 19 3 7 16 17 23 25 2 11

7 10 2 3

Total: 6

two sorted
halves

Output array

6

•  Given two sorted halves, count number of
inversions where ai and aj are in different
halves

•  Combine two sorted halves into sorted whole

10 14 18 19 3 7 16 17 23 25 2 11

7 10 11 2 3

Total: 6 + 3

3

two sorted
halves

Output array

6

3/3/10

7

•  Given two sorted halves, count number of
inversions where ai and aj are in different
halves

•  Combine two sorted halves into sorted whole

10 14 18 19 3 7 16 17 23 25 2 11

7 10 11 2 3

Total: 6 + 3

3

two sorted
halves

Output array

6

•  Given two sorted halves, count number of
inversions where ai and aj are in different
halves

•  Combine two sorted halves into sorted whole

10 14 18 19 3 7 16 17 23 25 2 11

7 10 11 14 2 3

Total: 6 + 3

3

two sorted
halves

Output array

6

•  Given two sorted halves, count number of
inversions where ai and aj are in different
halves

•  Combine two sorted halves into sorted whole

10 14 18 19 3 7 16 17 23 25 2 11

7 10 11 14 2 3

Total: 6 + 3

3

two sorted
halves

Output array

6

•  Given two sorted halves, count number of
inversions where ai and aj are in different
halves

•  Combine two sorted halves into sorted whole

10 14 18 19 3 7 16 17 23 25 2 11

7 10 11 14 2 3 16

Total: 6 + 3 + 2

23

two sorted
halves

Output array

6

•  Given two sorted halves, count number of
inversions where ai and aj are in different
halves

•  Combine two sorted halves into sorted whole

10 14 18 19 3 7 16 17 23 25 2 11

7 10 11 14 2 3 16

Total: 6 + 3 + 2

23

two sorted
halves

Output array

6

•  Given two sorted halves, count number of
inversions where ai and aj are in different
halves

•  Combine two sorted halves into sorted whole

10 14 18 19 3 7 16 17 23 25 2 11

7 10 11 14 2 3 16 17

Total: 6 + 3 + 2 + 2

223

two sorted
halves

Output array

6

3/3/10

8

•  Given two sorted halves, count number of
inversions where ai and aj are in different
halves

•  Combine two sorted halves into sorted whole

10 14 18 19 3 7 16 17 23 25 2 11

7 10 11 14 2 3 16 17

Total: 6 + 3 + 2 + 2

223

two sorted
halves

Output array

6

•  Given two sorted halves, count number of
inversions where ai and aj are in different
halves

•  Combine two sorted halves into sorted whole

10 14 18 19 3 7 16 17 23 25 2 11

7 10 11 14 2 3 18 16 17

Total: 6 + 3 + 2 + 2

223

two sorted
halves

Output array

6

•  Given two sorted halves, count number of
inversions where ai and aj are in different
halves

•  Combine two sorted halves into sorted whole

10 14 18 19 3 7 16 17 23 25 2 11

7 10 11 14 2 3 18 16 17

Total: 6 + 3 + 2 + 2

223

two sorted
halves

Output array

6

•  Given two sorted halves, count number of
inversions where ai and aj are in different
halves

•  Combine two sorted halves into sorted whole

10 14 18 19 3 7 16 17 23 25 2 11

7 10 11 14 2 3 18 19 16 17

Total: 6 + 3 + 2 + 2

223

two sorted
halves

Output array

6

•  Given two sorted halves, count number of
inversions where ai and aj are in different
halves

•  Combine two sorted halves into sorted whole

10 14 18 19 3 7 16 17 23 25 2 11

7 10 11 14 2 3 18 19 16 17

Total: 6 + 3 + 2 + 2

first half exhausted

223

two sorted
halves

Output array

6

•  Given two sorted halves, count number of
inversions where ai and aj are in different
halves

•  Combine two sorted halves into sorted whole

10 14 18 19 3 7 16 17 23 25 2 11

7 10 11 14 2 3 18 19 23 16 17

Total: 6 + 3 + 2 + 2 + 0

0223

two sorted
halves

Output array

6

3/3/10

9

•  Given two sorted halves, count number of
inversions where ai and aj are in different
halves

•  Combine two sorted halves into sorted whole

10 14 18 19 3 7 16 17 23 25 2 11

7 10 11 14 2 3 18 19 23 16 17

Total: 6 + 3 + 2 + 2 + 0

0223

two sorted
halves

Output array

6

•  Given two sorted halves, count number of
inversions where ai and aj are in different
halves

•  Combine two sorted halves into sorted whole

10 14 18 19 3 7 16 17 23 25 2 11

7 10 11 14 2 3 18 19 23 25 16 17

i = 0

Total: 6 + 3 + 2 + 2 + 0 + 0

0 0223

two sorted
halves

Output array

6

•  Given two sorted halves, count number of
inversions where ai and aj are in different
halves

•  Combine two sorted halves into sorted whole

10 14 18 19 3 7 16 17 23 25 2 11

7 10 11 14 2 3 18 19 23 25 16 17

Total: 6 + 3 + 2 + 2 + 0 + 0 = 13

0 0223

two sorted
halves

Output array

6

•  Merge-and-Count Pre-condition. A and B are
sorted.

•  Sort-and-Count Post-condition. L is sorted.

Sort-and-Count(L)	
 if list L has one element	
 return 0 and the list L	

 Divide the list into two halves A and B	
 (rA, A) = Sort-and-Count(A)	
 (rB, B) = Sort-and-Count(B)	
 (r, L) = Merge-and-Count(A, B)	

 return r = rA + rB + r and the sorted list L	

Recurrence relation?

Recurrence Relation:
 T(n) ≤ T(n/2) + T(n/2) + O(n)
 T(n) ∈ O(n log n)

Sort-and-Count(L)	
 if list L has one element	
 return 0 and the list L	

 Divide the list into two halves A and B	
 (rA, A) = Sort-and-Count(A)	
 (rB, B) = Sort-and-Count(B)	
 (rB, L) = Merge-and-Count(A, B)	

 return r = rA + rB + r and the sorted list L	

•  Continue reading Chapter 5
•  PS5 due Friday

