
2/17/10

1

•  Minimum Spanning Tree
•  Union-Find data structure
•  Clustering

•  Comcast knows how to make money and how to save
money

•  They want to lay cable in a neighborhood
  Reach all houses
  Least cost

Neighborhood Layout Cost of laying cable btw
houses depends on amount

of cable, landscaping,
obstacles, etc.

8

12

2

1

15

3

7

4

13
8 15

9

•  Given a connected graph G = (V, E) with
positive edge weights ce, an MST is a subset of
the edges T ⊆ E such that T is a spanning tree
whose sum of edge weights is minimized
 Spanning tree: spans all nodes in graph

 5

23

10
21

 14

24

 16

 6

 4

18
9

7

11
 8

 5

 6

 4

9

7

11
 8

G = (V, E) T, Σe∈T ce = 50

•  Simplifying assumption: All edge costs ce are distinct
➜  MST is unique

•  Cut property. Let S be any subset of nodes, and let e
be the min cost edge with exactly one endpoint in S.
Then MST contains e.

•  Cycle property. Let C be any cycle, and let f be the
max cost edge belonging to C. Then MST does not
contain f.

f
C

S

Cut Property: e is in MST

e

Cycle Property: f is not in MST

•  Start with T = φ
•  Consider edges in ascending order of cost
•  Insert edge e in T unless doing so would

create a cycle
 Add edge as long as “compatible”

How can we prove algorithm’s correctness?

•  Consider edges in ascending order of weight
•  Case 1: If adding e to T creates a cycle, discard e

according to cycle property (e must be max weight)
•  Case 2: Otherwise, insert e = (u, v) into T according to

cut property where S = set of nodes in u's connected
component

Case 1

v

u

Case 2

e

e S

2/17/10

2

What is tricky about implementing
Kruskal’s algorithm?

How do we know when adding an edge will
create a cycle?

•  What are the properties of a graph/
its nodes when adding an edge will
create a cycle?

•  Keeps track of a graph as edges are added
 Cannot handle when edges are deleted

•  Maintains disjoint sets
 E.g., graph’s connected components

•  Operations:
 Find(u): returns name of set containing u

•  How utilized to see if two nodes are in the same set?
•  Goal implementation: O(log n)

 Union(A, B): merge sets A and B into one set
•  Goal implementation: O(log n)

Best darn U-F Data Structure

•  Using the union-find data structure
 Build set T of edges in the MST
 Maintain set for each connected component

Sort edges weights so that c1 ≤ c2 ≤ ... ≤ cm	
T = {}	
foreach (u ∈ V) make a set containing singleton u	

for i = 1 to m	
 (u,v) = ei	
 if (u and v are in different sets)	
 T = T ∪ {ei}	
 merge the sets containing u and v	
return T	

are u and v in different connected components?

merge two components

Costs?

•  Using best implementation of union-find
 Sorting: O(m log n)
 Union-find: O(m α (m, n))
 O(m log n)

Sort edges weights so that c1 ≤ c2 ≤ ... ≤ cm	
T = {}	
foreach (u ∈ V) make a set containing singleton u	

for i = 1 to m	
 (u,v) = ei	
 if (u and v are in different sets)	
 T = T ∪ {ei}	
 merge the sets containing u and v	
return T	

m ≤ n2 ⇒ log m is O(log n)

essentially a constant

are u and v in different connected components?

merge two components

•  Motivating Example: Comcast laying cable

Neighborhood Layout

8

12

2

1

15

3

7

4

13
8 15

9

2/17/10

3

Outbreak of cholera deaths in London in 1850s.
Reference: Nina Mishra, HP Labs

Intersections
with polluted wells

•  Given a set U of n objects (or points) labeled
p1, …, pn, classify into coherent groups
 Example objects: photos, documents, micro-

organisms
•  Distance function. Numeric value specifying

"closeness" of two objects

•  Divide objects into clusters so that points in
different clusters are far apart

•  Applications
 Routing in mobile ad hoc networks
 Identify patterns in gene expression
 Identifying patterns in web application use cases

•  Sets of URLs
 Similarity searching in medical image databases
 Skycat: cluster 109 sky objects into stars,

quasars, galaxies

•  k-clustering. Divide objects into k non-empty
groups

•  Distance function. Assume it satisfies
several natural properties
 d(pi, pj) = 0 iff pi = pj (identity of indiscernibles)
 d(pi, pj) ≥ 0 (nonnegativity)
 d(pi, pj) = d(pj, pi) (symmetry)

•  k-clustering. Divide objects into k non-empty
groups

•  Spacing. Min distance between any pair of
points in different clusters

•  Clustering of maximum spacing. Given an
integer k, find a k-clustering of maximum
spacing

spacing
k = 4

•  Greedy algorithm?
•  How relates to the minimum spanning tree?

2/17/10

4

•  Single-link k-clustering algorithm
 Form a graph on the vertex set U, corresponding

to n clusters
 Find the closest pair of objects such that each

object is in a different cluster, and add an edge
between them

 Repeat n-k times until there are exactly k
clusters

How is this related to the MST?

•  Key observation. Same as Kruskal's
algorithm
 Except we stop when there are k connected

components
•  Remark. Equivalent to finding an MST and

deleting the k-1 most expensive edges

 5

 6

 4

9

7

11
 8

 5

 6

 4

7
 8

k=3

MST

•  Theorem. Let C denote the clustering C1, …, Ck
formed by deleting the k-1 most expensive edges of a
MST. C is a k-clustering of max spacing.

•  Pf Intuition:
 What can we say about C’s spacing?

•  Within clusters and between clusters
 What if C isn’t optimal?

•  What does that mean about C’s clusters vs (optimal) C*’s
clusters?

 5

 6

 4

9

7

11
 8

 5

 6

 4

7
 8

K=3

MST

•  Theorem. Let C denote the clustering C1, …, Ck formed by
deleting the k-1 most expensive edges of a MST. C is a k-
clustering of maximum spacing.

•  Pf Sketch. Let C* denote some other clustering C*1, …, C*k.
C* and C must be different; otherwise we’re done.
  The spacing of C is length d of (k-1)st most expensive edge
  Let pi, pj be in the same cluster in C (say Cr) but different

clusters in C*, say C*s and C*t
  Some edge (p, q) on pi-pj path in Cr spans two different

clusters in C*

p q pi pj

C*s C*t

Cr
What do we know about (p, q)?

•  Theorem. Let C denote the clustering C1, …, Ck formed by
deleting the k-1 most expensive edges of a MST. C is a k-
clustering of maximum spacing.

•  Pf. Let C* denote some other clustering C*1, …, C*k.
C* and C must be different; otherwise we’re done.
  The spacing of C is length d of (k-1)st most expensive edge
  Let pi, pj be in the same cluster in C (say Cr) but different

clusters in C*, say C*s and C*t
  Some edge (p, q) on pi-pj path in Cr spans two different

clusters in C*
  All edges on pi-pj path have length ≤ d

since Kruskal chose them
  Spacing of C* is at most ≤ d since
 p and q are in different clusters p q pi pj

C*s C*t

Cr

•  PS 4 due Friday
•  Continue reading chapter 4

2/17/10

5

•  k-clustering. Divide objects into k non-empty
groups

•  Spacing. Min distance between any pair of
points in different clusters

•  Clustering of maximum spacing. Given an
integer k, find a k-clustering of maximum
spacing

spacing k = 4

•  Start with each node in its own cluster
•  Sort edges by their distance, ascending
•  For each edge, combine its nodes’ clusters

into one cluster until we have k clusters

