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•  Greedy Algorithms 
 Interval partitioning 
 Minimizing Lateness 

•  Greedy stays ahead 
•  Exchange argument 

•  Consider jobs (or whatever) in some order 
 Decision: What order is best? 

•  Take each job provided it's compatible with 
the ones already taken 

•  At each step, take as much as you can get 
 Feasible – satisfy problem’s constraints 
 Locally optimal – best local choice among 

available feasible choices 
 Irrevocable – after decided, no going back 
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a, b, c all contain 9:30 

•  Def.  The depth of a set of open intervals is the 
maximum number that contain any given time. 

•  Key observation.  # of classrooms needed  ≥  
depth. 

•  Ex:  Depth of schedule below = 3  ⇒  schedule 
below is optimal. 

Does there always exist a schedule 
equal to depth of intervals? 

•  Does there always exist a schedule equal to 
depth of intervals? 

•  Can we make decisions locally to get a 
global optimum? 
 Or are there long-range obstacles that require 

more resources?  

•  Consider lectures in increasing order of start 
time: assign lecture to any compatible 
classroom 

Sort intervals by starting time so that s1 ≤ s2 ≤ ... ≤ sn	
d = 0	
for j = 1 to n 	
   if (lecture j is compatible with some classroom k)	
      schedule lecture j in classroom k	
   else	
      allocate a new classroom d + 1	
      schedule lecture j in classroom d + 1	
      d = d + 1 	

number of allocated classrooms 

Analyze algorithm 



2/8/10 

2 

Sort intervals by starting time so that s1 ≤ s2 ≤ ... ≤ sn	
d = 0	
for j = 1 to n 	
   if (lecture j is compatible with some classroom k)	
      schedule lecture j in classroom k	
   else	
      allocate a new classroom d + 1	
      schedule lecture j in classroom d + 1	
      d = d + 1 	

•  Consider lectures in increasing order of start time: 
assign lecture to any compatible classroom 

•  Implementation: O(n log n) 
 For each classroom k, maintain the finish time of the last 

job added. 
 Keep the classrooms in a priority queue. 

number of allocated classrooms 

•  Observation.  Greedy algorithm never schedules two 
incompatible lectures in the same classroom 

•  Theorem.  Greedy algorithm is optimal 
•  Pf Intuition 

 When do we add more classrooms? 
 When would we add the d+1 classroom? 

•  Observation.  Greedy algorithm never schedules two 
incompatible lectures in the same classroom 

•  Theorem.  Greedy algorithm is optimal 
•  Pf.   

  Let d = number of classrooms that greedy algorithm allocates 
  Classroom d is opened because we needed to schedule a job, 

say j, that is incompatible with all d-1 other classrooms 
  Since we sorted by start time, all these incompatibilities are 

caused by lectures that start no later than sj 
  Thus, we have d lectures overlapping at time sj + ε 
  d is the depth of the set of lectures 
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•  Specifically, produce an optimal solution 

•  Two approaches: 
 Greedy algorithm stays ahead 

•  Does better than any other algorithm at each step 
 Exchange argument 

•  Transform any solution into a greedy solution 

1.  Define your solutions 
  Describe the form your greedy solution takes and what form some other 

solution takes (possibly the optimal solution) 
  Example: Let A be the solution constructed by the greedy algorithm and O 

be an optimal solution. 
2.  Find a measure 

  Find a measure by which greedy stays ahead of the optimal solution 
  Ex: Let a1, . . . , ak be the first k measures of greedy algorithm and 

o1 , . . . , om be the first m measures of other solution (sometimes m = k ) 
3.  Prove greedy stays ahead 

  Show that greedy’s partial solutions constructed are always just as good 
as the initial segments of the optimal solution, based on the measure  

  Ex: for all indices r ≤ min(k,m), prove by induction that ar ≥ or or ar ≤ or 
  Use the greedy algorithm to help you argue the inductive step 

4.  Prove optimality 
  Prove that since greedy stays ahead of the other solution with respect to 

the measure, then the greedy solution is optimal. 

Exchange argument 
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•  Single resource processes one job at a time 
•  Job j requires tj units of processing time and is due at 

time dj (its deadline) 
•  If j starts at time sj, it finishes at time fj = sj + tj 
•  Lateness:  j = max { 0,  fj - dj } 
•  Goal:  schedule all jobs to minimize maximum 

lateness L = max j 
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max lateness = 6 

Note: not a sum total 

•  Greedy template.  Consider jobs in some 
order. 

• What do we want to optimize? 
• What order? 

 Intuition of order? 
 Counter examples for order being optimal?  

•  Greedy template.  Consider jobs in some 
order.  
 Shortest processing time first. Consider jobs in 

ascending order of processing time tj. 

 Smallest slack.  Consider jobs in ascending 
order of slack dj - tj. 

Counter example 
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•  Earliest deadline first. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

d5 = 14 d2 = 8 d6 = 15 d1 = 6 d4 = 9 d3 = 9 

Sort n jobs by deadline so that d1 ≤ d2 ≤ … ≤ dn	
t = 0	
for j = 1 to n	
   Assign job j to interval [t, t + tj]	
   sj = t	
   fj = t + tj	
   t = t + tj	
output intervals [sj, fj]	

What can we say about this algorithm/its results? 

•  Observation.  There exists an optimal 
schedule with no idle time 

•  Observation. The greedy schedule has no 
idle time 
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•  Goal: Prove greedy algorithm produces 
optimal solution 

•  Approach: Exchange argument 
 Start with an optimal schedule Opt 
 Gradually modify Opt 

•  Preserving its optimality 
 Transform into a schedule identical to greedy’s 

schedule 
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•  Def. An inversion in schedule S is a pair of 
jobs i and j such that: 
di < dj but j scheduled before i 

i j before swap 

inversion 

Can Greedy’s solution have any inversions? 

•  Def. An inversion in schedule S is a pair of 
jobs i and j such that: 
di < dj but j scheduled before i 

i j before swap 

inversion 

Greedy’s schedule has no inversions!  

•  Claim.  Swapping two adjacent jobs with the 
same deadline does not increase the max 
lateness 

•  Pf Sketch.  Let   be the lateness before the 
swap, and let ’ be it afterwards 
 Lateness of other jobs? 
 Lateness of i?  j? 

i j 

i j 

before swap 

after swap 
f'j 

fi 

•  Claim.  Swapping two adjacent jobs with the 
same deadline does not increase the max 
lateness 

•  Pf.  Let   be the lateness before the swap, and 
let ’ be it afterwards 
  Lateness remains the same for all other jobs:  

•  'k = k for all k ≠ i, j 
 Lateness of i before is fi-di = ti+tj-di 
 Lateness of j after is fj’-dj = ti+tj-dj 

•  But di= dj 
i j 

i j 

before swap 

after swap 

f'j 

fi 

•  Claim.  Swapping two adjacent, inverted jobs 
reduces the number of inversions by one and 
does not increase the max lateness 
 How do we know inversions are adjacent? 

•  Pf Setup.  Let   be the lateness before the 
swap, and let ’ be it afterwards 
 What can we say about how i’s, j’s, and other jobs’ 

lateness changes? 

i j 

i j 

before swap 

after swap 
f'j 

fi 
inversion 

By def of inversion, di < dj  

•  Claim.  Swapping two adjacent, inverted jobs 
reduces the number of inversions by one and 
does not increase the max lateness. 

•  Pf.  Let   be the lateness before the swap, 
and let ' be it afterwards 
 'k = k for all k ≠ i, j 
 'i ≤ i   
 If job j is late: 

  

€ 

ʹ′  j = ʹ′ f j − d j (definition)
= fi − d j ( j finishes at time f i)
≤ fi − di (i < j)
≤  i (definition)
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•  Read Chapter 4 
 Wiki due next Wednesday 

•  Exam 1 
 Open book, open notes, open lecture notes 
 NO OTHER RESOURCES 
 I mention explicitly to analyze your algorithms’ 

running times.  I will not do that in the future. 
 Wed: half lecture, half questions 


