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Objectives

Network Flow Applications
» Bipartite Matching
» Circulation
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Review: Flows

The value of a flow fis v(f) = >, qutors f(€)
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BIPARTITE MATCHING
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Bipartite Matching v

Input: undirected, bipartite graph G = (L U R, E)
» Edges: one endinL, oneendinR
Matching M C E such that each node appears in at most
1edgein M
Problem: find matching of largest possible size
1 1"

2 2
matching
S S 1-2',3-1', 4-5'
4 #) | Can we do better?
L @ & R
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Bipartite Matching v

Input: undirected, bipartite graph G = (L U R, E)
» Edges: one endin L, one end in R

Matching M C E such that each node appears in at most
1 edgein M

2 2 max matching
1-1',2-2', 3-3' 4-4'

3 3
4 4
L 5 5 R
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Max Flow Formulation

Create digraph G'= (LURU {s, t}, E')

Direct all edges from L to R, and assign unit capacity

Add source s, and unit capacity edges from s to each node in L
Add sink t, and unit capacity edges from each node in R to t

Why does
1 this work?
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Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G =
value of max flow in G'.

Proof: Need to show in both directions
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Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of
max flow in G'.
Pf. >
» Given max matching M of cardinality k.
» Consider flow f that sends 1 unit along each of k paths.
» fis a flow and has cardinality k. =
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Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of max flow in G'.

Pf. €«
» Letfbe amax flow in G' of value k.
» Integrality theorem = k is integral and can assume fis 0-1.
~ Consider M = set of edges from L to R with f(e) = 1.
each node in Land R participates in at most one edge in M
IM| =k: considercut (LUs, RUt) =
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Perfect Matching

Def. A matching M C E is perfect if each
node appears in exactly one edge in M.

How could we figure out if a
matching is perfect?

When does a bipartite graph
have a perfect matching?
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Perfect Matching

Def. A matching M C E is perfect if each
node appears in exactly one edge in M.

When does a bipartite graph
have a perfect matching?

Structure of bipartite graphs with perfect
matchings:

» Clearly we must have |L| = |R].

» What other conditions are necessary?

» What conditions are sufficient?
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Perfect Matching

Let S be a subset of nodes, and let I'(S) be the set of
nodes adjacent to nodes in S.

Observation. If a bipartite graph G = (L U R, E) has a
perfect matching, then |I" (S)| = |S]| for all subsets S C
L

Pf. Each node in S has to be matched to a different
node in '(S).

No perfect
matching:

5={2,4,5}
rs)={2',5"}%
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Marriage Theorem [Frobenius 1917, Hall 1935]

Let G = (L UR, E) be a bipartite graph with
IL| = |R|. Then, G has a perfect matching iff
[T (S)] = |S| for all subsets S C L.

Need to prove in
both directions...

No perfect
matching:

5:={2,4,5}
res)={2'5'}%
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Marriage Theorem [Frobenius 1917, Hall 1935]
Show: G has a perfect matching >
[T (S)| = |S| for all subsets S C L.
Pf. = This was the previous observation.

No perfect
matching:

5={2,4,5}
rs)={2',5"}%

Apr 2, 2010 CSCI211 - Sprenkle 14

If max flow <n,

Proof of Marriage Theorem | thenir (s)l < s

Pf. < Suppose G does not have a perfect matching
» Formulate as a max flow problem and let (A, B) be min cut in G’
» By max-flow min-cut, cap(A, B) <|L|
» DefineL,=LNA, L,=LNB, R,=RNA
» cap(A, B) = |Lg| *+|R,|.
» Since min cut can't use » edges: I'(L,) C R,.
» T (L)l =R | = cap(A, B)- | Ls| < [L|-|Ls| = [Lsl-
» Choose S=1L,. *

La={2,4,5)
Le=11,3)

Ry= (2',5)
TLa= (2.5
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Bipartite Matching: Running Time

Which max flow algorithm to use for bipartite
matching?
» Generic augmenting path: O(m val(f*) ) = O(mn)

» Capacity scaling: O(m? log C ) = O(m?) ?
> Shortest augmenting path: O(m n'2)
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EXTENSIONS TO MAX FLOW

Apr2,2010 CSCI211 - Sprenkle 17

Power of Max Flow Problem

Some problems with non-trivial combinatorial
searches can be formulated as max flow or
min cut in a directed graph
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Circulation with Demands

Circulation with demands

» Directed graph G = (V, E)

» Edge capacities c(e), e EE

» Node supply and demands d(v), ve V

demand if d(v) > O; supply if d(v)<O;
transshipment if d(v) = 0
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Circulation with Demands

Circulation with demands

~ Directed graph G = (V, E)

~ Edge capacities c(e), e €E

» Node supply and demands d(v), vE V

Def. A circulation is a function that satisfies:
» Foreache €E: 0=f(e) <c(e) (capacity)
» Foreachv EV: ““E‘u.‘f(@) ZumE(;fff@) = dv (conservation)

Circulation problem: given (V, E, c, d),
does there exist a circulation?

Apr2, 201 (Can we satisfy demand with supply?) 2

1
demand if d(v) > 0; supply if d(v) < O; transshipment if d(v) = O

Circulation with Demands

Necessary condition:

sum of supplies = sum of demands
Yd(vy = 3 -d(v) == D

vid(v)>0 vid(v)< 0

-8 -6 «<— supply

Circulation with Demands

Necessary condition:

sum of supplies = sum of demands
Yd(v)y= 3 -d(v) = D
vid(v)>0 vid(v)< 0
Pf. Sum conservation constraints for every
demand node v.
-8 -6 <— supply
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Circulation with Demands:
Towards Max Flow Formulation
8 -6 +— supply
G:
TN,
4
7/3—|A|_4> .
10 0
demand
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Circulation with Demands:
Max Flow Formulation

Add new source s and sink t.

For each v with d(v) < 0, add edge (s, v) with capacity -d(v).
For each v with d(v) > 0, add edge (v, t) with capacity d(v).
Claim: G has circulation iff G' has max flow of value D

7/3; \6 .
o / \ supply
o TN,

/ 1 LN

33—

saturates all edges
leaving s and entering t

\10\ ‘0/“4 demand
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Circulation with Demands

Integrality theorem. If all capacities and
demands are integers, and there exists a
circulation, then there exists one that is
integer-valued.

Pf. Follows from max flow formulation and
integrality theorem for max flow.
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Circulation with Demands:
Characterization

Given (V, E, c, d), there does not exist a
circulation iff there exists a node partition (A,
B) such that

Z:VEB dv > Cap(A1 B)

demand by nodes in B exceeds
supply of nodes in B + max capacity
of edges going from A > B

Pfidea. Look at min cutin G'.
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Circulation with Demands and
Lower Bounds
Feasible circulation.
~ Directed graph G = (V, E).
» Edge capacities c(e) and lower bounds 7 (e), e € E.
» Node supply and demands d(v), v € V.

Force flow to make
use of certain edges

Def. A circulation is a function that satisfies:
» Foreache€E: 0=/ (e)=f(e)=c(e) (capacity)
» Foreachv EV: “.n%;{(e) -"MEN/“_(@ = dv) (conservation)

Circulation problem with lower bounds.
Given (V, E, 7, c, d), does there exists a circulation?
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Circulation with Demands and
Lower Bounds
Model lower bounds with demands
» Send /(e) units of flow along edge e
» Update demands of both endpoints

lower bound upper capacity
| } bound i
v— [2,9] —w o 7 o
d(v) G d(w) d(v) + 2 . dw) -2
Apr2,2010 CSCI211 - Sprenkle 28

Circulation with Demands and
Lower Bounds
Model lower bounds with demands

» Send /(e) units of flow along edge e
» Update demands of both endpoints

lower bound upper capacity
} | bound 1
v— [2,9] —{w = 7w
d(v) 6 d(w) d(v)+2 6 d(w) - 2

Theorem. There exists a circulation in G iff there
exists a circulation in G'. If all demands, capacities,
and lower bounds in G are integers, then there is a
circulation in G that is integer-valued.

Pf sketch. f(e) is a circulation in G iff f(e) = f(e) - /(e)
is a circulation in G'.
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