
2/3/10

1

•  Greedy Algorithms
 Interval Scheduling
 Interval Partitioning

•  At each step, take as much as you can get
 “local” optimizations

•  How do you make change to give out the
fewest coins?

•  Determine for 34¢

•  How do you make change to give out the
fewest coins?
 Local optimum: coin of the highest value, less

than the remaining change owed
while change > 0:	

	if change >= 25:	
	 	print “Quarter”	
	 	change -= 25	
	elif change >= 10:	
	 	print “Dime”	
	 	change -= 10	
	…	

Let’s generalize …

•  Goal. Given currency denominations: 1, 5, 10, 25,
100, devise a method to pay amount to customer
using fewest number of coins.

•  Ex: 34¢.

•  Cashier's algorithm. At each iteration, add coin of the
largest value that does not take us past the amount to
be paid.

•  Ex: $2.89.

•  Cashier's algorithm. At each iteration, add
coin of the largest value that does not take
us past the amount to be paid.
Sort coins’ denominations by value: c1 < c2 < … < cn.	

S = φ 	
while x ≠ 0	
 let k be largest integer such that ck ≤ x	
 if k = 0	
 return "no solution found"	
 x = x - ck	
 S = S ∪ {k}	
return S	

coins selected

How could this happen?

Is cashier's algorithm optimal?

2/3/10

2

•  Theorem. Greedy is optimal for U.S. coinage: 1, 5, 10, 25, 100
•  Pf. (by induction on x)

  Consider optimal way to change ck ≤ x < ck+1
•  Greedy takes coin k

  Any optimal solution must also take coin k
•  If not, it needs enough coins of type c1, …, ck-1 to add up to x
•  Table below indicates no optimal solution can do this

  Problem reduces to coin-changing x - ck cents, which, by induction,
is optimally solved by greedy algorithm. ▪

1

ck

10

25

100

P ≤ 4

All optimal solutions
must satisfy

N + D ≤ 2

Q ≤ 3

5 N ≤ 1

no limit

k

1

3

4

5

2

-

Max value of coins
1, 2, …, k-1 in any OPT

4 + 5 = 9

20 + 4 = 24

4

75 + 24 = 99

If don’t
take ck

•  Observation. Greedy algorithm is sub-
optimal for US postal denominations:
 500 100 98 79 78 64 44 28 17 2 1

•  Counterexample. 158¢.
 Greedy: 100, 44, 2, 2, 2, 2, 2, 2, 2.
 Optimal: 79, 79.

•  Specifically, produce an optimal solution

•  Two approaches:
 Greedy algorithm stays ahead

•  Does better than any other algorithm at each step
 Exchange argument

•  Transform any solution into a greedy solution
Greedy algorithm stays ahead

•  Job j starts at sj and finishes at fj
•  Two jobs are compatible if they don't overlap
•  Goal: find maximum subset of mutually

compatible jobs

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

•  Every job is worth equal
money.

•  To earn the most money 
schedule the most jobs

•  Consider jobs (or whatever) in some order
 Decision: What order is best?

•  Take each job provided it's compatible with
the ones already taken

What are options for orders?

What is our goal?
What are we trying to

minimize/maximize?

What is the worst case?

2/3/10

3

•  Earliest start time. Consider jobs in ascending
order of start time sj
 Utilize CPU as soon as possible

•  Earliest finish time. Consider jobs in ascending
order of finish time fj
 Resource becomes free ASAP
 Maximize time left for other requests

•  Shortest interval. Consider jobs in ascending order
of interval length fj – sj

•  Fewest conflicts. For each job, count the number of
conflicting jobs cj. Schedule in ascending order of
conflicts cj Can we “break” any of these?

i.e., prove they’re not optimal?

breaks earliest start time

breaks shortest length

breaks fewest conflicts

Not optimal when …

•  Consider jobs in increasing order of finish time.
Take each job provided it's compatible with the
ones already taken.
Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn	

G = {}	
for j = 1 to n 	
 if job j compatible with G	
 G = G ∪ {j}	
return G 	

jobs
selected

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11
B

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

0 1 2 3 4 5 6 7 8 9 10 11
B C

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

2/3/10

4

0 1 2 3 4 5 6 7 8 9 10 11
B A

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

0 1 2 3 4 5 6 7 8 9 10 11
B E

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

0 1 2 3 4 5 6 7 8 9 10 11
B E D

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

0 1 2 3 4 5 6 7 8 9 10 11
B E F

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

0 1 2 3 4 5 6 7 8 9 10 11
B E G

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

0 1 2 3 4 5 6 7 8 9 10 11
B E H

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

2/3/10

5

•  Consider jobs in increasing order of finish time.
Take each job provided it's compatible with the
ones already taken.

•  Runtime of algorithm?
 Where/what are the costs?

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn	

G = {}	
for j = 1 to n 	
 if job j compatible with G	
 G = G ∪ {j}	
return G 	

jobs
selected

•  Consider jobs in increasing order of finish time.
Take each job provided it's compatible with the
ones already taken.

•  Implementation. O(n log n)
 Remember job j* that was added last to A
 Job j is compatible with A if sj ≥ fj*

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn	

G = {}	
for j = 1 to n 	
 if job j compatible with G	
 G = G ∪ {j}	
return G 	

jobs
selected

O(1) O(n)

O(n logn)

•  Know that the intervals are compatible
 Handled by the if statement

•  But is it optimal?
 What does it mean to be optimal?
 Recall our goal for maximization

•  Theorem. Greedy algorithm is optimal.
•  Pf. (by contradiction)

  Assume greedy is not optimal, and let's see what happens
  Let i1, i2, ..., ik denote set of jobs selected by greedy (k jobs)
  Let j1, j2, ..., jm denote set of jobs in the optimal solution (m

jobs)
  Same ordering, by finish times because compatible jobs
 Want to show that k = m

j1 j2 jr

i1 i1 ir Greedy:

OPT:

What can we say about i1 and j1? f(i1) ≤ f(j1)

•  Theorem. Greedy algorithm is optimal.
•  Pf. (by contradiction)

  Since we picked the first job to have the first finishing time,
we know that f(i1) <= f(j1)

 Want to show that Greedy “stays ahead”
 Each interval finishes at least as soon as Optimal’s
  Induction hypothesis: for all indices r <= k, f(ir) <= f(jr)

j1 j2 jr

i1 i1 ir Greedy:

OPT:

Prove for r+1

•  Theorem. Greedy algorithm is optimal.
•  Pf. (by contradiction)

  Since we picked the first job to have the first finishing time,
we know that f(i1) <= f(j1)

 Want to show that Greedy “stays ahead”
 Each interval finishes at least as soon as Optimal’s
  Induction hypothesis: for all indices r <= k, f(ir) <= f(jr)

j1 j2 jr

i1 i1 ir ir+1

. . .

Greedy:

OPT: jr+1

why not replace job ir+1
with job jr+1?

job ir+1 finishes after jr+1

How Greedy stays ahead

2/3/10

6

•  All requests were known to scheduling
algorithm
 Online algorithms: make decisions without

knowledge of future input
•  Each job was worth the same amount

 What if jobs had different values?
•  E.g., scaled with size

•  Single resource requested
 Rejected requests that didn’t fit

•  Lecture j starts at sj and finishes at fj.
•  Goal: find minimum number of classrooms to

schedule all lectures so that no two occur at
the same time in the same room.

•  Ex: 10 lectures in 4 classrooms

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

What are our constraints? Can we use fewer rooms?

•  Lecture j starts at sj and finishes at fj
•  Goal: find minimum number of classrooms

to schedule all lectures so that no two occur
at the same time in the same room.

•  Alternative schedule uses only 3 classrooms

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

a, b, c all contain 9:30

•  Def. The depth of a set of open intervals is the
maximum number that contain any given time.

•  Key observation. # of classrooms needed ≥
depth.

•  Ex: Depth of schedule below = 3 ⇒ schedule
below is optimal.

Does there always exist a schedule
equal to depth of intervals?

•  Does there always exist a schedule equal to
depth of intervals?

•  Can we make decisions locally to get a
global optimum?
 Or are there long-range obstacles that require

more resources?

2/3/10

7

•  Read Chapter 4
•  Friday: Problem Set 3
•  Today at 3:30 – Professor Crowley’s talk

