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• Wrap up Data Compression/Huffman Codes 
•  Divide and conquer 

 Recurrence relations 

•  Problem: Encoding of one character is a 
prefix of encoding of another 

•  Solution: Prefix Codes: map letters to bit 
strings such that no encoding is a prefix of 
any other 
 Won’t need artificial devices like spaces to 

separate characters 
•  Example encodings: 

 Verify that no encoding is 
    a prefix of another 
 What is 0010000011101?	

a: 11 	d: 10	
b: 01 	e: 000	
c: 001	

•  Goal: minimize Average number of Bits 
per Letter (ABL):  

    Σx∈Sfrequency of x * length of encoding of x 

•  fx: frequency that letter x occurs 
•  γ(x): encoding of x 

 |γ(x)|: length of encoding of x 
•  Minimize ABL =  Σx∈Sfx |γ(x)| 

For all characters in our alphabet 

•  Given an alphabet and a set of frequencies 
for the letters, produce optimal (most 
efficient) prefix code 
 Minimizes average number of bits per letter 

•  Exposes structure better than list of 
mappings 
 Each leaf node is a letter 
 Follow path to the letter 

•  Going left: 0 
•  Going right: 1 

1. Create a leaf node for each symbol, labeled 
by its frequency, and add to a queue 

2. While there is more than one node in the 
queue 
a)  Remove the two nodes of lowest frequency 
b)  Create a new internal node with these two 

nodes as children and with frequency equal to 
the sum of the two nodes' probabilities 

c)  Add the new node to the queue 
3. The remaining node is the tree’s root node 
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e d 

c a b 
de= 
.23 

cde= 
.43 

ab= 
.57 

abcd
e=1 

What are the resulting encodings? 
What is the ABL? 

fa = .32 
fb = .25 
fc = .20 
fd = .18 
fe = .05 

e d 

c a b 
de= 
.23 

cde= 
.43 

ab= 
.57 

abcd
e=1 0 

0 0 

0 

1 

1 1 

1 

a: 00	
b: 01	
c: 10	
d: 110	
e: 111	

fa = .32 
fb = .25 
fc = .20 
fd = .18 
fe = .05 

ABL=.32*2 + .25*2 + .20*2 + .18*3 + .05*3 
 = .64 + .5 + .4 + .54 + .15  
 = 2.23 

I chose to build the tree this way. 
What if I had switched the order of the children? 

• What data structures do we need? • What data structures do we need? 
 Binary tree for the prefix codes 
 Priority queue for choosing the node with lowest 

frequency 

• Where are the costs? 

•  Costs 
 Inserting and extracting node into PQ: O(log n) 
 Number of insertions and extractions: O(n) 
 O(n log n) 

•  2 page proof in book 



3/1/10 

3 

•  Text can be compressed well because of 
known frequencies 

•  Algorithms can be optimized to languages 
 More than just “z doesn’t happen very often” 

•  “z doesn’t happen after q” 

•  Divide-and-conquer process 
 Break up problem into several parts 
 Solve each part recursively 
 Combine solutions to sub-problems into overall 

solution 
•  Most common usage: 

 Break up problem of size n into two equal parts 
of size ½n 

 Solve two parts recursively 
 Combine two solutions into overall solution 

Divide et impera. 
Veni, vidi, vici. 
        - Julius Caesar 

• What is a well-known divide and conquer 
algorithm? 

MERGE SORT 

•  How does Merge Sort work? 

• When do we stop? 

Divide list into 
two lists 

Until only 2 
elements 

Sort elements 

Combine sorted 
lists (how?) 

Costs?  
Running 
Time? 
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•  Def.  T(n) = number of comparisons to 
mergesort an input of size n 

•  Want to say a bit more about what T(n) is 
 Break it down more… 
 What can we say about the running time w.r.t. to the 

different parts of the above template? 

General Template 
• Break up problem of size n into two equal 

parts of size ½n 
• Solve two parts recursively 
• Combine two solutions into overall solution 

•  Def.  T(n) = number of comparisons to 
mergesort an input of size n 

•  Want to say a bit more about what T(n) is 
 Break it down more… 
 What can we say about the running time w.r.t. to the 

different parts of the above template? 

General Template 
• Break up problem of size n into two equal 

parts of size ½n 
• Solve two parts recursively 
• Combine two solutions into overall solution O(n) 

T(n/2) + T(n/2) 

O(1) 

What is the base case’s running time? 

•  Put an upperbound on T(n): 

For some constant c, 
 T(n) ≤ 2 T(n/2) + cn  when n > 2,  
 T(2) ≤ c. 

O(n) 

Solve T(n) to come up with explicit bound 

Why is this constant? 

1. Unroll recursion 
 Look for patterns in runtime at each level 
 Sum up running times over all levels 

2. Substitute guess solution into recurrence 
 Check that it works 
 Induction on n 
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•  First level: 2 T(n/2) + cn cn 

T(n/2) T(n/2) 

How does the next level break down? 

•  Next level:  

Each one is 2 T(n/4) + c(n/2) 

cn 

c n/2 c n/2 

T(n/4) T(n/4) T(n/4) T(n/4) 

Next level? 

•  Next level:  
Each one is 2 T(n/8) + c(n/4) 

cn 

c n/2 c n/2 

c n/4 c n/4 c n/4 c n/4 

And so on… 

T(n/8) T(n/8) … T(n/8) T(n/8) 

•  How much does each level cost, in terms of the level? 
•  How many levels are there (assuming n is a power of 

2)? 
•  What is the total run time? 

cn 

c n/2 c n/2 

c n/4 c n/4 c n/4 c n/4 

c c c c c c c c 

T(n / 2k) 

T(n) 

T(2) 

0 

1 

2 

•  How many levels are there (assuming n is a power of 
2)? 

•  How much does each level cost, in terms of the level? 
•  What is the total run time? 

cn 

c n/2 c n/2 

c n/4 c n/4 c n/4 c n/4 

c c c c c c c c 

T(n / 2k) 

T(n) 

T(2) 

0 

1 

2 
2k problems 
Size: n/2k 

Each level takes  
2k * c * (n/2k) = cn   

Number of levels: 
log2n 

O(n log n) 

•  Claim.  If T(n) satisfies this recurrence, then 
T(n) = n log2 n. 

•  Pf.  (by induction on n) 
 Base case:  n = 1 
 Inductive hypothesis:  T(n) =  n log2 n 
 Goal: show that T(2n) =  2n log2 (2n) 

    

€ 

T(n) =
0 if  n =1
2T(n /2)

sorting both halves
     + n

merging
 otherwise

⎧ 

⎨ 
⎪ 

⎩ ⎪ 

Why doubling n? 
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•  Claim.  If T(n) satisfies this recurrence, then 
T(n) = n log2 n. 

•  Pf.  (by induction on n) 
 Inductive hypothesis:  T(n) =  n log2 n 

  

€ 

T(2n) = 2T(n)  +  2n
= 2n log2 n  +  2n
= 2n log2(2n)−1( )  +  2n
= 2n log2(2n)

    

€ 

T(n) =
0 if  n =1
2T(n /2)

sorting both halves
     + n

merging
 otherwise

⎧ 

⎨ 
⎪ 

⎩ ⎪ 

•  Instead of recursively solving 2 problems, 
solve q problems 
 Size of problems is still n/2 

•  Combining solutions is still O(n) 

•  Instead of recursively solving 2 problems, 
solve q problems 
 Size of problems is still n/2 

•  Combining solutions is still O(n) 
•  Recurrence relation: 

 For some constant c, 
T(n) ≤ q T(n/2) + cn when n > 2 
T(2) ≤ c 

Intuition about running time? 

•  Continue reading Chapter 4 
•  Start reading Chapter 5 
• Wiki 

 Read 4.6-4.8, 5.1 
•  PS5 due Friday 


