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•  Analyzing algorithms 
•  Asymptotic running times 

•  Assessment: some preference to journals 
 Check out Wiki on Sakai 

1. Understand/identify problem 
  Simplify as appropriate 

2. Design a solution 
3. Analyze 

  Correctness, efficiency 
  May need to go back to step 2 and try again 

4.  Implement 
  Within bounds shown in analysis 

Charles Babbage 
(1864) 

As soon as an Analytic Engine exists, it will necessarily guide the 
future course of the science.  Whenever any result is sought by its 
aid, the question will arise - By what course of calculation can 
these results be arrived at by the machine in the shortest time?   

     -- Charles Babbage 

Analytic Engine 
(schematic) 

•  For many non-trivial problems, there is a 
natural brute force search algorithm that 
checks every possible solution 
 Typically takes 2N time or worse for inputs of 

size N 
 Unacceptable in practice 

How many possible solutions are there in the 
stable matching problem? 

(In other words, how many possible perfect matchings 
are there?  We’re not worried about stability right now.) 
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•  For many non-trivial problems, there is a 
natural brute force search algorithm that 
checks every possible solution 
 Typically takes 2N time or worse for inputs of 

size N 
 Unacceptable in practice 

•  Example: Stable matching: n! with n men and 
n women 
 If n increases by 1, what happens to the running 

time? 

“Exponential” 

•  Obtain bound on largest possible running 
time of algorithm on input of a given size N 
 Generally captures efficiency in practice 
 Draconian view, but hard to find effective 

alternative 

What are alternatives to worst-case analysis? 

•  Obtain bound on running time of algorithm on 
random input as a function of input size N 
 Hard (or impossible) to accurately model real 

instances by random distributions 
 Algorithm tuned for a certain distribution may 

perform poorly on other inputs •  Desirable scaling property:  When input size 
doubles, algorithm should only slow down by 
some constant factor C 

•  Def.  An algorithm is polynomial time (or 
polytime) if the above scaling property holds. 

There exists constants c > 0 and d > 0 
such that on every input of size N, its 
running time is bounded by c Nd steps. 

choose C = 2d  

•  Def.  An algorithm is efficient if its running time is 
polynomial 

•  Justification:  It really works in practice! 
  In practice, poly-time algorithms that people develop 

almost always have low constants and low exponents 
 Breaking through the exponential barrier of brute force 

typically exposes some crucial structure of the problem 
•  Exceptions 

 Some poly-time algorithms do have high constants and/
or exponents (6.02 × 1023 × N20) and are useless in 
practice 

 Some exponential-time (or worse) algorithms are widely 
used because the worst-case instances seem to be rare 

Input Size 

Polynomial  
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•  Huge difference from polynomial to not polynomial 
•  Differences in runtime matter more as input size increases 

Polynomial 
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As input size increases, n3 dominates large constant * n2 

 Care about running time as input size approaches infinity 
 Only care about highest-order term 
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•  T(n) is the worst case running time of an 
algorithm 

• We say that T(n) is O(f(n)) if there exist 

constants c > 0 and n0 ≥ 0 such that for all    

n ≥ n0, we have T(n) ≤ c · f(n) 
sufficiently large n T(n) is bounded above by a 

constant multiple of f(n) 

T is asymptotically upperbounded by f 

c cannot depend on n 

“order f(n)” 

f(n) 

T(n) 

n0 

Point at which f(n) > T(n)  

•  T(n) = pn2 + qn + r 
 p, q, r are positive constants 

Idea: Let’s inflate the terms in the 
equation so that all terms are n2 

•  T(n) = pn2 + qn + r 
 p, q, r are positive constants 

•  For all n ≥ 1,  

 T(n) ≤ cn2, where c = p+q+r 
 T(n) = O(n2) 
•  Also correct to say that T(n) = O(n3) 

T(n) = pn2 + qn + r 
 ≤ pn2 + qn2 + rn2  

 = (p+q+r) n2 

 = c n2 
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•  Slight abuse of notation.  T(n) = O(f(n)) 
 Asymmetric: 

•  f(n) = 5n3;  g(n) = 3n2 

•  f(n) = O(n3) = g(n) 
•  But f(n) ≠ g(n). 

 Better notation:  T(n) ∈ O(f(n)) 
•  Meaningless statement.  Any comparison-

based sorting algorithm requires at least O(n 
log n) comparisons 
 Use Ω for lower bounds 

•  Complementary to upper bound 

•  T(n) is Ω(f(n)) if there exist constants ε > 0 

and n0 ≥ 0 such that for all n ≥ n0 , we have  

T(n) ≥ ε · f(n) 

T is asymptotically lowerbounded by f 

sufficiently large n 

T(n) is bounded below by a 
constant multiple of f(n) 

ε cannot depend on n 

•  T(n) = pn2 + qn + r 
 p, q, r are positive constants 

•  Idea: Deflate terms rather than inflate 
•  For all n ≥ 0,  

•  Also correct to say that T(n) = Ω(n) 

T(n) = pn2 + qn + r ≥ pn2 
 T(n) ≥ εn2, where ε = p > 0 
 T(n) = Ω(n2) 

 The “right” bound 

T(n) is Θ(f(n)) if T(n) is both 
O(f(n)) and Ω(f(n)) 

•  If f = O(g) and g = O(h) then f = O(h) 
•  If f = Ω(g) and g = Ω(h) then f = Ω(h)  
•  If f = Θ(g) and g = Θ(h) then f = Θ(h) 

Proofs in book 
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Ω O 

•  If f = O(h) and g = O(h) then f + g = O(h) 
•  If f = Ω(h) and g = Ω(h) then f + g = Ω(h) 
•  If f = Θ(h) and g = O(h) then f + g = Θ(h) 

Proofs in book 

Sketch proof for O: 
By defn, f ≤ c · h 
By defn, g ≤ d · h 
f + g ≤ c · h + d · h = (c + d) h = c’ · h 
 f + g is O(h) 


