
3/8/10

1

•  Divide and Conquer
 Integer multiplication
 Matrix multiplication

•  Dynamic Programming
 Fibonacci Sequence
 Weighted Interval Scheduling

•  Add. Given two n-digit integers a and b,
compute a + b.
 Algorithm?
 Runtime?

1

0 1 1 1

1 1 0 1 +
0 1 0 1

1 1 1
0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1 1

O(n) operations

•  Multiply. Given two n-digit integers a and b,
compute a × b.
 Brute force solution: Θ(n2) bit operations

1

1

0

0

0

1

1

1

0

0

1

1

1

1

0

0

1

1

1

1

0

1

0

1

0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1

1

0

1

1

1

1

1

0

0

*

Goal: Faster algorithm

•  To multiply two n-digit integers:
 Multiply four ½ n-digit integers
 Add two ½ n-digit integers and shift to obtain result

€

x = 2n / 2 ⋅ x1 + x0

y = 2n / 2 ⋅ y1 + y0

xy = 2n / 2 ⋅ x1 + x0() 2n / 2 ⋅ y1 + y0() = 2n ⋅ x1y1 + 2n / 2 ⋅ x1y0 + x0 y1() + x0 y0

Higher order bits Lower order bits

What is the recurrence relation?
•  How many subproblems?
•  What is merge cost?
•  What is its runtime?

Shift

A B C D

•  To multiply two n-digit integers:
 Multiply four ½ n-digit integers
 Add two ½ n-digit integers and shift to obtain result

€

x = 2n / 2 ⋅ x1 + x0

y = 2n / 2 ⋅ y1 + y0

xy = 2n / 2 ⋅ x1 + x0() 2n / 2 ⋅ y1 + y0() = 2n ⋅ x1y1 + 2n / 2 ⋅ x1y0 + x0 y1() + x0 y0

Higher order bits Lower order bits

Shift

A B C D

€

T(n) = 4T n /2()
recursive calls
    

 + Θ(n)
add, shift
   ⇒ T(n) =Θ(n2)

assumes n is a power of 2
Not an improvement

over brute force

•  To multiply two n-digit integers:
 Add two ½n digit integers
 Multiply 3 ½n-digit integers
 Add, subtract, and shift ½n-digit integers to

obtain result

€

x = 2n / 2 ⋅ x1 + x0

y = 2n / 2 ⋅ y1 + y0

xy = 2n ⋅ x1y1 + 2n / 2 ⋅ x1y0 + x0 y1() + x0 y0

= 2n ⋅ x1y1 + 2n / 2 ⋅ (x1 + x0) (y1 + y0) − x1y1 − x0 y0() + x0 y0

A B C A C

What is the recurrence relation? Runtime?

3/8/10

2

•  Theorem. [Karatsuba-Ofman, 1962] Can
multiply two n-digit integers in O(n1.585) bit
operations

€

x = 2n / 2 ⋅ x1 + x0

y = 2n / 2 ⋅ y1 + y0

xy = 2n ⋅ x1y1 + 2n / 2 ⋅ x1y0 + x0 y1() + x0 y0

= 2n ⋅ x1y1 + 2n / 2 ⋅ (x1 + x0) (y1 + y0) − x1y1 − x0 y0() + x0 y0

€

T(n) ≤ T n /2⎣ ⎦() + T n /2⎡ ⎤() + T 1+ n /2⎡ ⎤()
recursive calls

                
+ Θ(n)

add, subtract, shift
    

⇒ T(n) = O(n log 2 3) = O(n1.585)

A B C A C

•  Given two n-by-n matrices A and B, compute
C = AB

 Ex: c12 = a11 b12 + a12 b22 + a13 b32 + … + a1n bn2

•  Brute force. Θ(n3) arithmetic operations
•  Fundamental question: Can we improve

upon brute force?

€

cij = aik bkj
k=1

n

∑

€

c11 c12  c1n

c21 c22  c2n

   
cn1 cn2  cnn

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

a11 a12  a1n

a21 a22  a2n

   
an1 an2  ann

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

×

b11 b12  b1n

b21 b22  b2n

   
bn1 bn2  bnn

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

•  Divide: partition A and B into ½n-by-½n
blocks

•  Conquer: multiply 8 ½n-by-½n recursively
•  Combine: add appropriate products using 4

matrix additions

€

C11 = A11 × B11() + A12 × B21()
C12 = A11 × B12() + A12 × B22()
C21 = A21 × B11() + A22 × B21()
C22 = A21 × B12() + A22 × B22()

€

C11 C12

C21 C22

⎡

⎣
⎢

⎤

⎦
⎥ =

A11 A12

A21 A22

⎡

⎣
⎢

⎤

⎦
⎥ ×

B11 B12

B21 B22

⎡

⎣
⎢

⎤

⎦
⎥

Recurrence relation? Runtime?

•  Divide: partition A and B into ½n-by-½n
blocks

•  Conquer: multiply 8 ½n-by-½n recursively
•  Combine: add appropriate products using 4

matrix additions

€

C11 = A11 × B11() + A12 × B21()
C12 = A11 × B12() + A12 × B22()
C21 = A21 × B11() + A22 × B21()
C22 = A21 × B12() + A22 × B22()

€

C11 C12

C21 C22

⎡

⎣
⎢

⎤

⎦
⎥ =

A11 A12

A21 A22

⎡

⎣
⎢

⎤

⎦
⎥ ×

B11 B12

B21 B22

⎡

⎣
⎢

⎤

⎦
⎥

€

T(n) = 8T n /2()
recursive calls
    

 + Θ(n2)
add, form submatrices
       ⇒ T(n) =Θ(n3)

•  Multiply 2-by-2 block matrices with only 7
multiplications and 15 additions

€

P1 = A11 × (B12 − B22)
P2 = (A11 + A12) × B22
P3 = (A21 + A22) × B11
P4 = A22 × (B21 − B11)
P5 = (A11 + A22) × (B11 + B22)
P6 = (A12 − A22) × (B21 + B22)
P7 = (A11 − A21) × (B11 + B12)

€

C11 = P5 + P4 − P2 + P6
C12 = P1 + P2
C21 = P3 + P4
C22 = P5 + P1 − P3 − P7

€

C11 C12

C21 C22

⎡

⎣
⎢

⎤

⎦
⎥ =

A11 A12

A21 A22

⎡

⎣
⎢

⎤

⎦
⎥ ×

B11 B12

B21 B22

⎡

⎣
⎢

⎤

⎦
⎥

Trading expensive multiplication for
less expensive addition/subtraction

3/8/10

3

•  Divide: partition A and B into ½n-by-½n blocks
•  Compute: 14 ½n-by-½n matrices via 10 matrix

additions
•  Conquer: multiply 7 ½n-by-½n matrices

recursively
•  Combine: 7 products into 4 terms using 8

matrix additions
•  Analysis.

 Assume n is a power of 2.
 T(n) = # arithmetic operations.

€

T(n) = 7T n /2()
recursive calls
    

+ Θ(n2)
add, subtract
     ⇒ T(n) =Θ(n log2 7) = O(n2.81)

•  Implementation issues: problems with putting
theory into practice
 Sparsity
 Caching effects
 Numerical stability

•  Theoretically correct but possible problems with
round off errors, etc

 Odd matrix dimensions
 Crossover to classical algorithm around n = 128

•  Common misperception: "Strassen is only a
theoretical curiosity."
 Advanced Computation Group at Apple

Computer reports 8x speedup on G4 Velocity
Engine when n ~ 2,500

 Range of instances where it's useful is a subject
of controversy

•  Can "Strassenize" Ax=b, determinant,
eigenvalues, and other matrix ops

•  Q. Multiply two 2-by-2 matrices with only 7 scalar
multiplications?

•  A. Yes! [Strassen, 1969]
•  Q. Multiply two 2-by-2 matrices with only 6 scalar

multiplications?
•  A. Impossible [Hopcroft and Kerr, 1971]
•  Q. Two 3-by-3 matrices with only 21 scalar multiplications?
•  A. Also impossible
•  Q. Two 70-by-70 matrices with only 143,640 scalar

multiplications?
•  A. Yes! [Pan, 1980]

•  Decimal wars.
 December, 1979: O(n2.521813)
  January, 1980: O(n2.521801)

€

Θ (n log3 21) = O(n 2.77)

€

Θ (n log70 143640) = O(n 2.80)

€

Θ(n log2 6) = O(n 2.59)

€

Θ(n log2 7) = O(n 2.81)

•  Best known. O(n2.376) [Coppersmith-
Winograd, 1987.]
 But really large constant

•  Conjecture. O(n2+ε) for any ε > 0.

•  Caveat. Theoretical improvements to
Strassen are progressively less practical.

•  Greedy. Build up a solution incrementally,
myopically optimizing some local criterion

•  Divide-and-conquer. Break up a problem
into sub-problems, solve each sub-problem
independently, and combine solution to sub-
problems to form solution to original problem

•  Dynamic programming. Break up a
problem into a series of overlapping sub-
problems, and build up solutions to larger
and larger sub-problems

3/8/10

4

•  Richard Bellman pioneered systematic study of
dynamic programming in 1950s

•  Etymology
 Dynamic programming = planning over time

•  Not our typical use of “programming”
 Secretary of Defense was hostile to mathematical

research
 Bellman sought an impressive name to avoid

confrontation
•  "it's impossible to use dynamic in a pejorative sense"
•  "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

•  Input: the number of Fibonacci numbers, x
•  Output: display the list of the first x Fibonacci

numbers

Sequence:
 F0=F1=1
 Fn=Fn-1+ Fn-2

•  Typical Solution:
fibs = [] 	 	# create an empty list	
fibs.append(1) 	# append the first two Fib numbers	
fibs.append(1)	
print fibs[0], fibs[1],	
for x in xrange(2, N):		

	newfib = fibs[x-1]+fibs[x-2]	
	print newfib,	
	fibs.append(newfib)	

print fibs 	 	# print out the list	

Do we need a whole list?

Building up solution

Running time? Space cost?

•  Only need the solutions to the last two
problems (F[k-1], F[k-2])

lastNum = 1	
twoAgo = 1	
print twoAgo, lastNum,	

for n in xrange(2, N):	

 nthNum = twoAgo + lastNum	
 print nthNum,	

 twoAgo = lastNum	
 lastNum = nthNum	

Write as a recurrence

• What is the running time of this algorithm?

def fibonacci(n):	
	return fibonacci(n-1) + fibonacci(n-2)	

3/8/10

5

•  Create a table with the possible inputs
•  If the value is in the table, return it (without

recomputing it)
•  Otherwise, call function recursively

 Add value to table for future reference

How does this template map to our Fibonnaci problem?

memoized_fibonacci(n):	
	for j = 1 to n:	
	 	results[i] = -1 # -1 means undefined	

	return memoized_fib_recurs(results, n)	

memoized_fib_recurs(results, n):	
	if results[n] != -1: # value is defined	
	 	return results[n]	
	if n == 1:	
	 	val = 1	
	elif n == 2:	
	 	val = 1	
	else:	
	 	val = memoized_fib_recurs(results, n-2)	
	 	val = val + memoized_fib_recurs(results, n-1)	
	results[n] = val	
	return val	

Runtime?

memoized_fibonacci(n):	
	for j = 1 to n:	
	 	results[i] = -1 # -1 means undefined	
	results[1] = 1	
	results[2] = 1	

	return memoized_fib_recurs(results, n)	

memoized_fib_recurs(results, n):	
	if results[n] != -1: # value is defined	
	 	return results[n]	

	val = memoized_fib_recurs(results, n-2)	
	val = val + memoized_fib_recurs(results, n-1)	
	results[n] = val	
	return val	

Alternative version…

•  Job j starts at sj, finishes at fj, and has weight or value vj
•  Two jobs are compatible if they don't overlap
•  Goal: find maximum weight subset of mutually

compatible jobs

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

•  Recall. Greedy algorithm works if all weights
are 1 (or equivalent).
 Consider jobs in ascending order of finish time
 Add job to subset if it is compatible with

previously chosen jobs

What happens to Greedy algorithm
if we add weights to the problem?

3/8/10

6

•  Recall. Greedy algorithm works if all weights
are 1.
 Consider jobs in ascending order of finish time
 Add job to subset if it is compatible with

previously chosen jobs
•  Observation. Greedy algorithm can fail

spectacularly if arbitrary weights are allowed

Time
0 1 2 3 4 5 6 7 8 9 10 11

a

weight = 999

weight = 1

b

Notation. Label jobs by finishing time: f1 ≤ f2 ≤ . . . ≤ fn
Def. p(j) = largest index i < j such that job i is compatible

with j
Ex: p(8) = 5, p(7) = 3, p(2) = 0

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

•  Assume we have an optimal solution
•  Notation. OPT(j) = value of optimal solution

to the problem consisting of job requests 1,
2, ..., j
 What is something obvious we can we say about

the optimal solution with respect to job j?

•  Notation. OPT(j) = value of optimal solution
to the problem consisting of job requests 1,
2, ..., j
 Case 1: OPT selects job j

 Case 2: OPT does not select job j

Explore both of these cases…
• What jobs are in OPT? Which are not?

Keep in mind our definition of p

Notation. Label jobs by finishing time: f1 ≤ f2 ≤ . . . ≤ fn
Def. p(j) = largest index i < j such that job i is compatible

with j
Ex: p(8) = 5, p(7) = 3, p(2) = 0

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

•  Notation. OPT(j) = value of optimal solution to
the problem consisting of job requests 1, 2, ..., j
 Case 1: OPT selects job j

•  can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }
•  must include optimal solution to problem consisting of

remaining compatible jobs 1, 2, ..., p(j)
 Case 2: OPT does not select job j

•  must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., j-1

optimal substructure

Formulate OPT(j) as a recurrence relation

3/8/10

7

•  Notation. OPT(j) = value of optimal solution to
the problem consisting of job requests 1, 2, ..., j
 Case 1: OPT selects job j

•  can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }
•  must include optimal solution to problem consisting of

remaining compatible jobs 1, 2, ..., p(j)
 Case 2: OPT does not select job j

•  must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., j-1

Formulate OPT(j) in terms
of smaller subproblems

Which should we choose?

Two options: Opt(j) = vj + OPT(p(j))
 Opt(j) = Opt(j-1)

optimal substructure

•  Notation. OPT = value of optimal solution to the
problem consisting of job requests 1, 2, ..., j
 Case 1: OPT selects job j

•  can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }
•  must include optimal solution to problem consisting of

remaining compatible jobs 1, 2, ..., p(j)
 Case 2: OPT does not select job j

•  must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., j-1

€

OPT(j) =
0 if j = 0

max v j + OPT(p(j)), OPT(j −1){ } otherwise
⎧
⎨
⎩

Choose the better of
the two solutions

•  Finish reading Chapter 5, start Chapter 6
 5.2-5.5
 6 – front matter, 6.1

•  PS6 due Friday

