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•  Directed Graphs 
•  Topological Orderings 
•  DAGs 

•  Edge (u, v) goes from node u to node v 

•  Representation 
 Maintain both in and out edges of each node 

•  Def.  Node u and v are mutually reachable 
if there is a path from u  v and also a path 
from v  u 

•  Def.  A graph is strongly connected if every 
pair of nodes is mutually reachable 

•  Lemma.  Let s be any node.  G is strongly 
connected iff every node is reachable from s 
and s is reachable from every node 

s 

v 

u 

•  Determine if G is strongly connected in        
O(m + n) time 

strongly connected not strongly connected 

Hint: We can leverage an O(m+n) algorithm 

•  For any two nodes s and t in a directed 
graph, their strong components are either 
identical or disjoint 

Hint: Consider a node in common… 

•  For any two nodes s and t in a directed graph, 
their strong components are either identical or 
disjoint 

•  Proof. 
 Consider v in both strong components 

•  s v; v  s; vt; tv   ts, st (mutually 
reachable) 

•  As soon as there is one common node, then have 
identical strong components 

 On the other hand, consider s and t are not mutually 
reachable 
•  No node v that is in the strong component of each 

  What would it mean if there were? 



2/1/10 

2 

•  Def.  A DAG is a directed graph that contains no 
directed cycles. 

•  Example.  Precedence constraints: edge (vi, vj) 
means vi must precede vj 
 Course prerequisite graph: course vi must be taken 

before vj 

 Compilation: module vi must be compiled before vj 

 Pipeline of computing jobs: output of job vi needed to 
determine input of job vj v2 v3 

v6 v5 v4 

v7 v1 

a DAG: 

•  Problem: Given a set of tasks with 
dependencies, what is a valid order in which 
the tasks could be performed? 

v2 v3 

v6 v5 v4 

v7 v1 

•  Problem: Given a set of tasks with 
dependencies, what is a valid order in which the 
tasks could be performed? 

•  Def.  A topological order of a directed graph  
G = (V, E) is an ordering of its nodes as v1, v2, 
…, vn so that for every edge (vi, vj), i < j. 

a DAG 
a topological ordering 

All edges point “forward” 

v2 v3 

v6 v5 v4 

v7 v1 

v1 v2 v3 v4 v5 v6 v7 

•  Lemma.  If G has a topological order, then G 
is a DAG. 

•  Proof: What if G has a cycle and a 
topological order? 

v1 vi vj vn 

the supposed topological order:  v1, …, vn 

the directed cycle C 

Why isn’t this valid? 

•  Lemma.  If G has a topological order, then G is a DAG. 
•  Pf.  (by contradiction) 

  Suppose that G has a topological order v1, …, vn and that G 
also has a directed cycle C. 

  Let vi be the lowest-indexed node in C, and let vj be the node 
on C just before vi; thus (vj, vi) is an edge 

  By our choice of i (lowest-indexed node), i < j 
  Since (vj, vi) is an edge and v1, …, vn is a topological order, 

we must have j < i, a contradiction.   ▪ 

v1 vi vj vn 

the directed cycle C 

the supposed topological order:  v1, …, vn 
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•  Does every DAG have a topological 
ordering? 
 If so, how do we compute one? 

•  Does every DAG have a topological 
ordering? 
 If so, how do we compute one? 

• What would we need to be able to create a 
topological ordering? 
 What are some characteristics of this graph? 

v1 v2 v3 v4 v5 v6 v7 

•  Does every DAG have a topological 
ordering? 
 If so, how do we compute one? 

• What would we need to be able to create a 
topological ordering? 
 What are some characteristics of this graph? 

Need someplace to start: 
a node with no incoming 
edges (no dependencies) 

Note that both v1 and v2  
have no incoming edges 

v1 v2 v3 v4 v5 v6 v7 

•  Lemma.  If G is a DAG, then G has a node 
with no incoming edges 
 This is our starting point of the topological 

ordering 

•  How to prove? 

•  Lemma.  If G is a DAG, then G has a node 
with no incoming edges 

•  Proof idea: Consider if there is no node 
without incoming edges 
 What does that mean? 
 How can we get to a contradiction? 

•  Lemma.  If G is a DAG, then G has a node with no incoming 
edges. 

•  Pf.  (by contradiction) 
  Suppose that G is a DAG and every node has at least one incoming 

edge 
  Pick any node v, and follow edges backward from v. 

•  Since v has at least one incoming edge (u, v), walk backward to u 
  Since u has at least one incoming edge (t, u), walk backward to t 
  Repeat until we visit a node, say k, twice 

•  Has to happen at least by n+1 steps (Why?) 
  Let C denote the sequence of nodes encountered between 

successive visits to k.  C is a cycle.   ▪ 

k t u v 
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•  Claim: If there is a node with no incoming 
edges, can create a topological ordering 

•  Think about a DAG with only one node.  
What is its topological ordering? 

•  Only two nodes? 

•  Three nodes? 
 What are the DAG, TO possibilities? 

• What are the possibilities? 

Can’t add any 
more edges 

without creating 
a cycle. 

•  Lemma.  If G is a DAG, then G has a topological 
ordering. 

•  Pf.  (by induction on n) 
 Base case: true if n = 1 
 Given DAG on n > 1 nodes, find a node v with no 

incoming edges 
 G - { v } is a DAG, since deleting v cannot create cycles 
 By inductive hypothesis, G - { v } has a topological 

ordering 
 Place v first in topological ordering; then append nodes 

of G - { v } in topological order. 
 Valid since v has no incoming edges.   ▪ 

DAG 
v 

•  Lemma.  If G is a DAG, then G has a 
topological ordering. 

•  Algorithm: 

DAG 
v 

Find a node v with no incoming edges	
Order v first	
Delete v from G	
Recursively compute a topological ordering of G-{v}	

	and append this order after v 

v1 

Topological order:   

v2 v3 

v6 v5 v4 

v7 v1 

v2 

Topological order:  v1 

v2 v3 

v6 v5 v4 

v7 
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v3 

Topological order:  v1, v2 

v3 

v6 v5 v4 

v7 

v4 

Topological order:  v1, v2, v3 

v6 v5 v4 

v7 

v5 

Topological order:  v1, v2, v3, v4 

v6 v5 

v7 

v6 

Topological order:  v1, v2, v3, v4, v5 

v6 

v7 

v7 

Topological order:  v1, v2, v3, v4, v5, v6 

v7 

Topological order:  v1, v2, v3, v4, v5, v6, v7. 

v2 v3 

v6 v5 v4 

v7 v1 

v1 v2 v3 v4 v5 v6 v7 
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• Where are the costs? 
Find a node v with no incoming edges	
Order v first	
Delete v from G	
Recursively compute a topological ordering of G-{v}	

	and append this order after v 

• Where are the costs? 

•  Find a node without incoming edges and 
delete it: O(n) 

•  Repeat on all nodes 
•  O(n2) 

Can we do better? 

Find a node v with no incoming edges	
Order v first	
Delete v from G	
Recursively compute a topological ordering of G-{v}	

	and append this order after v 

•  Theorem. Find a topological order in O(m + n) 
time 

•  Pf.   
 Maintain the following information: 

•  count[w] = remaining number of incoming edges 
•  S = set of remaining nodes with no incoming edges 

  Initialization: O(m + n) via single scan through graph 
 Update: to delete v 

•  Remove v from S 
•  Decrement count[w] for all edges from v to w 

  Add w to S if count[w] hits 0 
•  O(1) per edge    ▪ 

•  Talk: “A Mathematician's Year on Capitol 
Hill” 

•  Katherine Crowley, W&L Mathematics 
Department 

•  Time: Wednesday, February 3, 3:30 p.m. 
•  Place: Robinson Hall, Room 6 
•  10 points towards problem set grade 

•  Finish reading Chapter 3 
 Wikis for Wednesday 

•  For Friday: Problem Set 3 
•  Friday: Handout exam 

 Next Wednesday – work period 
•  Ask questions 


