
3/5/10

1

•  Divide and conquer
 Closest pair of points
 Integer multiplication
 Matrix multiplication

•  Divide-and-conquer process
 Break up problem into several parts
 Solve each part recursively
 Combine solutions to sub-problems into overall

solution
•  Most common usage

 Break up problem of size n into two equal parts
of size ½n

 Solve two parts recursively
 Combine two solutions into overall solution

Divide et impera.
Veni, vidi, vici.
 - Julius Caesar

•  Use recurrences to analyze/determine the
run time of divide and conquer algorithms
 Number of sub problems
 Size of sub problems
 Number of times divided (number of levels)
 Cost of merging problems

•  How to solve
 Unrolling
 Substitution

•  Algorithms and data structures for
geometrical objects
 Points, line segments, polygons, etc.
 Common motivator: large data sets  efficiency

•  Some Applications
 Graphics
 Robotics

•  motion planning and visibility problems
 Geographic information systems (GIS)

•  geometrical location and search, route planning

•  Closest pair. Given n points in the plane,
find a pair with smallest Euclidean distance
between them.
 Special case of nearest neighbor, Euclidean

MST, Voronoi

•  Brute force?
fast closest pair inspired fast algorithms
for these problems

3/5/10

2

•  Closest pair. Given n points in the plane,
find a pair with smallest Euclidean distance
between them.
 Special case of nearest neighbor, Euclidean

MST, Voronoi.
•  Brute force. Check all pairs of points p and q

with Θ(n2) comparisons

•  How could we solve this problem?

• What is its running time?

•  How could we solve this problem?
 Sort the points

•  Monotonically increasing x/y coordinates
•  No closer points than neighbors in sorted list

 Step through, looking at the distances between
each pair

• What is its running time?
 O(n logn)

Why won’t this work for 2D?

•  Closest pair. Given n points in the plane, find a
pair with smallest Euclidean distance between
them.
 Special case of nearest neighbor, Euclidean MST,

Voronoi.
•  Brute force. Check all pairs of points p and q

with Θ(n2) comparisons
•  1-D version. O(n log n)

 Easy if points are on a line
•  Assumption. No two points have same x

coordinate to make presentation cleaner

•  Divide. Sub-divide region into 4 quadrants

L

•  Divide. Sub-divide region into 4 quadrants
•  Obstacle. Impossible to ensure n/4 points in

each piece

L

3/5/10

3

•  Divide: draw vertical line L so that roughly
½n points on each side

L

How do we implement this?

•  Divide: draw vertical line L so that roughly ½n
points on each side

•  Conquer: find closest pair in each side
recursively

12

21

L

•  Divide: draw vertical line L so that roughly ½n points on each side
•  Conquer: find closest pair in each side recursively
•  Combine: find closest pair with one point in each side
•  Return best of 3 solutions

12

21
8

L

seems like Θ(n2)

Do we need to check all pairs?

•  Find closest pair with one point in each side,
assuming that distance < δ
 where δ = min(left_min_dist, right_min_dist)

12

21

δ = min(12, 21)

L

•  Find closest pair with one point in each side,
assuming that distance < δ.
 Observation: only need to consider points within
δ of line L.

12

21

δ

L

δ = min(12, 21)

•  Find closest pair w/ 1 point in each side, assuming that
distance < δ.
 Observation: only consider points within δ of line L
 Sort points in 2δ-strip by their y coordinate

12

21

1
2

3

4 5
6

7

δ

L

δ = min(12, 21)

How many points are
within that region?

3/5/10

4

•  Find closest pair w/ 1 point in each side, assuming that distance <
δ.
  Observation: only consider points within δ of line L
  Sort points in 2δ-strip by their y coordinate

•  Only checks distances of those within 11 positions in sorted list!

12

21

1
2

3

4 5
6

7

δ

L

δ = min(12, 21)

•  Def. Let si be the point in the
2δ-strip, with the ith smallest y-
coordinate

•  Claim. If |i – j| ≥ 12, then the
distance between si and sj is at
least δ
 What is the distance of the box?
 How many points can be in a

box?
 When do we know that points are

> δ apart?
δ

27

29
30

31

28

26

25

δ

½δ

½δ

½δ

39

i

j

Prepare minds to be blown…

•  Def. Let si be the point in the 2δ-
strip, with the ith smallest y-
coordinate

•  Claim. If |i – j| ≥ 12, then the
distance between si and sj is at least
δ

•  Pf.
  No two points lie in same ½δ-by-½δ

box
  Two points at least 2 rows apart

have distance ≥ 2(½δ). ▪
•  Fact. Still true if we replace 12 with

7.

δ

27

29
30

31

28

26

25

δ

½δ

 2 rows
½δ

½δ

39

i

j

Cost of combining is therefore…?

Closest-Pair(p1, …, pn) 	
 Compute separation line L such that half the points  
 are on one side and half on the other side.	

 δ1 = Closest-Pair(left half)	
 δ2 = Closest-Pair(right half)	
 δ = min(δ1, δ2)	

 Delete all points further than δ from separation
line L	

 Sort remaining points by y-coordinate.	

 Scan points in y-order and compare distance between  
 each point and next 7 neighbors. If any of these  
 distances is less than δ, update δ.	

 return δ	

Closest-Pair(p1, …, pn) 	
 Compute separation line L such that half the points  
 are on one side and half on the other side.	

 δ1 = Closest-Pair(left half)	
 δ2 = Closest-Pair(right half)	
 δ = min(δ1, δ2)	

 Delete all points further than δ from separation
line L	

 Sort remaining points by y-coordinate.	

 Scan points in y-order and compare distance between  
 each point and next 7 neighbors. If any of these  
 distances is less than δ, update δ.	

 return δ	

O(n log n)

2T(n / 2)

O(n)

O(n log n)

O(n)

Total running time? T(n) = 2 T(n/2) + O(n log n)

•  Running time.

•  Can we achieve O(n log n)?

•  Yes. Don't sort points in strip from scratch
each time.
 Each recursive returns two lists: all points sorted

by y coordinate, and all points sorted by x
coordinate

 Sort by merging two pre-sorted lists

€

T(n) ≤ 2T n /2() + O(n) ⇒ T(n) = O(n logn)

€

T(n) ≤ 2T n /2() + O(n log n) ⇒ T(n) = O(n log2 n)

Solved in 5.2

3/5/10

5

•  Add. Given two n-digit integers a and b,
compute a + b.
 Algorithm?
 Runtime?

1

0 1 1 1

1 1 0 1 +
0 1 0 1

1 1 1
0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1 1

O(n) operations

•  Multiply. Given two n-digit integers a and b,
compute a × b
Algorithm?
Runtime?

1

1

0

0

1

1

0

1

1

1

0

1

1

1

1

0 *

•  Multiply. Given two n-digit integers a and b,
compute a × b.
 Brute force solution: Θ(n2) bit operations

1

1

0

0

0

1

1

1

0

0

1

1

1

1

0

0

1

1

1

1

0

1

0

1

0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1

1

0

1

1

1

1

1

0

0

*

Goal: Faster algorithm

•  To multiply two n-digit integers:
 Multiply four ½ n-digit integers
 Add two ½ n-digit integers and shift to obtain result

€

x = 2n / 2 ⋅ x1 + x0

y = 2n / 2 ⋅ y1 + y0

xy = 2n / 2 ⋅ x1 + x0() 2n / 2 ⋅ y1 + y0() = 2n ⋅ x1y1 + 2n / 2 ⋅ x1y0 + x0 y1() + x0 y0

Higher order bits Lower order bits

What is the recurrence relation?
•  How many subproblems?
•  What is merge cost?
•  What is its runtime?

Shift

A B C D

•  To multiply two n-digit integers:
 Multiply four ½ n-digit integers
 Add two ½ n-digit integers and shift to obtain result

€

x = 2n / 2 ⋅ x1 + x0

y = 2n / 2 ⋅ y1 + y0

xy = 2n / 2 ⋅ x1 + x0() 2n / 2 ⋅ y1 + y0() = 2n ⋅ x1y1 + 2n / 2 ⋅ x1y0 + x0 y1() + x0 y0

Higher order bits Lower order bits

Shift

A B C D

€

T(n) = 4T n /2()
recursive calls
    

 + Θ(n)
add, shift
   ⇒ T(n) =Θ(n2)

assumes n is a power of 2
Not an improvement

over brute force

3/5/10

6

• Whenever you develop an algorithm,
analyze its running time (e.g., Prob 3)

•  Be explicit
 Explicitly state the metric, who is the pronoun

(say which algorithm), etc.
 Creative in solution, not in explanation

•  Continue reading Chapter 5, start Chapter 6
•  PS6 due next Friday

 May want to try to implement problems 2 and 3
(to some extent) to help ensure that your
algorithm is correct

