
4/2/10

1

•  Network Flow Applications
 Bipartite Matching
 Circulation

•  The value of a flow f is v(f) = ∑e out of s f(e)

4

0

0

0

0 0

0 4 4

0
0

0

Value = 4

0

capacity
flow

0

4

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4

•  Input: undirected, bipartite graph G = (L ∪ R, E)
  Edges: one end in L, one end in R

•  Matching M ⊆ E such that each node appears in at most
1 edge in M.

1

3

5

1'

3'

5'

2

4

2'

4'

matching

1-2', 3-1', 4-5'

R L

V

Problem: find matching of largest possible size

Can we do better?

•  Input: undirected, bipartite graph G = (L ∪ R, E)
  Edges: one end in L, one end in R

•  Matching M ⊆ E such that each node appears in at most
1 edge in M.

V

1

3

5

1'

3'

5'

2

4

2'

4'

R L

max matching

1-1', 2-2', 3-3' 4-4'

•  Create digraph G' = (L ∪ R ∪ {s, t}, E')
•  Direct all edges from L to R, and assign unit capacity
•  Add source s, and unit capacity edges from s to each node in L
•  Add sink t, and unit capacity edges from each node in R to t

1

3

5

2

4

s

1

1'

3'

5'

2'

4'

t

1

1

R L

G'

Why does
this work?

4/2/10

2

•  Theorem. Max cardinality matching in G =
value of max flow in G'.

•  Proof: Need to show in both directions

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

1 1

3

5

1'

3'

5'

2

4

2'

4'

G' G

•  Theorem. Max cardinality matching in G = value of
max flow in G'.

•  Pf. 
 Given max matching M of cardinality k.
 Consider flow f that sends 1 unit along each of k paths.
  f is a flow and has cardinality k. ▪

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

1 1

3

5

1'

3'

5'

2

4

2'

4'

G' G

•  Theorem. Max cardinality matching in G = value of max flow in G'.
•  Pf. 

  Let f be a max flow in G' of value k.
  Integrality theorem ⇒ k is integral and can assume f is 0-1.
  Consider M = set of edges from L to R with f(e) = 1.

•  each node in L and R participates in at most one edge in M
•  |M| = k: consider cut (L ∪ s, R ∪ t) ▪

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

1 1

3

5

1'

3'

5'

2

4

2'

4'

G' G

•  Def. A matching M ⊆ E is perfect if each
node appears in exactly one edge in M.

When does a bipartite graph
have a perfect matching?

How could we figure out if a
matching is perfect?

•  Def. A matching M ⊆ E is perfect if each
node appears in exactly one edge in M.

•  Structure of bipartite graphs with perfect
matchings:
 Clearly we must have |L| = |R|.
 What other conditions are necessary?
 What conditions are sufficient?

When does a bipartite graph
have a perfect matching?

•  Let S be a subset of nodes, and let Γ(S) be the set of
nodes adjacent to nodes in S.

•  Observation. If a bipartite graph G = (L ∪ R, E) has a
perfect matching, then |Γ (S)| ≥ |S| for all subsets S ⊆
L.

•  Pf. Each node in S has to be matched to a different
node in Γ(S).

No perfect
matching:

S = { 2, 4, 5 }
Γ(S) = { 2', 5' }.

1

3

5

1'

3'

5'

2

4

2'

4'

L R

4/2/10

3

•  Let G = (L ∪ R, E) be a bipartite graph with
|L| = |R|. Then, G has a perfect matching iff
|Γ (S)| ≥ |S| for all subsets S ⊆ L.

No perfect
matching:

S = { 2, 4, 5 }
Γ(S) = { 2', 5' }.

1

3

5

1'

3'

5'

2

4

2'

4'

L R

Need to prove in
both directions…

•  Show: G has a perfect matching 
|Γ (S)| ≥ |S| for all subsets S ⊆ L.

•  Pf. ⇒ This was the previous observation.

No perfect
matching:

S = { 2, 4, 5 }
Γ(S) = { 2', 5' }.

1

3

5

1'

3'

5'

2

4

2'

4'

L R

•  Pf. ⇐ Suppose G does not have a perfect matching
  Formulate as a max flow problem and let (A, B) be min cut in G’
  By max-flow min-cut, cap(A, B) < | L |
  Define LA = L ∩ A, LB = L ∩ B , RA = R ∩ A
  cap(A, B) = | LB

 | + | RA
 |.

  Since min cut can't use ∞ edges: Γ(LA) ⊆ RA.
  |Γ (LA)| ≤ | RA

 | = cap(A, B) - | LB
 | < | L | - | LB

 | = | LA
 |.

  Choose S = LA . ▪

LA = {2, 4, 5}
LB = {1, 3}
RA = {2', 5'}
Γ (LA) = {2', 5'}

s

1

3

5

1'

3'

5'

t

2

4
4'

1 ∞

2'

1

1

1

A

∞ G'

∞

If max flow < n,
then |Γ (S)| < |S|

• Which max flow algorithm to use for bipartite
matching?
 Generic augmenting path: O(m val(f*)) = O(mn)
 Capacity scaling: O(m2 log C) = O(m2)
 Shortest augmenting path: O(m n1/2)

•  Some problems with non-trivial combinatorial
searches can be formulated as max flow or
min cut in a directed graph

4/2/10

4

•  Circulation with demands
 Directed graph G = (V, E)
 Edge capacities c(e), e ∈ E
 Node supply and demands d(v), v ∈ V

demand if d(v) > 0; supply if d(v) < 0;
transshipment if d(v) = 0

•  Circulation with demands
 Directed graph G = (V, E)
 Edge capacities c(e), e ∈ E
 Node supply and demands d(v), v ∈ V

•  Def. A circulation is a function that satisfies:
 For each e ∈ E: 0 ≤ f(e) ≤ c(e) (capacity)
 For each v ∈ V: (conservation)

€

f (e)
e in to v
∑ − f (e)

e out of v
∑ = d (v)

demand if d(v) > 0; supply if d(v) < 0; transshipment if d(v) = 0

Circulation problem: given (V, E, c, d),
does there exist a circulation?

(Can we satisfy demand with supply?)

•  Necessary condition:
 sum of supplies = sum of demands

3

10 6
-7

-8

11

-6

4
9
7

3

10 0

7

4
4

6

6
7
1

4 2

flow

capacity

€

d (v)
v : d (v) > 0
∑ = − d (v)

v : d (v) < 0
∑ =: D

demand

supply

•  Necessary condition:
 sum of supplies = sum of demands

•  Pf. Sum conservation constraints for every
demand node v.

3

10 6
-7

-8

11

-6

4
9
7

3

10 0

7

4
4

6

6
7
1

4 2

flow

capacity

€

d (v)
v : d (v) > 0
∑ = − d (v)

v : d (v) < 0
∑ =: D

demand

supply

G:
supply

3

10 6
-7

-8

11

-6

4
9

10 0

7

4

7

4

demand

•  Add new source s and sink t.
•  For each v with d(v) < 0, add edge (s, v) with capacity -d(v).
•  For each v with d(v) > 0, add edge (v, t) with capacity d(v).
•  Claim: G has circulation iff G' has max flow of value D.

G':
supply

3

10 6 9

0

7

4

7

4

s

t

10 11

7 8 6

saturates all edges
leaving s and entering t

demand

4/2/10

5

•  Integrality theorem. If all capacities and
demands are integers, and there exists a
circulation, then there exists one that is
integer-valued.

•  Pf. Follows from max flow formulation and
integrality theorem for max flow.

•  Given (V, E, c, d), there does not exist a
circulation iff there exists a node partition (A,
B) such that

 Σv∈B dv > cap(A, B)

•  Pf idea. Look at min cut in G'.

demand by nodes in B exceeds
supply of nodes in B + max capacity
of edges going from A  B

•  Feasible circulation.
 Directed graph G = (V, E).
 Edge capacities c(e) and lower bounds  (e), e ∈ E.
 Node supply and demands d(v), v ∈ V.

•  Def. A circulation is a function that satisfies:
 For each e ∈ E: 0 ≤  (e) ≤ f(e) ≤ c(e) (capacity)
 For each v ∈ V: (conservation)

€

f (e)
e in to v
∑ − f (e)

e out of v
∑ = d (v)

Circulation problem with lower bounds.
Given (V, E, , c, d), does there exists a circulation?

Force flow to make
use of certain edges •  Model lower bounds with demands

 Send (e) units of flow along edge e
 Update demands of both endpoints

v w [2, 9]

lower bound upper
bound

v w
d(v) d(w) d(v) + 2 d(w) - 2

G G'

7

capacity

•  Model lower bounds with demands
 Send (e) units of flow along edge e
 Update demands of both endpoints

•  Theorem. There exists a circulation in G iff there
exists a circulation in G'. If all demands, capacities,
and lower bounds in G are integers, then there is a
circulation in G that is integer-valued.

•  Pf sketch. f(e) is a circulation in G iff f'(e) = f(e) - (e)
is a circulation in G'.

v w [2, 9]

lower bound upper
bound

v w
d(v) d(w) d(v) + 2 d(w) - 2

G G'

7

capacity

