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•  Network Flow Applications 
 Bipartite Matching 
 Circulation 

•  The value of a flow f is v(f) = ∑e out of s  f(e)         
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•  Input: undirected, bipartite graph G = (L ∪ R, E) 
  Edges: one end in L, one end in R 

•  Matching M ⊆ E such that each node appears in at most 
1 edge in M. 
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Problem: find matching of largest possible size 

Can we do better? 

•  Input: undirected, bipartite graph G = (L ∪ R, E) 
  Edges: one end in L, one end in R 

•  Matching M ⊆ E such that each node appears in at most 
1 edge in M. 
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•  Create digraph G' = (L ∪ R ∪ {s, t},  E' ) 
•  Direct all edges from L to R, and assign unit capacity 
•  Add source s, and unit capacity edges from s to each node in L 
•  Add sink t, and unit capacity edges from each node in R to t 
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this work? 
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•  Theorem. Max cardinality matching in G = 
value of max flow in G'. 

•  Proof: Need to show in both directions 
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•  Theorem. Max cardinality matching in G = value of 
max flow in G'. 

•  Pf.   
 Given max matching M of cardinality k. 
 Consider flow f that sends 1 unit along each of k paths. 
  f is a flow and has cardinality k.   ▪ 
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•  Theorem. Max cardinality matching in G = value of max flow in G'. 
•  Pf.   

  Let f be a max flow in G' of value k. 
  Integrality theorem  ⇒  k is integral and can assume f is 0-1. 
  Consider M = set of edges from L to R with f(e) = 1. 

•  each node in L and R participates in at most one edge in M 
•  |M| = k:  consider cut (L ∪ s, R ∪ t)   ▪ 
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•  Def.  A matching M ⊆ E is perfect if each 
node appears in exactly one edge in M. 

When does a bipartite graph 
have a perfect matching? 

How could we figure out if a 
matching is perfect? 

•  Def.  A matching M ⊆ E is perfect if each 
node appears in exactly one edge in M. 

•  Structure of bipartite graphs with perfect 
matchings: 
 Clearly we must have |L| = |R|. 
 What other conditions are necessary? 
 What conditions are sufficient? 

When does a bipartite graph 
have a perfect matching? 

•  Let S be a subset of nodes, and let Γ(S) be the set of 
nodes adjacent to nodes in S. 

•  Observation. If a bipartite graph G = (L ∪ R, E) has a 
perfect matching, then |Γ (S)| ≥ |S| for all subsets S ⊆ 
L. 

•  Pf.  Each node in S has to be matched to a different 
node in Γ(S). 

No perfect 
matching: 

S = { 2, 4, 5 } 
Γ(S) = { 2', 5' }. 
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•  Let G = (L ∪ R, E) be a bipartite graph with  
|L| = |R|. Then, G has a perfect matching iff  
|Γ (S)| ≥ |S| for all subsets S ⊆ L. 

No perfect 
matching: 

S = { 2, 4, 5 } 
Γ(S) = { 2', 5' }. 
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Need to prove in 
both directions… 

•  Show: G has a perfect matching   
|Γ (S)| ≥ |S| for all subsets S ⊆ L. 

•  Pf.  ⇒  This was the previous observation. 

No perfect 
matching: 

S = { 2, 4, 5 } 
Γ(S) = { 2', 5' }. 
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•  Pf.  ⇐  Suppose G does not have a perfect matching 
  Formulate as a max flow problem and let (A, B) be min cut in G’ 
  By max-flow min-cut, cap(A, B) < | L | 
  Define LA = L ∩ A,  LB = L ∩ B ,  RA = R ∩ A 
  cap(A, B)  =  | LB

 | + | RA
 |. 

  Since min cut can't use ∞ edges:  Γ(LA) ⊆  RA. 
  |Γ (LA )| ≤ | RA

 |  =  cap(A, B) - | LB
 |  <  | L | - | LB

 |  =  | LA
 |. 

  Choose S = LA .  ▪ 

LA = {2, 4, 5} 
LB = {1, 3} 
RA = {2', 5'} 
Γ (LA) = {2', 5'} 
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If max flow < n, 
then |Γ (S)| < |S|  

• Which max flow algorithm to use for bipartite 
matching? 
 Generic augmenting path: O(m val(f*) ) = O(mn) 
 Capacity scaling: O(m2 log C ) = O(m2) 
 Shortest augmenting path: O(m n1/2) 

•  Some problems with non-trivial combinatorial 
searches can be formulated as max flow or 
min cut in a directed graph 
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•  Circulation with demands 
 Directed graph G = (V, E) 
 Edge capacities c(e), e ∈ E 
 Node supply and demands d(v), v ∈ V 

demand if d(v) > 0; supply if d(v) < 0;  
transshipment if d(v) = 0 

•  Circulation with demands 
 Directed graph G = (V, E) 
 Edge capacities c(e), e ∈ E 
 Node supply and demands d(v), v ∈ V 

•  Def.  A circulation is a function that satisfies: 
 For each e ∈ E:  0 ≤ f(e) ≤ c(e)          (capacity) 
 For each v ∈ V:            (conservation) 

  

€ 

f (e)
e in to v
∑ − f (e)

e out of v
∑ = d (v)

demand if d(v) > 0; supply if d(v) < 0; transshipment if d(v) = 0 

Circulation problem: given (V, E, c, d),  
does there exist a circulation? 

(Can we satisfy demand with supply?) 

•  Necessary condition:   
 sum of supplies = sum of demands 
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•  Necessary condition:   
 sum of supplies = sum of demands 

•  Pf. Sum conservation constraints for every 
demand node v. 
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•  Add new source s and sink t. 
•  For each v with d(v) < 0, add edge (s, v) with capacity -d(v). 
•  For each v with d(v) > 0, add edge (v, t) with capacity  d(v). 
•  Claim: G has circulation iff G' has max flow of value D. 
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•  Integrality theorem.  If all capacities and 
demands are integers, and there exists a 
circulation, then there exists one that is 
integer-valued. 

•  Pf.  Follows from max flow formulation and 
integrality theorem for max flow. 

•  Given (V, E, c, d), there does not exist a 
circulation iff there exists a node partition (A, 
B) such that  

  Σv∈B dv > cap(A, B) 

•  Pf idea.  Look at min cut in G'. 

demand by nodes in B exceeds 
supply of nodes in B + max capacity 
of edges going from A  B 

•  Feasible circulation. 
 Directed graph G = (V, E).   
 Edge capacities c(e) and lower bounds  (e), e ∈ E. 
 Node supply and demands d(v), v ∈ V. 

•  Def.  A circulation is a function that satisfies: 
 For each e ∈ E: 0 ≤  (e) ≤ f(e) ≤ c(e)       (capacity) 
 For each v ∈ V:     (conservation) 

  

€ 

f (e)
e in to v
∑ − f (e)

e out of v
∑ = d (v)

Circulation problem with lower bounds. 
Given (V, E, , c, d), does there exists a circulation? 

Force flow to make 
use of certain edges •  Model lower bounds with demands 

 Send (e) units of flow along edge e 
 Update demands of both endpoints 

v w [2, 9] 
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•  Model lower bounds with demands 
 Send (e) units of flow along edge e 
 Update demands of both endpoints 

•  Theorem.  There exists a circulation in G iff there 
exists a circulation in G'.  If all demands, capacities, 
and lower bounds in G are integers, then there is a 
circulation in G that is integer-valued. 

•  Pf sketch.  f(e) is a circulation in G iff f'(e) = f(e) - (e) 
is a circulation in G'. 
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