
2/8/10

1

•  Greedy Algorithms
 Interval partitioning
 Minimizing Lateness

•  Greedy stays ahead
•  Exchange argument

•  Consider jobs (or whatever) in some order
 Decision: What order is best?

•  Take each job provided it's compatible with
the ones already taken

•  At each step, take as much as you can get
 Feasible – satisfy problem’s constraints
 Locally optimal – best local choice among

available feasible choices
 Irrevocable – after decided, no going back

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

a, b, c all contain 9:30

•  Def. The depth of a set of open intervals is the
maximum number that contain any given time.

•  Key observation. # of classrooms needed ≥
depth.

•  Ex: Depth of schedule below = 3 ⇒ schedule
below is optimal.

Does there always exist a schedule
equal to depth of intervals?

•  Does there always exist a schedule equal to
depth of intervals?

•  Can we make decisions locally to get a
global optimum?
 Or are there long-range obstacles that require

more resources?

•  Consider lectures in increasing order of start
time: assign lecture to any compatible
classroom

Sort intervals by starting time so that s1 ≤ s2 ≤ ... ≤ sn	
d = 0	
for j = 1 to n 	
 if (lecture j is compatible with some classroom k)	
 schedule lecture j in classroom k	
 else	
 allocate a new classroom d + 1	
 schedule lecture j in classroom d + 1	
 d = d + 1 	

number of allocated classrooms

Analyze algorithm

2/8/10

2

Sort intervals by starting time so that s1 ≤ s2 ≤ ... ≤ sn	
d = 0	
for j = 1 to n 	
 if (lecture j is compatible with some classroom k)	
 schedule lecture j in classroom k	
 else	
 allocate a new classroom d + 1	
 schedule lecture j in classroom d + 1	
 d = d + 1 	

•  Consider lectures in increasing order of start time:
assign lecture to any compatible classroom

•  Implementation: O(n log n)
 For each classroom k, maintain the finish time of the last

job added.
 Keep the classrooms in a priority queue.

number of allocated classrooms

•  Observation. Greedy algorithm never schedules two
incompatible lectures in the same classroom

•  Theorem. Greedy algorithm is optimal
•  Pf Intuition

 When do we add more classrooms?
 When would we add the d+1 classroom?

•  Observation. Greedy algorithm never schedules two
incompatible lectures in the same classroom

•  Theorem. Greedy algorithm is optimal
•  Pf.

  Let d = number of classrooms that greedy algorithm allocates
  Classroom d is opened because we needed to schedule a job,

say j, that is incompatible with all d-1 other classrooms
  Since we sorted by start time, all these incompatibilities are

caused by lectures that start no later than sj
  Thus, we have d lectures overlapping at time sj + ε
  d is the depth of the set of lectures

h

c

a e

f

g i

j d

b

•  Specifically, produce an optimal solution

•  Two approaches:
 Greedy algorithm stays ahead

•  Does better than any other algorithm at each step
 Exchange argument

•  Transform any solution into a greedy solution

1.  Define your solutions
  Describe the form your greedy solution takes and what form some other

solution takes (possibly the optimal solution)
  Example: Let A be the solution constructed by the greedy algorithm and O

be an optimal solution.
2.  Find a measure

  Find a measure by which greedy stays ahead of the optimal solution
  Ex: Let a1, . . . , ak be the first k measures of greedy algorithm and

o1 , . . . , om be the first m measures of other solution (sometimes m = k)
3.  Prove greedy stays ahead

  Show that greedy’s partial solutions constructed are always just as good
as the initial segments of the optimal solution, based on the measure

  Ex: for all indices r ≤ min(k,m), prove by induction that ar ≥ or or ar ≤ or
  Use the greedy algorithm to help you argue the inductive step

4.  Prove optimality
  Prove that since greedy stays ahead of the other solution with respect to

the measure, then the greedy solution is optimal.

Exchange argument

2/8/10

3

•  Single resource processes one job at a time
•  Job j requires tj units of processing time and is due at

time dj (its deadline)
•  If j starts at time sj, it finishes at time fj = sj + tj
•  Lateness: j = max { 0, fj - dj }
•  Goal: schedule all jobs to minimize maximum

lateness L = max j

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14 d2 = 8 d6 = 15 d1 = 6 d4 = 9 d3 = 9

lateness = 0 lateness = 2 dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

max lateness = 6

Note: not a sum total

•  Greedy template. Consider jobs in some
order.

• What do we want to optimize?
• What order?

 Intuition of order?
 Counter examples for order being optimal?

•  Greedy template. Consider jobs in some
order.
 Shortest processing time first. Consider jobs in

ascending order of processing time tj.

 Smallest slack. Consider jobs in ascending
order of slack dj - tj.

Counter example

Counter example

dj

tj

100

1

1

10

10

2

dj

tj

2

1

1

10

10

2

•  Earliest deadline first.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14 d2 = 8 d6 = 15 d1 = 6 d4 = 9 d3 = 9

Sort n jobs by deadline so that d1 ≤ d2 ≤ … ≤ dn	
t = 0	
for j = 1 to n	
 Assign job j to interval [t, t + tj]	
 sj = t	
 fj = t + tj	
 t = t + tj	
output intervals [sj, fj]	

What can we say about this algorithm/its results?

•  Observation. There exists an optimal
schedule with no idle time

•  Observation. The greedy schedule has no
idle time

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

•  Goal: Prove greedy algorithm produces
optimal solution

•  Approach: Exchange argument
 Start with an optimal schedule Opt
 Gradually modify Opt

•  Preserving its optimality
 Transform into a schedule identical to greedy’s

schedule

2/8/10

4

•  Def. An inversion in schedule S is a pair of
jobs i and j such that:
di < dj but j scheduled before i

i j before swap

inversion

Can Greedy’s solution have any inversions?

•  Def. An inversion in schedule S is a pair of
jobs i and j such that:
di < dj but j scheduled before i

i j before swap

inversion

Greedy’s schedule has no inversions!

•  Claim. Swapping two adjacent jobs with the
same deadline does not increase the max
lateness

•  Pf Sketch. Let  be the lateness before the
swap, and let ’ be it afterwards
 Lateness of other jobs?
 Lateness of i? j?

i j

i j

before swap

after swap
f'j

fi

•  Claim. Swapping two adjacent jobs with the
same deadline does not increase the max
lateness

•  Pf. Let  be the lateness before the swap, and
let ’ be it afterwards
  Lateness remains the same for all other jobs:

•  'k = k for all k ≠ i, j
 Lateness of i before is fi-di = ti+tj-di
 Lateness of j after is fj’-dj = ti+tj-dj

•  But di= dj
i j

i j

before swap

after swap

f'j

fi

•  Claim. Swapping two adjacent, inverted jobs
reduces the number of inversions by one and
does not increase the max lateness
 How do we know inversions are adjacent?

•  Pf Setup. Let  be the lateness before the
swap, and let ’ be it afterwards
 What can we say about how i’s, j’s, and other jobs’

lateness changes?

i j

i j

before swap

after swap
f'j

fi
inversion

By def of inversion, di < dj

•  Claim. Swapping two adjacent, inverted jobs
reduces the number of inversions by one and
does not increase the max lateness.

•  Pf. Let  be the lateness before the swap,
and let ' be it afterwards
 'k = k for all k ≠ i, j
 'i ≤ i
 If job j is late:

€

ʹ′  j = ʹ′ f j − d j (definition)
= fi − d j (j finishes at time f i)
≤ fi − di (i < j)
≤  i (definition)

2/8/10

5

•  Read Chapter 4
 Wiki due next Wednesday

•  Exam 1
 Open book, open notes, open lecture notes
 NO OTHER RESOURCES
 I mention explicitly to analyze your algorithms’

running times. I will not do that in the future.
 Wed: half lecture, half questions

