
2/19/10

1

•  Data Compression

Large
File

Server Client Internet

Large
File

Server Client Internet

Compressed
File

Large
File

Large
File

Compressed
File

OR

•  Depends on your metrics, compression time/amount
•  Case 1 requires

 More network resources
  Less CPU time (server: compress; client: uncompress)

•  Case 2 requires
  Less network resources
 More CPU time (client and server)

•  Overall best
 Depends on file size, network speed, compression time/

amount
➡ Bigger files  Case 2

•  Computers use bits: 0s and 1s
•  Need to represent what we (humans) know

to what computers know

 Map symbol  unique sequence of 0s and 1s
 Process is called encoding

decimal, strings binary decimal, strings

•  Let’s say we want to encode characters
using 0s and 1s
 Lower case letters (26)
 Space
 Punctuation (, . ? ! ‘)

What is the least number of bits we would
we need to encode these characters?

•  32 characters to encode
 log2(32) = 5 bits
 Can’t use fewer bits

•  Examples:
 a  00000
 b  00001

•  Actual mapping from character to encoding
doesn’t matter
 Easier if have a way to compare …

2/19/10

2

•  Do we need an average of 5 bits/character
always?

•  What if we could use shorter encodings for
frequently used characters, like a, e, s, t?

•  Goal. Optimal encoding that takes advantage
of nonuniformity of letter frequencies

•  A fundamental problem for data compression
 Represent data as compactly as possible

•  Used for encoding messages over telegraph
•  Example of variable-length encoding

•  How are letters encoded?
•  How are letters differentiated?

•  Used for encoding messages over telegraph
•  Example of variable-length encoding

•  How are letters encoded?
 Dots, dashes
 Most frequent letters use shorter sequences

•  e  dot; t  dash; a  dot-dash
•  How are letters differentiated?

 Spaces in between letters
•  Otherwise, ambiguous

•  Encoding:
 e  dot; t  dash; a  dot-dash

•  Example: dot-dash-dot-dash could
correspond to

•  Encoding:
 e  dot; t  dash; a  dot-dash

•  Example: dot-dash-dot-dash could
correspond to
 etet
 aa
 eta
 aet

What’s the problem?

•  Ambiguity caused by encoding of one
character is a prefix of encoding of another

2/19/10

3

•  Problem: Encoding of one character is a
prefix of encoding of another

•  Solution: Prefix Codes: map letters to bit
strings such that no encoding is a prefix of
any other
 Won’t need artificial devices like spaces to

separate characters
•  Example encodings:

 Verify that no encoding is
 a prefix of another
 What is 0010000011101?	

a: 11 	d: 10	
b: 01 	e: 000	
c: 001	

•  For typical English messages, this set of
prefix codes is not the optimal set

• Why not?

a: 11 	d: 10	
b: 01 	e: 000	
c: 001	

•  For typical English messages, this set of
prefix codes is not the optimal set

• Why not?
 ‘e’ is more commonly used than other letters and

should therefore have a shorter encoding

a: 11 	d: 10	
b: 01 	e: 000	
c: 001	

•  Goal: minimize Average number of Bits
per Letter (ABL):

 Σx∈Sfrequency of x * length of encoding of x

•  fx: frequency that letter x occurs
•  γ(x): encoding of x

 |γ(x)|: length of encoding of x

•  Minimize ABL = Σx∈Sfx |γ(x)|

For all characters in our alphabet

•  ABL = Σx∈Sfx |γ(x)| = ?

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

a: 11	
b: 01	
c: 001	
d: 10	
e: 000	

handout

•  ABL = Σx∈Sfx |γ(x)| = ?
•  = .32 * 2 + .25 * 2 + .20 * 3 + .18 * 2 + .05 * 2
•  = 2.25

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

a: 11	
b: 01	
c: 001	
d: 10	
e: 000	

What about a fixed-length encoding?
Is it a prefix code? What is its ABL?

2/19/10

4

•  Is it a prefix code?
 Yes. Always look at fixed number of characters

• What is its ABL?
 ABL is the length of the encoding

•  For 5 characters, ABL is 3
•  Variable-length prefix code’s ABL (2.25) is an

improvement

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

a: 11	
b: 01	
c: 001	
d: 10	
e: 000	

•  ABL = Σx∈Sfx |γ(x)| = 2.23

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

a: 11	
b: 01	
c: 001	
d: 10	
e: 000	

Swap these because
c occurs more
frequently than d.
Give c the shorter
encoding

•  Given an alphabet and a set of frequencies
for the letters, produce optimal (most
efficient) prefix code
 Minimizes average number of bits per letter

•  Brute force
 Search space is complicated  all ways to map

letters to bit strings that adhere to prefix code
property

•  Build towards greedy approach
 Start: representing prefix codes

•  Exposes structure better than list of
mappings
 Each leaf node is a letter
 Follow path to the letter

•  Going left: 0
•  Going right: 1

Are these really prefix codes?
How could we show they weren’t?

2/19/10

5

•  Proof. If it weren’t: a letter’s encoding is a
prefix of another letter
 Letter is in the path of another letter
 But, all letters are leaf nodes

•  Contradiction

•  How do we build the binary tree for this
mapping?

•  Tree Rules:
 Each leaf node is a letter
 Follow path to the letter

•  Going left: 0
•  Going right: 1

•  All letters are in root node
•  For all letters in node

 If encoding begins with 0, letter belongs in left
subtree

 Otherwise (encoding begins with 1), letter
belongs in right subtree

 If last bit of encoding, make the letter a leaf node
of that subtree

 Shift encoding one bit
 Process left and right children

• What is the length of a letter’s encoding?

•  Define our optimal goal in tree terms

• What is the length of a letter’s encoding?
 Length of path from root to leaf  its depth

•  Define our optimal goal in tree terms
 ABL = Σx∈Sfx |γ(x)| = Σx∈Sfx depth(x)

• What do we want our tree to look like for the
optimal solution?
 How many leaves?
 How many internal nodes?

•  Think about parent nodes vs. child nodes
 When uniform frequencies?
 Nonuniform frequencies?

2/19/10

6

•  Claim. The binary tree corresponding to the
optimal prefix code is full, i.e., each internal
node has two children.

•  Proof?

•  Claim. The binary tree T corresponding to
the optimal prefix code is full, i.e., each
internal node has two children.

•  Proof. Assume that T has an internal node
with only one child
 Without loss of generality, assume left child

u

v:
 root of
Subtree

u

v

? ?

•  Claim. The binary tree T corresponding to
the optimal prefix code is full, i.e., each
internal node has two children.

•  Proof. Assume that T has an internal node
with only one child

u

v:
 root of
Subtree

u

v

v

Replace u with v  decrease depth  original wasn’t optimal

v:
 root of
Subtree

•  Two problems to solve:
 Creating the prefix code tree
 Labeling the prefix code tree with alphabet/

frequencies

•  Process: assume knowledge of optimal solution
to gain insight into finding solution

•  Assume we knew the tree structure of the
optimal prefix code, how would you label the
leaf nodes?

In
cr

ea
si

ng

 f
re

qu
en

cy

•  The binary tree corresponding to the optimal
prefix code is full, i.e., each internal node has
two children

• We want to label the leaf nodes of the binary
tree corresponding to the optimal prefix code
such that nodes with greatest depth have
least frequency

What does this mean the bottom of
our tree looks like?

2/19/10

7

•  The binary tree corresponding to the optimal
prefix code is full, i.e., each internal node has
two children

• We want to label the leaf nodes of the binary
tree corresponding to the optimal prefix code
such that nodes with greatest depth have
least frequency

What does this mean the
bottom of our tree looks like?

fn-1 fn
2 letters with least

frequency:

Could be flipped

•  Two letters with least frequency are definitely
going to be siblings
 Tie them together
 Their parent is a “meta-letter”

•  Frequency is sum of fn + fn-1

fn + fn-1

fn-1 fn 2 letters with least
frequency:

Could be flipped

Meta-letter:

Huffman’s Algorithm:

Replace lowest-
freq letters with

meta letter

Re
du

ce

Bu
ild

 u
p

To construct a prefix code for an alphabet S with given
frequencies:	

if S has two letters:	
	Encode one letter as 0 and the other letter as 1	

else:	
	Let y* and z* be the two lowest-frequency letters	
	Form a new alphabet S’ by deleted y* and z* and replacing

them with a new letter w of freq fy* + fz*	
	Recursively construct a prefix code y’ for S’ with tree T’	
	Define a prefix code for S as follows:	
	 	Start with T’	
	 	Take the leaf labeled w and add two children below it

labeled y* and z*	

1. Create a leaf node for each symbol, labeled
by its frequency, and add to a queue

2. While there is more than one node in the
queue
a)  Remove the two nodes of lowest frequency
b)  Create a new internal node with these two

nodes as children and with frequency equal to
the sum of the two nodes' probabilities

c)  Add the new node to the queue
3. The remaining node is the tree’s root node

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

e d
c a b

de=
.23

Lowest frequencies
Merge

2/19/10

8

fa = .32
fb = .25
fc = .20
fde = .23

e d

c

a b

de=
.23

Lowest frequencies
Merge

cde=
.43

fa = .32
fb = .25
fcde = .43

e d

c a b
de=
.23

Lowest frequencies
Merge

cde=
.43

ab=
.57

fab = .57
fcde = .43

e d

c a b
de=
.23

Lowest frequencies
Merge

cde=
.43

ab=
.57

abcd
e=1

What are the resulting encodings?
What is the ABL?

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

e d

c a b
de=
.23

cde=
.43

ab=
.57

abcd
e=1 0

0 0

0

1

1 1

1

a: 00	
b: 01	
c: 10	
d: 110	
e: 111	

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

ABL=.32*2 + .25*2 + .20*2 + .18*3 + .05*3
 = .64 + .5 + .4 + .54 + .15
 = 2.23 I chose to build the tree this way.

What if I had switched the order of the children?

•  Can’t say much because only 3 exams
•  Common issues

 Incorrect algorithms (a test case that doesn’t
work)

 Not being specific about how something is
represented
•  E.g., list, adjacency matrix

 Missing the complexity of some step
•  Could be optimized

•  Continue reading Chapter 4
•  Start reading Chapter 5
•  PS5 due Friday after break

