Objectives

Greedy Algorithms
» Interval partitioning
» Minimizing Lateness

Greedy stays ahead

Exchange argument

Feb 8, 2010 CSCI211 - Sprenkle

2/8/10

Review: Greedy Algorithm Template

Consider jobs (or whatever) in some order
~ Decision: What order is best?

Take each job provided it's compatible with
the ones already taken

Feb 8, 2010 CSCI211 - Sprenkle 2

Greedy Algorithms

At each step, take as much as you can get
~ Feasible — satisfy problem’s constraints

» Locally optimal — best local choice among
available feasible choices

» Irrevocable — after decided, no going back

Feb 8, 2010 CSCI211 - Sprenkle

Interval Partitioning:

Lower Bound on Optimal Solution
Def. The depth of a set of open intervals is the
maximum number that contain any given time.

Key observation. # of classrooms needed =
depth a, b, call contain 9:30 me

Ex: Depth of schedule below =3 = schedule
below is optimal.

Does there always exist a schedule
equal to depth of intervals?

c d f i
b 9 i
a e h
9 930 10 1030 1 1130 12 1230 1 130 2 230 3 330 4 430
Time
Feb 8, 2010 CSCI211 - Sprenkle 4

Interval Partitioning Discussion

Does there always exist a schedule equal to
depth of intervals?

Can we make decisions locally to get a
global optimum?

» Or are there long-range obstacles that require
more resources?

Feb 8, 2010 CSCI211 - Sprenkle

Interval Partitioning:
Greedy Algorithm

Consider lectures in increasing order of start
time: assign lecture to any compatible
classroom

Sort intervals by starting time so that s; = s; = ... s s,
= <«—— number of allocated classrooms
for j=1ton
if (lecture j is compatible with some classroom k)
schedule lecture j in classroom k
else
allocate a new classroom d + 1
schedule lecture j in classroom d + 1
d=d+1

Analyze algorithm

Feb 8, 2010 CSCI211 - Sprenkle 6

Interval Partitioning:
Greedy Algorithm

Consider lectures in increasing order of start time:
assign lecture to any compatible classroom

Sort intervals by starting time so that s; <s, = ... = s,
= <+—— number of allocated classrooms
for j=1ton
if (lecture j is compatible with some classroom k)
schedule lecture j in classroom k
else
allocate a new classroom d + 1
schedule lecture j in classroom d + 1
d=d+1

Implementation: O(n log n)

» For each classroom k, maintain the finish time of the last
job added.

» Keep the classrooms in a priority queue.

Feb 8, 2010 CSCI211 - Sprenkle 7

2/8/10

Interval Partitioning: Greedy Analysis

Observation. Greedy algorithm never schedules two
incompatible lectures in the same classroom

Theorem. Greedy algorithm is optimal
Pf Intuition

» When do we add more classrooms?

» When would we add the d+1 classroom?

8 Feb 8, 2010 CSCI211 - Sprenkle

Interval Partitioning: Greedy Analysis

Observation. Greedy algorithm never schedules two
incompatible lectures in the same classroom
Theorem. Greedy algorithm is optimal
Pf.
» Let d = number of classrooms that greedy algorithm allocates

» Classroom d is opened because we needed to schedule a job,
say j, that is incompatible with all d-1 other classrooms

» Since we sorted by start time, all these incompatibilities are
caused by lectures that start no later than s;

» Thus, we have d lectures overlapping at time s; + ¢
d is the depth of the set of lectures

Y

c d f il
b g i
a e h
Feb 8, 2070 TSCIZTT - Sprenkle 9

Proving Greedy Algorithms Work

Specifically, produce an optimal solution

Two approaches:
» Greedy algorithm stays ahead
Does better than any other algorithm at each step
» Exchange argument
Transform any solution into a greedy solution

10 Feb 8, 2010 CSCI211 - Sprenkle

Greedy Stays Ahead Proofs

Define your solutions
» Describe the form your greedy solution takes and what form some other
solution takes (possibly the optimal solution)

» Example: Let A be the solution constructed by the greedy algorithm and O
be an optimal solution.

Find a measure

» Find a measure by which greedy stays ahead of the optimal solution

» Exiletay ..., a, be the first k measures of greedy algorithm and
0;,...,0p,be the first m measures of other solution (sometimes m = k)

Prove greedy stays ahead

» Show that greedy’s partial solutions constructed are always just as good
as the initial segments of the optimal solution, based on the measure

» Ex:for all indices r < min(k,m), prove by induction that a, 2 o, or a, < o,

» Use the greedy algorithm to help you argue the inductive step

Prove optimality

» Prove that since greedy stays ahead of the other solution with respect to
the measure, then the greedy solution is optimal.

Feb 8, 2010 CSCI211 - Sprenkle "

Exchange argument

SCHEDULING TO MINIMIZE
LATENESS

12 CSCI211 - Sprenkle Feb 8, 2010

2/8/10

Scheduling to Minimizing Lateness

Single resource processes one job at a time

Job j requires t; units of processing time and is due at
time d,(its deadline)

If j starts at time s, it finishes at time f, = s, + {,
Lateness: (;=max{0, f-d}

Goal: schedule all jobs to minimize maximum
lateness L = max {

[1]2]slalo]c]
4 32

B: :

i
O 161001 luTeniss:Z lateness = 0
\4

dz9 d,z8 dy=15 di=6 ds= 14 dy=9
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

max lateness = 6

13 Feb 8, 20 Note: not a sum total |1-Sprenkie

Greedy Algorithms

Greedy template. Consider jobs in some
order.

What do we want to optimize?
What order?
» Intuition of order?
» Counter examples for order being optimal?

14 Feb 8, 2010 CSCI211 - Sprenkle

Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some
order.
» Shortest processing time first. Consider jobs in
ascending order of processing time t,.
Counter example 110

Il 0 o

» Smallest slack. Consider jobs in ascending
order of slack d, - t..
b
Counter example a0
[2 ©

15 Feb 8, 2010 CSCI211 - Sprenkle

Minimizing Lateness: Greedy Algorithm

Earliest deadline first.

Sort n jobs by deadline so that d; s d; < .. = d,

'Fo; j=1ton
Assign job j to interval [t, t + t;]
S: =

f;! =t+ty
t=t+t
output intervals [s;, f;]
max lateness = 1
4
di=6 d,=8 ds=9 =9 ds= 14 dg=15

o 1 2 3 4 5 6 7 8 9 10 1 2 13 14 15

What can we say about this algorithm/its results?

16 Feb 8, 2010 CSCI211 - Sprenkle

Minimizing Lateness: No Idle Time
Observation. There exists an optimal
schedule with no idle time

d=4 d=6 d=12
0 1 2 3 4 5 6 7 8 9 10 11

Observation. The greedy schedule has no
idle time

17 Feb 8, 2010 CSCI211 - Sprenkle

Proving Optimality

Goal: Prove greedy algorithm produces
optimal solution
Approach: Exchange argument

» Start with an optimal schedule Opt

» Gradually modify Opt

Preserving its optimality
» Transform into a schedule identical to greedy’s
schedule

Feb 8, 2010 CSCI211 - Sprenkle 18

2/8/10

Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of
jobs i and j such that:
d; < d, but j scheduled before i

inversion

before suep]

Can Greedy's solution have any inversions? ‘

Feb 8, 2010 CSCI211 - Sprenkle 19

Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of
jobs i and j such that:
d; < d; but j scheduled before i

inversion

before swap T

Greedy's schedule has no inversions!

Feb 8, 2010 CSCI211 - Sprenkle 20

Minimizing Lateness: Inversions

Claim. Swapping two adjacent jobs with the
same deadline does not increase the max
lateness

Pf Sketch. Let 7 be the lateness before the
swap, and let ¢’ be it afterwards

» Lateness of other jobs?

» Lateness of i? j?

f;
before swap I T
after swap T
f J
21 Feb 8, 2010 CSCI211 - Sprenkle

Minimizing Lateness: Inversions

Claim. Swapping two adjacent jobs with the
same deadline does not increase the max
lateness
Pf. Let ¢ be the lateness before the swap, and
let 7’ be it afterwards

» Lateness remains the same for all other jobs:

re=1(forallk=i,j
» Lateness of i before is f-d, = t+t-d,
» Lateness of j after is f-d, = t+t-d;

But d;=d,
f;
fl.‘
22 Feb 8, 2010 CSCI211 - Sprenkle

Minimizing Lateness: Inversions

Claim. Swapping two adjacent, inverted jobs
reduces the number of inversions by one and
does not increase the max lateness

» How do we know inversions are adjacent?

Pf Setup. Let ¢ be the lateness before the
swap, and let ¢ be it afterwards

» What can we say about how i’s, j's, and other jobs’
lateness changes?

inversion

fi
)

By def of inversion, d;< d; '

23 CSCI211 - Sprenkle Feb 8, 2010

Minimizing Lateness: Inversions

Claim. Swapping two adjacent, inverted jobs
reduces the number of inversions by one and
does not increase the max lateness.

Pf. Let ¢ be the lateness before the swap,
and let /' be it afterwards

U =/ forallk =i,

LAY

~If job jis late: ¢

(definition)

(j finishes at time f;)
<))

(definition)

|
A

[
NS

WO

S s s s

24 CSCI211 - Sprenkle Feb 8, 2010

Assignments

Read Chapter 4

» Wiki due next Wednesday

Exam 1

» Open book, open notes, open lecture notes
> NO OTHER RESOURCES

> | mention explicitly to analyze your algorithms’
running times. | will not do that in the future.

» Wed: half lecture, half questions

Feb 8, 2010 CSCI211 - Sprenkle 25

2/8/10

