
3/5/10 

1 

•  Divide and conquer 
 Closest pair of points 
 Integer multiplication 
 Matrix multiplication 

•  Divide-and-conquer process 
 Break up problem into several parts 
 Solve each part recursively 
 Combine solutions to sub-problems into overall 

solution 
•  Most common usage 

 Break up problem of size n into two equal parts 
of size ½n 

 Solve two parts recursively 
 Combine two solutions into overall solution 

Divide et impera. 
Veni, vidi, vici. 
        - Julius Caesar 

•  Use recurrences to analyze/determine the 
run time of divide and conquer algorithms 
 Number of sub problems 
 Size of sub problems 
 Number of times divided (number of levels) 
 Cost of merging problems 

•  How to solve 
 Unrolling 
 Substitution 

•  Algorithms and data structures for 
geometrical objects 
 Points, line segments, polygons, etc. 
 Common motivator: large data sets  efficiency 

•  Some Applications 
 Graphics 
 Robotics  

•  motion planning and visibility problems 
 Geographic information systems (GIS) 

•  geometrical location and search, route planning 

•  Closest pair.  Given n points in the plane, 
find a pair with smallest Euclidean distance 
between them. 
 Special case of nearest neighbor, Euclidean 

MST, Voronoi 

•  Brute force? 
fast closest pair inspired fast algorithms 
for these problems 
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•  Closest pair.  Given n points in the plane, 
find a pair with smallest Euclidean distance 
between them. 
 Special case of nearest neighbor, Euclidean 

MST, Voronoi. 
•  Brute force.  Check all pairs of points p and q 

with Θ(n2) comparisons 

•  How could we solve this problem? 

• What is its running time? 

•  How could we solve this problem? 
 Sort the points 

•  Monotonically increasing x/y coordinates 
•  No closer points than neighbors in sorted list 

 Step through, looking at the distances between 
each pair 

• What is its running time? 
 O(n logn) 

Why won’t this work for 2D? 

•  Closest pair.  Given n points in the plane, find a 
pair with smallest Euclidean distance between 
them. 
 Special case of nearest neighbor, Euclidean MST, 

Voronoi. 
•  Brute force.  Check all pairs of points p and q 

with Θ(n2) comparisons 
•  1-D version.  O(n log n)  

 Easy if points are on a line 
•  Assumption.  No two points have same x 

coordinate to make presentation cleaner 

•  Divide.  Sub-divide region into 4 quadrants 

L 

•  Divide.  Sub-divide region into 4 quadrants 
•  Obstacle.  Impossible to ensure n/4 points in 

each piece 

L 
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•  Divide: draw vertical line L so that roughly 
½n points on each side 

L 

How do we implement this? 

•  Divide: draw vertical line L so that roughly ½n 
points on each side 

•  Conquer: find closest pair in each side 
recursively 

12 

21 

L 

•  Divide: draw vertical line L so that roughly ½n points on each side 
•  Conquer: find closest pair in each side recursively 
•  Combine: find closest pair with one point in each side 
•  Return best of 3 solutions 

12 

21 
8 

L 

seems like Θ(n2)  

Do we need to check all pairs? 

•  Find closest pair with one point in each side, 
assuming that distance < δ 
  where δ = min(left_min_dist, right_min_dist) 

12 

21 

δ = min(12, 21) 

L 

•  Find closest pair with one point in each side, 
assuming that distance < δ. 
 Observation: only need to consider points within 
δ of line L. 

12 

21 

δ 

L 

δ = min(12, 21) 

•  Find closest pair w/ 1 point in each side, assuming that 
distance < δ. 
 Observation: only consider points within δ of line L 
 Sort points in 2δ-strip by their y coordinate 

12 

21 

1 
2 

3 

4 5 
6 

7 

δ 

L 

δ = min(12, 21) 

How many points are 
within that region? 



3/5/10 

4 

•  Find closest pair w/ 1 point in each side, assuming that distance < 
δ. 
  Observation: only consider points within δ of line L 
  Sort points in 2δ-strip by their y coordinate 

•  Only checks distances of those within 11 positions in sorted list! 

12 

21 

1 
2 

3 

4 5 
6 

7 

δ 

L 

δ = min(12, 21) 

•  Def.  Let si be the point in the 
2δ-strip, with the ith smallest y-
coordinate 

•  Claim.  If |i – j| ≥ 12, then the 
distance between si and sj is at 
least δ 
 What is the distance of the box? 
 How many points can be in a 

box? 
 When do we know that points are 

> δ apart?  
δ 

27 

29 
30 

31 

28 

26 

25 

δ 

½δ 

½δ 

½δ 

39 
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j 

Prepare minds to be blown… 

•  Def.  Let si be the point in the 2δ-
strip, with the ith smallest y-
coordinate 

•  Claim.  If |i – j| ≥ 12, then the 
distance between si and sj is at least 
δ 

•  Pf. 
  No two points lie in same ½δ-by-½δ 

box 
  Two points at least 2 rows apart 

have distance ≥  2(½δ).   ▪ 
•  Fact.  Still true if we replace 12 with 

7. 

δ 

27 

29 
30 

31 
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25 

δ 

½δ 

 2 rows 
½δ 

½δ 

39 

i 

j 

Cost of combining is therefore…? 

Closest-Pair(p1, …, pn) 	
   Compute separation line L such that half the points  
   are on one side and half on the other side.	

   δ1 = Closest-Pair(left half)	
   δ2 = Closest-Pair(right half)	
   δ  = min(δ1, δ2)	

   Delete all points further than δ from separation 
line L	

   Sort remaining points by y-coordinate.	

   Scan points in y-order and compare distance between  
   each point and next 7 neighbors. If any of these  
   distances is less than δ, update δ.	

   return δ	

Closest-Pair(p1, …, pn) 	
   Compute separation line L such that half the points  
   are on one side and half on the other side.	

   δ1 = Closest-Pair(left half)	
   δ2 = Closest-Pair(right half)	
   δ  = min(δ1, δ2)	

   Delete all points further than δ from separation 
line L	

   Sort remaining points by y-coordinate.	

   Scan points in y-order and compare distance between  
   each point and next 7 neighbors. If any of these  
   distances is less than δ, update δ.	

   return δ	

O(n log n) 

2T(n / 2) 

O(n) 

O(n log n) 

O(n) 

Total running time? T(n) = 2 T(n/2) + O(n log n) 

•  Running time. 

•  Can we achieve O(n log n)? 

•  Yes. Don't sort points in strip from scratch 
each time. 
 Each recursive returns two lists: all points sorted 

by y coordinate, and all points sorted by x 
coordinate 

 Sort by merging two pre-sorted lists 

  

€ 

T(n) ≤ 2T n /2( ) + O(n) ⇒ T(n) = O(n logn)

  

€ 

T(n) ≤ 2T n /2( ) + O(n log n) ⇒ T(n)  =  O(n log2 n)

Solved in 5.2 
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•  Add.  Given two n-digit integers a and b, 
compute a + b. 
 Algorithm? 
 Runtime? 

1 

0 1 1 1 

1 1 0 1 + 
0 1 0 1 

1 1 1 
0 1 0 1 

0 1 1 1 

1 0 0 0 

1 0 1 1 1 

O(n) operations 

•  Multiply.  Given two n-digit integers a and b, 
compute a × b 
Algorithm? 
Runtime? 
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•  Multiply.  Given two n-digit integers a and b, 
compute a × b. 
 Brute force solution: Θ(n2) bit operations 

1 

1 

0 

0 

0 

1 

1 

1 

0 

0 

1 

1 

1 

1 

0 

0 

1 

1 

1 

1 

0 

1 

0 

1 

0 0 0 0 0 0 0 0 
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Goal: Faster algorithm 

•  To multiply two n-digit integers: 
 Multiply four ½ n-digit integers 
 Add two ½ n-digit integers and shift to obtain result 

  

€ 

x = 2n / 2 ⋅ x1  +  x0

y = 2n / 2 ⋅ y1  +  y0

xy = 2n / 2 ⋅ x1 + x0( ) 2n / 2 ⋅ y1  + y0( ) = 2n ⋅ x1y1  + 2n / 2 ⋅ x1y0 + x0 y1( ) + x0 y0

Higher order bits Lower order bits 

What is the recurrence relation? 
•  How many subproblems? 
•  What is merge cost? 
•  What is its runtime? 

Shift 

A B C D 

•  To multiply two n-digit integers: 
 Multiply four ½ n-digit integers 
 Add two ½ n-digit integers and shift to obtain result 

  

€ 

x = 2n / 2 ⋅ x1  +  x0

y = 2n / 2 ⋅ y1  +  y0

xy = 2n / 2 ⋅ x1 + x0( ) 2n / 2 ⋅ y1  + y0( ) = 2n ⋅ x1y1  + 2n / 2 ⋅ x1y0 + x0 y1( ) + x0 y0

Higher order bits Lower order bits 

Shift 

A B C D 

    

€ 

T(n)  =  4T n /2( )
recursive calls
     

 +  Θ(n)
add, shift
    ⇒  T(n) =Θ(n2 )

assumes n is a power of 2 
Not an improvement 

over brute force 
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• Whenever you develop an algorithm, 
analyze its running time (e.g., Prob 3) 

•  Be explicit 
 Explicitly state the metric, who is the pronoun 

(say which algorithm), etc. 
 Creative in solution, not in explanation 

•  Continue reading Chapter 5,  start Chapter 6 
•  PS6 due next Friday 

 May want to try to implement problems 2 and 3 
(to some extent) to help ensure that your 
algorithm is correct 


