Objectives

Network Flow

» Max flow

» Min cut

» Choosing good augmenting paths

Mar 29, 2010 CSCI211 - Sprenkle 1

3/29/10

Review: Flow Network

Abstraction for material flowing through the edges
G = (V, E) = directed graph, no parallel edges
Two distinguished nodes: s = source, t = sink
c(e) = capacity of edge e, > 0

SN
A

10

source (s 5 ——(3

15 ! 6 P 10
capacity = \l \l /
4 — 30— 7

Mar 29, 2010 CSCI211 - Sprenkle 2

10 —{t) sink

Review: Flows

Flow can’t exceed
capacity

An s-t flow is a function that satisfies
» Capacity condition: For each e € E: 0 <f(e) < c(e)
» Conservation condition: Foreachv € V —{s, t}:

Ze into y f(e) = Ze out of y f<e) ST Flow in == Flow out
0

source (s 5 ——(3 6 10 —{t) sink
|\ 0 | 0
. 15 0
capacity — 15 $o 6 10
Flow — 0 \l , \ l /
4 30 —— (7
Mar 29, 2010 CSCI211 - Sprenkle 3

Review: Flows

The value of a flow fis v(f) = >, qutors f(€)

0
Value = 4 22— 9 —5
4/|\ o |\o
10 44 15 15 0
/o l 4\' 4\
s 5 ——(3 8 6
o |
15 0
capacity— 15 $0 6 ° 10
ﬂowao\l 0\ /
4— 30 —(7

Mar 29, 2010 CSCI211 - Sprenkle 4

Analyzing Augmenting Path Algorithm

Ford-Fulkerson(G, s, t,)

O(m) foreach e € E f(e) = @ # initially no flow

O(m) G; = residual graph

Find path: O(m): Iterations: O(F) iterations, where F = max flow

while there exists augmenting path P

Oo(m) f = Augment(f, c, P) # change the flow

o(m) update G¢ # build a new residual graph

return f Total: O(Fm)

| .
Augnent(f, <, P | Try for a tighter bound ...

d(n) b = bottleneck(P) # edge on P with least capacity
A(n) foreach e € P
a@) if (e € E) f(e) = f(e) + b # forward edge, A flow
a@) else f(e®) = f(e) - b # forward edge, ¥ flow
return f
Total: O(n) > O(m), since n < 2m
Mar 29, 2010 CSCI211 - Sprenkle 5

Review: Cuts
An s-t cut is a partition (A, B) of V withs € A
andteB
The capacity of a cut (A, B)is “7*# = 2

coutof 4

\l/ Capacity =
30 3 9 *215 +8+30
6

Mar 29, 2010 CSCI211 - Sprenkle

3/29/10

Review: Minimum Cut Problem

Goal: Find an s-t cut of minimum capacity
» Puts upperbound on maximum flow

9
15

1

|

0
5 —

15 ©

~ -
-
\

\

"/

|
1
|

Mar 29, 2010 CSCI211 - Sprenkle 7

Review: Flow Value Lemma

Let fbe any flow, and let (A, B) be any s-f cut.
Then, the net flow sent across the cut is equal
to the amount leaving s. /., _ s/ - wp)

o 5
/3 l B\{ a\
s 5 (3 8 6 10—t
A\ [1 ‘ 10
- 40 6 15 0 10
“\l 1 Value=6+0+8-1+11
4 s 30 ey 7 =24

Mar 29, 2010 CSCI211 - Sprenkle 8

Review: Flow Value Lemma

Let fbe any flow, and let (A, B) be any s-t
cut.
Then 3 fleo- 3 fle)= v(N).

eoutof 4 einto A
Pf. By definition wf) =) IE{f(c)
by flow conservation, all _ _
ferms except v = are 0 PARFCERIC)
Possibilities for edge e: N .
+Both ends in A (0) = 3 flo- 3 flo.
+Points out from A (+) eoutof A cintoA

+Points in to A (-) A B

Mar 29, 2010 CscCI2 ﬁj 9
.8

Weak Duality

Let fbe any flow and let (A, B) be any s-t cut.
Then the value of the flow is at most the cut’'s

capacity
Cut capacity = 30 = Flow value < 30

10

/ 4 \l
5 5 —(3 8 6 10—t
15 o 6 1[10
\Al \ / Capacity = 30
30— J7
Mar 29, 2010 CSCI211 - Sprenkle 10

Weak Duality

Let fbe any flow. Then, for any s-f cut (A, B)
v(f) = cap(A, B).
Pf.

ByFWL w(f) = 3 flo- I flo) A B
eoutof A eintoA
= 3f@ — - o
eoutof A
s See
eoutof A
cap(A.B) &) 7 —@

Mar 29, 2010 CSCI211 - Sprenkle "

Certificate of Optimality

Corollary. Let fbe any flow, and let (A, B) be
any cut. If v(f) = cap(A, B), then fis a max

flowand (A, B)isamincut. . ¢
Cut capacity =28 =
9 Flow value < 28

2 9 —5
10/‘\ : .
10 40 15 15 0 10 B
/4 l 8\{ o
s 5 —3 8 6 10—t
\ ‘\ . ‘ 0
A G 40 6 15 0 10
14\l M\{
4 30 ——7
Mar 29, 2010 - — . = 12

Intuition Behind Correctness of
F-F Algorithm

Let A be set of vertices reachable from s in
residual graph at end of F-F alg execution

By definition of A, s € A
By definition of f, t £ A

Mar 29, 2010 CSCI211 - Sprenkle 13

3/29/10

.| *What do we know

Ford-Fulkerson Algorith about the flow out of A?

*What do we know
about the flow into A?

Cut capacity = 19

2 1~

6 /f\1 N
/10 | 7 \i 1\\\
- 1_,3._(),;5%104,
.,

Mar 29, 2010 CSCI211 - Sprenkle 14

.| *What do we know

Ford-Fulkerson Algorith about the fiow out of A?

* What do we know
about the flow into A?

(o] 20 66 10
/ ; l 9\| 10\
A s 10 —(3 ——— g ———5 10—t
Cut capacity = 19 Flow value = 19
33—
2 1 — *All edges out of Aare
6 / r\ completely saturated
10 > 7 ‘\ * All edges into A are
/ l completely unused
N NI
s 1——3e——09g 50— 10—t
~_,_
Mar 29, 2010 CSCI211 - Sprenkle 15

Max-Flow Min-Cut Theorem

The value of the max flow is
equal to the value of the min cut

Proof:
~ (i) There exists a cut (A, B) such that
v(f) = cap(A, B) (due to corollary)
» (ii) Every edge from A - B must have its flow
equal to its capacity.
Otherwise, there is a path from s to t in the
residual graph that would identify an edge across
the cut on which we could increase flow.

Mar 29, 2010 CSCI211 - Sprenkle 16

Max-Flow Min-Cut Theorem

The value of the max flow is
equal to the value of the min cut

Proof:

»~ (iii) Every edge from B > A must have a flow of
0.
Otherwise, there would be a reverse edge in the

residual graph that would create a path across
the cut.

Mar 29, 2010 CSCI211 - Sprenkle 17

Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow fis a max flow iff there
are no augmenting paths.

Max-flow min-cut theorem. [Ford-Fulkerson 1956] The
value of the max flow is equal to the value of the min cut.
Proof strategy. We prove both simultaneously by
showing the following are equivalent:

(i) There exists a cut (A, B) such that v(f) = cap(A, B).
(i) Flow f is a max flow.
(iii) There is no augmenting path relative to f.

(i) = (i) This was the corollary to weak duality lemma.
(ii) => (iii) We show contrapositive.
~ Let f be a flow. If there exists an augmenting path, then we
can improve f by sending flow along path.

Mar 29, 2010 CSCI211 - Sprenkle 18

Proof of Max-Flow Min-Cut Theorem
(i) = (i)
» Let f be a flow with no augmenting paths

» Let A be set of vertices reachable from s in
residual graph

» By definition of A, s € A A B
» By definition of f, t € A

v(f) = I fle- T [
eoutof A einto A
= 2de
eoutof A
= cap(A,B) original network
Mar 29, 2010 CSCI211 - Sprenkle 19

Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual
capacity’s c(e) remains an integer throughout algorithm.

Theorem. The algorithm terminates in at most v(f*) < nC
iterations.

Pf. Each augmentation increases value by at least 1.
Corollary. If C =1, Ford-Fulkerson runs in O(mn) time.

Integrality theorem. If all capacities are integers, then
there exists a max flow f for which every flow value f(e) is
an integer.

Pf. Since algorithm terminates, theorem follows from
invariant.

Mar 29, 2010 CSCI211 - Sprenkle 20

CHOOSING GOOD
AUGMENTING PATHS

Mar 29, 2010 CSCI211 - Sprenkle 21

Ford-Fulkerson: Exponential Number

of Augmentations
Is generic Ford-Fulkerson algorithm
polynomial in input size?
» No. If max capacity is C, then algorithm can take
C iterations.

Mar 29, 2010 CSCI211 - Sprenkle 22

Choosing Good Augmenting Paths

Use care when selecting augmenting paths
» Some choices lead to exponential algorithms
» Clever choices lead to polynomial algorithms
~ If capacities are irrational, algorithm not guaranteed
to terminate!
Goal: choose augmenting paths so that:
» Can find augmenting paths efficiently
» Few iterations
[Edmonds-Karp 1972, Dinitz 1970]
Choose augmenting paths with:
» Max bottleneck capacity
» Sufficiently large bottleneck capacity
» Fewest number of edges
Mar 29, 2010 CSCI211 - Sprenkle 23

Intuition for Capacity Scaling

Choosing path with highest bottleneck capacity
increases flow by max possible amount.
» Don't worry about finding exact highest bottleneck path
» Maintain scaling parameter A

» Let G(A) be the subgraph of the residual graph
consisting of only edges with capacity at least A

AN N
110 102 110 102
S 1 \ t S/ t
122 170 122 170
2 / % /
& 6¢(100)
Mar 29, 2010 CSCI211 - Sprenkle 24

Capacity Scaling

Scaling-Max-Flow(G, s, t, c)
foreach e € E, f(e) =0
A = greatest power of 2 less than or equal to C
G; = residual graph
G¢CA) = A-residual graph

while A = 1:
while there exists augmenting path P in G¢(A) :
f = augment(f, c, P)
update Ge(A)

A=A/2
return f
* Why does this work?
* What is its running time?
Mar 29, 2010 CSCI211 - Sprenkle 25

3/29/10

Capacity Scaling

Scaling-Max-Flow(G, s, t, c)
foreach e € E, f(e) = 0
A = greatest power of 2 less than or equal to C
G; = residual graph
G:(A) = A-residual graph

while A = 1:
while there exists augmenting path P in G:(A) :
f = augment(f, c, P)
update G¢(A)

A=A/2 After A-scaling phase, pretty
close to max possible flow
return f
Mar 29, 2010 CSCI211 - Sprenkle 26

Capacity Scaling: Correctness

Assumption. All edge capacities are integers
between 1 and C.
Integrality invariant. All flow and residual
capacity values are integral.
Correctness. If the algorithm terminates, then
fis a max flow.
Pf.
» By integrality invariant, when A =1 = G(A) =
-
» Upon termination of A = 1 phase, there are no
augmenting paths. =

Mar 29, 2010 CSCI211 - Sprenkle 27

Capacity Scaling: Running Time
Lemma 1. The outer while loop repeats
O(log, C) times.

Proof. Initially A < C. A decreases by a
factor of 2 each iteration. =

Mar 29, 2010 CSCI211 - Sprenkle 28

Capacity Scaling: Running Time

Lemma 2. Let f be the flow at the end of a A-scaling
phase. Then value of the maximum flow is at most v(f) +
m A.
Proof. (almost identical to proof of max-flow min-cut
theorem)
~ Show that at the end of a A-phase, there exists a cut (A, B)
such that cap(A, B) = v(f) + m A.
» Choose A to be the set of nodes reachable from s in G(A).
~ By definition of A, s € A.

» By definition of f, t & A. A 8
Wy = 3 fle)- 3 fle)
Bound on eoutof A einto A
flow values = S (cle)-N) - 3 A
across cut eoutof A einto A
- Sdo- TA- A
Graph ecoutof A coutof A eintoA
contains = cap(A,B) - mA
m edges
wiar ;2010 CSCI211 - Sprenkle 29

Capacity Scaling: Running Time

Lemma 3. There are at most 2m
augmentations per scaling phase.
~ Let f be the flow at the end of the previous
scaling phase. Edge's added capacity at
»>L2 = v(f*) = v(f) + m (2A). this stage is at most 2A
~ Each augmentation in a A-phase increases v(f)
by at least A. =
Theorem. The scaling max-flow algorithm
finds a max flow in O(m log C)
augmentations. It can be implemented to run
in O(m? log C) time. -

Mar 29, 2010 CSCI211 - Sprenkle 30

This Week

Wiki - Wednesday
~ Finish reading Chapter 6

» Up through 7.3

Problem Set 8 due Friday
» Implementing pretty printing

Mar 29, 2010 CSCI211 - Sprenkle 31

3/29/10

