
1/15/10

1

•  Analyzing algorithms
•  Asymptotic running times

•  Assessment: some preference to journals
 Check out Wiki on Sakai

1. Understand/identify problem
  Simplify as appropriate

2. Design a solution
3. Analyze

  Correctness, efficiency
  May need to go back to step 2 and try again

4.  Implement
  Within bounds shown in analysis

Charles Babbage
(1864)

As soon as an Analytic Engine exists, it will necessarily guide the
future course of the science. Whenever any result is sought by its
aid, the question will arise - By what course of calculation can
these results be arrived at by the machine in the shortest time?

 -- Charles Babbage

Analytic Engine
(schematic)

•  For many non-trivial problems, there is a
natural brute force search algorithm that
checks every possible solution
 Typically takes 2N time or worse for inputs of

size N
 Unacceptable in practice

How many possible solutions are there in the
stable matching problem?

(In other words, how many possible perfect matchings
are there? We’re not worried about stability right now.)

1/15/10

2

•  For many non-trivial problems, there is a
natural brute force search algorithm that
checks every possible solution
 Typically takes 2N time or worse for inputs of

size N
 Unacceptable in practice

•  Example: Stable matching: n! with n men and
n women
 If n increases by 1, what happens to the running

time?

“Exponential”

•  Obtain bound on largest possible running
time of algorithm on input of a given size N
 Generally captures efficiency in practice
 Draconian view, but hard to find effective

alternative

What are alternatives to worst-case analysis?

•  Obtain bound on running time of algorithm on
random input as a function of input size N
 Hard (or impossible) to accurately model real

instances by random distributions
 Algorithm tuned for a certain distribution may

perform poorly on other inputs •  Desirable scaling property: When input size
doubles, algorithm should only slow down by
some constant factor C

•  Def. An algorithm is polynomial time (or
polytime) if the above scaling property holds.

There exists constants c > 0 and d > 0
such that on every input of size N, its
running time is bounded by c Nd steps.

choose C = 2d

•  Def. An algorithm is efficient if its running time is
polynomial

•  Justification: It really works in practice!
  In practice, poly-time algorithms that people develop

almost always have low constants and low exponents
 Breaking through the exponential barrier of brute force

typically exposes some crucial structure of the problem
•  Exceptions

 Some poly-time algorithms do have high constants and/
or exponents (6.02 × 1023 × N20) and are useless in
practice

 Some exponential-time (or worse) algorithms are widely
used because the worst-case instances seem to be rare

Input Size

Polynomial

1/15/10

3

•  Huge difference from polynomial to not polynomial
•  Differences in runtime matter more as input size increases

Polynomial
1

1E+14
1E+28
1E+42
1E+56
1E+70
1E+84
1E+98

1E+112
1E+126
1E+140
1E+154
1E+168
1E+182
1E+196
1E+210
1E+224
1E+238
1E+252
1E+266
1E+280
1E+294

1 10 100 1000

R
un

ni
ng

 T
im

e

Input Size

2n

1.5n

n10

n3

n2

n

2n

1.5n

n10
n3

As input size increases, n3 dominates large constant * n2

 Care about running time as input size approaches infinity
 Only care about highest-order term

1

100

10000

1000000

100000000

1E+10

1E+12

1E+14

1E+16

1E+18

1E+20

1E+22

1E+24

1 10 100 1000 10000 1000000 10000000 100000000

R
un

ni
ng

 T
im

e

Input Size

10000*n2

n3

n3

10000 n2

•  T(n) is the worst case running time of an
algorithm

• We say that T(n) is O(f(n)) if there exist

constants c > 0 and n0 ≥ 0 such that for all

n ≥ n0, we have T(n) ≤ c · f(n)
sufficiently large n T(n) is bounded above by a

constant multiple of f(n)

T is asymptotically upperbounded by f

c cannot depend on n

“order f(n)”

f(n)

T(n)

n0

Point at which f(n) > T(n)

•  T(n) = pn2 + qn + r
 p, q, r are positive constants

Idea: Let’s inflate the terms in the
equation so that all terms are n2

•  T(n) = pn2 + qn + r
 p, q, r are positive constants

•  For all n ≥ 1,

 T(n) ≤ cn2, where c = p+q+r
 T(n) = O(n2)
•  Also correct to say that T(n) = O(n3)

T(n) = pn2 + qn + r
 ≤ pn2 + qn2 + rn2

 = (p+q+r) n2

 = c n2

1/15/10

4

•  Slight abuse of notation. T(n) = O(f(n))
 Asymmetric:

•  f(n) = 5n3; g(n) = 3n2

•  f(n) = O(n3) = g(n)
•  But f(n) ≠ g(n).

 Better notation: T(n) ∈ O(f(n))
•  Meaningless statement. Any comparison-

based sorting algorithm requires at least O(n
log n) comparisons
 Use Ω for lower bounds

•  Complementary to upper bound

•  T(n) is Ω(f(n)) if there exist constants ε > 0

and n0 ≥ 0 such that for all n ≥ n0 , we have

T(n) ≥ ε · f(n)

T is asymptotically lowerbounded by f

sufficiently large n

T(n) is bounded below by a
constant multiple of f(n)

ε cannot depend on n

•  T(n) = pn2 + qn + r
 p, q, r are positive constants

•  Idea: Deflate terms rather than inflate
•  For all n ≥ 0,

•  Also correct to say that T(n) = Ω(n)

T(n) = pn2 + qn + r ≥ pn2
 T(n) ≥ εn2, where ε = p > 0
 T(n) = Ω(n2)

 The “right” bound

T(n) is Θ(f(n)) if T(n) is both
O(f(n)) and Ω(f(n))

•  If f = O(g) and g = O(h) then f = O(h)
•  If f = Ω(g) and g = Ω(h) then f = Ω(h)
•  If f = Θ(g) and g = Θ(h) then f = Θ(h)

Proofs in book

f

g

h f

g
h

Ω O

•  If f = O(h) and g = O(h) then f + g = O(h)
•  If f = Ω(h) and g = Ω(h) then f + g = Ω(h)
•  If f = Θ(h) and g = O(h) then f + g = Θ(h)

Proofs in book

Sketch proof for O:
By defn, f ≤ c · h
By defn, g ≤ d · h
f + g ≤ c · h + d · h = (c + d) h = c’ · h
 f + g is O(h)

