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•  Divide and conquer 
 Solving recurrence relations 
 Counting inversions 

•  Divide-and-conquer process 
 Break up problem into several parts 
 Solve each part recursively 
 Combine solutions to sub-problems into overall 

solution 
•  Most common usage 

 Break up problem of size n into two equal parts 
of size ½n 

 Solve two parts recursively 
 Combine two solutions into overall solution 

Divide et impera. 
Veni, vidi, vici. 
        - Julius Caesar 

•  Use recurrences to analyze/determine the 
run time of divide and conquer algorithms 
 Number of sub problems 
 Size of sub problems 
 Number of times divided (number of levels) 
 Cost of merging problems 

•  How to solve 
 Unrolling 
 Substitution 

•  Instead of recursively solving 2 problems, 
solve q problems 
 Size of problems is still n/2 

•  Combining solutions is still O(n) 
•  Recurrence relation: 

 For some constant c, 
T(n) ≤ q T(n/2) + cn when n > 2 
T(2) ≤ c 

Intuition about running time? 

•  First level: 
q T(n/2) + cn 

cn 

T(n/2) T(n/2) … q  



3/3/10 

2 

•  Next level:  
q T(n/4) + c(n/2) 

cn 

c n/2 c n/2 … q  

T(n/4) T(n/4) T(n/4) T(n/4) … q  … q  …

cn 

c n/2 c n/2 … q  

T(n/4) T(n/4) T(n/4) T(n/4) … q  … q  
qk problems at level k 
Size: n/2k 

Each level takes qk * c * (n/2k) = (q/2)kcn 
 Total work per level is increasing  as level increases   

Number of levels: log2n 

How much does each level 
cost, in terms of the level? 

Number of levels? 
What is the total run time? 

0 

1 

cn 

c n/2 c n/2 … q  

T(n/4) T(n/4) T(n/4) T(n/4) … q  … q  

How much does each level 
cost, in terms of the level? 

Number of levels? 
What is the total run time? 

0 

1 

T(n) ≤ Σj=0,logn (q/2)j cn 

Geometric series:   O(n log2 q) for q > 2 

•  Use recurrences to analyze the run time of 
divide and conquer algorithms 
 Number of sub problems 
 Size of sub problems 
 Number of times divided (number of levels) 
 Cost of merging problems 

Recurrence Algorithm Running Time 
T(n) = T(n/2) + O(1) 
T(n) = T(n-1) + O(1) 
T(n) = 2 T(n/2) + O(1) 
T(n) = T(n-1) + O(n) 
T(n) = 2 T(n/2) + O(n) Merge Sort O(n log n) 

What algorithm has this recurrence relation? 
What is that algorithm’s running time? 

Recurrence Algorithm Running Time 
T(n) = T(n/2) + O(1) Binary Search O(log n) 

T(n) = T(n-1) + O(1) Sequential/
Linear Search O(n) 

T(n) = 2 T(n/2) + O(1) Binary Tree 
Traversal O(n) 

T(n) = T(n-1) + O(n) Selection Sort O(n2) 
T(n) = 2 T(n/2) + O(n) Merge Sort O(n log n) 

What algorithm has this recurrence relation? 
What is that algorithm’s running time? 
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•  Movie site tries to match your movie 
preferences with others 
 You rank n movies 
 Movie site consults database to find people with 

similar tastes 
•  Collaborative filtering 

•  Meta-search tools 
 Do same query on several search engines 
 Synthesize results by looking for similarities and 

differences in search engines’ results rankings 

•  To determine similarity of rankings, need a 
metric 

•  Similarity metric:  number of inversions 
between two rankings 
 My rank:  1, 2, …, n 
 Your rank:  a1, a2, …, an 
 Movies i and j inverted if i < j, but ai > aj 

You 

Me 

1 4 3 2 5 

1 3 2 4 5 

A B C D E 

Movies 

What are the 
inversions? 

Discuss this metric 

•  To determine similarity of rankings, need a 
metric 

•  Similarity metric:  number of inversions between 
two rankings 
 My rank:  1, 2, …, n 
 Your rank:  a1, a2, …, an 
 Movies i and j inverted if i < j, but ai > aj 

You 

Me 

1 4 3 2 5 

1 3 2 4 5 

A B C D E 

Movies 
Inversions: 
3-2, 4-2 

Naïve/Brute force 
solution? 

•  Look at every pair (i,j) and determine if they 
are an inversion 

•  Requires Θ(n2) time 
 Note: Already an efficient algorithm but trying to 

improve upon runtime 

•  Voting theory 
•  Collaborative filtering 
•  Measuring the "sortedness" of an array 
•  Sensitivity analysis of Google's ranking 

function 
•  Rank aggregation for meta-searching on the 

Web 
•  Nonparametric statistics (e.g., Kendall's Tau 

distance) 
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•  Look at every pair (i,j) and determine if they 
are an inversion 

•  Requires Θ(n2) time 
 Note: Already an efficient algorithm but trying to 

improve upon runtime 

Forming a Better Solution… 
• Can’t look at each inversion individually 

4 8 10 2 1 5 12 11 3 7 6 9 

Assume number represents where item should be in the list 

•  Divide:  separate list into two pieces 

4 8 10 2 1 5 12 11 3 7 6 9 

4 8 10 2 1 5 12 11 3 7 6 9 

Divide:  O(1) 

What are the inversions in blue and green halves? 

•  Divide:  separate list into two pieces 
•  Conquer: recursively count inversions in 

each half 

4 8 10 2 1 5 12 11 3 7 6 9 

4 8 10 2 1 5 12 11 3 7 6 9 

5 blue-blue inversions 8 green-green inversions 

Divide:  O(1) 

Conquer:  2T(n / 2) 

5-4, 5-2, 4-2, 8-2, 10-2 6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7 

•  Divide:  separate list into two pieces. 
•  Conquer: recursively count inversions in each half. 
•  Combine: count inversions where ai and aj are in 

different halves, and return sum of three quantities 

4 8 10 2 1 5 12 11 3 7 6 9 

4 8 10 2 1 5 12 11 3 7 6 9 

5 blue-blue inversions 8 green-green inversions 

Divide:  O(1) 

Conquer:  2T(n / 2) 

Combine:  ??? 
9 blue-green inversions 
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7 

Total = 5 + 8 + 9 = 22 
What would make figuring out 
blue-green inversions easier? 

seems like Θ(n2)  

Combine: count blue-green inversions  
 Assume each half is sorted 
 Count inversions where ai and aj are in different halves 
 Merge two sorted halves into sorted whole 

10 14 18 19 3 7 16 17 23 25 2 11 

to maintain sorted invariant 

What does sorting do for us? 
What is our algorithm for counting the 
inversions and merging? 
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Combine: count blue-green inversions  
 Assume each half is sorted 
 Count inversions where ai and aj are in different halves 
 Merge two sorted halves into sorted whole 

13 blue-green inversions:  6 + 3 + 2 + 2 + 0 + 0  

Count:  O(n) 

Merge:  O(n) 

10 14 18 19 3 7 16 17 23 25 2 11 

7 10 11 14 2 3 18 19 23 25 16 17 

to maintain sorted invariant 

We’ll run through this example in a bit… 

Merge-and-Count(A,B):	
	i=0 (front of list A)	
	j=0 (front of list B)	
	inversions = 0 	
	output = []	

   	while A not empty and B not empty:	
	 	output.append( min(A[i], B[j]) )	
	 	if B[j] < A[i]:	

 	 	   inversions += A.size – i (remaining elements in A)	
   	update i or j (whichever had smaller element)	

•  Given two sorted halves, count number of 
inversions where ai and aj are in different 
halves 

•  Combine two sorted halves into sorted whole 

10 14 18 19 3 7 16 17 23 25 2 11 two sorted 
halves 

Output array 

Total:   

A B 

•  Given two sorted halves, count number of 
inversions where ai and aj are in different 
halves 

•  Combine two sorted halves into sorted whole 

10 14 18 19 3 7 16 17 23 25 2 11 
two sorted 

halves 

2 Output array 

Total:  6   

6

•  Given two sorted halves, count number of 
inversions where ai and aj are in different 
halves 

•  Combine two sorted halves into sorted whole 

10 14 18 19 3 7 16 17 23 25 2 11 
two sorted 

halves 

2 Output array 

Total:  6   

6

•  Given two sorted halves, count number of 
inversions where ai and aj are in different 
halves 

•  Combine two sorted halves into sorted whole 

10 14 18 19 3 7 16 17 23 25 2 11 
two sorted 

halves 

2 3 Output array 

Total:  6    

6
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•  Given two sorted halves, count number of 
inversions where ai and aj are in different 
halves 

•  Combine two sorted halves into sorted whole 

10 14 18 19 3 7 16 17 23 25 2 11 
two sorted 

halves 

2 3 Output array 

Total:  6   

6

•  Given two sorted halves, count number of 
inversions where ai and aj are in different 
halves 

•  Combine two sorted halves into sorted whole 

10 14 18 19 3 7 16 17 23 25 2 11 

7 2 3 

Total:  6   

two sorted 
halves 

Output array 

6

•  Given two sorted halves, count number of 
inversions where ai and aj are in different 
halves 

•  Combine two sorted halves into sorted whole 

10 14 18 19 3 7 16 17 23 25 2 11 

7 2 3 

Total:  6   

two sorted 
halves 

Output array 

6

•  Given two sorted halves, count number of 
inversions where ai and aj are in different 
halves 

•  Combine two sorted halves into sorted whole 

10 14 18 19 3 7 16 17 23 25 2 11 

7 10 2 3 

Total:  6 

two sorted 
halves 

Output array 

6

•  Given two sorted halves, count number of 
inversions where ai and aj are in different 
halves 

•  Combine two sorted halves into sorted whole 

10 14 18 19 3 7 16 17 23 25 2 11 

7 10 2 3 

Total:  6 

two sorted 
halves 

Output array 

6

•  Given two sorted halves, count number of 
inversions where ai and aj are in different 
halves 

•  Combine two sorted halves into sorted whole 

10 14 18 19 3 7 16 17 23 25 2 11 

7 10 11 2 3 

Total:  6 + 3 

3

two sorted 
halves 

Output array 

6



3/3/10 

7 

•  Given two sorted halves, count number of 
inversions where ai and aj are in different 
halves 

•  Combine two sorted halves into sorted whole 

10 14 18 19 3 7 16 17 23 25 2 11 

7 10 11 2 3 

Total:  6 + 3 

3

two sorted 
halves 

Output array 

6

•  Given two sorted halves, count number of 
inversions where ai and aj are in different 
halves 

•  Combine two sorted halves into sorted whole 

10 14 18 19 3 7 16 17 23 25 2 11 

7 10 11 14 2 3 

Total:  6 + 3 

3

two sorted 
halves 

Output array 

6

•  Given two sorted halves, count number of 
inversions where ai and aj are in different 
halves 

•  Combine two sorted halves into sorted whole 

10 14 18 19 3 7 16 17 23 25 2 11 

7 10 11 14 2 3 

Total:  6 + 3 

3

two sorted 
halves 

Output array 

6

•  Given two sorted halves, count number of 
inversions where ai and aj are in different 
halves 

•  Combine two sorted halves into sorted whole 

10 14 18 19 3 7 16 17 23 25 2 11 

7 10 11 14 2 3 16 

Total:  6 + 3 + 2 

23

two sorted 
halves 

Output array 

6

•  Given two sorted halves, count number of 
inversions where ai and aj are in different 
halves 

•  Combine two sorted halves into sorted whole 

10 14 18 19 3 7 16 17 23 25 2 11 

7 10 11 14 2 3 16 

Total:  6 + 3 + 2 

23

two sorted 
halves 

Output array 

6

•  Given two sorted halves, count number of 
inversions where ai and aj are in different 
halves 

•  Combine two sorted halves into sorted whole 

10 14 18 19 3 7 16 17 23 25 2 11 

7 10 11 14 2 3 16 17 

Total:  6 + 3 + 2 + 2 

223

two sorted 
halves 

Output array 

6
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•  Given two sorted halves, count number of 
inversions where ai and aj are in different 
halves 

•  Combine two sorted halves into sorted whole 

10 14 18 19 3 7 16 17 23 25 2 11 

7 10 11 14 2 3 16 17 

Total:  6 + 3 + 2 + 2 

223

two sorted 
halves 

Output array 

6

•  Given two sorted halves, count number of 
inversions where ai and aj are in different 
halves 

•  Combine two sorted halves into sorted whole 

10 14 18 19 3 7 16 17 23 25 2 11 

7 10 11 14 2 3 18 16 17 

Total:  6 + 3 + 2 + 2 

223

two sorted 
halves 

Output array 

6

•  Given two sorted halves, count number of 
inversions where ai and aj are in different 
halves 

•  Combine two sorted halves into sorted whole 

10 14 18 19 3 7 16 17 23 25 2 11 

7 10 11 14 2 3 18 16 17 

Total:  6 + 3 + 2 + 2 

223

two sorted 
halves 

Output array 

6

•  Given two sorted halves, count number of 
inversions where ai and aj are in different 
halves 

•  Combine two sorted halves into sorted whole 

10 14 18 19 3 7 16 17 23 25 2 11 

7 10 11 14 2 3 18 19 16 17 

Total:  6 + 3 + 2 + 2 

223

two sorted 
halves 

Output array 

6

•  Given two sorted halves, count number of 
inversions where ai and aj are in different 
halves 

•  Combine two sorted halves into sorted whole 

10 14 18 19 3 7 16 17 23 25 2 11 

7 10 11 14 2 3 18 19 16 17 

Total:  6 + 3 + 2 + 2 

first half exhausted 

223

two sorted 
halves 

Output array 

6

•  Given two sorted halves, count number of 
inversions where ai and aj are in different 
halves 

•  Combine two sorted halves into sorted whole 

10 14 18 19 3 7 16 17 23 25 2 11 

7 10 11 14 2 3 18 19 23 16 17 

Total:  6 + 3 + 2 + 2 + 0 

0223

two sorted 
halves 

Output array 

6
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•  Given two sorted halves, count number of 
inversions where ai and aj are in different 
halves 

•  Combine two sorted halves into sorted whole 

10 14 18 19 3 7 16 17 23 25 2 11 

7 10 11 14 2 3 18 19 23 16 17 

Total:  6 + 3 + 2 + 2 + 0 

0223

two sorted 
halves 

Output array 

6

•  Given two sorted halves, count number of 
inversions where ai and aj are in different 
halves 

•  Combine two sorted halves into sorted whole 

10 14 18 19 3 7 16 17 23 25 2 11 

7 10 11 14 2 3 18 19 23 25 16 17 

i = 0 

Total:  6 + 3 + 2 + 2 + 0 + 0 

0 0223

two sorted 
halves 

Output array 

6

•  Given two sorted halves, count number of 
inversions where ai and aj are in different 
halves 

•  Combine two sorted halves into sorted whole 

10 14 18 19 3 7 16 17 23 25 2 11 

7 10 11 14 2 3 18 19 23 25 16 17 

Total:  6 + 3 + 2 + 2 + 0 + 0 = 13 

0 0223

two sorted 
halves 

Output array 

6

•  Merge-and-Count Pre-condition. A and B are 
sorted. 

•  Sort-and-Count Post-condition. L is sorted. 

Sort-and-Count(L)	
   if list L has one element	
      return 0 and the list L	

   Divide the list into two halves A and B	
   (rA, A) = Sort-and-Count(A)	
   (rB, B) = Sort-and-Count(B)	
   (r, L) = Merge-and-Count(A, B)	

   return r = rA + rB + r and the sorted list L	

Recurrence relation? 

Recurrence Relation: 
 T(n) ≤ T(n/2) + T(n/2) + O(n) 
 T(n) ∈ O(n log n) 

Sort-and-Count(L)	
   if list L has one element	
      return 0 and the list L	

   Divide the list into two halves A and B	
   (rA, A) = Sort-and-Count(A)	
   (rB, B) = Sort-and-Count(B)	
   (rB, L) = Merge-and-Count(A, B)	

   return r = rA + rB + r and the sorted list L	

•  Continue reading Chapter 5 
•  PS5 due Friday 


