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•  Network Flow 
 Max flow 
 Min cut 

•  Abstraction for material flowing through the edges 
•  G = (V, E) = directed graph, no parallel edges 
•  Two distinguished nodes:  s = source, t = sink 
•  c(e) = capacity of edge e, > 0 
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•  An s-t flow is a function that satisfies 
 Capacity condition:  For each e ∈ E: 0 ≤ f(e) ≤ c(e) 
 Conservation condition:  For each v ∈ V – {s, t}:         
∑e into y  f(e) =  ∑e out of y  f(e) 

Flow can’t exceed 
capacity 

Flow in == Flow out 
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•  The value of a flow f is v(f) = ∑e out of s  f(e)         
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•  Make network most efficient 
 Use most of available capacity 
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Value = 28 

Goal: Find s-t flow of maximum value 

•  Greedy algorithm 
 Start with f(e) = 0 for all edge e ∈ E 
 Find an s-t path P where each edge has f(e) < c(e) 
 Augment flow along path P 
 Repeat until you get stuck 
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•  Greedy algorithm 
 Start with f(e) = 0 for all edge e ∈ E 
 Find an s-t path P where each edge has f(e) < c(e) 
 Augment flow along path P 
 Repeat until you get stuck 
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Is this optimal? 

Flow value = 20 

•  Greedy algorithm 
  Start with f(e) = 0 for all edge e ∈ E 
  Find an s-t path P where each edge has f(e) < c(e) 
  Augment flow along path P 
  Repeat until you get stuck 

greedy = 20 
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locally optimality does not ⇒ global optimality 

•  Original edge: e = (u, v)  ∈ E 
 Flow f(e), capacity c(e) u v  17 
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•  Original edge: e = (u, v)  ∈ E 
 Flow f(e), capacity c(e) 

•  Residual edge 
 e = (u, v) w/ capacity c(e) - f(e) 
 eR = (v, u) with capacity f(e)  

•  To undo flow 

•  Residual graph:  Gf = (V, Ef ) 
 Residual edges with positive residual capacity 
 Ef = {e : f(e) < c(e)}  ∪  {eR : f(e) > 0} 
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•  Used to find the maximum flow 
 Use similar idea to greedy algorithm 

•  Residual path: simple s-t path in Gf 
 Also known as augmenting path 
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Ford-Fulkerson(G, s, t, c)	
   foreach e ∈ E  f(e) = 0  # initially no flow	
   Gf = residual graph	

   while there exists augmenting path P	
      f = Augment(f, c, P)     # change the flow	
      update Gf   	 	# build a new residual graph	

   return f	

Augment(f, c, P)	
   b = bottleneck(P) # edge on P with least capacity	
   foreach e ∈ P	
      if (e ∈ E) f(e) = f(e) + b  # forward edge,  flow	
      else       f(eR) = f(e) - b  # forward edge,  flow 	
   return f	
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What does the residual graph look like? 
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Flow value = 16 
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Flow value = 18 
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Flow value = 19 
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What is reachable from s 

Flow value = 19 Cut capacity = 19 

• Why does this algorithm work? 
• What is happening at each iteration? 

Ford-Fulkerson(G, s, t, c)	
   foreach e ∈ E  f(e) = 0  # initially no flow	
   Gf = residual graph	

   while there exists augmenting path P	
      f = Augment(f, c, P)     # change the flow	
      update Gf   	 	# build a new residual graph	

   return f	

Augment(f, c, P)	
   b = bottleneck(P) # edge on P with least capacity	
   foreach e ∈ P	
      if (e ∈ E) f(e) = f(e) + b  # forward edge,  flow	
      else       f(eR) = f(e) - b  # forward edge,  flow 	
   return f	
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Ford-Fulkerson(G, s, t, c)	
   foreach e ∈ E  f(e) = 0  # initially no flow	
   Gf = residual graph	

   while there exists augmenting path P	
      f = Augment(f, c, P)     # change the flow	
      update Gf   	 	# build a new residual graph	

   return f	

Augment(f, c, P)	
   b = bottleneck(P) # edge on P with least capacity	
   foreach e ∈ P	
      if (e ∈ E) f(e) = f(e) + b  # forward edge,  flow	
      else       f(eR) = f(e) - b  # forward edge,  flow 	
   return f	

O(m) 
O(m) 

O(m) 
O(m) 

O(n) 
O(n) 
O(1) 
O(1) 

Total: O(n)  O(m), since n ≤ 2m 

Total: O(Fm) 

Find path: O(m);  Iterations: O(F) iterations, where F = max flow 

•  An s-t cut is a partition (A, B) of V with s ∈ A 
and t ∈ B 

•  The capacity of a cut (A, B) is 
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•  Find an s-t cut of minimum capacity 
 Puts upperbound on maximum flow 
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•  Let f be any flow, and let (A, B) be any s-t cut.  
Then, the net flow sent across the cut is equal 
to the amount leaving s. 
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Value = 24 
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 Value = 6 + 0 + 8 - 1 + 11 
          = 24 
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•  Let f be any flow, and let (A, B) be any s-t cut.  
Then, the net flow sent across the cut is equal 
to the amount leaving s. 
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•  Let f be any flow, and let (A, B) be any s-t 
cut. 

•  Then 
•  Pf.    

  

€ 

f (e)
e out of A
∑ − f (e) = v( f )

e in to A
∑ .

€ 

v( f ) = f (e)
e out of s
∑

=
v ∈A
∑ f (e)

e out of v
∑  − f (e)

e in to v
∑

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

= f (e)
e out of A
∑  − f (e).

e in to A
∑

by flow conservation, all 
terms except v = s are 0 

By definition 

Possibilities for edge e: 
• Both ends in A (0) 
• Points out from A (+) 
• Points in to A (-) A B 


