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•  Minimum Spanning Tree 
•  Union-Find data structure 
•  Clustering 

•  Comcast knows how to make money and how to save 
money 

•  They want to lay cable in a neighborhood 
  Reach all houses 
  Least cost 

Neighborhood Layout Cost of laying cable btw 
houses depends on amount 

of cable, landscaping, 
obstacles, etc. 
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•  Given a connected graph G = (V, E) with 
positive edge weights ce, an MST is a subset of 
the edges T ⊆ E such that T is a spanning tree 
whose sum of edge weights is minimized 
 Spanning tree: spans all nodes in graph 
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G = (V, E) T,  Σe∈T ce = 50 

•  Simplifying assumption: All edge costs ce are distinct 
➜  MST is unique 

•  Cut property.  Let S be any subset of nodes, and let e 
be the min cost edge with exactly one endpoint in S.  
Then MST contains e. 

•  Cycle property.  Let C be any cycle, and let f be the 
max cost edge belonging to C.  Then MST does not 
contain f. 

f  
C 

S 

Cut Property: e is in MST 

e 

Cycle Property: f is not in MST 

•  Start with T = φ 
•  Consider edges in ascending order of cost 
•  Insert edge e in T unless doing so would 

create a cycle 
 Add edge as long as “compatible” 

How can we prove algorithm’s correctness? 

•  Consider edges in ascending order of weight 
•  Case 1:  If adding e to T creates a cycle, discard e 

according to cycle property (e must be max weight) 
•  Case 2:  Otherwise, insert e = (u, v) into T according to 

cut property where S = set of nodes in u's connected 
component 

Case 1 
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Case 2 
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What is tricky about implementing 
Kruskal’s algorithm? 

How do we know when adding an edge will 
create a cycle? 

•  What are the properties of a graph/
its nodes when adding an edge will 
create a cycle? 

•  Keeps track of a graph as edges are added 
 Cannot handle when edges are deleted 

•  Maintains disjoint sets 
 E.g., graph’s connected components 

•  Operations: 
 Find(u): returns name of set containing u 

•  How utilized to see if two nodes are in the same set? 
•  Goal implementation: O(log n) 

 Union(A, B): merge sets A and B into one set 
•  Goal implementation: O(log n) 

Best darn U-F Data Structure 

•  Using the union-find data structure 
 Build set T of edges in the MST 
 Maintain set for each connected component 

Sort edges weights so that c1 ≤ c2 ≤ ... ≤ cm	
T = {}	
foreach (u ∈ V) make a set containing singleton u	

for i = 1 to m	
   (u,v) = ei	
   if (u and v are in different sets)	
      T = T ∪ {ei}	
      merge the sets containing u and v	
return T	

are u and v in different connected components? 

merge two components 

Costs? 

•  Using best implementation of union-find 
 Sorting: O(m log n) 
 Union-find: O(m α (m, n)) 
 O(m log n) 

Sort edges weights so that c1 ≤ c2 ≤ ... ≤ cm	
T = {}	
foreach (u ∈ V) make a set containing singleton u	

for i = 1 to m	
   (u,v) = ei	
   if (u and v are in different sets)	
      T = T ∪ {ei}	
      merge the sets containing u and v	
return T	

m ≤ n2 ⇒ log m is O(log n) 

essentially a constant 

are u and v in different connected components? 

merge two components 

•  Motivating Example: Comcast laying cable 

Neighborhood Layout 
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Outbreak of cholera deaths  in London in 1850s. 
Reference: Nina Mishra, HP Labs 

Intersections 
with polluted wells 

•  Given a set U of n objects (or points) labeled 
p1, …, pn, classify into coherent groups 
 Example objects: photos, documents, micro-

organisms 
•  Distance function.  Numeric value specifying 

"closeness" of two objects 

•  Divide objects into clusters so that points in 
different clusters are far apart 

•  Applications 
 Routing in mobile ad hoc networks 
 Identify patterns in gene expression 
 Identifying patterns in web application use cases 

•  Sets of URLs 
 Similarity searching in medical image databases 
 Skycat:  cluster 109 sky objects into stars, 

quasars, galaxies 

•  k-clustering.  Divide objects into k non-empty 
groups 

•  Distance function.  Assume it satisfies 
several natural properties 
 d(pi, pj) = 0 iff pi = pj   (identity of indiscernibles) 
 d(pi, pj) ≥ 0        (nonnegativity) 
 d(pi, pj) = d(pj, pi)       (symmetry) 

•  k-clustering.  Divide objects into k non-empty 
groups 

•  Spacing.  Min distance between any pair of 
points in different clusters 

•  Clustering of maximum spacing.  Given an 
integer k, find a k-clustering of maximum 
spacing 

spacing 
k = 4 

•  Greedy algorithm? 
•  How relates to the minimum spanning tree? 
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•  Single-link k-clustering algorithm 
 Form a graph on the vertex set U, corresponding 

to n clusters 
 Find the closest pair of objects such that each 

object is in a different cluster, and add an edge 
between them 

 Repeat n-k times until there are exactly k 
clusters 

How is this related to the MST? 

•  Key observation. Same as Kruskal's 
algorithm 
 Except we stop when there are k connected 

components 
•  Remark.  Equivalent to finding an MST and 

deleting the k-1 most expensive edges 
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k=3 

MST 

•  Theorem. Let C denote the clustering C1, …, Ck 
formed by deleting the k-1 most expensive edges of a 
MST.  C is a k-clustering of max spacing. 

•  Pf Intuition: 
 What can we say about C’s spacing? 

•  Within clusters and between clusters 
 What if C isn’t optimal? 

•  What does that mean about C’s clusters vs (optimal) C*’s 
clusters? 
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K=3 

MST 

•  Theorem.  Let C denote the clustering C1, …, Ck formed by 
deleting the k-1 most expensive edges of a MST. C is a k-
clustering of maximum spacing. 

•  Pf Sketch.  Let C* denote some other clustering C*1, …, C*k.  
C* and C must be different; otherwise we’re done. 
  The spacing of C is length d of (k-1)st most expensive edge 
  Let pi, pj be in the same cluster in C (say Cr) but different 

clusters in C*, say C*s and C*t 
  Some edge (p, q) on pi-pj path in Cr spans two different 

clusters in C* 

p q pi pj 

C*s C*t 

Cr 
What do we know about (p, q)? 

•  Theorem.  Let C denote the clustering C1, …, Ck formed by 
deleting the k-1 most expensive edges of a MST. C is a k-
clustering of maximum spacing. 

•  Pf.  Let C* denote some other clustering C*1, …, C*k.         
C* and C must be different; otherwise we’re done. 
  The spacing of C is length d of (k-1)st most expensive edge 
  Let pi, pj be in the same cluster in C (say Cr) but different 

clusters in C*, say C*s and C*t 
  Some edge (p, q) on pi-pj path in Cr spans two different 

clusters in C* 
  All edges on pi-pj path have length ≤ d 

since Kruskal chose them 
  Spacing of C* is at most ≤ d since  
    p and q are in different clusters p q pi pj 

C*s C*t 

Cr 

•  PS 4 due Friday 
•  Continue reading chapter 4 
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•  k-clustering.  Divide objects into k non-empty 
groups 

•  Spacing.  Min distance between any pair of 
points in different clusters 

•  Clustering of maximum spacing.  Given an 
integer k, find a k-clustering of maximum 
spacing 

spacing k = 4 

•  Start with each node in its own cluster 
•  Sort edges by their distance, ascending 
•  For each edge, combine its nodes’ clusters 

into one cluster until we have k clusters 


