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Objectives

Analyzing algorithms
Asymptotic running times
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Discussion: Quizzes vs Journals

Assessment: some preference to journals
» Check out Wiki on Sakai
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Review: Our Process

Understand/identify problem
» Simplify as appropriate
Design a solution

Analyze @

» Correctness, efficiency
» May need to go back to step 2 and try again

Implement
» Within bounds shown in analysis
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Computational Tractability

As soon as an Analytic Engine exists, it will necessarily guide the
future course of the science. Whenever any result is sought by its
aid, the question will arise - By what course of calculation can
these results be arrived at by the machine in the shortest time?

-- Charles Babbage

Charles Babbage Analytic Engine
(1864) (schematic)
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Today’s Goal:
Define Algorithm Efficiency
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Brute Force

For many non-trivial problems, there is a
natural brute force search algorithm that
checks every possible solution
> Typically takes 2N time or worse for inputs of
size N
» Unacceptable in practice

How many possible solutions are there in the
stable matching problem?

(In other words, how many possible perfect matchings
are there? We're not worried about stability right now.)
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Brute Force

For many non-trivial problems, there is a
natural brute force search algorithm that
checks every possible solution

» Typically takes 2N time or worse for inputs of

size N

» Unacceptable in practice
Example: Stable matching: n! with n men and
n women

~ If n increases by 1, what happens to the running
time?

"Exponential”

Jan 15,2010 Sprenkle - CSCI211 7

Worst-Case Running Time

Obtain bound on /argest possible running
time of algorithm on input of a given size N
» Generally captures efficiency in practice

» Draconian view, but hard to find effective
alternative

‘ What are alternatives to worst-case analysis?
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Average Case Running Time

Obtain bound on running time of algorithm on
random input as a function of input size N

» Hard (or impossible) to accurately model real
instances by random distributions

» Algorithm tuned for a certain distribution may
perform poorly on other inputs
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Polynomial-Time

There exists constantsc>0and d >0
such that on every input of size N, its
running time is bounded by ¢ N9 steps.

Desirable scaling property: When input size
doubles, algorithm should only slow down by
some constant factor C +——_ j0se ¢ = 2¢
Def. An algorithm is polynomial time (or
polytime) if the above scaling property holds.
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Algorithm Efficiency

Def. An algorithm is efficient if its running time is
polynomial
Justification: It really works in practice!

» In practice, poly-time algorithms that people develop
almost always have low constants and low exponents

» Breaking through the exponential barrier of brute force
typically exposes some crucial structure of the problem
Exceptions

» Some poly-time algorithms do have high constants and/
or exponents (6.02 x 102 x N2°) and are useless in
practice

» Some exponential-time (or worse) algorithms are widely
used because the worst-case instances seem to be rare
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Running Times

Table 2.1 The running times (rounded up) of different algorithms on inputs of
increasing size, for a processor performing a million high-level instructions per second.
In cases where the running time exceeds 10° years, we simply record the algorithm as
taking a very long time.

Input Size n nlog,n n? n® 15" R n!
n=10 <lsec <lsec < lsec <lsec <1sec 4'sec
n=30 <lsec <1sec < 1sec <1sec 18min  10% years
n=50 <lsec <lsec <1sec Imin  36years  verylong
n=100 <lsec <lsec Isec |12,892years 107 years  very long

n=1,000 < lsec 1 sec 18 min verylong  verylong  very long

n=10,000 <lsec  2min 12 days verylong  verylong  very long
= 100,000 2sec 3 hours 32 years verylong  verylong  very long
= 1,000,000 20sec  12days 31,710 years verylong  verylong  very long
Polynomial
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Running Times
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* Huge difference from polynomial to not polynomial
« Differences in runtime matter more as input size increases
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Comparing 10000 nZ and n3
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As input size increases, n® dominates large constant * n?
=>Care about running time as input size approaches infinity
= Only care about highest-order term
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Asymptotic Order of Growth:
Upper Bounds
T(n) is the worst case running time of an

algorithm

We say that T(n) is O(f(n)) if there exist

c cannot depend on n

constants ¢ > 0 and n, = 0 such that for all
T(n) is bounded above by a

constant multiple of f(n)
n = ny, we have T(n) <c - f(n

T is asymptotically upperbounded by f
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Asymptotic Order of Growth:
Upper Bounds f(n)

T(n)

Ny

Point at which f(n) > T(n)
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Upper Bounds Example

T(n)=pn2+qgn+r
» P, q, r are positive constants

Idea: Let's inflate the terms in the
equation so that all terms are n2
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Upper Bounds Example

T(n)=pn2+qgn+r
» p, q, r are positive constants
Forallnz=1,

T(n)=pn?+qgn+r
< pn? + gn? + rn?
= (prger) n?
= ¢ n?

T(n) < cn?, where ¢ = p+q+r
T(n) = O(n?)
Also correct to say that T(n) = O(n3)
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Notation

Slight abuse of notation. T(n) = O(f(n))
» Asymmetric:
f(n) = 5n3; g(n) = 3n2
f(n) = O(n®) = g(n)
But f(n) = g(n).
» Better notation: T(n) € O(f(n))
Meaningless statement. Any comparison-
based sorting algorithm requires at least O(n
log n) comparisons
» Use Q for lower bounds
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Example: Lower Bound
T(n)=pn2+qgn+r
> p, q, r are positive constants
Idea: Deflate terms rather than inflate
Foralln=0,
T(n) = pn2 +qn+r > pn2
2>T(n) > en?, where e = p>0
> T(n) = Q(n?)

Also correct to say that T(n) = Q(n)
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Property: Transitivity
If f = O(g) and g = O(h) then f = O(h)
If f = Q(g) and g = Q(h) then f = Q(h)
If f = ©(g) and g = ©(h) then f = ©(h)
Proofs in book
@) h Q ]
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Asymptotic Order of Growth:

Lower Bounds
Complementary to upper bound

T(n) is Q(f(n)) if there exist constants € > 0

sufficiently large n

and n, = 0 such that for all n = n, , we have
T(n) is bounded below by a
T(n) >¢€- f(n) constant multiple of f(n)

T is asymptotically lowerbounded by f
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Tight bounds
T(n) is ©(f(n)) if T(n) is both
O(f(n)) and (f(n))

» The “right” bound
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Property: Additivity
If f=0(h) and g = O(h) then f + g = O(h)
If f =Q(h) and g = Q(h) then f + g = Q(h)
If f=0(h)and g = O(h) then f + g = ©(h)

Proofs in book

Sketch proof for O:
By defn,f<c-h
By defn,g<d - h
f+g<c-h+d-h=(c+d)h=c"-h
> f +gis O(h)
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