
3/29/10

1

•  Network Flow
 Max flow
 Min cut
 Choosing good augmenting paths

•  Abstraction for material flowing through the edges
•  G = (V, E) = directed graph, no parallel edges
•  Two distinguished nodes: s = source, t = sink
•  c(e) = capacity of edge e, > 0

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4

capacity

source sink

•  An s-t flow is a function that satisfies
 Capacity condition: For each e ∈ E: 0 ≤ f(e) ≤ c(e)
 Conservation condition: For each v ∈ V – {s, t}:
∑e into y f(e) = ∑e out of y f(e)

Flow can’t exceed
capacity

Flow in == Flow out

4

0

0

0

0 0

0 4 4

0
0

0

0

capacity
flow

0

4

 15

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4

source sink

•  The value of a flow f is v(f) = ∑e out of s f(e)

4

0

0

0

0 0

0 4 4

0
0

0

Value = 4

0

capacity
flow

0

4

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4

Ford-Fulkerson(G, s, t, c)	
 foreach e ∈ E f(e) = 0 # initially no flow	
 Gf = residual graph	

 while there exists augmenting path P	
 f = Augment(f, c, P) # change the flow	
 update Gf 	 	# build a new residual graph	

 return f	

Augment(f, c, P)	
 b = bottleneck(P) # edge on P with least capacity	
 foreach e ∈ P	
 if (e ∈ E) f(e) = f(e) + b # forward edge,  flow	
 else f(eR) = f(e) - b # forward edge,  flow 	
 return f	

O(m)
O(m)

O(m)
O(m)

O(n)
O(n)
O(1)
O(1)

Total: O(n)  O(m), since n ≤ 2m

Total: O(Fm)

Find path: O(m); Iterations: O(F) iterations, where F = max flow

Try for a tighter bound …

•  An s-t cut is a partition (A, B) of V with s ∈ A
and t ∈ B

•  The capacity of a cut (A, B) is

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 A

€

cap(A, B) = c(e)
e out of A
∑

 Capacity =
 9 + 15 + 8 + 30
 = 62

 B

3/29/10

2

•  Goal: Find an s-t cut of minimum capacity
 Puts upperbound on maximum flow

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4

A
 Capacity = 10 + 8 + 10
 = 28

B
10

6

6

1 10

3 8 8

0
0

0

11

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0

 Value = 6 + 0 + 8 - 1 + 11
 = 24

4

11

A

B
€

f (e)
e out of A
∑ − f (e)

e in to A
∑ = v(f)

•  Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal
to the amount leaving s.

•  Let f be any flow, and let (A, B) be any s-t
cut.

•  Then
•  Pf.

€

f (e)
e out of A
∑ − f (e) = v(f)

e in to A
∑ .

€

v(f) = f (e)
e out of s
∑

=
v ∈A
∑ f (e)

e out of v
∑ − f (e)

e in to v
∑

⎛

⎝
⎜

⎞

⎠
⎟

= f (e)
e out of A
∑ − f (e).

e in to A
∑

by flow conservation, all
terms except v = s are 0

By definition

Possibilities for edge e:
• Both ends in A (0)
• Points out from A (+)
• Points in to A (-) A B

•  Let f be any flow and let (A, B) be any s-t cut.
Then the value of the flow is at most the cut’s
capacity

Cut capacity = 30 ⇒ Flow value ≤ 30

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4

Capacity = 30

A

•  Let f be any flow. Then, for any s-t cut (A, B)
v(f) ≤ cap(A, B).

•  Pf.

€

v(f) = f (e)
e out of A
∑ − f (e)

e in to A
∑

≤ f (e)
e out of A
∑

≤ c(e)
e out of A
∑

= cap(A,B) s

t

A B

 7
6

 8
4 By FVL

•  Corollary. Let f be any flow, and let (A, B) be
any cut. If v(f) = cap(A, B), then f is a max
flow and (A, B) is a min cut.

Value of flow = 28
Cut capacity = 28 ⇒

 Flow value ≤ 28

10

9

9

14

4 10

4 8 9

1
0 0

0

14

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0 A

B

3/29/10

3

•  Let A be set of vertices reachable from s in
residual graph at end of F-F alg execution

•  By definition of A, s ∈ A
•  By definition of f, t ∉ A s

2

3

4

5 t 10

 10

 9

 8

 4

 10

 10 6 2
10

3

9

9 9 10

7
0

 G:

s

2

3

4

5 t 1 9

 1

 1 6 2

 Gf:

 10

 7 10

6

 9

9

 3

 1

Flow value = 19 Cut capacity = 19

• What do we know
about the flow out of A?

• What do we know
about the flow into A?

A

s

2

3

4

5 t 10

 10

 9

 8

 4

 10

 10 6 2
10

3

9

9 9 10

7
0

 G:

s

2

3

4

5 t 1 9

 1

 1 6 2

 Gf:

 10

 7 10

6

 9

9

 3

 1

Flow value = 19 Cut capacity = 19

• What do we know
about the flow out of A?

• What do we know
about the flow into A?

A

• All edges out of A are
completely saturated

• All edges into A are
completely unused

•  Proof:
 (i) There exists a cut (A, B) such that

v(f) = cap(A, B) (due to corollary)
 (ii) Every edge from A  B must have its flow

equal to its capacity.
•  Otherwise, there is a path from s to t in the

residual graph that would identify an edge across
the cut on which we could increase flow.

The value of the max flow is
equal to the value of the min cut

•  Proof:
 (iii) Every edge from B  A must have a flow of

0.
•  Otherwise, there would be a reverse edge in the

residual graph that would create a path across
the cut.

Conclusion: All edges from A  B are saturated.
All edges from B  A have no flow.

The value of the max flow is
equal to the value of the min cut

•  Augmenting path theorem. Flow f is a max flow iff there
are no augmenting paths.

•  Max-flow min-cut theorem. [Ford-Fulkerson 1956] The
value of the max flow is equal to the value of the min cut.

•  Proof strategy. We prove both simultaneously by
showing the following are equivalent:
 (i) There exists a cut (A, B) such that v(f) = cap(A, B).
 (ii) Flow f is a max flow.
 (iii) There is no augmenting path relative to f.

•  (i) ⇒ (ii) This was the corollary to weak duality lemma.
•  (ii) ⇒ (iii) We show contrapositive.

  Let f be a flow. If there exists an augmenting path, then we
can improve f by sending flow along path.

3/29/10

4

•  (iii) ⇒ (i)
 Let f be a flow with no augmenting paths
 Let A be set of vertices reachable from s in

residual graph
 By definition of A, s ∈ A
 By definition of f, t ∉ A

€

v(f) = f (e)
e out of A
∑ − f (e)

e in to A
∑

= c(e)
e out of A
∑

= cap(A,B) original network

s

t

A B

•  Assumption. All capacities are integers between 1 and C.
•  Invariant. Every flow value f(e) and every residual

capacity’s cf(e) remains an integer throughout algorithm.

•  Theorem. The algorithm terminates in at most v(f*) ≤ nC
iterations.

•  Pf. Each augmentation increases value by at least 1.
•  Corollary. If C = 1, Ford-Fulkerson runs in O(mn) time.

•  Integrality theorem. If all capacities are integers, then
there exists a max flow f for which every flow value f(e) is
an integer.

•  Pf. Since algorithm terminates, theorem follows from
invariant.

•  Is generic Ford-Fulkerson algorithm
polynomial in input size?
 No. If max capacity is C, then algorithm can take

C iterations.

s

1

2

t

C

C

0 0

0 0

0

C

C

1 s

1

2

t

C

C

1

0 0

0 0

0 X 1

C

C

X

X

X

1

1

1

X

X

1

1 X

X

X

1

0

1

•  Use care when selecting augmenting paths
 Some choices lead to exponential algorithms
 Clever choices lead to polynomial algorithms
  If capacities are irrational, algorithm not guaranteed

to terminate!
•  Goal: choose augmenting paths so that:

 Can find augmenting paths efficiently
 Few iterations

•  [Edmonds-Karp 1972, Dinitz 1970]
Choose augmenting paths with:
 Max bottleneck capacity
 Sufficiently large bottleneck capacity
 Fewest number of edges

•  Choosing path with highest bottleneck capacity
increases flow by max possible amount.
 Don't worry about finding exact highest bottleneck path
 Maintain scaling parameter Δ
  Let Gf (Δ) be the subgraph of the residual graph

consisting of only edges with capacity at least Δ

110

s

4

2

t 1

170

102

122

Gf

110

s

4

2

t

170

102

122

Gf (100)

3/29/10

5

Scaling-Max-Flow(G, s, t, c)	
 foreach e ∈ E, f(e) = 0	
 Δ = greatest power of 2 less than or equal to C	
 Gf = residual graph	
 Gf(Δ) = Δ-residual graph	

 while Δ ≥ 1:	
	while there exists augmenting path P in Gf(Δ) :	

 f = augment(f, c, P)	
 update Gf(Δ)	
 	Δ = Δ / 2 	

 return f	

• Why does this work?
• What is its running time?

Scaling-Max-Flow(G, s, t, c)	
 foreach e ∈ E, f(e) = 0	
 Δ = greatest power of 2 less than or equal to C	
 Gf = residual graph	
 Gf(Δ) = Δ-residual graph	

 while Δ ≥ 1:	
	while there exists augmenting path P in Gf(Δ) :	

 f = augment(f, c, P)	
 update Gf(Δ)	
 	Δ = Δ / 2 	

 return f	

After Δ-scaling phase, pretty
close to max possible flow

•  Assumption. All edge capacities are integers
between 1 and C.

•  Integrality invariant. All flow and residual
capacity values are integral.

•  Correctness. If the algorithm terminates, then
f is a max flow.

•  Pf.
 By integrality invariant, when Δ = 1 ⇒ Gf(Δ) =

Gf.
 Upon termination of Δ = 1 phase, there are no

augmenting paths. ▪

•  Lemma 1. The outer while loop repeats
O(log2 C) times.

•  Proof. Initially Δ ≤ C. Δ decreases by a
factor of 2 each iteration. ▪

•  Lemma 2. Let f be the flow at the end of a Δ-scaling
phase. Then value of the maximum flow is at most v(f) +
m Δ.

•  Proof. (almost identical to proof of max-flow min-cut
theorem)
  Show that at the end of a Δ-phase, there exists a cut (A, B)

such that cap(A, B) ≤ v(f) + m Δ.
  Choose A to be the set of nodes reachable from s in Gf(Δ).
  By definition of A, s ∈ A.
  By definition of f, t ∉ A.

€

v(f) = f (e)
e out of A
∑ − f (e)

e in to A
∑

≥ (c(e)
e out of A
∑ −Δ) − Δ

e in to A
∑

= c(e)
e out of A
∑ − Δ

e out of A
∑ − Δ

e in to A
∑

≥ cap(A, B) - mΔ

s

t

A B

Graph
contains
m edges

Bound on
flow values
across cut

•  Lemma 3. There are at most 2m
augmentations per scaling phase.
 Let f be the flow at the end of the previous

scaling phase.
 L2 ⇒ v(f*) ≤ v(f) + m (2Δ).
 Each augmentation in a Δ-phase increases v(f)

by at least Δ. ▪
•  Theorem. The scaling max-flow algorithm

finds a max flow in O(m log C)
augmentations. It can be implemented to run
in O(m2 log C) time. ▪

Edge’s added capacity at
this stage is at most 2Δ

3/29/10

6

• Wiki - Wednesday
 Finish reading Chapter 6
 Up through 7.3

•  Problem Set 8 due Friday
 Implementing pretty printing

