Objectives

Divide and Conquer

» Integer multiplication

» Matrix multiplication
Dynamic Programming

» Fibonacci Sequence

» Weighted Interval Scheduling

Mar 8, 2010 CSCI211 - Sprenkle 1

3/8/10

Integer Arithmetic

Add. Given two n-digit integers a and b,
compute a + b.
» Algorithm?
» Runtime?

1 1 1 1 1 0 1
1 1 0o 1 0 1 0 1
+ 0 1 1 1 1 1 0 1
1 o 1t o 1t 0 O 1 O
O(n) operations
Mar 8, 2010 CSCI211 - Sprenkle 2

Integer Arithmetic

Multiply. Given two n-digit integers a and b,
compute a x b.

> Brute force solution: ©(n?) bit operations
11010101
*01111101
110101010
000000000
110101010
110101010
110101010
110101010
110101010
000000000
01101000000000010

Goal: Faster algorithm

Mar 8, 2010

Divide-and-Conquer Multiplication:
Warmup
To multiply two n-digit integers:
» Multiply four %2 n-digit integers
~ Add two 2 n-digit integers and shift to obtain result

Higher order bits Lower order bits

SHift \
x ="y ox,
yo= 2%y,
X o= (2 x) (277 +) = 2%+ 27 (x X)) + XY

A B C D

What is the recurrence relation?
* How many subproblems?

» What is merge cost?

* What is its runtime?

Mar 8, 2010 CSCI211 - Sprenkle 4

Divide-and-Conquer Multiplication:
Warmup
To multiply two n-digit integers:
» Multiply four %2 n-digit integers
» Add two %2 n-digit integers and shift to obtain result

Higher order bits Lower order bits

Shift \ \

2
2" X + Xy

=

RS
2on+ xg) (2773 + 30) = 20w + 2% (5ide +5on) + Koo
A B C D

oni2
(2"/

ER

T(n) = 4T(n/2) + O() = T(n)=O(@n*)
Rl A
P cRTET TS
Not an improvement

assumes n is a power of 2 oven brute force

Mar 8, 2010 CSCI211 - Sprenkle 5

Karatsuba Multiplication

To multiply two n-digit integers:
» Add two zn digit integers
» Multiply 3 Y2n-digit integers
» Add, subtract, and shift Yzn-digit integers to
obtain result

x o= 2"y 4 x,

y 2%y 4y,

xy = 20y + 27 (et an) + X

2"y + 225 +20) 0+ 30) = X =Xodo) + Xoo
A B A C G

What is the recurrence relation? Runtime?

Mar 8, 2010 CSCI211 - Sprenkle 6

Karatsuba Multiplication

Theorem. [Karatsuba-Ofman, 1962] Can
multiply two n-digit integers in O(n'-585) bit
operations

2"y 4 x,

2%y 4y,

2" x4 2" (g +xon) + X0y,
2" 5y + 2" (5 + %) (71 +Y0) = %)= %) + %Yo
A B A c c

x

¥
g7

Ty = 7([n/2]) + 7([n/2]) + T(1+[n/2]) + O)

recursive alls add, subtract, shift

= Ty = 0(™) = OW'™)

Mar 8, 2010 CSCI211 - Sprenkle 7

3/8/10

MATRIX MULTIPLICATION

Mar 8, 2010 CSCI211 - Sprenkle 8

Matrix Multiplication

Given two n-by-n matrices A and B, compute
C=AB

= cu
iy 2 a,b, :
=

»EXiCip=a by tapbytagby, o +ay by

Brute force. ©(n3) arithmetic operations

Fundamental question: Can we improve
upon brute force?

Mar 8, 2010 CSCI211 - Sprenkle 9

Matrix Multiplication: Warmup
Divide: partition A and B into ¥zn-by-'zn
blocks
Conquer: multiply 8 ¥zn-by-'zn recursively

Combine: add appropriate products using 4
matrix additions

Ci = (AuxBy) + (4oxBy)
[Cu CIZ] _ [Au AIZ] X [Bn BIZ] Cp = (4yxB) + (4,%By,)
G Gy Ay Ay By By G = (4yxB,) + (42xB,))
Cn = (4uxBpa) + (4 xBn)
‘Recurrence relation? Runtime? ‘
Mar 8, 2010 CSCI211 - Sprenkle 10

Matrix Multiplication: Warmup
Divide: partition A and B into ¥zn-by-zn
blocks
Conquer: multiply 8 “2n-by-Yzn recursively

Combine: add appropriate products using 4
matrix additions

@ = (4,xB,) + (4, xB.

G Ca Ay Al (B Ba W= (4xBy) + (4% By)

@ = py x B B Cp = (A xBy) + (4 xBy)

o Gy 21 22 21 22 Cy = (AyxBy) + (dyxBy)

Gy = (AyxBy) + (4% Byy)

T(n)= 8T(n/2) + e(n*) = T(n)=0(n’)
o)
recursive calls add, form submatrices
Mar 8, 2010 i e 1"

Matrix Multiplication: Key Idea

Multiply 2-by-2 block matrices with only 7
multiplications and 15 additions

Trading expensive multiplication for
less expensive addition/subtraction

G Gy Ay Aq| [Bu B.
i R i A LTS
B = (A +4,) % By
Py = (dy+Ap)x By
Ci = B+R-h+K P o= Aynx(By-By)
Co = R+h Fo= (An+ dp)x(By+ By)
Gy = B+R B = (A= 4p)x(By + By)
Cn = B+R-P-F Bo= (A= 4)x (B +By)
Mar 8, 2010 CSCI211 - Sprenkle 12

Fast Matrix Multiplication
[Strassen, 1969]
Divide: partition A and B into Y2n-by-'%n blocks
Compute: 14 Yzn-by-%2n matrices via 10 matrix
additions
Conquer: multiply 7 Y2n-by-%2n matrices
recursively
Combine: 7 products into 4 terms using 8
matrix additions o= X IO,
(n) = 7T("/2)+& = T(m)=0n"*")=0n"")
Analysis. e
» Assume n is a power of 2.
» T(n) = # arithmetic operations.

Mar 8, 2010 CSCI211 - Sprenkle 13

Fast Matrix Multiplication in Practice

Implementation issues: problems with putting
theory into practice

» Sparsity

» Caching effects

» Numerical stability

Theoretically correct but possible problems with
round off errors, etc

» Odd matrix dimensions
» Crossover to classical algorithm around n = 128

Mar 8, 2010 CSCI211 - Sprenkle 14

Fast Matrix Multiplication in Practice

Common misperception: "Strassen is only a
theoretical curiosity."
» Advanced Computation Group at Apple
Computer reports 8x speedup on G4 Velocity
Engine when n ~ 2,500

» Range of instances where it's useful is a subject
of controversy

Can "Strassenize" Ax=b, determinant,
eigenvalues, and other matrix ops

Mar 8, 2010 CSCI211 - Sprenkle 15

Fast Matrix Multiplication in Theory

Q. Multiply two 2-by-2 matrices with only 7 scalar
multiplications?

A. Yes! [Strassen, 1969] "7y = 0(n ™)

Q. Multiply two 2-by-2 matrices with only 6 scalar
multiplications?

A. Impossible [Hopcroft and Kerr, 1971] e =% =0(:"*)

Q. Two 3-by-3 matrices with only 21 scalar multiplications?
A. Also impossible O™ =0(n>")

Q. Two 70-by-70 matrices with only 143,640 scalar
multiplications?

A. Yes! [Pan, 1980] O) = 0(n)

Decimal wars.
» December, 1979: O(n2521813)
» January, 1980: O(n2521801)

Mar 8, 2010 CSCI211 - Sprenkle 16

Fast Matrix Multiplication in Theory

Best known. O(n2376) [Coppersmith-
Winograd, 1987.]

» But really large constant
Conjecture. O(n2*¢) for any ¢ > 0.

Caveat. Theoretical improvements to
Strassen are progressively less practical.

Mar 8, 2010 CSCI211 - Sprenkle 17

Algorithmic Paradigms

Greedy. Build up a solution incrementally,
myopically optimizing some local criterion
Divide-and-conquer. Break up a problem
into sub-problems, solve each sub-problem
independently, and combine solution to sub-
problems to form solution to original problem
Dynamic programming. Break up a
problem into a series of overlapping sub-
problems, and build up solutions to larger
and larger sub-problems

Mar 8, 2010 CSCI211 - Sprenkle 18

Dynamic Programming History

Richard Bellman pioneered systematic study of
dynamic programming in 1950s
Etymology
» Dynamic programming = planning over time
Not our typical use of “programming”
» Secretary of Defense was hostile to mathematical
research
» Bellman sought an impressive name to avoid
confrontation
"it's impossible to use dynamic in a pejorative sense"
"something not even a Congressman could object to"

Mar 8, 2010 Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography. 19

3/8/10

WARMUP: FIBONACCI
SEQUENCE

Mar 8, 2010 CSCI211 - Sprenkle 20

How Would You Solve the Fibonacci
Sequence?
Input: the number of Fibonacci numbers, x

Output: display the list of the first x Fibonacci
numbers

Sequence:

> Fy=F,=1
»Fo=Faat Foo

Mar 8, 2010 CSCI211 - Sprenkle 21

Soln 1: Using a List
Typical Solution:

fibs = [] # create an empty list
fibs.append(1) # append the first two Fib numbers
fibs.append(1)
print fibs[@], fibs[1],
for x in xrange(2, N):
newfib = fibs[x-1]+fibs[x-2]
print newfib,

fibs.append(newfib) Building up solution

print fibs # print out the list
‘Running time? Space cost? ‘
‘ Do we need a whole list? ‘
Mar 8, 2010 CSCI211 - Sprenkle 22

Soln 2: Using Three Variables
Only need the solutions to the last two
problems (F[k-1], F[k-2])

lastNum = 1
twoAgo = 1

print twoAgo, lastNum, "
‘ Werite as a recurrence

for n in xrange(2, N):

nthNum = twoAgo + lastNum
print nthNum,

twoAgo = lastNum
lastNum = nthNum

Mar 8, 2010 CSCI211 - Sprenkle 23

Soln 3: Recursion

def fibonacci(n):
return fibonacci(n-1) + fibonacci(n-2)

What is the running time of this algorithm?

Mar 8, 2010 CSCI211 - Sprenkle 24

Dynamic Programming Memoization
Process

Create a table with the possible inputs

If the value is in the table, return it (without
recomputing it)

Otherwise, call function recursively

~ Add value to table for future reference

How does this template map to our Fibonnaci problem?

Mar 8, 2010 CSCI211 - Sprenkle 25

Memoization Example: Fibonacci

memoized_fibonacci(n):
for j =1 to n:
results[i] = -1 # -1 means undefined

return memoized_fib_recurs(results, n)

memoized_fib_recurs(results, n):
if results[n] !'= -1: # value is defined
return results[n]
if n == 1:
val
elif n
val
else:
val = memoized_fib_recurs(results, n-2)
val = val + memoized_fib_recurs(results, n-1)
results[n] = val
return val

Mar 8, 2010 CSCI211 - Sprenkle 26

Memoization Example: Fibonacci

Alternative version...

memoized_fibonacci(n):
for j =1 to n:
results[i] = -1 # -1 means undefined
results[1] = 1
results[2] = 1

return memoized_fib_recurs(results, n)

memoized_fib_recurs(results, n):
if results[n] != -1: # value is defined
return results[n]

val = memoized_fib_recurs(results, n-2)

val = val + memoized_fib_recurs(results, n-1)
results[n] = val

return val

Mar 8, 2010 CSCI211 - Sprenkle 27

WEIGHTED INTERVAL
SCHEDULING

Mar 8, 2010 CSCI211 - Sprenkle 28

Weighted Interval Scheduling

Job j starts at s, finishes at f;, and has weight or value v,
Two jobs are compatible if they don't overlap

Goal: find maximum weight subset of mutually
compatible jobs

b Time
0o 1 2 3 4 5 6 7 8 9 10 1
Mar 8, 2010 CSCI211 - Sprenkle 29

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights
are 1 (or equivalent).
» Consider jobs in ascending order of finish time

~ Add job to subset if it is compatible with
previously chosen jobs

What happens to Greedy algorithm
if we add weights to the problem?

Mar 8, 2010 CSCI211 - Sprenkle 30

Limitation of Greedy Algorithm

Recall. Greedy algorithm works if all weights
are 1.
» Consider jobs in ascending order of finish time
~ Add job to subset if it is compatible with
previously chosen jobs
Observation. Greedy algorithm can fail
spectacularly if arbitrary weights are allowed

weight = 999 b
weight = 1 a
Time
0 1 2 3 4 5 6 7 8 9 10 1
Mar 8, 2010 CSCI211 - Sprenkle 31

3/8/10

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f; < f, <.. . <f,

Def. p(j) = largest index i < j such that job i is compatible
with j

Ex: p(8)=5,p(7)=3,p(2)=0

8
0 1 2 3 4 5 6 7 8 9 10 1
Mar 8, 2010 CSCI211 - Sprenkle 32

Time

Dynamic Programming

Assume we have an optimal solution

Notation. OPT(j) = value of optimal solution
to the problem consisting of job requests 1,
2, .,

» What is something obvious we can we say about
the optimal solution with respect to job j?

Mar 8, 2010 CSCI211 - Sprenkle 33

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution
to the problem consisting of job requests 1,
2, .,

» Case 1: OPT selects job j

» Case 2: OPT does not select job j

Explore both of these cases...
* What jobs are in OPT? Which are not?
Keep in mind our definition of p

Mar 8, 2010 CSCI211 - Sprenkle 34

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f; = f, <. .. <f]

Def. p(j) = largest index i < j such that job i is compatible
with j

Ex: p(8)=5,p(7)=3,p(2)=0

8

0 1 2 3 4 5 6 7 8 9 10 11
Mar 8, 2010 CSCI211 - Sprenkle 35

Time

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to
the problem consisting of job requests 1, 2, ..., j
» Case 1: OPT selects job j
can't use incompatible jobs { p(j) + 1, p() + 2, ..., j- 1}
must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., p())
» Case 2: OPT does not select job j

must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., j-1

optimal substructure

Formulate OPT(j) as a recurrence relation ‘

Mar 8, 2010 CSCI211 - Sprenkle 36

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to
the problem consisting of job requests 1, 2, ..., j
» Case 1: OPT selects job j
can't use incompatible jobs { p(j) + 1, p(j) + 2, ...,j-1}
must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., p(/‘),\
» Case 2: OPT does not select jobj optimal substructure

must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., j-1

Two options: Opt(j) = v+ OPT(p(j)) Formulate OPT(j) in terms

X . of smaller subproblems
Opt(j) = Opt(j-1) Which should we choose?

Mar 8, 2010 CSCI211 - Sprenkle 37

3/8/10

Dynamic Programming: Binary Choice

Notation. OPT = value of optimal solution to the
problem consisting of job requests 1, 2, ..., j
» Case 1: OPT selects job j

can't use incompatible jobs { p(j) + 1, p() + 2, ..., j- 1}

must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., p(j)

» Case 2: OPT does not select job j

must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., j-1

OPT(j)= 0 if j=0 Choose the better of
= max { v, + OPT(p(j)), OPT(j-1)} otherwise the two solutions

Mar 8, 2010 CSCI211 - Sprenkle 38

Assignments

Finish reading Chapter 5, start Chapter 6
»5.2-55

» 6 — front matter, 6.1

PS6 due Friday

Mar 8, 2010 CSCI211 - Sprenkle 39

