
3/26/10

1

•  Network Flow
 Max flow
 Min cut

•  Abstraction for material flowing through the edges
•  G = (V, E) = directed graph, no parallel edges
•  Two distinguished nodes: s = source, t = sink
•  c(e) = capacity of edge e, > 0

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4

capacity

source sink

•  An s-t flow is a function that satisfies
 Capacity condition: For each e ∈ E: 0 ≤ f(e) ≤ c(e)
 Conservation condition: For each v ∈ V – {s, t}:
∑e into y f(e) = ∑e out of y f(e)

Flow can’t exceed
capacity

Flow in == Flow out

4

0

0

0

0 0

0 4 4

0
0

0

0

capacity
flow

0

4

 15

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4

source sink

•  The value of a flow f is v(f) = ∑e out of s f(e)

4

0

0

0

0 0

0 4 4

0
0

0

Value = 4

0

capacity
flow

0

4

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4

•  Make network most efficient
 Use most of available capacity

10

9

9

14

4 10

4 8 9

1

0 0

0

14

capacity
flow

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0

Value = 28

Goal: Find s-t flow of maximum value

•  Greedy algorithm
 Start with f(e) = 0 for all edge e ∈ E
 Find an s-t path P where each edge has f(e) < c(e)
 Augment flow along path P
 Repeat until you get stuck

s

1

2

t

10

10

0 0

0 0

0

20

20

30

Flow value = 0

3/26/10

2

•  Greedy algorithm
 Start with f(e) = 0 for all edge e ∈ E
 Find an s-t path P where each edge has f(e) < c(e)
 Augment flow along path P
 Repeat until you get stuck

s

1

2

t

10

10

0 0

0 0

0

20

20

30

X

X

X

20

20

20

Is this optimal?

Flow value = 20

•  Greedy algorithm
  Start with f(e) = 0 for all edge e ∈ E
  Find an s-t path P where each edge has f(e) < c(e)
  Augment flow along path P
  Repeat until you get stuck

greedy = 20

s

1

2

t

20 10

10 20

30

20 0

0

20

20 opt = 30

s

1

2

t

20 10

10 20

30

20 10

10

10

20

locally optimality does not ⇒ global optimality

•  Original edge: e = (u, v) ∈ E
 Flow f(e), capacity c(e) u v 17

6

capacity

flow

•  Original edge: e = (u, v) ∈ E
 Flow f(e), capacity c(e)

•  Residual edge
 e = (u, v) w/ capacity c(e) - f(e)
 eR = (v, u) with capacity f(e)

•  To undo flow

•  Residual graph: Gf = (V, Ef)
 Residual edges with positive residual capacity
 Ef = {e : f(e) < c(e)} ∪ {eR : f(e) > 0}

u v 11

residual capacity

 6
residual capacity

Forward edges Backward edges

u v 17

6

capacity

flow

•  Used to find the maximum flow
 Use similar idea to greedy algorithm

•  Residual path: simple s-t path in Gf
 Also known as augmenting path

3/26/10

3

Ford-Fulkerson(G, s, t, c)	
 foreach e ∈ E f(e) = 0 # initially no flow	
 Gf = residual graph	

 while there exists augmenting path P	
 f = Augment(f, c, P) # change the flow	
 update Gf 	 	# build a new residual graph	

 return f	

Augment(f, c, P)	
 b = bottleneck(P) # edge on P with least capacity	
 foreach e ∈ P	
 if (e ∈ E) f(e) = f(e) + b # forward edge,  flow	
 else f(eR) = f(e) - b # forward edge,  flow 	
 return f	

s

2

3

4

5 t 10

 10

 9

 8

 4

 10

 10 6 2
0

0

0

0 0 0

0
0

 G:

Flow value = 0

0

flow
capacity

s

2

3

4

5 t 10

 10

 9

 8

 4

 10

 10 6 2
0

0

0

0 0 0

0
0

 G:

Flow value = 0

0

flow
capacity

What does the residual graph look like?

s

2

3

4

5 t 10

 10

 9

 8

 4

 10

 10 6 2
0

0

0

0 0 0

0
0

 G:

Flow value = 0

0

flow
capacity

s

2

3

4

5 t 10 9

 4

 10 6 2

 Gf:
10 8

 10

residual capacity

Bottleneck

s

2

3

4

5 t 10

 10

 9

 8

 4

 10

 10 6 2
8

0

0

0 0 8

8
0 0

 G:

s

2

3

4

5 t 10

 4

 10 6
 Gf:

 8

 8
 8

 9

 2 2

 2

10

2
10

X
X

X 2 X

Flow value = 8

0

s

2

3

4

5 t 10

 10

 9

 8

 4

 10

 10 6 2
10

0

0

0 2 10

8
2

 G:

s

2

3

4

5 t

 4

 2

 Gf:

 10

 8 10

2
 10 7

 10 6

X

6
6

6

X

X

8 X

Flow value = 10

3/26/10

4

s

2

3

4

5 t 10

 10

 9

 8

 4

 10

 10 6 2
10

0

6

6 8 10

8
2

 G:

s

2

3

4

5 t 1

 6
 Gf:

 10

 8 10

8

6

6

 6

 4

 4

 4

 2

X

8

2

8

X

X

0
X

Flow value = 16

s

2

3

4

5 t 10

 10

 9

 8

 4

 10

 10 6 2
10

2

8

8 8 10

8
0

 G:

s

2

3

4

5 t

 6 2

 Gf:

 10

 10

8

6

 8

8

 2

 2 1

 2

 8 2

X

9

7 9

X

X

9 X

X 3

Flow value = 18

s

2

3

4

5 t 10

 10

 9

 8

 4

 10

 10 6 2
10

3

9

9 9 10

7
0

 G:

s

2

3

4

5 t 1 9

 1

 1 6 2

 Gf:

 10

 7 10

6

 9

9

 3

 1

Flow value = 19

s

2

3

4

5 t 10

 10

 9

 8

 4

 10

 10 6 2
10

3

9

9 9 10

7
0

 G:

s

2

3

4

5 t 1 9

 1

 1 6 2

 Gf:

 10

 7 10

6

 9

9

 3

 1

What is reachable from s

Flow value = 19 Cut capacity = 19

• Why does this algorithm work?
• What is happening at each iteration?

Ford-Fulkerson(G, s, t, c)	
 foreach e ∈ E f(e) = 0 # initially no flow	
 Gf = residual graph	

 while there exists augmenting path P	
 f = Augment(f, c, P) # change the flow	
 update Gf 	 	# build a new residual graph	

 return f	

Augment(f, c, P)	
 b = bottleneck(P) # edge on P with least capacity	
 foreach e ∈ P	
 if (e ∈ E) f(e) = f(e) + b # forward edge,  flow	
 else f(eR) = f(e) - b # forward edge,  flow 	
 return f	

3/26/10

5

Ford-Fulkerson(G, s, t, c)	
 foreach e ∈ E f(e) = 0 # initially no flow	
 Gf = residual graph	

 while there exists augmenting path P	
 f = Augment(f, c, P) # change the flow	
 update Gf 	 	# build a new residual graph	

 return f	

Augment(f, c, P)	
 b = bottleneck(P) # edge on P with least capacity	
 foreach e ∈ P	
 if (e ∈ E) f(e) = f(e) + b # forward edge,  flow	
 else f(eR) = f(e) - b # forward edge,  flow 	
 return f	

O(m)
O(m)

O(m)
O(m)

O(n)
O(n)
O(1)
O(1)

Total: O(n)  O(m), since n ≤ 2m

Total: O(Fm)

Find path: O(m); Iterations: O(F) iterations, where F = max flow

•  An s-t cut is a partition (A, B) of V with s ∈ A
and t ∈ B

•  The capacity of a cut (A, B) is

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 A

€

cap(A, B) = c(e)
e out of A
∑

 Capacity =
 9 + 15 + 8 + 30
 = 62

 B

•  Find an s-t cut of minimum capacity
 Puts upperbound on maximum flow

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4

A
 Capacity = 10 + 8 + 10
 = 28

B

•  Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal
to the amount leaving s.

10

6

6

11

1 10

3 8 8

0
0

0

11

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0

Value = 24

€

f (e)
e out of A
∑ − f (e)

e in to A
∑ = v(f)

4

A

B
10

6

6

1 10

3 8 8

0
0

0

11

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0

 Value = 6 + 0 + 8 - 1 + 11
 = 24

4

11

A

B
€

f (e)
e out of A
∑ − f (e)

e in to A
∑ = v(f)

•  Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal
to the amount leaving s.

3/26/10

6

•  Let f be any flow, and let (A, B) be any s-t
cut.

•  Then
•  Pf.

€

f (e)
e out of A
∑ − f (e) = v(f)

e in to A
∑ .

€

v(f) = f (e)
e out of s
∑

=
v ∈A
∑ f (e)

e out of v
∑ − f (e)

e in to v
∑

⎛

⎝
⎜

⎞

⎠
⎟

= f (e)
e out of A
∑ − f (e).

e in to A
∑

by flow conservation, all
terms except v = s are 0

By definition

Possibilities for edge e:
• Both ends in A (0)
• Points out from A (+)
• Points in to A (-) A B

