
3/18/09

1

Dynamic Programming
  Overview
  Fibonacci
  Weighted scheduling

Objectives

1 Mar 18, 2009 CS211 1 2

Algorithmic Paradigms
Greedy. Build up a solution incrementally,

myopically optimizing some local criterion
Divide-and-conquer. Break up a problem into sub-

problems, solve each sub-problem independently,
and combine solution to sub-problems to form
solution to original problem

Dynamic programming. Break up a problem into a
series of overlapping sub-problems, and build up
solutions to larger and larger sub-problems

Mar 18, 2009 CS211

3

Dynamic Programming History
Richard Bellman pioneered systematic study of

dynamic programming in 1950s
Etymology
  Dynamic programming = planning over time

–  Not our typical use of programming
  Secretary of Defense was hostile to mathematical

research
  Bellman sought an impressive name to avoid

confrontation
–  "it's impossible to use dynamic in a pejorative sense"
–  "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.
Mar 18, 2009 CS211

WARMUP: FIBONACCI
SEQUENCE

4 Mar 18, 2009 CS211

Input: the number of fibonacci numbers I want
Output: display the list of fibonacci numbers

Sequence:
  F0=F1=1
  Fn=Fn-1+ Fn-2

How Would You Solve Fibonacci
Sequence?

5 Mar 18, 2009 CS211

Typical Solution:

Soln 1: Using a List

6 Mar 18, 2009 CS211

fibs = [] 	 	# create an empty list	
fibs.append(1) 	# append the first two Fib numbers	
fibs.append(1)	
print 1, 1,	
for x in xrange(2, N+1): 		

	newfib = fibs[x-1]+fibs[x-2]	
	print newfib,	
	fibs.append(newfib)	

print fibs 	 	# print out the list	

Do we need a whole list?

Building up solution

Running time? Space cost?

3/18/09

2

Only need the solutions to the last two problems
(F[k-1], F[k-2])

Soln 2: Using Three Variables

7 Mar 18, 2009 CS211

lastNum = 1	
twoAgo = 1	
print twoAgo, lastNum,	

for n in xrange (2, N+1):	

 nthNum = twoAgo + lastNum	
 print nthNum,	

 twoAgo = lastNum	
 lastNum = nthNum	

Write as a recurrence

What is the running time of this algorithm?

Soln 3: Recursion

8 Mar 18, 2009 CS211

def fibonacci(n):	
	return fibonacci(n-1) + fibonacci(n-2)	

Create a table with the possible inputs
If the value is in the table, return it (without

recomputing it); Otherwise, call function recursively
  Add value to table for future reference

Dynamic Programming Memoization
Process

9 Mar 18, 2009 CS211

Memoization Example: Fibonacci

10 Mar 18, 2009 CS211

memoized_fibonacci(n):	
	for j = 1 to n:	
	 	results[i] = -1 # -1 means undefined	

	return memoized_fib_recurs(results, n)	

memoized_fib_recurs(results, n):	
	if results[n] != -1: # value is defined	
	 	return results[n]	
	if n == 1:	
	 	val = 1	
	elif n == 2:	
	 	val = 1	
	else:	
	 	val = memoized_fib_recurs(results, n-2)	
	 	val = val + memoized_fib_recurs(results, n-1)	
	results[n] = val	
	return val	

Runtime?

Memoization Example: Fibonacci

11 Mar 18, 2009 CS211

memoized_fibonacci(n):	
	for j = 1 to n:	
	 	results[i] = -1 # -1 means undefined	
	results[1] = 1	
	results[2] = 1	

	return memoized_fib_recurs(results, n)	

memoized_fib_recurs(results, n):	
	if results[n] != -1: # value is defined	
	 	return results[n]	

	val = memoized_fib_recurs(results, n-2)	
	val = val + memoized_fib_recurs(results, n-1)	
	results[n] = val	
	return val	

WEIGHTED INTERVAL
SCHEDULING

3/18/09

3

13

Weighted Interval Scheduling
Job j starts at sj, finishes at fj, and has weight or value vj
Two jobs are compatible if they don't overlap
Goal: find maximum weight subset of mutually

compatible jobs

Time
0 1 2 3 4 5 6 7 8 9 10 11

f
g

h

e

a
b

c
d

Mar 18, 2009 CS211 14

Unweighted Interval Scheduling
Review

Recall. Greedy algorithm works if all weights are 1.
  Consider jobs in ascending order of finish time
  Add job to subset if it is compatible with previously

chosen jobs

What happens if we add weights to the problem?

Mar 18, 2009 CS211

15

Limitation of Greedy Algorithm
Recall. Greedy algorithm works if all weights are 1.
  Consider jobs in ascending order of finish time
  Add job to subset if it is compatible with previously

chosen jobs

Observation. Greedy algorithm can fail spectacularly
if arbitrary weights are allowed

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a

weight = 999

weight = 1

Mar 18, 2009 CS211 16

Weighted Interval Scheduling
Notation. Label jobs by finishing time: f1 ≤ f2 ≤ . . . ≤ fn

Def. p(j) = largest index i < j such that job i is compatible
with j

Ex: p(8) = 5, p(7) = 3, p(2) = 0

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

Mar 18, 2009 CS211

Assume we have an optimal solution
Notation. OPT(j) = value of optimal solution to the

problem consisting of job requests 1, 2, ..., j
  What is something obvious we can we say about the

optimal solution with respect to job j?

Dynamic Programming

17 Mar 18, 2009 CS211 18

Dynamic Programming: Binary
Choice

Notation. OPT(j) = value of optimal solution to the
problem consisting of job requests 1, 2, ..., j

  Case 1: OPT selects job j

  Case 2: OPT does not select job j

– Explore both of these cases…
•  What jobs are in OPT? Which are not?

– Keep in mind our definition of p

Mar 18, 2009 CS211

3/18/09

4

19

Weighted Interval Scheduling
Notation. Label jobs by finishing time: f1 ≤ f2 ≤ . . . ≤ fn

Def. p(j) = largest index i < j such that job i is compatible
with j

Ex: p(8) = 5, p(7) = 3, p(2) = 0

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

Mar 18, 2009 CS211 20

Dynamic Programming: Binary
Choice

Notation. OPT(j) = value of optimal solution to the
problem consisting of job requests 1, 2, ..., j

  Case 1: OPT selects job j
–  can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }
–  must include optimal solution to problem consisting of

remaining compatible jobs 1, 2, ..., p(j)
  Case 2: OPT does not select job j

–  must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., j-1

optimal substructure

Mar 18, 2009 CS211

Formulate OPT(j) as a recurrence relation

21

Dynamic Programming: Binary
Choice

Notation. OPT(j) = value of optimal solution to the
problem consisting of job requests 1, 2, ..., j

  Case 1: OPT selects job j
–  can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }
–  must include optimal solution to problem consisting of

remaining compatible jobs 1, 2, ..., p(j)
  Case 2: OPT does not select job j

–  must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., j-1

Formulate OPT(j) in terms
of smaller subproblems

Which should we choose?
Mar 18, 2009 CS211

Two options: Opt(j) = vj + OPT(p(j))
 Opt(j) = Opt(j-1)

22

Dynamic Programming: Binary
Choice

Notation. OPT = value of optimal solution to the
problem consisting of job requests 1, 2, ..., j

  Case 1: OPT selects job j
–  can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }
–  must include optimal solution to problem consisting of

remaining compatible jobs 1, 2, ..., p(j)
  Case 2: OPT does not select job j

–  must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., j-1

€

OPT(j) =
0 if j = 0

max v j + OPT(p(j)), OPT(j −1){ } otherwise




Mar 18, 2009 CS211

Choose the better of
the two solutions

23

Input: n jobs (associated start time sj, finish time fj,
and value vj)	

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn	

Compute p(1), p(2), …, p(n)	

Compute-Opt(j)	
 if j = 0	
 return 0	
 else	
 return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))	

Weighted Interval Scheduling:
Recursive Algorithm

Mar 18, 2009 CS211

What is the run time?
(Trace for n = 5) 3

4
5

1
2

24

Weighted Interval Scheduling: Brute
Force

Observation. Redundant sub-problems ⇒
exponential algorithms

Ex. Number of recursive calls for family of "layered"
instances grows like Fibonacci sequence.

3
4

5

1
2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

Mar 18, 2009 CS211

3/18/09

5

25

Input: n jobs (associated start time sj, finish time fj, and
value vj)	

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn	
Compute p(1), p(2), …, p(n)	

for j = 1 to n	
 M[j] = empty	
M[0] = 0	

M-Compute-Opt(j):	
 if M[j] is empty:	
 M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))	
 return M[j]	

global array

Weighted Interval Scheduling:
Memoization

Memoization. Store results of each sub-problem in a
cache; lookup as needed.

Mar 18, 2009 CS211

Need to analyze runtime…

Because we have jobs whose p(j) = 0

Jobs labeled with name - weight/value

Example

26 Mar 18, 2009 CS211

Time
0 1 2 3 4 5 6 7 8 9 10 11

F - 3

G - 2

H - 1

D - 4

C -3

A - 1

B - 2

E - 5

0 A B C D E F G H M

Example

27 Mar 18, 2009 CS211

Time
0 1 2 3 4 5 6 7 8 9 10 11

F - 3

G - 2

H - 1

D - 4

C -3

A - 1

B - 2

E - 5

M

P(j)
0
0
0
A
0
B
C
E

0 A B C D E F G H

