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Objectives 

•  Dynamic Programming 
 Knapsacks 
 RNA Substructure 
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Knapsack Problem 

•  Given n objects and a "knapsack" 
•  Item i weighs wi  > 0 kilograms and has value 

vi > 0 
 Example: jobs require wi  time 

•  Knapsack has capacity of W kilograms 
 Example: W is time interval that resource is 

available 

•  Greedy:  repeatedly add item with maximum 
ratio vi / wi. 

•  Ex:  { 5, 2, 1 } achieves only value = 35  ⇒  
greedy not optimal. 
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Towards a Recurrence… 

• What do we know about the knapsack with 
respect to item i? 
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Towards a Recurrence… 

• What do we know about the knapsack with 
respect to item i? 
 Either select item i or not 
 If don’t select 

•  Pick optimum solution of remaining items 
 Otherwise 

•  What happens? 
•  How does problem change? 
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Dynamic Programming: False Start 

•  Def.  OPT(i) = max profit subset of items 1, 
…, i 
 Case 1: OPT does not select item i 

•  OPT selects best of { 1, 2, …, i-1 }  
 Case 2:  OPT selects item i 

•  Accepting item i does not immediately imply that 
we will have to reject other items 
 No known conflicts 

•  Without knowing what other items were selected 
before i, we don't even know if we have enough 
room for i 
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➡ Need more sub-problems!	



Dynamic Programming:  
Adding a New Variable 
•  Def. OPT(i, w) = max profit subset of items 1, 
…, i with weight limit w 
 Case 1: OPT does not select item i 

•  OPT selects best of { 1, 2, …, i-1 } using weight 
limit w  

 Case 2: OPT selects item i 
•  new weight limit = w – wi 

•  OPT selects best of { 1, 2, …, i–1 } using new 
weight limit, w – wi 
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Knapsack Problem: Bottom-Up 

•  Fill up an n-by-W array 

Mar 14, 2011 CSCI211 - Sprenkle 7 

	
Input: N, w1,…,wN, v1,…,vN	
	
for w = 0 to W	
   M[0, w] = 0	
	
for i = 1 to N     # for all items 	
   for w = 1 to W  # for all possible weights	
      if wi > w :  # item’s weight is more than available	
         M[i, w] = M[i-1, w]	
      else	
         M[i, w] = max{ M[i-1, w], vi + M[i-1, w-wi] }	
	
return M[n, W]	

Knapsack Algorithm 
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Knapsack Algorithm 
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Knapsack Algorithm 
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Analyzing Solution 
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Input: N, w1,…,wN, v1,…,vN	
	
for w = 0 to W	
   M[0, w] = 0	
	
for i = 1 to N     # for all items 	
   for w = 1 to W  # for all possible weights	
      if wi > w :  # item’s weight is more than available	
         M[i, w] = M[i-1, w]	
      else	
         M[i, w] = max{ M[i-1, w], vi + M[i-1, w-wi] }	
	
return M[n, W]	

How do we figure out the optimal solution?	



Costs?	



Analyzing Solution 

•  Costs? 
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Input: N, w1,…,wN, v1,…,vN	
	
for w = 0 to W	
   M[0, w] = 0	
	
for i = 1 to N     # for all items 	
   for w = 1 to W  # for all possible weights	
      if wi > w :  # item’s weight is more than available	
         M[i, w] = M[i-1, w]	
      else	
         M[i, w] = max{ M[i-1, w], vi + M[i-1, w-wi] }	
	
return M[n, W]	

O(W)	



O(N W)	



Knapsack Problem: Running Time 

•  Running time.  Θ(n W) 
 Not polynomial in input size! 
 "Pseudo-polynomial” 

•  Reasonably efficient when W is reasonably small 
 Decision version of Knapsack is NP-complete  

[Chapter 8] 
•  Knapsack approximation algorithm.  There 

exists a polynomial algorithm that produces a 
feasible solution that has value within 0.01% 
of optimum.  [Section 11.8] 
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Review: Dynamic Programming 

• What is the key idea? 

• What is our approach to solve a problem 
using dynamic programming? 
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Review: Dynamic Programming 
•  What is the key idea? 

 Memoization: remember the answer for 
subproblems 
•  Improves running time 
•  Tradeoff in space 

•  What is our approach to solve a problem using 
dynamic programming? 
 Figure out what we’re optimizing 
 Figure out how to break the problem into 

subproblems 
 Figure out how to compute solution from 

subproblems 
 Define the recurrence relation between the problems 
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What was the Key to Solving each of 
these Problems? 
• Weighted interval scheduling 

•  Segmented least squares 

•  Knapsack 
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What was the Key to Solving each of 
these Problems? 
• Weighted interval scheduling 

 Binary decision: job was in or wasn’t 
 Know conflicts reduce problem 

•  Segmented least squares 
 Knew last point was definitely in one segment 

•  Could reduce 
 Multiway decision many possibilities for 

segment starting point  
•  Knapsack 

 If select an item, reduce available size by item’s 
size 
•  Find opt solution for smaller weight, remaining 

items 
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RNA SECONDARY 
STRUCTURE 

Applications of Dynamic Programming to Computational Biology 

Mar 14, 2011 CSCI211 - Sprenkle 22 

RNA Secondary Structure 
•  RNA.  String B = b1b2…bn over alphabet { A, C, G, U } 
•  Secondary structure.  RNA is single-stranded so it 

tends to loop back and form base pairs with itself 
  This structure is essential for understanding behavior of a 

molecule. 
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Ex:  GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA	



complementary base pairs:  A-U, C-G	



RNA Secondary Structure: 
Which Pairs Can We Combine? 

•  A set of pairs S = { (bi, bj) } that satisfy: 
 [Watson-Crick]  S is a matching and each pair in 

S is a Watson-Crick complement: A-U, U-A, C-
G, or G-C 

 [No sharp turns]  The ends of each pair are 
separated by at least 4 intervening bases.  If (bi, 
bj) ∈ S, then i < j - 4 

 [Non-crossing]  If (bi, bj)  and (bk, bl) are two 
pairs in S, then we cannot have i < k < j < l 
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Examples of RNA Secondary Structure 

Mar 14, 2011 CSCI211 - Sprenkle 25 

C	



G	

 G	



C	



A	



G	



U	



U	



U	

 A	



A	

 U	

 G	

 U	

 G	

 G	

 C	

 C	

 A	

 U	



ok	



G	

 G	



C	



A	



G	



U	



U	

 A	



A	

 U	

 G	

 G	

 G	

 C	

 A	

 U	



sharp turn	



G	



G	



≤4	



C	



G	

 G	



C	



A	



U	



G	



U	



U	

 A	



A	

 G	

 U	

 U	

 G	

 G	

 C	

 C	

 A	

 U	



crossing	



base pair	



RNA Secondary Structure 
•  A set of pairs S = { (bi, bj) } that satisfy: 

 [Watson-Crick]  S is a matching and each pair in 
S is a Watson-Crick complement: A-U, U-A, C-
G, or G-C 

 [No sharp turns]  The ends of each pair are 
separated by at least 4 intervening bases.  If (bi, bj) ∈ S, then i < j - 4 

 [Non-crossing]  If (bi, bj)  and (bk, bl) are two 
pairs in S, then we cannot have i < k < j < l 

•  Free energy.  Usual hypothesis is that an RNA 
molecule will form the secondary structure with the 
optimum total free energy. 

•  Goal.  Given an RNA molecule B = b1b2…bn, find a 
secondary structure S that maximizes the number 
of base pairs 
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approximate by number of base pairs 

Toward a Solution: First Attempt 

•  OPT(j) = maximum number of base pairs in a 
secondary structure of the substring  b1b2…bj 

•  Towards a recurrence relation… 
 What are the possibilities? 

•  What does bj match with? 
 What are the subproblems? 
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Toward a Solution: First Attempt 

•  OPT(j) = maximum number of base pairs in a 
secondary structure of the substring  b1b2…bj 

•  Relation: 
 If j isn’t involved in a pair 
 If j is involved, results in two sub-problems 

Mar 14, 2011 CSCI211 - Sprenkle 28 

1	

 t	

 j	



match bt and bj	



Toward a Solution: First Attempt 

•  OPT(j) = maximum number of base pairs in a 
secondary structure of the substring  b1b2…bj 

•  Relation: 
 If j isn’t involved in a pair: Opt(j-1) 
 If j is involved, results in two sub-problems 

•  Finding secondary structure in: b1b2…bt-1 
•  Finding secondary structure in: bt+1bt+2…bj-1 
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Dynamic Programming Over Intervals 

•  OPT(i, j) = maximum number of base pairs in 
a secondary structure of the substring 
 bibi+1…bj 
 What are the different cases? 
 How does it affect the recurrence relation? 

•  For example, when will we know that there isn’t a 
pair? 
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Dynamic Programming Over Intervals 
•  OPT(i, j) = maximum number of base pairs in 

a secondary structure of the substring   
bibi+1…bj 
 Case 1.  If i ≥ j - 4 

•  OPT(i, j) = 0 by no-sharp turns condition 
 Case 2.  Base bj is not involved in a pair 

•  OPT(i, j) = OPT(i, j-1) 
 Case 3.  Base bj pairs with bt for some i ≤ t < j - 4 

•  non-crossing constraint decouples resulting sub-
problems 

•  OPT(i, j) = 1 + maxt { OPT(i, t-1) + OPT(t+1, j-1) } 
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take max over t such that i ≤ t < j-4 and���
bt and bj are Watson-Crick complements	

pairing	



Recurrence Relation 

•  Putting it all together… 

 Opt(i,j) = max( Opt(i,j-1), 	    		 
maxt( 1+Opt(i,t-1)+Opt(t+1,j-1) ) ) 
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RNA Algorithm 

• What order to solve the sub-problems? 
 Do shortest intervals first 
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Initialize M[i,j] = 0 for i >= j-4	
	
RNA(b1,…,bn):	
   for k = 5, 6, …, n-1	
      for i = 1, 2, …, n-k	
      	  j = i + k	

	  M[i, j] = max(M[i,j-1],	
	 	    maxt(1+M[i,t-1]+M[t+1,j-1]) )	

	
   return M[1, n]	

(distances)	



(start)	


(end)	



Left endpoint	



RNA Algorithm 

• What order to solve the sub-problems? 
 Do shortest intervals first 

•  Running time: O(n3) 
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Initialize M[i,j] = 0 for i >= j-4	
	
RNA(b1,…,bn):	
   for k = 5, 6, …, n-1	
      for i = 1, 2, …, n-k	
      	  j = i + k	

	  M[i, j] = max(M[i,j-1],	
	 	    maxt(1+M[i,t-1]+M[t+1,j-1]) )	

	
   return M[1, n]	
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Dynamic Programming Summary 
•  Recipe 

  Characterize structure of problem 
  Recursively define value of optimal solution 
  Compute value of optimal solution 
  Construct optimal solution from computed information 

•  Dynamic programming techniques 
  Binary choice: weighted interval scheduling 
  Multi-way choice: segmented least squares 
  Adding a new variable: knapsack 
  Dynamic programming over intervals: RNA secondary 

structure 

•  Top-down vs. bottom-up: different people have different 
intuitions 
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This Week 

• Wed: Wiki 
 Chapter 5.5;  6, up to and including 6.4 
 Jan Cuny’s visit 

•  3 p.m. – reception to meet Jan 
•  4 p.m. – Broadening Participation in Computing 

•  Friday: Problem Set 7 due 
 Looks short but lots of parts 
 Exam 2 will be handed out 
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