
3/13/09

1

Algorithm Approach: Divide and Conquer
  Counting inversions
  Closest pair of points

Objectives

1 Mar 13, 2009 CS211 1 2

Divide-and-Conquer

Divide-and-conquer process
  Break up problem into several parts
  Solve each part recursively
  Combine solutions to sub-problems into overall solution

Most common usage
  Break up problem of size n into two equal parts of size ½n
  Solve two parts recursively
  Combine two solutions into overall solution

Divide et impera.
Veni, vidi, vici.
 - Julius Caesar

Mar 13, 2009 CS211

Use recurrences to analyze/determine the run time
of divide and conquer algorithms

  Number of sub problems
  Size of sub problems

  Number of times divided (number of levels)
  Cost of merging problems

How to solve
  Unrolling
  Substitution

Review: Recurrence Relations

3 Mar 13, 2009 CS211

COUNTING INVERSIONS

4

5

To determine similarity of rankings, need a metric
Similarity metric: number of inversions between two

rankings
  My rank: 1, 2, …, n
  Your rank: a1, a2, …, an
  Movies i and j inverted if i < j, but ai > aj

You
Me

1 4 3 2 5
1 3 2 4 5
A B C D E

Movies

Comparing Rankings

Inversions:
3-2, 4-2

Mar 13, 2009 CS211

Naïve/Brute force
solution?

Better than brute force Θ(n2)
  Can’t look at each inversion individually

Forming a Better Solution

6 Mar 13, 2009 CS211

3/13/09

2

7

Counting Inversions: Divide-and-
Conquer

4 8 10 2 1 5 12 11 3 7 6 9

Mar 13, 2009 CS211

Assume number represents where item should be in the list

8

Counting Inversions: Divide-and-
Conquer

Divide: separate list into two pieces

4 8 10 2 1 5 12 11 3 7 6 9

4 8 10 2 1 5 12 11 3 7 6 9

Divide: O(1)

Mar 13, 2009 CS211

What are the inversions?

9

Counting Inversions: Divide-and-
Conquer

Divide: separate list into two pieces
Conquer: recursively count inversions in each half

4 8 10 2 1 5 12 11 3 7 6 9

4 8 10 2 1 5 12 11 3 7 6 9
5 blue-blue inversions 8 green-green inversions

Divide: O(1)

Conquer: 2T(n / 2)

5-4, 5-2, 4-2, 8-2, 10-2 6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7

Mar 13, 2009 CS211 10

Counting Inversions: Divide-and-
Conquer

Divide: separate list into two pieces.
Conquer: recursively count inversions in each half.
Combine: count inversions where ai and aj are in

different halves, and return sum of three quantities
4 8 10 2 1 5 12 11 3 7 6 9

4 8 10 2 1 5 12 11 3 7 6 9
5 blue-blue inversions 8 green-green inversions

Divide: O(1)

Conquer: 2T(n / 2)

Combine: ??? 9 blue-green inversions
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22
Mar 13, 2009 CS211

What would make figuring out
blue-green inversions easier?

seems like Θ(n2)

11

Counting Inversions: Combine
Combine: count blue-green inversions
  Assume each half is sorted
  Count inversions where ai and aj are in different halves
  Merge two sorted halves into sorted whole

10 14 18 19 3 7 16 17 23 25 2 11

to maintain sorted invariant

Mar 13, 2009 CS211

What does sorting do for us?
What is our algorithm for counting the inversions
and merging?

12

13 blue-green inversions: 6 + 3 + 2 + 2 + 0 + 0

Counting Inversions: Combine
Combine: count blue-green inversions
  Assume each half is sorted
  Count inversions where ai and aj are in different halves
  Merge two sorted halves into sorted whole

Count: O(n)

Merge: O(n)

10 14 18 19 3 7 16 17 23 25 2 11

7 10 11 14 2 3 18 19 23 25 16 17

to maintain sorted invariant

Mar 13, 2009 CS211

3/13/09

3

Merge and Count

13 Mar 13, 2009 CS211

Merge-and-Count(A,B)	
	i=0 (front of list A)	
	j=0 (front of list B)	
	inversions = 0 	
	output = []	

 while A not empty and B not empty:	
	 	output.append(min(A[i], B[j]))	
	 	if B[j] < A[i]:	

 	 	 inversions += A.size – i (remaining elements
in A)	
 	update i or j (whichever had smaller element)	

14

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count Step
Given two sorted halves, count number of inversions

where ai and aj are in different halves
Combine two sorted halves into sorted whole

two sorted halves

Output array

Total:
Mar 13, 2009 CS211

A B

Given two sorted halves, count number of inversions
where ai and aj are in different halves

Combine two sorted halves into sorted whole

15

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count

two sorted halves

2 Output array

Total: 6

6

Mar 13, 2009 CS211 16

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count
Given two sorted halves, count number of inversions

where ai and aj are in different halves
Combine two sorted halves into sorted whole

two sorted halves

2 Output array

Total: 6

6

Mar 13, 2009 CS211

17

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count
Given two sorted halves, count number of inversions

where ai and aj are in different halves
Combine two sorted halves into sorted whole

two sorted halves

2 3 Output array

Total: 6

6

Mar 13, 2009 CS211 18

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count
Given two sorted halves, count number of inversions

where ai and aj are in different halves
Combine two sorted halves into sorted whole

two sorted halves

2 3 Output array

Total: 6

6

Mar 13, 2009 CS211

3/13/09

4

19

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count
Given two sorted halves, count number of inversions

where ai and aj are in different halves
Combine two sorted halves into sorted whole

two sorted halves

7 2 3 Output array

Total: 6

6

Mar 13, 2009 CS211 20

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count
Given two sorted halves, count number of inversions

where ai and aj are in different halves
Combine two sorted halves into sorted whole

two sorted halves

7 2 3 Output array

Total: 6

6

Mar 13, 2009 CS211

21

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count
Given two sorted halves, count number of inversions

where ai and aj are in different halves
Combine two sorted halves into sorted whole

two sorted halves

7 10 2 3 Output array

Total: 6

6

Mar 13, 2009 CS211 22

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count
Given two sorted halves, count number of inversions

where ai and aj are in different halves
Combine two sorted halves into sorted whole

two sorted halves

7 10 2 3 Output array

Total: 6

6

Mar 13, 2009 CS211

23

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count
Given two sorted halves, count number of inversions

where ai and aj are in different halves
Combine two sorted halves into sorted whole

two sorted halves

7 10 11 2 3 Output array

Total: 6 + 3

6 3

Mar 13, 2009 CS211 24

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count
Given two sorted halves, count number of inversions

where ai and aj are in different halves
Combine two sorted halves into sorted whole

two sorted halves

7 10 11 2 3 Output array

Total: 6 + 3

6 3

Mar 13, 2009 CS211

3/13/09

5

25

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count
Given two sorted halves, count number of inversions

where ai and aj are in different halves
Combine two sorted halves into sorted whole

two sorted halves

7 10 11 14 2 3 Output array

Total: 6 + 3

6 3

Mar 13, 2009 CS211 26

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count
Given two sorted halves, count number of inversions

where ai and aj are in different halves
Combine two sorted halves into sorted whole

two sorted halves

7 10 11 14 2 3 Output array

Total: 6 + 3

6 3

Mar 13, 2009 CS211

27

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count
Given two sorted halves, count number of inversions

where ai and aj are in different halves
Combine two sorted halves into sorted whole

two sorted halves

7 10 11 14 2 3 16 Output array

Total: 6 + 3 + 2

6 3 2

Mar 13, 2009 CS211 28

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count
Given two sorted halves, count number of inversions

where ai and aj are in different halves
Combine two sorted halves into sorted whole

two sorted halves

7 10 11 14 2 3 16 Output array

Total: 6 + 3 + 2

6 3 2

Mar 13, 2009 CS211

29

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count
Given two sorted halves, count number of inversions

where ai and aj are in different halves
Combine two sorted halves into sorted whole

two sorted halves

7 10 11 14 2 3 16 17 Output array

Total: 6 + 3 + 2 + 2

6 3 2 2

Mar 13, 2009 CS211 30

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count
Given two sorted halves, count number of inversions

where ai and aj are in different halves
Combine two sorted halves into sorted whole

two sorted halves

7 10 11 14 2 3 16 17 Output array

Total: 6 + 3 + 2 + 2

6 3 2 2

Mar 13, 2009 CS211

3/13/09

6

31

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count
Given two sorted halves, count number of inversions

where ai and aj are in different halves
Combine two sorted halves into sorted whole

two sorted halves

7 10 11 14 2 3 18 16 17 Output array

Total: 6 + 3 + 2 + 2

6 3 2 2

Mar 13, 2009 CS211 32

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count
Given two sorted halves, count number of inversions

where ai and aj are in different halves
Combine two sorted halves into sorted whole

two sorted halves

7 10 11 14 2 3 18 16 17 Output array

Total: 6 + 3 + 2 + 2

6 3 2 2

Mar 13, 2009 CS211

33

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count
Given two sorted halves, count number of inversions

where ai and aj are in different halves
Combine two sorted halves into sorted whole

two sorted halves

7 10 11 14 2 3 18 19 16 17 Output array

Total: 6 + 3 + 2 + 2

6 3 2 2

Mar 13, 2009 CS211 34

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count
Given two sorted halves, count number of inversions

where ai and aj are in different halves
Combine two sorted halves into sorted whole

two sorted halves

7 10 11 14 2 3 18 19 16 17 Output array

Total: 6 + 3 + 2 + 2

first half
exhausted

6 3 2 2

Mar 13, 2009 CS211

35

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count
Given two sorted halves, count number of inversions

where ai and aj are in different halves
Combine two sorted halves into sorted whole

two sorted halves

7 10 11 14 2 3 18 19 23 16 17 Output array

Total: 6 + 3 + 2 + 2 + 0

6 3 2 2 0

Mar 13, 2009 CS211 36

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count
Given two sorted halves, count number of inversions

where ai and aj are in different halves
Combine two sorted halves into sorted whole

two sorted halves

7 10 11 14 2 3 18 19 23 16 17 Output array

Total: 6 + 3 + 2 + 2 + 0

6 3 2 2 0

Mar 13, 2009 CS211

3/13/09

7

37

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count
Given two sorted halves, count number of inversions

where ai and aj are in different halves
Combine two sorted halves into sorted whole

two sorted halves

7 10 11 14 2 3 18 19 23 25 16 17 Output array

i = 0

Total: 6 + 3 + 2 + 2 + 0 + 0

6 3 2 2 0 0

Mar 13, 2009 CS211 38

10 14 18 19 3 7 16 17 23 25 2 11

Merge and Count
Given two sorted halves, count number of inversions

where ai and aj are in different halves
Combine two sorted halves into sorted whole

two sorted halves

7 10 11 14 2 3 18 19 23 25 16 17 Output array

Total: 6 + 3 + 2 + 2 + 0 + 0 = 13

6 3 2 2 0 0

Mar 13, 2009 CS211

39

Counting Inversions:
Implementation

Pre-condition. [Merge-and-Count] A and B are
sorted.

Post-condition. [Sort-and-Count] L is sorted.
Sort-and-Count(L)	
 if list L has one element	
 return 0 and the list L	

 Divide the list into two halves A and B	
 (rA, A) ← Sort-and-Count(A)	
 (rB, B) ← Sort-and-Count(B)	
 (rB, L) ← Merge-and-Count(A, B)	

 return r = rA + rB + r and the sorted list L	

Mar 13, 2009 CS211

Recurrence relation?

40

Analysis: What is the Recurrence
Relation?

Recurrence Relation:
 T(n) ≤ T(n/2) + T(n/2) + O(n)
 T(n) ∈ O(n log n)
Sort-and-Count(L)	
 if list L has one element	
 return 0 and the list L	

 Divide the list into two halves A and B	
 (rA, A) ← Sort-and-Count(A)	
 (rB, B) ← Sort-and-Count(B)	
 (rB, L) ← Merge-and-Count(A, B)	

 return r = rA + rB + r and the sorted list L	

Mar 13, 2009 CS211

CLOSEST PAIR OF POINTS

41

Algorithms and data structures for geometrical
objects

  Points, line segments, polygons, etc.
  Common motivator: large data sets  efficiency

Some Applications
  Graphics
  Robotics (motion planning and visibility problems)

  Geographic information systems (GIS) (geometrical
location and search, route planning)
– Terraflow

Computational Geometry

42 Mar 13, 2009 CS211

3/13/09

8

43

Closest Pair of Points
Closest pair. Given n points in the plane, find a pair

with smallest Euclidean distance between them.
  Special case of nearest neighbor, Euclidean MST,

Voronoi

Brute force?

fast closest pair inspired fast algorithms for these problems

Mar 13, 2009 CS211 44

Closest Pair of Points
Closest pair. Given n points in the plane, find a pair

with smallest Euclidean distance between them.
  Special case of nearest neighbor, Euclidean MST,

Voronoi.

Brute force. Check all pairs of points p and q with
Θ(n2) comparisons

Mar 13, 2009 CS211

How could we solve this problem?

What is its running time?

Simplify: All Points on a Line

45 Mar 13, 2009 CS211

How could we solve this problem?
  Sort the points

– Monotonically increasing x/y coordinates
– No closer points than neighbors in sorted list

  Step through, looking at the distances between each
pair

What is it’s running time?
  O(n logn)

Simplify: All Points on a Line

46 Mar 13, 2009 CS211

Why won’t this work for 2D?

47

Closest Pair of Points
Closest pair. Given n points in the plane, find a pair

with smallest Euclidean distance between them.
  Special case of nearest neighbor, Euclidean MST,

Voronoi.

Brute force. Check all pairs of points p and q with
Θ(n2) comparisons

1-D version. O(n log n) easy if points are on a line
Assumption. No two points have same x coordinate

to make presentation cleaner

Mar 13, 2009 CS211 48

Closest Pair of Points: First Attempt
Divide. Sub-divide region into 4 quadrants

L

Mar 13, 2009 CS211

3/13/09

9

49

Closest Pair of Points: First Attempt
Divide. Sub-divide region into 4 quadrants
Obstacle. Impossible to ensure n/4 points in each

piece

L

Mar 13, 2009 CS211 50

Closest Pair of Points
Divide: draw vertical line L so that roughly ½n points

on each side

L

Mar 13, 2009 CS211

51

Closest Pair of Points
Divide: draw vertical line L so that roughly ½n points

on each side
Conquer: find closest pair in each side recursively

12

21

L

Mar 13, 2009 CS211 52

Closest Pair of Points
Divide: draw vertical line L so that roughly ½n points on each side
Conquer: find closest pair in each side recursively
Combine: find closest pair with one point in each side
Return best of 3 solutions

12

21
8

L

seems like Θ(n2)

Mar 13, 2009 CS211

Do we need to check all pairs?

53

Closest Pair of Points
Find closest pair with one point in each side,

assuming that distance < δ
 where δ = min(left_min_dist, right_min_dist)

12

21

δ = min(12, 21)

L

Mar 13, 2009 CS211 54

Closest Pair of Points
Find closest pair with one point in each side,

assuming that distance < δ.
  Observation: only need to consider points within δ of

line L.

12

21

δ

L

δ = min(12, 21)

Mar 13, 2009 CS211

3/13/09

10

55

12

21

1
2

3

4 5
6

7

δ

Closest Pair of Points
Find closest pair with one point in each side, assuming

that distance < δ.
  Observation: only need to consider points within δ of line L
  Sort points in 2δ-strip by their y coordinate

L

δ = min(12, 21)

Mar 13, 2009 CS211

How many points are
within that region?

56

12

21

1
2

3

4 5
6

7

δ

Closest Pair of Points
Find closest pair with one point in each side, assuming that

distance < δ.
  Observation: only need to consider points within δ of line L
  Sort points in 2δ-strip by their y coordinate

– Only checks distances of those within 11 positions in sorted list!

L

δ = min(12, 21)

Mar 13, 2009 CS211

Def. Let si be the point in the 2δ-
strip, with the ith smallest y-
coordinate

Claim. If |i – j| ≥ 12, then the
distance between si and sj is at
least δ

  What is the distance of the box?
  How many points can be in a box?
  When do we know that points are >
δ apart?

57

Analyzing Cost of Combining

δ

27

29
30

31

28

26

25

δ

½δ

½δ

½δ

39

i

j

Mar 13, 2009 CS211

Prepare minds to be blown… Def. Let si be the point in the 2δ-strip,
with the ith smallest y-coordinate

Claim. If |i – j| ≥ 12, then the distance
between si and sj is at least δ

Pf.
  No two points lie in same ½δ-by-½δ

box

  Two points at least 2 rows apart
have distance ≥ 2(½δ). ▪

Fact. Still true if we replace 12 with 7.

58

Analyzing Cost of Combining

δ

27

29
30

31

28

26

25

δ

½δ

 2 rows
½δ

½δ

39

i

j

Mar 13, 2009 CS211

Cost of combining is therefore…?

59

Closest Pair Algorithm
Closest-Pair(p1, …, pn) 	
 Compute separation line L such that half the points 
 are on one side and half on the other side.	

 δ1 = Closest-Pair(left half)	
 δ2 = Closest-Pair(right half)	
 δ = min(δ1, δ2)	

 Delete all points further than δ from separation
line L	

 Sort remaining points by y-coordinate.	

 Scan points in y-order and compare distance between 
 each point and next 7 neighbors. If any of these 
 distances is less than δ, update δ.	

 return δ	

O(n log n)

2T(n / 2)

O(n)

O(n log n)

O(n)

Mar 13, 2009 CS211

Total running time?

60

Closest Pair of Points: Analysis
Running time.

Q. Can we achieve O(n log n)?

A. Yes. Don't sort points in strip from scratch each
time.

  Each recursive returns two lists: all points sorted by y
coordinate, and all points sorted by x coordinate

  Sort by merging two pre-sorted lists

€

T(n) ≤ 2T n /2() + O(n) ⇒ T(n) = O(n logn)

€

T(n) ≤ 2T n /2() + O(n log n) ⇒ T(n) = O(n log2 n)

Mar 13, 2009 CS211

Solved in 5.2

