
1/30/09

1

1 Jan 30, 2009 CS211

Data structures: Graphs

1

Objectives

Jan 30, 2009 2 Jan 30, 2009 CS211 2

Undirected Graphs G = (V, E)
V = nodes (vertices)
E = edges between pairs of nodes
Captures pairwise relationship between objects
Graph size parameters: n = |V|, m = |E|

V = { 1, 2, 3, 4, 5, 6, 7, 8 }
E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 }
n = 8
m = 11

Jan 30, 2009

3 Jan 30, 2009 CS211

Node indexed array of lists
  Two representations of each edge
  Space = 2m + n = O(m + n)
  Checking if (u, v) is an edge takes O(deg(u)) time
  Identifying all edges takes Θ(m + n) time

3

Graph Representation:
Adjacency List

degree = number of
neighbors of u

1 2 3

2

3

4 2 5

5

6

7 3 8

8

1 3 4 5

1 2 5 8 7

2 3 4 6

5

3 7

no
de

edges

Jan 30, 2009 4 Jan 30, 2009 CS211 4

Paths and Connectivity
Def. A path in an undirected graph G = (V, E) is a
sequence P of nodes v1, v2, …, vk-1, vk
  each consecutive pair vi, vi+1 is joined by an edge in E

Def. A path is simple if all nodes are distinct
Def. An undirected graph is connected if ∀ pair of
nodes u and v, there is a path between u and v

• Short path
• Distance

Jan 30, 2009

5 Jan 30, 2009 CS211 5

Cycles
Def. A cycle is a path v1, v2, …, vk-1, vk in which
v1 = vk, k > 2, and the first k-1 nodes are all distinct

cycle C = 1-2-4-5-3-1

Jan 30, 2009 6 Jan 30, 2009 CS211 6

Trees
Def. An undirected graph is a tree if it is connected
and does not contain a cycle
Simplest connected graph
  Deleting any edge from a tree will disconnect it

Jan 30, 2009

1/30/09

2

7 Jan 30, 2009 CS211 7

Rooted Trees
Given a tree T, choose a root node r and orient each
edge away from r
Models hierarchical structure

a tree the same tree, rooted at 1

v

parent of v

child of v

root r Why n-1 edges?

Jan 30, 2009 8

GRAPH TRAVERSAL

8

9 Jan 30, 2009 CS211

s-t connectivity problem. Given two node s and t, is
there a path between s and t?
s-t shortest path problem. Given two node s and t,
what is the length of the shortest path between s and
t?
Applications
  Facebook
  Maze traversal
  Kevin Bacon number
  Fewest number of hops in a communication network

9

Connectivity

Jan 30, 2009 10 Jan 30, 2009 CS211 10

Breadth First Search
Intuition. Explore outward from s in all possible
directions, adding nodes one "layer" at a time
Algorithm
  L0 = { s }
  L1 = all neighbors of L0
  L2 = all nodes that do not belong to L0 or L1, and that have

an edge to a node in L1
  Li+1 = all nodes that do not belong to an earlier layer, and

that have an edge to a node in Li
Theorem. For each i, Li consists of all nodes at distance
exactly i from s. There is a path from s to t iff t appears
in some layer.

s L1 L2 L n-1

Jan 30, 2009
What does this mean?

11 Jan 30, 2009 CS211 11

Breadth First Search
Theorem. For each i, Li consists of all nodes at distance
exactly i from s. There is a path from s to t iff t appears
in some layer.
  Shortest path to t from s, is the i from Li
  All nodes reachable from s are in L1, L2, …, Ln-1

s L1 L2 L n-1

Jan 30, 2009 12 Jan 30, 2009 CS211 12

Breadth First Search
Property. Let T be a BFS tree of G = (V, E), and let
(x, y) be an edge of G. Then the level of x and y
differ by at most 1.

L0

L1

L2

L3

G:

Jan 30, 2009

If x is in Li, then y must
be in Li+1 or earlier

1/30/09

3

13 Jan 30, 2009 CS211

Implementation: Maintaining Sets

Either a queue or a stack

14 Jan 30, 2009 CS211

Implementation: Maintaining Sets
Either a queue or a stack

Queue: FIFO

  First in, first out

Stack: LIFO

  Last in, last out

Both as a doubly linked list

  Always take first on list

  Difference in where inserted
– Have first and last pointers

– Done in constant time

15 Jan 30, 2009 CS211

Implementing BFS
Graph: Adjacency list
Discovered array
Maintain layers in separate lists, L[i]

16 Jan 30, 2009 CS211

Implementing BFS
Graph: Adjacency list
Discovered array
Maintain layers in separate lists, L[i]

BFS(s):	
	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	For each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] = false then	
	 	 	 	Set Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	
	 	 		

L[i] as a queue or stack?

17 Jan 30, 2009 CS211

Analysis
BFS(s):	

	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	For each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] = false then	
	 	 	 	Set Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	
	 	 		

18 Jan 30, 2009 CS211

Analysis
BFS(s):	

	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	For each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] = false then	
	 	 	 	Set Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	
	 	 		

A
t

m
os

t
n

A
t

m
os

t
n-

1

O(n2)

n

1/30/09

4

19 Jan 30, 2009 CS211

Analysis
BFS(s):	

	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	For each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] = false then	
	 	 	 	Set Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	
	 	 		

O(deg(u))

A
t

m
os

t
n

n

Σu∈V deg(u) = 2m

20 Jan 30, 2009 CS211 20

Connected Component
Find all nodes reachable from s
  BFS is one approach

Connected component containing node 1 = { 1, 2, 3,
4, 5, 6, 7, 8 }

Jan 30, 2009

21 Jan 30, 2009 CS211 21

Application: Flood Fill
Given lime green pixel in an image, change color of
entire blob of neighboring lime pixels to blue
  Node: pixel
  Edge: two neighboring lime pixels

  Blob: connected component of lime pixels

recolor lime
green blob

to blue

Jan 30, 2009 22 Jan 30, 2009 CS211 22

Application: Flood Fill
Given lime green pixel in an image, change color of
entire blob of neighboring lime pixels to blue
  Node: pixel
  Edge: two neighboring lime pixels

  Blob: connected component of lime pixels

recolor lime
green blob

to blue

Jan 30, 2009

23 Jan 30, 2009 CS211 23

Connected Component
Find all nodes reachable from s

Theorem. Upon termination, R is the connected component
containing s
  BFS = explore in order of distance from s
  DFS = explore in a different way

s

u v

R

it's safe to add v

Jan 30, 2009

In general….

24 Jan 30, 2009 CS211

Depth First Search

How does DFS work on this graph?
  Starting from node 1

1/30/09

5

25 Jan 30, 2009 CS211

Depth First Search

Need to keep track of where you’ve been
When reach a “dead-end” (already

explored all neighbors), backtrack to
node with unexplored neighbor

Algorithm:

DFS(u):	
	Mark u as “Explored” and add u to R	
	For each edge (u, v) incident to u	
	 	If v is not marked “Explored” then	
	 	 	DFS(v)	

26 Jan 30, 2009 CS211

DFS vs BFS

Resulting trees?

27 Jan 30, 2009 CS211

Implementing DFS

28 Jan 30, 2009 CS211

Implementing DFS

Keep nodes to be processed in a stack
DFS(s):	

	Initialize S to be a stack with one element s	
	Explored[v] = false, for all v	
	Parent[v] = 0, for all v	
	DFS tree T = {}	
	while S != {}	
	 	Take a node u from S	
	 	If Explored[u] = false	
	 	 	Explored[u] = true	
	 	 	Add edge (u, parent[u]) to T (if u ≠ s)	
	 	 	For each edge (u, v) incident to u	
	 	 	 	Add v to the stack S	
	 	 	 	Parent[v] = u	
	 	 	 		

29 Jan 30, 2009 CS211

Analyzing DFS

DFS(s):	
	Initialize S to be a stack with one element s	
	Explored[v] = false, for all v	
	Parent[v] = 0, for all v	
	DFS tree T = {}	
	while S != {}	
	 	Take a node u from S	
	 	If Explored[u] = false	
	 	 	Explored[u] = true	
	 	 	Add edge (u, parent[u]) to T (if u ≠ s)	
	 	 	For each edge (u, v) incident to u	
	 	 	 	Add v to the stack S	
	 	 	 	Parent[v] = u	
	 	 	 		

30 Jan 30, 2009 CS211

Analyzing DFS

DFS(s):	
	Initialize S to be a stack with one element s	
	Explored[v] = false, for all v	
	Parent[v] = 0, for all v	
	DFS tree T = {}	
	while S != {}	
	 	Take a node u from S	
	 	If Explored[u] = false	
	 	 	Explored[u] = true	
	 	 	Add edge (u, parent[u]) to T (if u ≠ s)	
	 	 	For each edge (u, v) incident to u	
	 	 	 	Add v to the stack S (if not explored?)	
	 	 	 	Parent[v] = u	
	 	 	 		

deg(u)

O(n+m)

1/30/09

6

31 Jan 30, 2009 CS211

Set of All Connected Components

For any two nodes s and t in a graph, their
connected components are either identical or
disjoint

Proof?

32 Jan 30, 2009 CS211

Set of All Connected Components

For any two nodes s and t in a graph, their
connected components are either identical or
disjoint

Proof sketch:
(i) There is a path between s and t  same set of

connected components
(ii) There is no path between s and t  disjoint set of

connected components

33 Jan 30, 2009 CS211

Set of All Connected Components

How can we find all connected components of
graph?

34 Jan 30, 2009 CS211

Set of All Connected Components

How can we find set of all connected components of
graph?

R* = set of connected components	
While there is a node that does not belong to R*	

	select s not in R*	

	Add R to R*	

Running time?

35 Jan 30, 2009 CS211

Set of All Connected Components

How can we find set of all connected components of
graph?

R* = set of connected components	
While there is a node that does not belong to R*	

	select s not in R*	

	Add R to R*	

Running time: O(m+n)

36

TESTING BIPARTITENESS

36

1/30/09

7

37 Jan 30, 2009 CS211 37

Bipartite Graphs
Def. An undirected graph G = (V, E) is bipartite if the
nodes can be colored red or blue such that every
edge has one red and one blue end
  Generally: vertices divided into sets X and Y

Applications:
  Stable marriage: men = red, women = blue
  Scheduling: machines = red, jobs = blue

a bipartite graph

Jan 30, 2009 38 Jan 30, 2009 CS211 38

Testing Bipartiteness
Given a graph G, is it bipartite?
  Many graph problems become:

– easier if underlying graph is bipartite (matching)

– tractable if underlying graph is bipartite (independent set)

  Before designing an algorithm, need to understand
structure of bipartite graphs

v1

v2 v3

v6 v5 v4

v7

v2

v4

v5

v7

v1

v3

v6

a bipartite graph G: another drawing of G

Jan 30, 2009

39 Jan 30, 2009 CS211 39

An Obstruction to Bipartiteness
Lemma. If a graph G is bipartite, it cannot contain an
odd length cycle.
Proof Intuition. Consider a cycle of 3, then a larger
odd cycle

Jan 30, 2009 40 Jan 30, 2009 CS211 40

An Obstruction to Bipartiteness
Lemma. If a graph G is bipartite, it cannot contain an
odd length cycle.
Proof Intuition. Consider a cycle of 3, then a larger
odd cycle

Not bipartite
(2-colorable)

not bipartite
(not 2-colorable)

Jan 30, 2009

41 Jan 30, 2009 CS211 41

An Obstruction to Bipartiteness
Lemma. If a graph G is bipartite, it cannot contain an
odd length cycle.
Pf. Not possible to 2-color the odd cycle, let alone
G.

bipartite
(2-colorable)

not bipartite
(not 2-colorable)

Jan 30, 2009
If find an odd cycle, graph is NOT bipartite

42 Jan 30, 2009 CS211 42

How Can We Determine
Bipartite Graphs?

Given a connected graph
Color one node red

– Doesn’t matter which color (Why?)

What should we do next?

How will we know that we’re finished?
What does this process sound like?

Jan 30, 2009

Why connected?

1/30/09

8

43 Jan 30, 2009 CS211 43

How Can We Determine
Bipartite Graphs?

Given a connected graph
Color one node red

– Doesn’t matter which color (Why?)

What should we do next?

How will we know that we’re finished?
What does this process sound like?
BFS: alternating colors, layers

Jan 30, 2009

L1 L2 L3

