
1/20/10 

1 

•  Finish survey of common running times 
•  Data structures 

•  Notes for wiki syntax are in sidebar 
•  New page per chapter 

  Could go by section 
•  Include a page on the Preface too (up to Overview) 
•  What to Write in Your Notes 

  Brief summary of what the chapter/section covers (~1 
paragraph of about 5 sentences/section; feel free to write 
more if that will help you) 

  Include motivations for the given problem, as appropriate 
  Questions you have about motivation/solution/proofs/analysis 
  Discuss anything that makes more sense after reading it 

again, after it was presented in class (or vice versa) 
  Anything that you want to remember, anything that will help 

you 

•  Enumerate all triples of elements 
•  Set disjointness.  Given n sets S1, …, Sn 

each of which is a subset of 1, 2, …, n, is 
there some pair of these which are disjoint? 

•  O(n3) solution.  For each pair of sets, 
determine if they are disjoint 

foreach set Si 	
   foreach other set Sj 	
      foreach element p of Si 	
         determine whether p also belongs to Sj	

      if (no element of Si belongs to Sj)	
         report that Si and Sj are disjoint  	

•  Independent set of size k.  Given a graph, 
are there k nodes such that no two are joined 
by an edge? 
 k is a constant 

•  If the algorithm to find all pairs is O(n2), what 
is an example of an O(nk) algorithm? 

•  If the algorithm to find all pairs is O(n2), what 
is an example of an O(nk) algorithm? 
 All subsets of size k 
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•  Independent set of size k.  Given a graph, 
are there k nodes such that no two are joined 
by an edge? 
 k is a constant 

•  Independent set of size k.  Given a graph, 
are there k nodes such that no two are joined 
by an edge? 
 k is a constant 

•  O(nk) solution 
1.  Enumerate all subsets of k nodes 

2.  Check whether S is an independent set = O(k2). 

foreach subset S of k nodes 	
   if (S is an independent set)	
      report S is an independent set  	
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poly-time for k=17, 
but not practical 

O(k2 nk / k!) = O(nk) 

•  Independent set.  Given a graph, what is the 
maximum size of an independent set? 

•  O(n2 2n) solution.  Enumerate all subsets 

S* = φ	
foreach subset S of nodes 	
   check whether S in an independent set	
   if (S is largest independent set seen so far)	

	S* = S	

•  Sublinear time 
•  Know any algorithms that take O(log n) time? 

•  Example: Binary search 

•  Often requires some pre-processing or data 
structure that allows cheaper “querying” than 
n  time 



1/20/10 

3 

• What do we need to represent? 
•  How should we represent them? 

• What do we need to represent? How should 
we represent them? 

• What’s the difference between an array and 
a list? 

Data How represented 
Preference lists Array of arrays 

Unmatched men List 
Who men proposed to Integer 

Engagements Array 

•  Fixed number of elements 
• What is the runtime of 

 Determining the value of the ith item in the array? 
 Determining if a value e is in the array? 
 Determining if a value e is in the array if the 

array is sorted? 

Operation Running Time 
Value of ith item O(1)  direct access 

If e is in the array O(n)  look through all 
the elements 

If e is in the array if 
sorted 

O(log n)  binary 
search 

Limitation of arrays? 

Fixed size, so can’t add/delete elements 

•  Dynamic set of elements 
 Linked list 
 Doubly linked list 

• What is the running time to 
 Add an element to the list? 
 Delete an element from the list? 
 Find an element e in the list? 
 Find the ith element in the list? 

Operation Running Time 
Add element O(1) 
Delete element O(1) 

Find element O(n) 

Find ith element O(i) 

Disadvantage of list instead of array? 

Finding ith element is slower 
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• What is the running time of converting a list 
to an array? 

•  An array to a list? 
O(n) 

After overcoming higher-level obstacles, 
lower-level implementation details can 

improve runtime. 

•  Elements have a priority or key 
•  Each time select an element from the priority 

queue, want the one with highest priority 
•  More formally… 

 Maintains a set of elements S 
•  Each element v ∈ S has a key(v) for its priority 

  Smaller keys represent higher priorities 
 Supported operations 

•  Add, delete elements 
•  Select element with smallest key 

Key 2 4 5 6 9 20 
Value 3542 5143 8712 1264 9123 5954 Process id 

Not implementation, just how to envision 

•  Each process has a priority or urgency 
•  Processes do not arrive in priority order 
•  Goal: run process with highest priority 

Key 2 4 5 6 9 20 
Value 3542 5143 8712 1264 9123 5954 Process id 
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•  How could we use a PQ to sort a list of 
numbers? 

1. Add elements into PQ with the number’s 
value as its priority 

2. Then extract the smallest number until done 
 Come out in sorted order 

Sorting n numbers takes at 
least O(n logn) time 

What is the goal running time for our 
PQ’s operations? 

What is the goal running time for our 
PQ’s operations? O(logn) 

Already know our “loops” will be O(n)  

•  Consider an unordered list, where there is a 
pointer to minimum 

•  How difficult (i.e., expensive) is 
 Adding new elements? 
 Extraction? 

min 

•  Consider an unordered list, where there is a 
pointer to minimum 

•  How difficult (i.e., expensive) is 
 Adding new elements? easy 
 Extraction? difficult 

•  Need to find “new” minimum: O(n) 

min 

What is the running time for sorting 
with the PQ in this case? 

•  Consider a sorted list where min is at the 
beginning 

•  Should you use an array or linked list? 
•  How difficult is 

 Adding new elements? 
 Extraction? 

min 

•  Consider a sorted list where min is at the 
beginning 

•  Should you use an array or linked list? 
•  How difficult is 

 Adding new elements? more difficult (insertion) 
 Extraction? Easy 

min 

What is the running time for sorting 
with the PQ in this case? 
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•  All of “known” data structures has one 
operation that takes O(n) time 

•  Cannot implement PQs with “known” data 
structures arrays and lists to meet desired 
runtime: O(n log n) 

→ Motivates use of heap to implement PQ 

Goal: show results in O(n log n) time 

•  Combines benefits of sorted array and list 
•  Balanced binary tree 

root 
• Each node has at most 2 children 
• Node value is its key 

Heap order: each node’s key is 
at least as large as its parent’s 

Note: not a binary search tree 

•  Option 1: Use pointers 
 Each node keeps 

•  Element it stores, key 
•  3 pointers: 2 children, parent 

•  Option 2: No pointers 
 Requires knowing upper bound on n 
 For node at position i 

•  left child is at 2i 
•  right child is at 2i+1 

If know child’s position, what is the position of parent? 

•  Finding the minimal element? •  Finding the minimal element 
 First element 
 O(1) 
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•  Adding an element? 
 Assume heap has less than N elements 

•  Adding an element? 
 Could add element to last position 

•  What are possible scenarios? 

•  Adding an element? 
 Could add element to last position 

•  What are possible scenarios? 
 Heap is no longer balanced 
 Something that is almost a heap but a little off 
 Need Heapify-up procedure to fix our heap 

Heapify-up(H, i):	
	if i > 1 then	
	 	j=parent(i)=floor(i/2)	
	 	if key[H[i]] < key[H[j]] then	
	 	 	swap array entries H[i] and H[j]	
	 	 	Heapify-up(H, j)	

Heap Position where node added 

Add 3 

3 

Swap with 11 

11 

3 
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Swap with 5 

11 

5 

3 

•  Claim.  Assuming array H is almost a heap 
with key of H[i] too small, Heapify-Up 
fixes the heap property in O(log i) time 
 Can insert a new element in a heap of n 

elements in O(log n) time 

•  Claim.  Assuming array H is almost a heap 
with key of H[i] too small, Heapify-Up 
fixes the heap property in O(log i) time 
 Can insert a new element in a heap of n 

elements in O(log n) time 
•  Proof.  By induction 

 If i=1 … 

•  Claim.  Assuming array H is almost a heap 
with key of H[i] too small, Heapify-Up 
fixes the heap property in O(log i) time 
 Can insert a new element in a heap of n 

elements in O(log n) time 
•  Proof.  By induction 

 If i=1, is already a heap 
 If i>1, … 


