
1/29/10 

1 

•  BFS & DFS Implementations, Analysis 
•  Graph Applications: Bipartiteness 
•  Directed Graphs 

• Wiki: Any thoughts about using Dokuwiki for 
your notes? 

•  Keep nodes to be processed in a stack 
DFS(s):	

	Initialize S to be a stack with one element s	
	Explored[v] = false, for all v	
	Parent[v] = 0, for all v	
	DFS tree T = {}	
	while S != {}	
	 	Take a node u from S	
	 	If Explored[u] = false	
	 	 	Explored[u] = true	
	 	 	Add edge (u, parent[u]) to T (if u ≠ s)	
	 	 	For each edge (u, v) incident to u	
	 	 	 	Add v to the stack S	
	 	 	 	Parent[v] = u	

DFS(s):	
	Initialize S to be a stack with one element s	
	Explored[v] = false, for all v	
	Parent[v] = 0, for all v	
	DFS tree T = {}	
	while S != {}	
	 	Take a node u from S	
	 	If Explored[u] = false	
	 	 	Explored[u] = true	
	 	 	Add edge (u, parent[u]) to T (if u ≠ s)	
	 	 	For each edge (u, v) incident to u	
	 	 	 	Add v to the stack S	
	 	 	 	Parent[v] = u	

deg(u) 

O(n+m) 

Running time: O(m+n) 

R* = set of connected components	
While there is a node that does not belong to R*	

	select s not in R*	

	R = {s}	

	While there is an edge (u,v) where u∈R and v∉R	
	 	add v to R	

	Add R to R*	

But the “inner” loop was O(m+n)! 
How can this be? Where i is the subscript of 

the connected component 

R* = set of connected components	
While there is a node that does not belong to R*	

	select s not in R*	

	R = {s}	

	While there is an edge (u,v) where u∈R and v∉R	
	 	add v to R	

	Add R to R*	

Imprecision in the running 
time of inner loop:  

O(m+n) 

That’s m and n of the 
connected component, 
let’s say mi and ni 
So… 
Σi O(mi+ ni) = O(m+n) 
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•  Def.  An undirected graph G = (V, E) is 
bipartite if the nodes can be colored red or 
blue such that every edge has one red end 
and one blue end 
 Generally: vertices divided into sets X and Y 

•  Applications: 
 Stable marriage:  

•  men = red, women = blue 
 Scheduling:   

•  machines = red, jobs = blue 

a bipartite graph 

•  Given a graph G, is it bipartite? 
•  Many graph problems become: 

 Easier if underlying graph is bipartite (e.g., matching) 
 Tractable if underlying graph is bipartite (e.g., 

independent set) 
•  Before designing an algorithm, need to understand 

structure of bipartite graphs 

v1 

v2 v3 

v6 v5 v4 

v7 
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a bipartite 
graph G: 

another 
drawing of G: 

•  Lemma.  If a graph G is bipartite, it cannot 
contain an odd length cycle. 

•  Pf.  Not possible to 2-color the odd cycle, let 
alone G. 

bipartite 
(2-colorable) 

not bipartite 
(not 2-colorable) 

If find an odd cycle,  
graph is NOT bipartite 

•  Given a connected graph 
1.  Color one node red 

•  Doesn’t matter which color (Why?) 
 What should we do next? 

Why connected? 

v1 

v2 v3 

v6 v5 v4 

v7 

•  How will we know when 
we’re finished? 

•  What does this process 
sound like? 

•  Given a connected graph 
 Color one node red 

•  Doesn’t matter which color (Why?) 
 What should we do next? 

•  How will we know that we’re finished? 
• What does this process sound like? 

 BFS: alternating colors, layers 

L1 L2 L3 
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•  Modify BFS to have a Color array 
• When add v to list L[i+1] 

 Color[v] = red if i+1 is even 
 Color[v] = blue if i+1 is odd 

L1 L2 L3 

What is the running time of this algorithm? What is the running time of this algorithm? O(n+m) 

•  Lemma.  Let G be a connected graph, and let 
L0, …, Lk be the layers produced by BFS 
starting at node s.  Exactly one of the following 
holds: 
 (i) No edge of G joins two nodes of the same layer 

•  G is bipartite 
 (ii) An edge of G joins two nodes of the same layer 

•  G contains an odd-length cycle and hence is not 
bipartite 

Case (i): 

L1 L2 L3 

Case (ii): 

L1 L2 L3 

•  Lemma.  Let G be a connected graph, and let L0, …, 
Lk be the layers produced by BFS starting at node s.  
Exactly one of the following holds: 
  (i) No edge of G joins two nodes of the same layer 

•  G is bipartite 
•  Pf.  (i) 

 Suppose no edge joins two nodes in the same layer 
  Implies all edges join nodes on adjacent level 
 Bipartition: red = nodes on odd levels, blue = nodes on 

even levels 

L1 L2 L3 

Case (i) 

•  Lemma.  Let G be a connected graph, and let L0, …, 
Lk be the layers produced by BFS starting at node s.  
Exactly one of the following holds: 
  (ii)  An edge of G joins two nodes of the same layer    

G contains an odd-length cycle and hence is not bipartite 

16 

z = lca(x, y) 

•  Pf.  (ii) 
 Suppose (x, y) is an edge with x, y in same 

level Lj. 
  Let z = lca(x, y) = lowest common ancestor 
  Let Li be level containing z 
 Consider cycle that takes edge from x to y, 

then path y z, then path from z  x 

•  Lemma.  Let G be a connected graph, and let L0, …, 
Lk be the layers produced by BFS starting at node s.  
Exactly one of the following holds: 
  (ii)  An edge of G joins two nodes of the same layer    

G contains an odd-length cycle and hence is not bipartite 

•  Pf.  (ii) 
  Suppose (x, y) is an edge with x, y in same 

level Lj. 
  Let z = lca(x, y)=lowest common ancestor 
  Let Li be level containing z 
  Consider cycle that takes edge from x to y, 

then path y  z, then path z  x 
  Its length is  1  +   (j-i)  +  (j-i),  which is odd 

(x, y) path from 
y to z 

path from 
z to x 

z = lca(x, y) 

•  Corollary.  A graph G is bipartite iff it contains 
no odd length cycle. 

5-cycle C 

bipartite 
(2-colorable) 

not bipartite 
(not 2-colorable) 
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•  Edge (u, v) goes from node u to node v 

•  Example: Web graph - hyperlink points from 
one web page to another 
 Directedness of graph is crucial 
 Modern web search engines exploit hyperlink 

structure to rank web pages by importance 

•  For each node, keep track of 
 Out edges (where links go) 
 In edges (from where links come in) 

•  Could just keep out edges 
 Get in edges with increased computation/time 
 Useful to have both in and out edges 

•  How does reachability change with directed 
graphs? 

•  Example: Web crawler   
1.  Start from web page s. 
2.  Find all web pages linked from s, either directly 

or indirectly. 
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•  Directed reachability.  Given a node s, find all 
nodes reachable from s. 

•  Directed s-t shortest path problem.  Given 
two nodes s and t, what is the length of the 
shortest path between s and t? 
 Not necessarily the same as t-s shortest path 

•  Graph search.  BFS and DFS extend 
naturally to directed graphs 
 Trace through out edges 
 Run in O(m+n) time 

1 2

54

7

3

6



1/29/10 

5 

•  Rather than paths from s to other nodes, find 
all nodes with paths to s 

•  Problem.  Rather than paths from s to other 
nodes, find all nodes with paths to s 

•  Solution.  Run BFS on in edges instead of 
out edges 

•  Def.  Node u and v are mutually reachable 
if there is a path from u  v and also a path 
from v  u 

•  Def.  A graph is strongly connected if every 
pair of nodes is mutually reachable 

•  Lemma.  Let s be any node.  G is strongly 
connected iff every node is reachable from s 
and s is reachable from every node 

s 

v 

u 

•  If u and v are mutually reachable and v and 
w are mutually reachable, then u and w are 
mutually reachable 

•  If u and v are mutually reachable and v and 
w are mutually reachable, then u and w are 
mutually reachable. 

•  Proof.  We need to show that there is a path 
from u  w and from w  u. 
 By defn of mutually reachable 

•  there is a path u  v & a path v  u,  
•  a path v  w,  and a path w  v 

 Take path uv and then from v  w 
•  Path from uw 

 Similarly for wu 

•  Def.  A graph is strongly connected if every 
pair of nodes is mutually reachable 

•  Lemma.  Let s be any node.  G is strongly 
connected iff every node is reachable from s 
and s is reachable from every node. 
 1st prove ⇒ 
 2nd prove ⇐ 

•  for any nodes u and v, is there a path uv and 
vu ? 
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•  Def.  A graph is strongly connected if every pair 
of nodes is mutually reachable 

•  Lemma.  Let s be any node.  G is strongly 
connected iff every node is reachable from s, 
and s is reachable from every node. 

•  Pf.  ⇒ Follows from definition of strongly 
connected 

•  Pf.  ⇐ For any nodes u and v, make path uv 
and vu  
   uv : concatenating us with sv 
   v u: concatenate vs with su 

s 

v 

u 

•  Determine if G is strongly connected in        
O(m + n) time 

strongly connected not strongly connected 

Hint: Can we leverage any algorithms 
we know have O(m+n) time? 

•  Theorem.  Can determine if G is strongly 
connected in O(m + n) time. 

•  Pf. 
 Pick any node s 
 Run BFS from s in G 
 Run BFS from s in Grev 
 Return true iff all nodes reached in both BFS 

executions 
 Correctness follows immediately from previous 

lemma 
•  All reachable from one node, s is reached by all 

reverse orientation of every edge in G 
Or, the BFS using the in edges 

•  Problem 1: Looking for an induction proof but I 
didn’t really get that 

•  Problem 2: Straightforward adaptation of 
definitions 
 Trying to get you to review the definitions and get 

more comfortable with them 
•  Problems 3 & 4: Similar to one of the solved 

exercises 
 Take logs of functions to help see pattern 

•  Problem 5: Your solutions weren’t quite right 
 Often going backwards 
 My drawing to try to trace through your algorithms 
 Analyze the running times of your solutions 

•  Finish reading Chapter 3 
 Wikis for Wednesday 

•  For next Friday: Problem Set 3 

35 


