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•  Analyzing algorithms 
•  Asymptotic running times 

•  Results: some preference to journals 
 Check out Wiki on Sakai 

 Due dates? 

1. Understand/identify problem 
  Simplify as appropriate 

2. Design a solution 
3. Analyze 

  Correctness, efficiency 
  May need to go back to step 2 and try again 

4.  Implement 
  Within bounds shown in analysis 

•  Desirable scaling property:  When input size 
doubles, algorithm should only slow down by 
some constant factor C 

•  Def.  An algorithm is polynomial time (or 
polytime) if the above scaling property holds. 

There exists constants c > 0 and d > 0 
such that on every input of size N, its 
running time is bounded by c Nd steps. 

choose C = 2d  

•  T(n) is the worst case running time of an 
algorithm 

• We say that T(n) is O(f(n)) if there exist 

constants c > 0 and n0 ≥ 0 such that for all    

n ≥ n0, we have T(n) ≤ c · f(n) 
sufficiently large n T(n) is bounded above by a 

constant multiple of f(n) 

T is asymptotically upperbounded by f 

c cannot depend on n 

“order f(n)” 

•  Complementary to upper bound 

•  T(n) is Ω(f(n)) if there exist constants ε > 0 

and n0 ≥ 0 such that for all n ≥ n0 , we have  

T(n) ≥ ε · f(n) 

T is asymptotically lowerbounded by f 

sufficiently large n 

T(n) is bounded below by a 
constant multiple of f(n) 

ε cannot depend on n 
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 The “right” bound 

T(n) is Θ(f(n)) if T(n) is both 
O(f(n)) and Ω(f(n)) 

•  T(n) = 32n2 + 17n + 32 

What are the upper bounds, lower 
bounds, and tight bound on T(n)? 

•  T(n) = 32n2 + 17n + 32 
 T(n) is O(n2), O(n3), Ω(n2), Ω(n), and Θ(n2)  
 T(n) is not O(n), Ω(n3), Θ(n), or Θ(n3) 

•  a0 + a1n + … + adnd  is Θ(nd) if ad > 0 

•  Polynomial time.  Running time is O(nd) for 
some constant d that is independent of the 
input size n 

•  Other examples of polynomial times: 
 O(n1/2) 
 O(n1.58) 
 O(n log n) ≤ O(n2) 

➔  Runtime determined by higher-order term 

•  Logarithms.  logbn = x, where bx=n 
 Approximate: To represent n in base-b, need     

x+1 digits 

N b x 
100 10 
1000 10 
100 2 
1000 2 
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•  Logarithms.  logbn = x, where bx=n 
 Approximate: To represent n in base-b, need     

x+1 digits 

Describe the running time of an O(log n) 
algorithm as the input size grows. 

Compare with polynomials. 

N b x 
100 10 2 
1000 10 3 
100 2 6.64 
1000 2 9.92 

•  Logarithms.  logbn = x, where bx=n 
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•  Logarithms.  logbn = x, where bx=n 

•  Identity:  
 Means that  

•  O(log a n) = O(log b n) for any constants        
a, b > 0 

➔  Slowly growing functions 

logan = logbn/logba 

logan = 1/logba * logbn 
Constant! 

•  Logarithms.  logbn = x, where bx=n 

•  O(log a n) = O(log b n) for any constants        
a, b > 0 

•  For every x > 0,  log n = O(nx) 

➔  Slowly growing functions 

➔  Don’t need to specify the base 

➔  Log grows slower than every polynomial 

•  Exponentials: functions of the form f(n) = rn 
for constant base r 
 Faster growth rates as n increases 

•  For every r > 1 and every d > 0,  nd = O(rn) 

➔  Every exponential grows faster than 
every polynomial 

•  In terms of growth rates …. 

Logarithms < Polynomials < Exponentials 
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•  Running time is at most a constant factor 
times the size of the input 

•  Example. Computing the maximum: 
Compute maximum of n numbers a1, …, an 

max = a1	
for i = 2 to n 	
   if (ai > max)	
      max = ai	

Constant work for 
each input 

(does not depend 
on n) 

•  Merge: Combine two sorted lists A = a1,a2,
…,an with B = b1,b2,…,bn  into sorted whole 

•  Merge: Combine two sorted lists A = a1,a2,
…,an with B = b1,b2,…,bn  into sorted whole 

•  Claim.  Merging two lists of size n takes O(n) 
time 
i = 1, j = 1	
while (both lists are nonempty)	
   if (ai ≤ bj)	

	append ai to output list and increment i	
   else (ai ≤ bj)	

	append bj to output list and increment j	

append remainder of nonempty list to output list	

•  Merge: Combine two sorted lists A = a1,a2,
…,an with B = b1,b2,…,bn  into sorted whole 

•  Claim.  Merging two lists of size n takes O(n) 
time 

•  Proof.  After each comparison, the length of 
output list increases by 1 
i = 1, j = 1	
while (both lists are nonempty)	
   if (ai ≤ bj)	

	append ai to output list and increment i	
   else (ai ≤ bj)	

	append bj to output list and increment j	

append remainder of nonempty list to output list	

•  Also referred to as linearithmic time 
•  Arises in divide-and-conquer algorithms 

 Splitting input into equal pieces, solve 
recursively, combine solutions in linear time 

What well-known set of algorithms has 
an O(n logn) running time? 
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•  Sorting: Mergesort and heapsort are sorting 
algorithms that perform O(n log n) 
comparisons 

•  Mergesort 
1.  Break input into equal-sized pieces 
2.  Sorts each half recursively 
3.  Merges sorted halves into a sorted list 

Talk about the bound on 
running time later… 

•  Largest empty interval.  Given n (not 
necessarily ordered) time-stamps x1, …, xn at 
which copies of a file arrive at a server, what 
is largest interval of time when no copies of 
the file arrive? 

•  O(n log n) solution 
1.  Sort time-stamps 
2.  Scan sorted list in order, identifying the 

maximum gap between successive time-
stamps 

•  Examples? •  Examples: 
 Enumerate all pairs of elements 
 Two nested loops, each O(n) iterations 

•  Closest pair of points.  Given a list of n points 
in the plane (x1, y1), …, (xn, yn), find the pair 
that is closest 

•  O(n2) solution.  Try all pairs of points 
min = (x1 - x2)2 + (y1 - y2)2	
for i = 1 to n 	
   for j = i+1 to n 	
      d = (xi - xj)2 + (yi - yj)2	
      if (d < min)	
         min = d	

don't need to 
take square roots 

Ω(n2) seems inevitable, but Chapter 5 has an O(n logn) solution 

•  Examples? 
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•  Enumerate all triples of elements 
•  Set disjointness.  Given n sets S1, …, Sn 

each of which is a subset of 1, 2, …, n, is 
there some pair of these which are disjoint? 

•  Enumerate all triples of elements 
•  Set disjointness.  Given n sets S1, …, Sn 

each of which is a subset of 1, 2, …, n, is 
there some pair of these which are disjoint? 

•  O(n3) solution.  For each pair of sets, 
determine if they are disjoint 

foreach set Si 	
   foreach other set Sj 	
      foreach element p of Si 	
         determine whether p also belongs to Sj	

      if (no element of Si belongs to Sj)	
         report that Si and Sj are disjoint  	


