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Objectives

Dynamic Programming
~ Segmented Least Squares
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Summary:
Properties of Problems for DP

Polynomial number of subproblems

Solution to original problem can be easily
computed from solutions to subproblems

Natural ordering of subproblems, easy to
compute recurrence
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SEGMENTED LEAST SQUARES
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Least Squares

Foundational problem in statistic and

numerical analysis

Given n points in the plane: (x,, y,), (X,

o) oo (X V)

Find a line y = ax + b that minimizes the sum

of the squared error
» “line of best fit”

Sum of

s
squared SSE = 3 (y,-ax;—b)’
error !
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Least Squares

Foundational problem in statistic and numerical

analysis

Given n points in the plane: (x,, y;), (X5, ¥2) 5 - - -5 (X0, ¥a)

Find a line y = ax + b that minimizes the sum of {

squared error Y o
» “line of best fit”

Sum of _ & 2
squared error SSER= E(J’-—w‘:-b)

Closed form solution. Calculus = min error is

achieved when 5 vy —@x@w ,_ 3o -e3x

o n
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Least Squares

What happens to the error if we try to fit one
line to these points?
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What pattern does it seem like these points
have?
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Least Squares

What happens to the error if we try to fit one
line to these points?
» Large error
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Pattern: More like 3 lines
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Segmented Least Squares

Points lie roughly on a sequence of line segments

Given n points in the plane (x,, y,), (X, ¥2) s - -« » (Xo»
y.) with x,< x,< ... < x,, find a sequence of lines that

minimizes f(x)
‘ If I want the best fit, how many lines should I use? ‘

X
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Segmented Least Squares

Points lie roughly on a sequence of line segments
Given n points in the plane (X,, ¥,), (X2 ¥2) 5 - - - » (Xos Ya)
with x, < x,< ... <X, find a sequence of lines that
minimizes f(x)
What's a reasonable choice for f(x)to
balance accuracy and parsimony?

number of lines

goodness of fit
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Segmented Least Squares

Points lie roughly on a sequence of several line segments.
Given n points in the plane (x,, y,), (X5, ¥2) , - - -, (X, Yn) With
X, < X,< ... <X, find a sequence of lines that minimizes:

» E: sum of the sums of the squared errors in each segment

» L:the number of lines
Tradeoff function: E + c L, for some constant ¢ > 0.

Y (o)
How should we define
an optimal solution?
X
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Segmented Least Squares

What made it seem like the points were in 3
lines? What happened?

Y 0°
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Segmented Least Squares

What made it seem like the points were in 3
lines? What happened?

Y 0°

Looking for change in linear approximation
» Where to partition points into line segments
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Recall:

Properties of Problems for DP
Polynomial number of subproblems
Solution to original problem can be easily
computed from solutions to subproblems

Natural ordering of subproblems, easy to
compute recurrence

We need to:

» Figure out how to break the problem into subproblems

« Figure out how to compute solution from subproblems
* Define the recurrence relation between the problems
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Toward a Solution

Consider just the first or last point

What do we know about those points?
their segments? cost of a segment?
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Toward a Solution

p, can only belong to one segment

» Segment: p;, ..., P,

» Cost: ¢ (cost for segment) + error of segment
What is the remaining problem?
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Toward a Solution

p, can only belong to one segment

» Segment: p;, ..., Py

» Cost: ¢ (cost for segment) + error of segment
What is the remaining problem?

» Solve for py, ..., pi &

o
0080
o

Goal: Formulate as a recurrence
0000 & 0000
(e}

o
o
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Dynamic Programming: Multiway Choice

Notation.
» OPT(j) = minimum cost for points py, Py, --- 5 P;-
~ e(i, j) = minimum sum of squares for points

Pis Pis1 s o5 Py

How do we compute OPT(j)?
» Last problem: binary decision (include job or not)
» This time: multiway decision

Which option do we choose?
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Dynamic Programming: Multiway Choice

Notation.
» OPT(j) = minimum cost for points p4, Pisq , -, P}-
~e(i, j) = minimum sum of squares for points
Pis Pixt s -5 Py
To compute OPT(j):
» Last segment contains points p;, pi.4, ... , p; for
some i

> Cost = e(i, j) + ¢ + OPT(i-1).

if j=0

0
OPT(j)= min { e(i,j) +c+ OPTG=D} otherwise
e
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Segmented Least Squares: Algorithm

INPUT: n, pyy-,Py, €

Segmented-Least-Squares()
M[0] = @
e[o][0] = 0
for j=1ton
fori=1+to j
e[il[j] = least square error for the
segment p;, ., Pj

for j=1ton
ML3] = ming ;. ; Ce[il[3] + ¢ + M[i-11)

return M[n]
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Segmented Least Squares:
Algorithm Analysis

INPUT: n, PyysPu, € can be improved to O

(n?) by pre-computing

SeguEated—Least—Squares() various statistics
0

=0

e[@][0] = @
for j=1ton
fori=1+toj o(n)

e[i][j] = least square error for the
segment p;,.., pj

for j=1ton
O(n?) MLj] = miny ¢, Ce[illi] + ¢ + MLi-11D

return M[n]
Bottleneck: computing e(i, j) for O(n2) pairs,
O(n) per pair using previous formula
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How Do We Find the Solution?
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Post-Processing: Finding the Solution

FindSegments(j):
if j = 0:
output nothing
else:
Find an i that minimizes e; j + ¢ + M[i-1]
Output the segment {p;, .., p;}
FindSegments(i-1)

Cl)
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