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Algorithm Approach: Divide and Conquer 
  Recurrence Review 
  Integer Multiplication 
  Matrix Multiplication 

Objectives 
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Review: Counting Inversions 
Recurrence Relation: 

 T(n) ≤ T(n/2) + T(n/2) + O(n) 
 T(n) ∈ O(n log n) 
Sort-and-Count(L)	
   if list L has one element	
      return 0 and the list L	

   Divide the list into two halves A and B	
   (rA, A) ← Sort-and-Count(A)	
   (rB, B) ← Sort-and-Count(B)	
   (rB, L) ← Merge-and-Count(A, B)	

   return r = rA + rB + r and the sorted list L	
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T(n/2) 
T(n/2) 
O(n) 
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Review: Closest Pair Algorithm 
Closest-Pair(p1, …, pn) 	
   Compute separation line L such that half the points 
   are on one side and half on the other side.	

   δ1 = Closest-Pair(left half)	
   δ2 = Closest-Pair(right half)	
   δ  = min(δ1, δ2)	

   Delete all points further than δ from separation 
line L	

   Sort remaining points by y-coordinate.	

   Scan points in y-order and compare distance between 
   each point and next 7 neighbors. If any of these 
   distances is less than δ, update δ.	

   return δ	

O(n log n) 

2T(n / 2) 

O(n) 

O(n log n) 

O(n) 
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T(n) = 2 T(n/2) + O(n log n) 

Recurrence Algorithm Running Time 
T(n) = T(n/2) + O(1) 
T(n) = T(n-1) + O(1) 
T(n) = 2 T(n/2) + O(1) 
T(n) = T(n-1) + O(n) 
T(n) = 2 T(n/2) + O(n) Merge Sort O(n log n) 

Know Your Recurrence Relations 
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What algorithm has this recurrence relation? 
What is that algorithm’s running time? 

Recurrence Algorithm Running Time 
T(n) = T(n/2) + O(1) Binary Search O(log n) 

T(n) = T(n-1) + O(1) Sequential/
Linear Search O(n) 

T(n) = 2 T(n/2) + O(1) Binary Tree 
Traversal O(n) 

T(n) = T(n-1) + O(n) Selection Sort O(n2) 
T(n) = 2 T(n/2) + O(n) Merge Sort O(n log n) 

Know Your Recurrence Relations 
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What algorithm has this recurrence relation? 
What is that algorithm’s running time? 

INTEGER MULTIPLICATION 
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Integer Arithmetic 
Add.  Given two n-digit integers a and b, compute a 

+ b. 
  Algorithm? 
  Runtime? 

1 

0 1 1 1 

1 1 0 1 + 
0 1 0 1 

1 1 1 
0 1 0 1 

0 1 1 1 

1 0 0 0 

1 0 1 1 1 
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O(n) operations 
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Integer Arithmetic 
Multiply.  Given two n-digit integers a and b, compute 

a × b 
 Algorithm? 
 Runtime? 

1 

1 

0 

0 

1 

1 

0 

1 

1 

1 

0 

1 

1 

1 

1 

0 * 
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Integer Arithmetic 
Multiply.  Given two n-digit integers a and b, compute 

a × b. 
  Brute force solution: Θ(n2) bit operations 

1 

1 

0 

0 

0 

1 

1 

1 

0 

0 

1 

1 

1 

1 

0 

0 

1 

1 

1 

1 

0 

1 

0 

1 

0 0 0 0 0 0 0 0 

0 1 0 1 0 1 0 1 

0 1 0 1 0 1 0 1 

0 1 0 1 0 1 0 1 

0 1 0 1 0 1 0 1 

0 1 0 1 0 1 0 1 

0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 

1 

0 

1 

1 

1 

1 

1 

0 

0 

* 
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Goal: Faster algorithm 
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To multiply two n-digit integers: 
  Multiply four ½ n-digit integers 
  Add two ½ n-digit integers and shift to obtain result 

Divide-and-Conquer Multiplication:  
Warmup 

  

€ 

x = 2n / 2 ⋅ x1  +  x0

y = 2n / 2 ⋅ y1  +  y0

xy = 2n / 2 ⋅ x1 + x0( ) 2n / 2 ⋅ y1  + y0( ) = 2n ⋅ x1y1  + 2n / 2 ⋅ x1y0 + x0 y1( ) + x0 y0
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Higher order bits Lower order bits 

What is the recurrence relation? 
•  How many subproblems? 
•  What is merge cost? 
•  What is its runtime? 

Shift 

A B C D 
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To multiply two n-digit integers: 
  Multiply four ½ n-digit integers 
  Add two ½ n-digit integers and shift to obtain result 

Divide-and-Conquer Multiplication:  
Warmup 

    

€ 

T(n)  =  4T n /2( )
recursive calls
     

 +  Θ(n)
add, shift
   

 ⇒  T(n) =Θ(n2 )

  

€ 

x = 2n / 2 ⋅ x1  +  x0

y = 2n / 2 ⋅ y1  +  y0

xy = 2n / 2 ⋅ x1 + x0( ) 2n / 2 ⋅ y1  + y0( ) = 2n ⋅ x1y1  + 2n / 2 ⋅ x1y0 + x0 y1( ) + x0 y0

assumes n is a power of 2 
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Higher order bits Lower order bits 
Shift 

Not an improvement 
over brute force 

A B C D 
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To multiply two n-digit integers: 
  Add two ½n digit integers 
  Multiply 3 ½n-digit integers 
  Add, subtract, and shift ½n-digit integers to obtain 

result 

Karatsuba Multiplication 

  

€ 

x = 2n / 2 ⋅ x1  +  x0

y = 2n / 2 ⋅ y1  +  y0

xy = 2n ⋅ x1y1  + 2n / 2 ⋅ x1y0 + x0 y1( ) + x0 y0

= 2n ⋅ x1y1  + 2n / 2 ⋅ (x1 + x0 ) (y1 + y0 )  − x1y1 − x0 y0( ) + x0 y0
A B C A C 
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What is the recurrence relation?  Runtime? 
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Theorem.  [Karatsuba-Ofman, 1962]  Can multiply 
two n-digit integers in O(n1.585) bit operations 

Karatsuba Multiplication 

  

€ 

x = 2n / 2 ⋅ x1  +  x0

y = 2n / 2 ⋅ y1  +  y0

xy = 2n ⋅ x1y1  + 2n / 2 ⋅ x1y0 + x0 y1( ) + x0 y0

= 2n ⋅ x1y1  + 2n / 2 ⋅ (x1 + x0 ) (y1 + y0 )  − x1y1 − x0 y0( ) + x0 y0

    

€ 

T(n) ≤ T n /2 ( ) + T n /2 ( ) + T 1+ n /2 ( )
recursive calls

                 
+ Θ(n)

add, subtract, shift
     

⇒ T(n)  =  O(n log 2 3 )  =  O(n1.585 )

A B C A C 
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MATRIX MULTIPLICATION 
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Given two n-by-n matrices A and B, compute C = AB 

  Example: c12 = a11 b12 + a12 b22 + a13 b32 + … + a1n bn2 

Brute force.   Θ(n3) arithmetic operations 
Fundamental question:  Can we improve upon brute 

force? 

Matrix Multiplication 
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€ 

cij = aik bkj
k=1

n

∑

    

€ 

c11 c12  c1n

c21 c22  c2n

   

cn1 cn2  cnn

 

 

 
 
 
 

 

 

 
 
 
 

=

a11 a12  a1n

a21 a22  a2n

   

an1 an2  ann

 

 

 
 
 
 

 

 

 
 
 
 

×

b11 b12  b1n

b21 b22  b2n

   

bn1 bn2  bnn

 

 

 
 
 
 

 

 

 
 
 
 
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Matrix Multiplication:  Warmup 
Divide: partition A and B into ½n-by-½n blocks 
Conquer: multiply 8 ½n-by-½n recursively 
Combine: add appropriate products using 4 matrix 

additions 

  

€ 

C11 = A11 × B11( )  +  A12 × B21( )
C12 = A11 × B12( )  +  A12 × B22( )
C21 = A21 × B11( )  +  A22 × B21( )
C22 = A21 × B12( )  +  A22 × B22( )

  

€ 

C11 C12

C21 C22

 

 
 

 

 
  =  

A11 A12

A21 A22

 

 
 

 

 
  ×  

B11 B12

B21 B22

 

 
 

 

 
 
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Recurrence relation?  Runtime? 
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Matrix Multiplication:  Warmup 
Divide: partition A and B into ½n-by-½n blocks 
Conquer: multiply 8 ½n-by-½n recursively 
Combine: add appropriate products using 4 matrix 

additions 

  

€ 

C11 = A11 × B11( )  +  A12 × B21( )
C12 = A11 × B12( )  +  A12 × B22( )
C21 = A21 × B11( )  +  A22 × B21( )
C22 = A21 × B12( )  +  A22 × B22( )

  

€ 

C11 C12

C21 C22

 

 
 

 

 
  =  

A11 A12

A21 A22

 

 
 

 

 
  ×  

B11 B12

B21 B22

 

 
 

 

 
 

    

€ 

T(n) = 8T n /2( )
recursive calls
     

 +  Θ(n2 )
add, form submatrices
       

⇒ T(n) =Θ(n3)
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Matrix Multiplication:  Key Idea 
Multiply 2-by-2 block matrices with only 7 

multiplications and 15 additions 
  Trading expensive multiplication for less expensive 

addition/subtraction 

  

€ 

P1 = A11 × (B12 − B22 )
P2 = (A11 + A12 ) × B22
P3 = (A21 + A22 ) × B11
P4 = A22 × (B21 − B11)
P5 = (A11 + A22 ) × (B11 + B22 )
P6 = (A12 − A22 ) × (B21 + B22 )
P7 = (A11 − A21) × (B11 + B12 )  

€ 

C11 = P5 + P4 − P2 + P6
C12 = P1 + P2
C21 = P3 + P4
C22 = P5 + P1 − P3 − P7

  

€ 

C11 C12

C21 C22

 

 
 

 

 
  =  

A11 A12

A21 A22

 

 
 

 

 
  ×  

B11 B12

B21 B22

 

 
 

 

 
 
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Fast Matrix Multiplication [Strassen, 
1969] 

Divide: partition A and B into ½n-by-½n blocks 
Compute: 14 ½n-by-½n matrices via 10 matrix 

additions 
Conquer:  multiply 7 ½n-by-½n matrices recursively 
Combine:  7 products into 4 terms using 8 matrix 

additions 
Analysis. 
  Assume n is a power of 2. 
  T(n) = # arithmetic operations. 

    

€ 

T(n) = 7T n /2( )
recursive calls
     

+ Θ(n2 )
add, subtract
     

⇒ T(n) =Θ(n log2 7 ) = O(n2.81)
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Fast Matrix Multiplication in Practice 
Implementation issues. 
  Sparsity 
  Caching effects 
  Numerical stability 

–  theoretically correct but possible problems with round off errors, etc 
  Odd matrix dimensions 
  Crossover to classical algorithm around n = 128 

Common misperception:  "Strassen is only a theoretical 
curiosity." 

  Advanced Computation Group at Apple Computer reports 8x 
speedup on G4 Velocity Engine when n ~ 2,500 

  Range of instances where it's useful is a subject of controversy 
Remark.  Can "Strassenize" Ax=b, determinant, eigenvalues, 

and other matrix ops 
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Fast Matrix Multiplication in Theory 
Q.  Multiply two 2-by-2 matrices with only 7 scalar multiplications? 
A.  Yes!   [Strassen, 1969] 
Q.  Multiply two 2-by-2 matrices with only 6 scalar multiplications? 
A.  Impossible  [Hopcroft and Kerr, 1971] 
Q.  Two 3-by-3 matrices with only 21 scalar multiplications? 
A.  Also impossible 
Q.  Two 70-by-70 matrices with only 143,640 scalar multiplications? 
A.  Yes!   [Pan, 1980] 

Decimal wars. 
  December, 1979:  O(n2.521813) 
  January, 1980:     O(n2.521801) 

  

€ 

Θ (n log3 21) = O(n 2.77 )

  

€ 

Θ (n log70 143640 ) = O(n 2.80 )

  

€ 

Θ(n log2 6) = O(n 2.59 )

  

€ 

Θ(n log2 7 ) = O(n 2.81)
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Fast Matrix Multiplication in Theory 
Best known.  O(n2.376)   [Coppersmith-Winograd, 

1987.] 
  But really large constant 

Conjecture.  O(n2+ε) for any ε > 0.  

Caveat.  Theoretical improvements to Strassen are 
progressively less practical. 
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MIDTERM FEEDBACK 
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O is an upperbound 
  Defn: Bounded by a constant 

“at least” an upperbound doesn’t make sense 

Problem 1 
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F6= log n 
F7 = n1/2 
F4 = n log n 
F5 = n3 
F1 = 2n = 2 * 2 * … * 2  

F3 = n!  = n * n-1 * n-2 * … * 1 

F2= 22^n = 2n+(2^n-1) = 2 * 2 * … * 2 

Problem 2 
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2n times 

n times 

Creating the graph: O(n2) 
  Adjacency matrix 
  For each node, keep count of number of red edges, blue 

edges 
– Saves time later 

Removing invalid nodes (nodes w/ less than 5 red or 
blue edges): O(n2) 

  When removing node, remove its edges O(n) 
– Decrease the connected node’s red or blue count 

  A node will never become valid after invalid nodes are 
removed 

Remaining graph’s nodes represent people to invite 
O(n2): Efficient algorithm because polynomial time 

Problem 3 
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Need representation/
implementation, costs, 
runtimes 

Algorithm: Shortest Job First O(n log n) 
  Sort jobs in order of increasing wait time 
  Wait on customers in this order 

Prove that algorithm is optimal 
  Similar to minimizing lateness problem 
  What happens if two customers are inverted? 

– All previous k customers have same wait time (W) 
– Inversion: Customer k+1 and k+2 have service times      
tk+1 < tk+2 but k+2 is served first 

– SJF: W + tk+1  ; Other: W + tk+2  SJF < Other  
– Inversions  increase wait time 

Problem 4 
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Chapter 6: Dynamic programming 
  More powerful technique 

Friday: Problem set due 

Plan for the Week 
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