
3/12/10

1

•  Dynamic Programming
 Segmented Least Squares

•  Polynomial number of subproblems
•  Solution to original problem can be easily

computed from solutions to subproblems
•  Natural ordering of subproblems, easy to

compute recurrence

•  Foundational problem in statistic and
numerical analysis

•  Given n points in the plane: (x1, y1), (x2,
y2) , . . . , (xn, yn)

•  Find a line y = ax + b that minimizes the sum
of the squared error
 “line of best fit”

€

SSE = (yi − axi −b)2
i=1

n
∑

x

y

Sum of
squared

error

•  Foundational problem in statistic and numerical
analysis

•  Given n points in the plane: (x1, y1), (x2, y2) , . . . , (xn, yn)
•  Find a line y = ax + b that minimizes the sum of the

squared error
  “line of best fit”

•  Closed form solution. Calculus ⇒ min error is
achieved when

€

SSE = (yi − axi −b)2
i=1

n
∑

€

a =
n xi yi − (xi)i∑ (yi)i∑i∑

n xi
2 − (xi)

2
i∑i∑

, b =
yi − a xii∑i∑

n

x

y

Sum of
squared error

• What happens to the error if we try to fit one
line to these points?

• What pattern does it seem like these points
have?

x

y

3/12/10

2

• What happens to the error if we try to fit one
line to these points?
 Large error

•  Pattern: More like 3 lines

x

y

•  Points lie roughly on a sequence of line segments
•  Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn,

yn) with x1 < x2 < ... < xn, find a sequence of lines that
minimizes f(x)

x

y

If I want the best fit, how many lines should I use?

•  Points lie roughly on a sequence of line segments
•  Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn)

with x1 < x2 < ... < xn, find a sequence of lines that
minimizes f(x)

x

y

goodness of fit number of lines

What's a reasonable choice for f(x) to
balance accuracy and parsimony?

•  Points lie roughly on a sequence of several line segments.
•  Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with

x1 < x2 < ... < xn, find a sequence of lines that minimizes:
  E: sum of the sums of the squared errors in each segment
  L: the number of lines

•  Tradeoff function: E + c L, for some constant c > 0.

x

y

How should we define
an optimal solution?

…

• What made it seem like the points were in 3
lines? What happened?

x

y

• What made it seem like the points were in 3
lines? What happened?

•  Looking for change in linear approximation
 Where to partition points into line segments

x

y

3/12/10

3

•  Polynomial number of subproblems
•  Solution to original problem can be easily

computed from solutions to subproblems
•  Natural ordering of subproblems, easy to

compute recurrence

We need to:
• Figure out how to break the problem into subproblems
• Figure out how to compute solution from subproblems
• Define the recurrence relation between the problems

•  Consider just the first or last point

x

y

What do we know about those points?
their segments? cost of a segment?

•  pn can only belong to one segment
 Segment: pi, …, pn

 Cost: c (cost for segment) + error of segment
• What is the remaining problem?

x

y

•  pn can only belong to one segment
 Segment: pi, …, pn

 Cost: c (cost for segment) + error of segment
• What is the remaining problem?

 Solve for p1, …, pi-1

x

y

Goal: Formulate as a recurrence

•  Notation.
 OPT(j) = minimum cost for points p1, pi+1 , … , pj.
 e(i, j) = minimum sum of squares for points

pi, pi+1 , …, pj.

•  How do we compute OPT(j)?
 Last problem: binary decision (include job or not)
 This time: multiway decision

•  Which option do we choose?

•  Notation.
 OPT(j) = minimum cost for points p1, pi+1 , … , pj.
 e(i, j) = minimum sum of squares for points

pi, pi+1 , …, pj.
•  To compute OPT(j):

 Last segment contains points pi, pi+1, … , pj for
some i

 Cost = e(i, j) + c + OPT(i-1).

€

OPT(j) =
0 if j = 0

min
1≤ i ≤ j

e(i, j) + c + OPT(i −1){ } otherwise
⎧
⎨
⎪

⎩ ⎪

3/12/10

4

INPUT: n, p1,…,pN , c	

Segmented-Least-Squares()	
 M[0] = 0	
 e[0][0] = 0	
 for j = 1 to n	
 for i = 1 to j	
 e[i][j] = least square error for the	

	 	 	 segment pi, …, pj	

 for j = 1 to n	
 M[j] = min 1 ≤ i ≤ j (e[i][j] + c + M[i-1])	

 return M[n]	

Costs? •  Bottleneck: computing e(i, j) for O(n2) pairs,
O(n) per pair using previous formula

can be improved to O(n2) by pre-computing various statistics

INPUT: n, p1,…,pN , c	

Segmented-Least-Squares()	
 M[0] = 0	
 e[0][0] = 0	
 for j = 1 to n	
 for i = 1 to j	
 e[i][j] = least square error for the  
 	 	segment pi,…, pj	

 for j = 1 to n	
 M[j] = min 1 ≤ i ≤ j (e[i][j] + c + M[i-1])	

 return M[n]	

O(n3)

can be improved to O
(n2) by pre-computing

various statistics

O(n2)

FindSegments(j):	
	if j = 0:	
	 	output nothing	
	else:	
	 	Find an i that minimizes ei,j + c + M[i-1]	
	 	Output the segment {pi, …, pj}	
	 	FindSegments(i-1) 	

Cost? O(n)

