
2/10/10

1

• Wrap up minimizing max lateness •  Single resource processes one job at a time
•  Job j requires tj units of processing time and is due at

time dj (its deadline)
•  If j starts at time sj, it finishes at time fj = sj + tj
•  Lateness: j = max { 0, fj - dj }
•  Goal: schedule all jobs to minimize maximum

lateness L = max j

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14 d2 = 8 d6 = 15 d1 = 6 d4 = 9 d3 = 9

lateness = 0 lateness = 2 dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

max lateness = 6

Note: not a sum total

•  Earliest deadline first.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14 d2 = 8 d6 = 15 d1 = 6 d4 = 9 d3 = 9

Sort n jobs by deadline so that d1 ≤ d2 ≤ … ≤ dn	
t = 0	
for j = 1 to n	
 Assign job j to interval [t, t + tj]	
 sj = t	
 fj = t + tj	
 t = t + tj	
output intervals [sj, fj]	

•  Def. An inversion in schedule S is a pair of
jobs i and j such that:
di < dj but j scheduled before i

i j before swap

inversion

Greedy’s schedule has no inversions!

•  Claim. Swapping two adjacent, inverted jobs
reduces the number of inversions by one and
does not increase the max lateness
 How do we know inversions are adjacent?

•  Pf Setup. Let  be the lateness before the
swap, and let ’ be it afterwards
 What can we say about how i’s, j’s, and other jobs’

lateness changes?

i j

i j

before swap

after swap
f'j

fi
inversion

By def of inversion, di < dj

•  Claim. Swapping two adjacent, inverted jobs
reduces the number of inversions by one and
does not increase the max lateness.

•  Pf. Let  be the lateness before the swap,
and let ' be it afterwards
 'k = k for all k ≠ i, j
 Know: di < dj
 'i ≤ i
 If job j is late:

€

ʹ′  j = ʹ′ f j − d j (definition)
= fi − d j (j finishes at time f i)
≤ fi − di (i < j)
≤  i (definition)

i j

i j

before swap

after swap
f'j

fi
inversion

2/10/10

2

•  Theorem. Greedy schedule S is optimal
•  Pf idea. Convert Opt to Greedy

 Does opt schedule have idle time?
 What if opt schedule has no inversions?
 What if opt schedule has inversions?

•  Theorem. Greedy schedule S is optimal
•  Pf. Define S* to be an optimal schedule that

has the fewest number of inversions, and let's
see what happens
 Can assume S* has no idle time
  If S* has no inversions, then S = S*
  If S* has an inversion, let i-j be an adjacent inversion

•  Swapping i and j does not increase the maximum
lateness and strictly decreases the number of
inversions

•  This contradicts definition of S* ▪

•  Earliest deadline first.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14 d2 = 8 d6 = 15 d1 = 6 d4 = 9 d3 = 9

Sort n jobs by deadline so that d1 ≤ d2 ≤ … ≤ dn	
t = 0	
for j = 1 to n	
 Assign job j to interval [t, t + tj]	
 sj = t	
 fj = t + tj	
 t = t + tj	
output intervals [sj, fj]	

What is the runtime of this algorithm?

O(n logn)

1.  Label your algorithm’s solution and a general solution.
  For example, let A = {a1, a2, ..., ak} be the solution generated by your

algorithm, and let O = {o1, o2, ..., om} be an arbitrary (or optimal) feasible
solution.

2.  Compare greedy with other solution.
  Assume that your arbitrary/optimal solution is not the same as your greedy

solution (since otherwise, you are done).
  Typically, you can isolate a simple example of this difference, such as one

of the following:
•  There is an element of O that is not in A and an element of A that is not in O
•  There are 2 consecutive elements in O in a different order than they are in A (i.e.,

there is an inversion).
3.  Exchange.

  Swap the elements in question in O (either swap one element out and
another in for the first case, or swap the order of the elements in the second
case), and argue that you have a solution that is no worse than before.

  Then argue that if you continue swapping, you eliminate all differences
between O and A in a finite # of steps without worsening the solution’s
quality.

  Thus, the greedy solution produced is just as good as any optimal solution,
and hence is optimal itself.

•  Greedy algorithm stays ahead. Show that
after each step of the greedy algorithm, its
solution is at least as good as any other
algorithm's.

•  Exchange argument. Gradually transform
any solution to the one found by the greedy
algorithm without hurting its quality.

•  Structural. Discover a simple "structural"
bound asserting that every possible solution
must have a certain value. Then show that
your algorithm always achieves this bound.

•  Read Chapter 4
 Wiki due next Wednesday

•  Friday: Exam 1 Due

