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•  Minimum Spanning Tree • What are greedy algorithms? 

• What was the greedy algorithm to find the 
shortest path in a weighted directed graph? 

•  Comcast knows how to make money and how to save 
money 

•  They want to lay cable in a neighborhood 
  Reach all houses 
  Least cost 

Neighborhood Layout Cost of laying cable btw 
houses depends on amount 

of cable, landscaping, 
obstacles, etc. 
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What type of graph? 

•  Given a connected graph G = (V, E) with 
positive edge weights ce, an MST is a subset of 
the edges T ⊆ E such that T is a spanning tree 
whose sum of edge weights is minimized 
 Spanning tree: spans all nodes in graph 
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G = (V, E) 
T,  Σe∈T ce = 50 

Graph 
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Identify spanning trees and which is the minimal spanning tree. 

Graph 
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MST:  

Other Spanning Trees:  

Identify spanning trees and which is the minimal spanning tree. 
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•  Network design 
  telephone, electrical, hydraulic, TV cable, computer, road 

•  Approximation algorithms for NP-hard problems 
  traveling salesperson problem, Steiner tree 

•  Indirect applications 
 max bottleneck paths 
  image registration with Renyi entropy 
  learning salient features for real-time face verification 
  reducing data storage in sequencing amino acids in a 

protein 
 model locality of particle interactions in turbulent fluid 

flows 
•  Cluster analysis http://www.ics.uci.edu/	

	~eppstein/gina/mst.html	

•  Given a connected graph G = (V, E) with 
positive edge weights ce, an MST is a subset of 
the edges T ⊆ E such that T is a spanning tree 
whose sum of edge weights is minimized 
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G = (V, E) T,  Σe∈T ce = 50 

Why must the solution be a tree? 

•  Assume have a minimal solution that is not a 
tree, i.e., it has a cycle 

• What could we do? 
 What do we know about the edges? 
 How does that change the cost of the solution? 

•  Proof by Contradiction. 
•  Assume have a minimal solution V that is not 

a tree, i.e., it has a cycle 
•  Contains edges to all nodes because 

solution must be connected (spanning) 
•  Remove an edge from the cycle 

 Can still reach all nodes (could go “long way 
around”) 

 But at lower cost 
 Contradiction to our minimal solution 

•  Cayley's Theorem.  There are nn-2 spanning 
trees of Kn 

•  Towards a solution… 
 Where to start?   
 Recall: Greedy algorithms chapter… 
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can't solve by 
brute force 

•  Prim's algorithm.  Start with some root nodes and greedily 
grow a tree T from s outward.  At each step, add the 
cheapest edge e to T that has exactly one endpoint in T. 
  Similar to Dijkstra’s (but simpler) 

•  Kruskal's algorithm.  Start with T = φ. Consider edges in 
ascending order of cost. Insert edge e in T unless doing so 
would create a cycle. 

•  Reverse-Delete algorithm.  Start with T = E.  Consider 
edges in descending order of cost. Delete edge e from T 
unless doing so would disconnect T. 

What do these algorithms have/do/check in common? 

All three algorithms produce a MST 
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• When is it safe to include an edge in the 
minimum spanning tree? 

• When is it safe to eliminate an edge from the 
minimum spanning tree? 

Cut Property 

Cycle Property 

•  Simplifying assumption: All edge costs ce are distinct 
➜  MST is unique 

•  Cut property.  Let S be any subset of nodes, and let e 
be the min cost edge with exactly one endpoint in S.  
Then MST contains e. 

•  Cycle property.  Let C be any cycle, and let f be the 
max cost edge belonging to C.  Then MST does not 
contain f. 

f  
C 

S 

Cut Property: e is in MST 

e 

Cycle Property: f is not in MST 
Let’s try to prove these …  

•  Cycle.  Set of edges in the form a-b, b-c, c-d, 
…, y-z, z-a  

Cycle C  =  1-2, 2-3, 3-4, 
   4-5, 5-6, 6-1 
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•  Cycle.  Set of edges in the form a-b, b-c, c-d, …, 
y-z, z-a  

Cycle C  =  1-2, 2-3, 3-4, 
   4-5, 5-6, 6-1 

1 
3 

8 

2 

6 

7 

4 

5 

Cut S       = { 4, 5, 8 } 
Cutset  D = 5-6, 5-7, 3-4, 

       3-5, 7-8 
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•  Cutset.  A cut is a subset of nodes S.  The 
corresponding cutset D is the subset of edges with 
exactly one endpoint in S. 

•  Claim.  A cycle and a cutset intersect in an 
even number of edges 

•  Pf.  (by picture) 
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V - S 

C 

Cycle  C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1 
Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8  
Intersection = 3-4, 5-6 

(Cut) Edges link to not-Cut 

What are the possibilities 
for the cycle? 

•  Claim.  A cycle and a cutset intersect in an 
even number of edges 

•  Pf.  (by picture) 
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C 

Cycle  C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1 
Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8  
Intersection = 3-4, 5-6 

(Cut) Edges link to not-Cut 

1.  Cycle all in S or V-S 
2.  Cycle has to go from 

SV-S and back 

V - S 
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•  Simplifying assumption.  All edge costs ce 
are distinct. 

•  Cut property.  Let S be any subset of nodes, 
and let e be the min cost edge with exactly 
one endpoint in S. Then the MST T* contains 
e. 

•  Pf. 

•  Simplifying assumption.  All edge costs ce 
are distinct. 

•  Cut property.  Let S be any subset of nodes, 
and let e be the min cost edge with exactly 
one endpoint in S. Then the MST T* contains 
e. 

•  Pf. (exchange argument) 
 Suppose there is an MST T* that does not 

contain e 
•  What do we know about T (by defn)? 
•  What do we know about the nodes e connects? 

•  Simplifying assumption.  All edge costs ce are 
distinct. 

•  Cut property.  Let S be any subset of nodes, and let e 
be the min cost edge with exactly one endpoint in S. 
Then the MST T* contains e. 

•  Pf. (exchange argument) 
 Suppose there is an MST T* that does not contain e 
 Adding e to T* creates a cycle C in T* 
 Edge e is in cycle C and in cutset corresponding to 

S   
⇒ there exists another edge, say f, that is in both C and S’s 

cutset 

Which means??? 
f  

e 

S 

•  Simplifying assumption.  All edge costs ce are distinct. 
•  Cut property.  Let S be any subset of nodes, and let e be 

the min cost edge with exactly one endpoint in S. Then 
the MST T* contains e. 

•  Pf. (exchange argument) 
  Suppose there is an MST T* that does not contain e 
  Adding e to T* creates a cycle C in T* 
  Edge e is in cycle C and in cutset corresponding to S   

⇒ there exists another edge, say f, that is in both C and S’s cutset 
 T' = T* ∪ { e } - { f } is also a spanning tree 
 Since ce < cf, cost(T') < cost(T*) 
 This is a contradiction.   ▪ f  

e 

S 

•  Simplifying assumption.  All edge costs ce 
are distinct 

•  Cycle property.  Let C be any cycle in G, and 
let f be the max cost edge belonging to C. 
Then the MST T* does not contain f. 

Ideas about approach? 

•  Simplifying assumption.  All edge costs ce are distinct 

•  Cycle property. Let C be any cycle in G, and let f be the max cost 
edge belonging to C. Then the MST T* does not contain f. 

•  Pf.  (exchange argument) 
  Suppose f belongs to T* 
  Deleting f from T* creates a cut S in T* 
  Edge f is both in the cycle C and in the cutset S 

⇒  there exists another edge, say e, that is in both C and S 
  T' = T* ∪ { e } - { f } is also a spanning tree 
  Since ce < cf, cost(T') < cost(T*) 
  This is a contradiction.   ▪ 

f  

e 

S 
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•  Simplifying assumption: All edge costs ce are distinct 
➜  MST is unique 

•  Cut property.  Let S be any subset of nodes, and let e 
be the min cost edge with exactly one endpoint in S.  
Then MST contains e. 

•  Cycle property.  Let C be any cycle, and let f be the 
max cost edge belonging to C.  Then MST does not 
contain f. 

f  
C 

S 

Cut Property: e is in MST 

e 

Cycle Property: f is not in MST 

•  Start with some root node s and greedily 
grow a tree T from s outward. 

•  At each step, add the cheapest edge e to T 
that has exactly one endpoint in T. 

How can we prove its correctness? 

[Jarník 1930, Dijkstra 1957, Prim 1959] 

•  Initialize S to be any node 
•  Apply cut property to S 

 Add min cost edge in cutset corresponding to S 
to T, and add one new explored node u to S 

S 

•  Maintain set of explored nodes S 
•  For each unexplored node v, maintain 

attachment cost a[v]  cost of cheapest edge v 
to a node in S 
 O(m log n) with a heap 

foreach (v ∈ V) a[v] = ∞	
Initialize an empty priority queue Q	
foreach (v ∈ V) insert v onto Q	
Initialize set of explored nodes S = φ	
while (Q is not empty) 	
   u = delete min element from Q	
   S = S ∪ { u }	
   foreach (edge e = (u, v) incident to u)	
       if ((v ∉ S) and (ce < a[v]))	
           decrease priority a[v] to ce	

Similar to Dijkstra’s algorithm 

•  Read Chapter 4 
 Wiki due Wednesday 
 4.1-4.2 
 4.4-4.5 

•  Friday: PS4 Due 


