
1/19/11	

1	

Objectives

•  Finish survey of common running times
•  More on Data structures

•  Checking in on journal
 Alternative to quizzes

Jan 19, 2011 1 Sprenkle - CSCI211

A SURVEY OF COMMON
RUNNING TIMES

2 Jan 19, 2011 Sprenkle - CSCI211

Review: O(n) Algorithms

•  Constant work on each input element
•  Examples:

 Finding the max
 Merging two sorted lists

Jan 19, 2011 Sprenkle - CSCI211 3

O(n log n) Time

•  Also referred to as linearithmic time
•  Arises in divide-and-conquer algorithms

 Splitting input into equal pieces, solve
recursively, combine solutions in linear time

Jan 19, 2011 Sprenkle - CSCI211 4

What well-known set of algorithms ���
has an O(n logn) running time?	

O(n log n) Time Example

•  Sorting: Mergesort and heapsort are sorting
algorithms that perform O(n log n)
comparisons

•  Mergesort
1.  Break input into equal-sized pieces
2.  Sorts each half recursively
3.  Merges sorted halves into a sorted list

Jan 19, 2011 Sprenkle - CSCI211 5

Talk about the bound on running
time during D&C chapter…	

O(n log n) Time Example

•  Largest empty interval. Given n (not
necessarily ordered) time-stamps x1, …, xn at
which copies of a file arrive at a server, what
is largest interval of time when no copies of
the file arrive?

Jan 19, 2011 Sprenkle - CSCI211 6

1/19/11	

2	

O(n log n) Time Example

•  Largest empty interval. Given n (not
necessarily ordered) time-stamps x1, …, xn at
which copies of a file arrive at a server, what
is largest interval of time when no copies of
the file arrive?

•  O(n log n) solution
1.  Sort time-stamps
2.  Scan sorted list in order, identifying the

maximum gap between successive time-
stamps

Jan 19, 2011 Sprenkle - CSCI211 7

Quadratic Time: O(n2)

•  Examples?

Jan 19, 2011 Sprenkle - CSCI211 8

Quadratic Time: O(n2)

•  Examples:
 Enumerate all pairs of elements
 Often involves nested loops (n iterations each)

Jan 19, 2011 Sprenkle - CSCI211 9

Quadratic Time: O(n2)

•  Closest pair of points. Given a list of n points
in the plane (x1, y1), …, (xn, yn), find the pair
that is closest

•  O(n2) solution. Try all pairs of points

Jan 19, 2011 Sprenkle - CSCI211 10

min = (x1 - x2)2 + (y1 - y2)2	
for i = 1 to n 	
 for j = i+1 to n 	
 d = (xi - xj)2 + (yi - yj)2	
 if (d < min)	
 min = d	

don't need to���
take square roots	

Ω(n2) seems inevitable, but Chapter 5 has an O(n logn) solution	

Cubic Time: O(n3)

•  Examples?

Jan 19, 2011 Sprenkle - CSCI211 11

Cubic Time: O(n3)

•  Enumerate all triples of elements

Jan 19, 2011 Sprenkle - CSCI211 12

1/19/11	

3	

Cubic Time: O(n3)

•  Set disjointness. Given n sets S1, …, Sn
each of which is a subset of 1, 2, …, n, is
there some pair of these which are disjoint?

•  O(n3) solution. For each pair of sets,
determine if they are disjoint

Jan 19, 2011 Sprenkle - CSCI211 13

foreach set Si 	
 foreach other set Sj 	
 foreach element p of Si 	
 determine whether p also belongs to Sj	
 	
 if (no element of Si belongs to Sj)	
 report that Si and Sj are disjoint 	

Polynomial Time: O(nk) Time

•  To get all pairs, the algorithm is O(n2)

Jan 19, 2011 Sprenkle - CSCI211 14

What is an example of an O(nk) algorithm?	

All subsets of size k	

Polynomial Time: O(nk) Time

•  Independent set of size k. Given a graph,
are there k nodes such that no two are joined
by an edge?
 k is a constant

Jan 19, 2011 Sprenkle - CSCI211 15

Polynomial Time: O(nk) Time

•  Independent set of size k. Given a graph,
are there k nodes such that no two are joined
by an edge?
 k is a constant

•  O(nk) solution
1.  Enumerate all subsets of k nodes

2.  Check whether S is an independent set = O(k2).

Jan 19, 2011 Sprenkle - CSCI211 16

foreach subset S of k nodes 	
 check whether S in an independent set	
 if (S is an independent set)	
 report S is an independent set 	

!

n
k
"

$
%

&
' =

n (n(1) (n(2)! (n(k +1)
k (k (1) (k (2)! (2) (1)

) n
k

k!

poly-time for k=17���
but not practical	

O(k2 nk / k!) = O(nk)	

Exponential Time

•  Independent set. Given a graph, what is the
maximum size of an independent set?

•  O(n2 2n) solution. Enumerate all subsets

Jan 19, 2011 Sprenkle - CSCI211 17

S* = φ	
foreach subset S of nodes 	
 check whether S in an independent set	
 if (S is largest independent set seen so far)	

	S* = S	

O(log n) Time

•  Sublinear time
•  Know any algorithms that take O(log n) time?

Jan 19, 2011 Sprenkle - CSCI211 18

1/19/11	

4	

O(log n) Time

•  Example: Binary search

•  Often requires some pre-processing or data
structure that allows cheaper “querying” than
n time

Jan 19, 2011 Sprenkle - CSCI211 19

Summary of Running Times

Jan 19, 2011 Sprenkle - CSCI211 20

Running Time Example

O(log n) Generally dividing problem in half on
each iteration

O(n) Operate on each input value
O(n log n) Divide and conquer

O(n2) Operate on each pair of inputs
O(n!) Operate on each permutation of inputs

MORE COMPLEX DATA
STRUCTURES

Jan 19, 2011 21 Sprenkle - CSCI211

Improving Running Times

Jan 19, 2011 Sprenkle - CSCI211 22

After overcoming higher-level obstacles,	

lower-level implementation details

can improve runtime.	

PRIORITY QUEUES

Jan 19, 2011 23 Sprenkle - CSCI211

Priority Queues
•  Elements have a priority or key
•  Each time select an element from the priority

queue, want the one with highest priority
•  More formally…

 Maintains a set of elements S
•  Each element v ∈ S has a key(v) for its priority

  Smaller keys represent higher priorities
 Supported operations

•  Add, delete elements
•  Select element with smallest key

Jan 19, 2011 24 Sprenkle - CSCI211

Key 2 4 5 6 9 20
Value 3542 5143 8712 1264 9123 5954 Process id	

Not implementation, just how to envision	

Priority	

1/19/11	

5	

Motivating Example:
Scheduling Processes

•  Each process has a priority or urgency
•  Processes do not arrive in priority order
•  Goal: run process with highest priority

Jan 19, 2011 25 Sprenkle - CSCI211

Key 2 4 5 6 9 20
Value 3542 5143 8712 1264 9123 5954 Process id	

Priority	

Using a Priority Queue

Jan 19, 2011 Sprenkle - CSCI211 26

How could we use a PQ to sort a list of numbers?	

Priority Queues for Sorting

1. Add elements into PQ with the number’s
value as its priority

2. Then extract the smallest number until done
 Come out in sorted order

Jan 19, 2011 27 Sprenkle - CSCI211

Sorting n numbers takes O(n logn) time	

What is the goal running time for our PQ’s
operations?	

What is the goal running time for our PQ’s
operations? O(logn)	

Already know our “loops” will be O(n) 	

Implementing a Priority Queue

•  Consider an unordered list, where there is a
pointer to minimum

•  How difficult (i.e., expensive) is
 Adding new elements?
 Extraction?

Jan 19, 2011 28 Sprenkle - CSCI211

min	

Implementing a Priority Queue
•  Consider an unordered list, where there is a

pointer to minimum

•  How difficult (i.e., expensive) is
 Adding new elements? easy
 Extraction? difficult

•  Need to find “new” minimum: O(n)

Jan 19, 2011 29 Sprenkle - CSCI211

min	

What is the running time for sorting
with the PQ in this case?	

O(n2)	

Implementing a Priority Queue

•  Consider a sorted list where min is at the
beginning

•  Should you use an array or linked list?
•  How difficult is

 Adding new elements?
 Extraction?

Jan 19, 2011 30 Sprenkle - CSCI211

min	

1/19/11	

6	

Implementing a Priority Queue
•  Consider a sorted list where min is at the

beginning

•  Should you use an array or linked list?
•  How difficult is

 Adding new elements? more difficult (insertion)
 Extraction? Easy

Jan 19, 2011 31 Sprenkle - CSCI211

min	

What is the running time for sorting
with the PQ in this case?	

O(n2)	

Reflection

•  All of “known” data structures has one
operation that takes O(n) time

•  Cannot implement PQs with “known” data
structures arrays and lists to meet desired
O(n log n) runtime

•  Motivates use of a new data structure (heap)
to implement PQ

Jan 19, 2011 32 Sprenkle - CSCI211

HEAPS

Jan 19, 2011 Sprenkle - CSCI211 33

Heap Defined

•  Combines benefits of sorted array and list
•  Balanced binary tree

Jan 19, 2011 34

root	

• Each node has at most 2 children
• Node value is its key

Heap order: each node’s key is
at least as large as its parent’s

Note: not a binary search tree	

Sprenkle - CSCI211

Heaps

Jan 19, 2011 Sprenkle - CSCI211 35

Implementing a Heap

•  Option 1: Use pointers
 Each node keeps

•  Element it stores (key)
•  3 pointers: 2 children, parent

•  Option 2: No pointers
 Requires knowing upper bound on n
 For node at position i

•  left child is at 2i
•  right child is at 2i+1

Jan 19, 2011 36

If know child’s position, what is the position of parent?	

Sprenkle - CSCI211

1/19/11	

7	

Assignment

•  Problem Set Due Friday
•  Finish reading, summarizing Chapter 2

Jan 19, 2011 Sprenkle - CSCI211 37

