Objectives

Data structures: Graphs

2/2/09

From the Office

It's my own fault for using PowerPoint. PowerPoint
is boring. People learn in a lot of different ways.

-- Dwight

Review: Comparing BFS vs DFS

What do they do?
How are their outcomes different?
When would we want to use one over the other?

Review: Comparing BFS vs DFS

What do they do?

« Techniques for finding connected components
-Create a tree of connected components

« Other uses as well

How are their outcomes different?

« BFS: shortest path; bushy tree

« DFS: spindly tree

When would we want to use one over the other?

« DFS: what you'd do in a maze (can't split)

Set of All Connected Components

How can we find set of all connected components of
graph?

R* = set of connected components
While there is a node that does not belong to R*
select s not in R*

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where ucR and v¢R
Add v to R

Endwhile

Add R to R*

Running time?

Set of All Connected Components

How can we find set of all connected components of
graph?

R* = set of connected components
While there is a node that does not belong to R*
select s not in R*

R will consist of nodes to which s has a path

Tnitially R={s) Running time:

While there is an edge (u,v) where ucR and v gR O(m+n)
Add v to R

Endwhile

Add R to R*

But the “inner” loop was O(m+n)!
How can this be?

2/2/09

Set of All Connected Components

How can we find set of all connected components of
graph?

R* = set of connected components
While there is a node that does not belong to R*
select s not in R*
Imprecision in the running

R will consist of nodes to which s has a path time of inner loop:

Tnitially R={s} O(m+n)

While there is an edge (u,v) where ucR and v¢R

Add v to R But that's m and n of the
Endwhile connected component, TESTING BIPARTITENESS
let's say m;and n;
Add R to R So..
%, O(m+ n;) = O(m+n)
Where i is the subscriy
of the connected
- component 7 ¢
Bipartite Graphs Testing Bipartiteness
Def. An undirected graph G = (V, E) is bipartite if the Given a graph G, is it bipartite?
nodes can be colored red or blue such that every . Many graph problems become:
edge has one red and one blue end - ' T .
i o) —easier if underlying graph is bipartite (matching)
- Generally: vertices divided into sets X and Y ~tractable if underlying graph is bipartite (independent set)
Applications: « Before designing an algorithm, need to understand
« Stable marriage: men = red, women = que‘l bipartite graph structure of bipartite graphs
« Scheduling: machines = red, jobs = blue
Fet 9 I 10

An Obstruction to Bipartiteness Hovéi%gptﬂeeeggegg"e

Lemma. If a graph G is bipartite, it cannot contain an Given a connected graph Why connected?
odd length cycle. Color one node red

Pf. Not possible to 2-color the odd cycle, let alone _Doesn’'t matter which color (Why?)

G. What should we do next?

How will we know that we’re finished?
What does this process sound like?

bipartite not bipartite
(2-colorable) (not 2-colorable)

If find an odd cycle, graph is NOT bipartite

How Can We Determine
Bipartite Graphs?
Given a connected graph
Color one node red
—-Doesn’t matter which color (Why?)
What should we do next?

How will we know that we’re finished?

What does this process sound like?
BFS: alternating colors, layers @

L L Ls

Implementing Algorithm

Modify BFS to have a Color array

« When add v to list L[i+1]
« Color[v] =red if i+1 is even
L L L

« Color[v] = blue if i+1 is odd

Bipartite Graphs

Lemma. Let G be a connected graph, and let L, ...,

L, be the layers produced by BFS starting at node s.
Exactly one of the following holds:

(i) No edge of G joins two nodes of the same layer
-G is bipartite
(ii) An edge of G joins two nodes of the same layer

-G contains an odd-length cycle (and hence is not

bipartite) @
[Ly Ly L L Ly
Feb 2, 2009 Case (i) cs21 Case (i) 15

Bipartite Graphs

Lemma. Let G be a connected graph, and let L, ..., L,
be the layers produced by BFS starting at node s.
Exactly one of the following holds:

(i) An edge of G joins two nodes of the same layer, and G
contains an odd-length cycle (and hence is not bipartite)

Pf. (ii)

= Suppose (x, y) is an edge with x, y in same level L;.

« Let z = Ica(x, y) = lowest common ancestor

« Let L, be level containing z

2= Ica(x,y)

« Consider cycle that takes edge from x to y,
then path from y to z, then path from z to x

Layer L;

Layer L;
Feb 2, 2009 cs21 i

Bipartite Graphs

Lemma. Let G be a connected graph, and let L, ..., L, be the

layers produced by BFS starting at node s. Exactly one of the
following holds:

(i) No edge of G joins two nodes of the same layer
-G is bipartite
Pf. (i)
« Suppose no edge joins two nodes in the same layer
« Implies all edges join nodes on adjacent level
« Bipartition: red = nodes on odd levels, blue = nodes on even

levels

L L Ls

Case (i) “’

Bipartite Graphs

Lemma. Let G be a connected graph, and let L, ..., L, be the

layers produced by BFS starting at node s. Exactly one of the
following holds:

(i) An edge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite)

PE. (ii)

= Suppose (x, y) is an edge with x, y in same level L; z=lca(x, y)
« Letz =Ica(x, y) = lowest common ancestor
« LetL; be level containing z Layer 1, (2
« Consider cycle that takes edge from x to y,

then path from y to z, then path from z to x
. ltslengthis 1 + (j-i) + (j-i), which is odd Laverly |

gthis 1, =), + ()
(x,y) pathfrom path from
yto ztox cs211

Obstruction to Bipartiteness

Corollary. A graph G is bipartite iff it contains no odd
length cycle.

—— BycleC

bipartite not bipartite
(2-colorable) (not 2-colorable)

2/2/09

CONNECTIVITY IN DIRECTED
GRAPHS

Directed Graphs G = (V, E)

Edge (u, v) goes from node u to node v

Ex. Web graph - hyperlink points from one web
page to another

« Directedness of graph is crucial

« Modern web search engines exploit hyperlink structure
to rank web pages by importance

Representing Directed Graphs

For each node, keep track

« Out edges (where links go)

« In edges (from where links come in)

Could just keep out edges

« Get in edges with increased computation/time
« Useful to have both in and out edges

Graph Search

How does reachability change with directed graphs?

Example: Web crawler. Start from web page s. Find
all web pages linked from s, either directly or
indirectly.

Graph Search

Directed reachability. Given a node s, find all nodes
reachable from s.

Directed s-t shortest path problem. Given two nodes
s and t, what is the length of the shortest path
between s and t?

« Not necessarily the same as t-s shortest path

Graph search. BFS and DFS extend naturally to
directed graphs

« Trace through out edges e‘e‘e
« Run in O(m+n) time g‘?

Problem

Rather than paths from s to other nodes, find all
nodes with paths to s

2/2/09

Problem/Solution

Problem. Rather than paths from s to other nodes,
find all nodes with paths to s

Solution. Run BFS on in edges instead of out edges

Strong Connectivity

Def. Node u and v are mutually reachable if there is
a path from v to v and also a path from v to u

Def. A graph is strongly connected if every pair of
nodes is mutually reachable

Lemma. Let s be any node. G is strongly connected
iff every node is reachable from s and s is reachable
from every node

o

Strong Connectivity

If u and v are mutually reachable and v and w are
mutually reachable, then u and w are mutually
reachable

Strong Connectivity

If u and v are mutually reachable and v and w are
mutually reachable, then u and w are mutually
reachable.

Proof. We need to show that there is a path from u
to w and from w to u.

« By defn of mutually reachable, there is a path from u to
v, a path from v to u, a path from vto w, and a path
from wto v

« Take path u>v and then from v > w
-Path from u>w
« Similarly for w>u

Strong Connectivity

Def. A graph is strongly connected if every pair of
nodes is mutually reachable

Lemma. Let s be any node. G is strongly
connected iff every node is reachable from s and
s is reachable from every node.

« 18t prove =
« 2" prove <=

—for any nodes u and v, is there a path u>v and v>u ?

Strong Connectivity
Def. A graph is strongly connected if every pair of
nodes is mutually reachable

Lemma. Let s be any node. G is strongly connected
iff every node is reachable from s, and s is reachable
from every node.

Pf. = Follows from definition of strongly connected
Pf. < For any nodes u and v, make path u->v and

vou @

= U>Vv : concatenating u=>s with s>v
« V 2u: concatenate v>s with s2u

31

2/2/09

Strong Connectivity Problem

Determine if G is strongly connected in O(m + n)
time

VAVANSRVAVAN

strongly connected not strongly connected

Can we leverage any algorithms we know have O(m+n) time? ‘

Strong Connectivity: Algorithm

Theorem. Can determine if G is strongly connected
in O(m + n) time.

Pf.

« Pick any node s

« Run BFS from sin G

« Run BFS from sin GV

« Return true iff all nodes reached in both BFS
executions

reverse orientation of every edge in G
Or, the BFS using the in edges

« Correctness follows immediately from previous lemma
-All reachable from one node, s is reached by all

Strong Components

For any two nodes s and tin a directed graph, their
strong components are either identical or disjoint

Proof.
« Consider v in both strong components
-S> V; VvV 2> s; vt tov > t>s, s>t (mutually reachable)

—As soon as there is one common node, then have
identical strong components

Strong Components

For any two nodes s and t in a directed graph, their
strong components are either identical or disjoint

Consider a node in common...

DAGS AND TOPOLOGICAL
ORDERING

Directed Acyclic Graphs

Def. A DAG is a directed graph that contains no
directed cycles.

Example. Precedence constraints: edge (v;, v;)
means v; must precede v,

« Course prerequisite graph: course v; must be taken
before v,

« Compilation: module v;must be compiled before Y|

« Pipeline of computing jobs: output of job v, needed to
determine input of job v,

2/2/09

Directed Acyclic Graphs

Given a set of tasks with dependencies, what is a
valid order in which the tasks could be performed?

Directed Acyclic Graphs

Given a set of tasks with dependencies, what is a
valid order in which the tasks could be performed?

Def. A topological order of a directed graph G =
(V, E) is an ordering of its nodes as vy, vy, ..., v, SO
that for every edge (v;, v;) we have i <.

a topological ordering
All edges point “forward”

Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

Proof: Try to show that G has a cycle

the directed cycle €

the supposed topological order: v;, ..., v,

Why isn't this valid?

Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.
Pf. (by contradiction)

« Suppose that G has a topological order vy, ..., v, and that G also
has a directed cycle C.

= Letv; be the lowest-indexed node in C, and let v; be the node on
C just before v;; thus (v;, v;) is an edge

« By our choice of i (lowest-indexed node), i <j

« On the other hand, since (v;, v))isanedgeand vy, ..., v, is a
topological order, we must havej <i,a contradic{ion. .

the directed cycle C

the supposed topological order: vy, ..., v,

4

Directed Acyclic Graphs

Does every DAG have a topological ordering?
« If so, how do we compute one?

42

Directed Acyclic Graphs

Does every DAG have a topological ordering?

« If so, how do we compute one?

What would we need to be able to create a
topological ordering?

« What are some characteristics of this graph?

43

2/2/09

