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Objectives 

•  Graph Application: Bipartite Graphs 
•  Directed Graphs 
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Review: Bipartite Graphs 

•  Def.  An undirected graph G = (V, E) is 
bipartite if the nodes can be colored red or 
blue such that every edge has one red and 
one blue end 
 Generally: vertices divided into sets X and Y 

•  Applications: 
 Stable marriage:  

•  men = red, women = blue 
 Scheduling:   

•  machines = red, jobs = blue 
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a bipartite graph	



Where we left off: How Can We 
Determine if a Graph is Bipartite? 

•  Given a connected graph 
1.  Color one node red 

•  Doesn’t matter which color (Why?) 
 What should we do next? 
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Why connected?	
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•  How will we know when 
we’re finished?	



•  What does this process 
sound like?	



How Can We Determine if a Graph is 
Bipartite? 
•  Given a connected graph 

 Color one node red 
•  Doesn’t matter which color (Why?) 

 What should we do next? 
•  How will we know that we’re finished? 
• What does this process sound like? 

 BFS: alternating colors, layers 
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How can we implement the algorithm?	



Implementing Algorithm 

•  Modify BFS to have a Color array 
• When add v to list L[i+1] 

 Color[v] = red if i+1 is even 
 Color[v] = blue if i+1 is odd 
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What is the running time of this algorithm?	

What is the running time of this algorithm? O(n+m)	



Marks a change in how we think about algorithms	


Starting to apply known algorithms to solve new problems.	



Analyzing Algorithm’s Correctness 
•  Lemma.  Let G be a connected graph, and let 

L0, …, Lk be the layers produced by BFS 
starting at node s.  Exactly one of the following 
holds: 
 (i) No edge of G joins two nodes of the same layer 

•  G is bipartite 
 (ii) An edge of G joins two nodes of the same layer 

•  G contains an odd-length cycle and hence is not 
bipartite 
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Case (i):	
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Analyzing Algorithm’s Correctness 
•  Lemma.  Let G be a connected graph, and let L0, …, 

Lk be the layers produced by BFS starting at node s.  
Exactly one of the following holds: 
  (i) No edge of G joins two nodes of the same layer 

•  G is bipartite 
•  Pf.  (i) 

 Suppose no edge joins two nodes in the same layer 
  Implies all edges join nodes on adjacent level 
 Bipartition: red = nodes on odd levels, blue = nodes on 

even levels 
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Case (i)	



Analyzing Algorithm’s Correctness 
•  Lemma.  Let G be a connected graph, and let L0, …, 

Lk be the layers produced by BFS starting at node s.  
Exactly one of the following holds: 
  (ii)  An edge of G joins two nodes of the same layer    

G contains an odd-length cycle and hence is not bipartite 
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z = lca(x, y)	



•  Pf.  (ii) 
 Suppose (x, y) is an edge with x, y in same 

level Lj. 
  Let z = lca(x, y) = lowest common ancestor 
  Let Li be level containing z 
 Consider cycle that takes edge from x to y, 

then path y z, then path from z  x 

Analyzing Algorithm’s Correctness 
•  Lemma.  Let G be a connected graph, and let L0, …, 

Lk be the layers produced by BFS starting at node s.  
Exactly one of the following holds: 
  (ii)  An edge of G joins two nodes of the same layer    

G contains an odd-length cycle and hence is not bipartite 
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•  Pf.  (ii) 
  Suppose (x, y) is an edge with x, y in same 

level Lj. 
  Let z = lca(x, y)=lowest common ancestor 
  Let Li be level containing z 
  Consider cycle that takes edge from x to y, 

then path y  z, then path z  x 
  Its length is  1  +   (j-i)  +  (j-i),  which is odd 

(x, y)	

 path from���
y to z	



path from���
z to x	



z = lca(x, y)	



Obstruction to Bipartiteness 

•  Corollary.  A graph G is bipartite iff it contains 
no odd length cycle. 
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5-cycle C	



bipartite ���
(2-colorable)	



not bipartite ���
(not 2-colorable)	



DIRECTED GRAPHS 
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Directed Graphs G = (V, E) 

•  Edge (u, v) goes from node u to node v 

•  Example: Web graph - hyperlink points from 
one web page to another 
 Directedness of graph is crucial 
 Modern web search engines exploit hyperlink 

structure to rank web pages by importance 
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Representing Directed Graphs 

•  For each node, keep track of 
 Out edges (where links go) 
 In edges (from where links come in) 

•  Could only store out edges 
 Figure out in edges with increased computation/

time 
 Useful to have both in and out edges 
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CONNECTIVITY IN DIRECTED 
GRAPHS 
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Graph Search 

•  How does reachability change with directed 
graphs? 

 
•  Example: Web crawler   

1.  Start from web page s. 
2.  Find all web pages linked from s, either directly 

or indirectly. 
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Graph Search 

•  Directed reachability.  Given a node s, find all 
nodes reachable from s. 

•  Directed s-t shortest path problem.  Given 
two nodes s and t, what is the length of the 
shortest path between s and t? 
 Not necessarily the same as ts shortest path 

•  Graph search.  BFS and DFS extend 
naturally to directed graphs 
 Trace through out edges 
 Run in O(m+n) time 
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Problem 

•  Rather than paths from s to other nodes, find 
all nodes with paths to s 
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Problem/Solution 

•  Problem.  Rather than paths from s to other 
nodes, find all nodes with paths to s 

•  Solution.  Run BFS on in edges instead of 
out edges 
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Strong Connectivity 

•  Def.  Node u and v are mutually reachable 
if there is a path from u  v and also a path 
from v  u 

•  Def.  A graph is strongly connected if every 
pair of nodes is mutually reachable 

•  Lemma.  Let s be any node.  G is strongly 
connected iff every node is reachable from s 
and s is reachable from every node 
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(not necessarily a direct edge)	



Strong Connectivity 

•  If u and v are mutually reachable and v and 
w are mutually reachable, then u and w are 
mutually reachable 
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Strong Connectivity 
•  If u and v are mutually reachable and v and 

w are mutually reachable, then u and w are 
mutually reachable. 

•  Proof.  We need to show that there is a path 
from u  w and from w  u. 
 By defn of mutually reachable 

•  there is a path u  v & a path v  u,  
•  a path v  w,  and a path w  v 

 Take path uv and then from v  w 
•  Path from uw 

 Similarly for wu 
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Strong Connectivity 

•  Def.  A graph is strongly connected if every 
pair of nodes is mutually reachable 

•  Lemma.  Let s be any node.  G is strongly 
connected iff every node is reachable from s 
and s is reachable from every node. 
 1st prove ⇒ 
 2nd prove ⇐ 

•  for any nodes u and v, is there a path uv and 
vu ? 
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Strong Connectivity 
•  Def.  A graph is strongly connected if every pair 

of nodes is mutually reachable 
•  Lemma.  Let s be any node.  G is strongly 

connected iff every node is reachable from s, 
and s is reachable from every node. 

•  Pf.  ⇒ Follows from definition of strongly 
connected 

•  Pf.  ⇐ For any nodes u and v, make path uv 
and vu  
   uv : concatenating us with sv 
   v u: concatenate vs with su 
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Strong Connectivity Problem 

•  Determine if G is strongly connected in        
O(m + n) time 
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strongly connected	

 not strongly connected	



Hint: Can we leverage any algorithms we 
know have O(m+n) time?	
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Strong Connectivity: Algorithm 
•  Theorem.  Can determine if G is strongly 

connected in O(m + n) time. 
•  Pf. 

 Pick any node s 
 Run BFS from s in G 
 Run BFS from s in Grev 
 Return true iff all nodes reached in both BFS 

executions 
 Correctness follows immediately from previous 

lemma 
•  All reachable from one node, s is reached by all 
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reverse orientation of every edge in G	


Or, the BFS using the in edges	



Strong Components 

•  For any two nodes s and t in a directed 
graph, their strong components are either 
identical or disjoint 
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Hint: Consider a node in common…	



Strong Components 
•  For any two nodes s and t in a directed graph, 

their strong components are either identical or 
disjoint 

•  Proof. 
 Consider v in both strong components 

•  s v; v  s; vt; tv   ts, st (mutually 
reachable) 

•  As soon as there is one common node, then have 
identical strong components 

 On the other hand, consider s and t are not mutually 
reachable 
•  No node v that is in the strong component of each 

  What would it mean if there were? 
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DAGS AND TOPOLOGICAL 
ORDERING 

28 Jan 28, 2011 CSCI211 - Sprenkle 

Directed Acyclic Graphs 
•  Def.  A DAG is a directed graph that contains no 

directed cycles. 
•  Example.  Precedence constraints: edge (vi, vj) 

means vi must precede vj 
 Course prerequisite graph: course vi must be taken 

before vj 

 Compilation: module vi must be compiled before vj 

 Pipeline of computing jobs: output of job vi needed to 
determine input of job vj 
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a DAG:	



Problem: Valid Ordering 

•  Given a set of tasks with dependencies, what 
is a valid order in which the tasks could be 
performed? 

Jan 28, 2011 CSCI211 - Sprenkle 30 

v2 v3 

v6 v5 v4 

v7 v1 



1/28/11	



6	



Topological Ordering 
•  Problem: Given a set of tasks with 

dependencies, what is a valid order in which the 
tasks could be performed? 

•  Def.  A topological order of a directed graph  
G = (V, E) is an ordering of its nodes as v1, v2, 
…, vn so that for every edge (vi, vj) we have i < j. 
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a DAG	



a topological ordering	


All edges point “forward”	
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Directed Acyclic Graphs 

•  Lemma.  If G has a topological order, then G 
is a DAG. 

•  Proof plan: Try to show that G has a cycle 
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the supposed topological order:  v1, …, vn	



the directed cycle C	



Why isn’t this valid?	



DAGs & Topological Orderings 
•  Lemma.  If G has a topological order, then G is a DAG. 
•  Pf.  (by contradiction) 

  Suppose that G has a topological order v1, …, vn and that G 
also has a directed cycle C. 

  Let vi be the lowest-indexed node in C, and let vj be the node 
on C just before vi; thus (vj, vi) is an edge 

  By our choice of i (lowest-indexed node), i < j 
  Since (vj, vi) is an edge and v1, …, vn is a topological order, 

we must have j < i, a contradiction.   ▪ 
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the directed cycle C	



the supposed topological order:  v1, …, vn	



Directed Acyclic Graphs 

•  Does every DAG have a topological 
ordering? 
 If so, how do we compute one? 

Jan 28, 2011 CSCI211 - Sprenkle 34 

Directed Acyclic Graphs 

•  Does every DAG have a topological 
ordering? 
 If so, how do we compute one? 

• What would we need to be able to create a 
topological ordering? 
 What are some characteristics of this graph? 
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v1 v2 v3 v4 v5 v6 v7 

Directed Acyclic Graphs 

•  Does every DAG have a topological 
ordering? 
 If so, how do we compute one? 

• What would we need to be able to create a 
topological ordering? 
 What are some characteristics of this graph? 
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v1 v2 v3 v4 v5 v6 v7 

Need someplace to start:	


a node with no incoming edges 

(no dependencies)	


Note that both v1 and v2 have no 

incoming edges	
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Directed Acyclic Graphs 

•  Lemma.  If G is a DAG, then G has a node 
with no incoming edges 
 This is our starting point of the topological 

ordering 

•  How to prove? 
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Directed Acyclic Graphs 

•  Lemma.  If G is a DAG, then G has a node 
with no incoming edges 

•  Proof idea: consider if there is no node 
without incoming edges 
 What do we want to show? 
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To be continued …  

PS1 Feedback 
•  Problem 1: Looking for an induction proof 
•  Problem 2 

  don’t need the Gale-Shapley algorithm to prove, just 
base on problem defn/description 

•  Problem 3 
 Algorithm adaptation: need to break/handle ties in G-S 

•  Since still using G-S, no strong instabilities 
 Example of weak instability 

•  Problem 4: Straightforward adaptation of definitions 
 Trying to get you to review the definitions and get more 

comfortable with them 
•  Problems 5: Similar to one of the solved exercises 
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Assignments 

•  Reading Chapter 3.1-3.5 
 Wikis for Wednesday 

•  For next Friday: Problem Set 3 
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