
1/21/11	

1	

Objectives

•  Data structure: Heaps
•  Implementing a Priority Queue

Jan 21, 2011 1 CSCI211 - Sprenkle

Review: Priority Queues for Sorting

1. Add elements into PQ with the number’s
value as its priority

2. Then extract the smallest number until done
 Come out in sorted order

Jan 21, 2011 2 CSCI211 - Sprenkle

Sorting n numbers takes O(n logn) time,
which is our goal running time.	

However, “known” data structures won’t
give us that running time.	

Already know our “loops” will be O(n) 	

Heap Defined

•  Combines benefits of sorted array and list
•  Balanced binary tree

Jan 21, 2011 3

root	

• Each node has at most 2 children
• Node value is its key

Heap order: each node’s key is
at least as large as its parent’s

Note: not a binary search tree	

CSCI211 - Sprenkle

Review: Implementing a Heap

•  Option 1: Use pointers
 Each node keeps

•  Element it stores, key
•  3 pointers: 2 children, parent

•  Option 2: No pointers
 Requires knowing upper bound on n
 For node at position i

•  left child is at 2i
•  right child is at 2i+1

Jan 21, 2011 4 CSCI211 - Sprenkle

Implementing a Heap: Operations

•  Finding the minimal element?

Jan 19, 2011 5 Sprenkle - CSCI211

Implementing a Heap: Operations

•  Finding the minimal element
 First element
 O(1)

Jan 19, 2011 6 Sprenkle - CSCI211

1/21/11	

2	

Implementing a Heap: Operations

•  Adding an element?
 Assume heap has less than N elements

Jan 19, 2011 7 Sprenkle - CSCI211

Implementing a Heap: Operations

•  Adding an element?
 Could add element to last position

•  What are possible scenarios?

Jan 19, 2011 8 Sprenkle - CSCI211

Implementing a Heap: Operations

•  Adding an element?
 Could add element to last position

•  What are possible scenarios?
 Heap is no longer balanced
 Something that is almost a heap but a little off
 Need Heapify-up procedure to fix our heap

Jan 19, 2011 9 Sprenkle - CSCI211

Heapify-Up	

Jan 19, 2011 Sprenkle - CSCI211 10

Heapify-up(H, i):	
	if i > 1 then	
	 	j=parent(i)=floor(i/2)	
	 	if key[H[i]] < key[H[j]] then	
	 	 	swap array entries H[i] and H[j]	
	 	 	Heapify-up(H, j)	

Heap	

 Position where node added	

Practice: Heapify-Up

Jan 19, 2011 Sprenkle - CSCI211 11

Add 3	

3	

Practice: Heapify-Up

Jan 19, 2011 12

Swap with 11	

Sprenkle - CSCI211

11	

3	

1/21/11	

3	

Practice: Heapify-Up

Jan 19, 2011 13

Swap with 5	

11	

5	

3	

Sprenkle - CSCI211

Heapify-Up

•  Claim. Assuming array H is almost a heap
with key of H[i] too small, Heapify-Up
fixes the heap property in O(log i) time
 Can insert a new element in a heap of n

elements in O(log n) time

Jan 19, 2011 14 Sprenkle - CSCI211

Heapify-Up

•  Claim. Assuming array H is almost a heap
with key of H[i] too small, Heapify-Up
fixes the heap property in O(log i) time
 Can insert a new element in a heap of n

elements in O(log n) time
•  Proof. By induction

 If i=1 …

Jan 19, 2011 15 Sprenkle - CSCI211

Heapify-Up

•  Claim. Assuming array H is almost a heap
with key of H[i] too small, Heapify-Up
fixes the heap property in O(log i) time
 Can insert a new element in a heap of n

elements in O(log n) time
•  Proof. By induction

 If i=1, is already a heap  O(1)
 If i>1, …

Jan 19, 2011 16 Sprenkle - CSCI211

Heapify-Up

•  Claim. Assuming array H is almost a heap
with key of H[i] too small, Heapify-Up
fixes the heap property in O(log i) time
 Can insert a new element in a heap of n

elements in O(log n) time
•  Proof. By induction

 If i=1, is already a heap  O(1)
 If i>1,

•  Swaps are O(1)
•  Swaps continue up to root (max)  log i

Jan 19, 2011 17 Sprenkle - CSCI211

Deleting an Element

Jan 19, 2011 Sprenkle - CSCI211 18

Delete at
position 3	

w

1/21/11	

4	

Deleting an Element
•  Delete at position i
•  Removing an element:

 Messes up heap order
 Leaves a “hole” in the heap

•  Not as straightforward as Heapify-Up	
•  Algorithm

1.  Fill in element where hole was
•  Patch hole: move nth element into ith spot

2.  Adjust heap to be in order
•  At position i because moved nth item up to i

Jan 19, 2011 19 Sprenkle - CSCI211

Deleting an Element

• What are the possibilities when we move nth
element (w) into spot where element was
removed?

Jan 19, 2011 20 Sprenkle - CSCI211

Delete at
position 3	

w

Deleting an Element

•  Two possibilities: element w is
 Too small: violation is between it and parent 
Heapify-Up 	

 Too big: with one or both children  Heapify-
Down (example: w = 12)

Jan 19, 2011 21 Sprenkle - CSCI211

Delete at
position 3	

w

Deleting an Element

•  Delete 9
•  Replace with 5

Jan 19, 2011 22

Example where new key is too small	

3	

4	

 7	

5	

6	

2	

9	

 10	

Sprenkle - CSCI211

Deleting an Element

•  Delete 9
•  Replace with 5
•  But 5 < 6, so need to Heapify-Up	

Jan 19, 2011 23

Example where new key is too small	

3	

4	

 7	

 5	

6	

2	

10	

Sprenkle - CSCI211

Heapify-Down

Jan 19, 2011 24

Heapify-down(H, i):	
	n = length(H)	
	if 2i > n then	
	 	Terminate with H unchanged	
	else if 2i < n then	
	 	left=2i and right=2i+1	
	 	j be index that minimizes	
	 	 	key[H[left]] and key[[H[right]]	
	else if 2i = n then	
	 	j=2i	

	
	if key[H[j]] < key[H[i]] then	
	 	swap array entries H[i] and H[j]	
	 	Heapify-down(H, j)	

Sprenkle - CSCI211

Why can we stop?	

1/21/11	

5	

Heapify-Down

Jan 19, 2011 25

Heapify-down(H, i):	
	n = length(H)	
	if 2i > n then	
	 	Terminate with H unchanged	
	else if 2i < n then	
	 	left=2i and right=2i+1	
	 	j be index that minimizes	
	 	 	key[H[left]] and key[[H[right]]	
	else if 2i = n then	
	 	j=2i	

	
	if key[H[j]] < key[H[i]] then	
	 	swap array entries H[i] and H[j]	
	 	Heapify-down(H, j)	

Sprenkle - CSCI211

i is a leaf – nowhere to go	

Practice: Heapify-Down

Jan 19, 2011 26

Moved 21 to where
element was removed

21	

Sprenkle - CSCI211

Practice: Heapify-Down

Jan 19, 2011 27

21	

21	

7	

Sprenkle - CSCI211

Practice: Heapify-Down

Jan 19, 2011 28

21	

7	

8	

7	

21	

Sprenkle - CSCI211

Runtime of Heapify-Down?

Jan 19, 2011 29

Heapify-down(H, i):	
	n = length(H)	
	if 2i > n then	
	 	Terminate with H unchanged	
	else if 2i < n then	
	 	left=2i and right=2i+1	
	 	j be index that minimizes	
	 	 	key[H[left]] and key[[H[right]]	
	else if 2i = n then	
	 	j=2i	

	
	if key[H[j]] < key[H[i]] then	
	 	swap array entries H[i] and H[j]	
	 	Heapify-down(H, j)	

Sprenkle - CSCI211

O(1)

O(1)

Num swaps: O(log n)	

Implementing Priority Queues
with Heaps

Jan 19, 2011 30

Operation Description Run Time

StartHeap(N) Creates an empty heap that
can hold N elements

Insert(v) Inserts item v into heap

FindMin() Identifies minimum element in
heap but does not remove it

Delete(i) Deletes element in heap at
position i

ExtractMin()
Identifies and deletes an
element with minimum key from
heap

Sprenkle - CSCI211

1/21/11	

6	

Implementing Priority Queues
with Heaps

Jan 19, 2011 31

Operation Description Run Time

StartHeap(N) Creates an empty heap that
can hold N elements O(N)

Insert(v) Inserts item v into heap O(log n)

FindMin() Identifies minimum element in
heap but does not remove it O(1)

Delete(i) Deletes element in heap at
position i O(log n)

ExtractMin()
Identifies and deletes an
element with minimum key from
heap

O(log n)

Sprenkle - CSCI211

Comparing Data Structures

Jan 19, 2011 Sprenkle - CSCI211 32

Operation Heap Unsorted
List

Sorted
List

StartHeap(N)
Insert(v)
FindMin()
Delete(i)
ExtractMin()

Comparing Data Structures

Jan 19, 2011 33

Operation Heap Unsorted
List

Sorted
List

StartHeap(N) O(N)
Insert(v) O(log n)
FindMin() O(1)
Delete(i) O(log n)
ExtractMin() O(log n)

Sprenkle - CSCI211

Comparing Data Structures

Jan 19, 2011 34

Operation Heap Unsorted
List

Sorted
List

StartHeap(N) O(N) O(1) O(1)
Insert(v) O(log n) O(1) O(n)
FindMin() O(1) O(1) O(1)
Delete(i) O(log n) O(n) O(1)
ExtractMin() O(log n) O(n) O(1)

Sprenkle - CSCI211

Additional Heap Operations
•  Access elements in PQ by name

 Maintain additional array Position that stores
current position of each element in heap

•  Operations:
 Delete(Position[v])

•  Does not increase overall running time
 ChangeKey(v, α)

•  Changes key of element v to key(v) = α
•  Identify position of element v in array (Position

array)
•  Change key, heapify

Jan 19, 2011 35 Sprenkle - CSCI211

Assignments

•  Journals: Finish Chapter 2 for Wednesday
•  Problem Set 2 due Friday

Jan 21, 2011 CSCI211 - Sprenkle 36

