2/6/09

Objectives

Greedy Algorithms

Greedy Algorithms

At each step
« Decision: Take as much as you can get
—Feasible — satisfy problem’s constraints

-Locally optimal — best local choice among available
feasible choices

—Irrevocable — after decided, no going back

Proving Greedy Algorithms Work

Specifically, produce an optimal solution

Two approaches:
« Greedy algorithm stays ahead h
-Does better than any other algorithm at each step
« Exchange argument
-Transform any solution into a greedy solution

Interval Scheduling

Job j starts at s; and finishes at f,
Two jobs compatible if they don't overlap

Goal: find maximum subset of mutually compatible
jobs
« Every job is worth
equal money.
b « To earn the most
c money > schedule the
d most jobs

ofebq20% 3 4 5 6 7 &%9 10 1 Time 4

Greedy Algorithm Template

Consider jobs (or whatever) in some order
« Decision: what order is best

Take each job provided it's compatible with the ones
already taken

Interval Scheduling: Greedy
Algorithms

Earliest start time. Consider jobs in ascending order of start
time s;

« Utilize CPU as soon as possible

Earliest finish time. Consider jobs in ascending order of finish
time f;

« Resource becomes free ASAP

« Maximize time left for other requests

Shortest interval. Consider jobs in ascending order of interval
length f,—s;

Fewest conflicts. For each job, count number of conflicting
jobs ¢;. Schedule in ascending order of conflicts

Interval Scheduling: Greedy
Algorithms

Not optimal when ...

breaks earliest start time

— breaks shortest interval

breaks fewest conflicts

B |
Jobs in order
of finishing I —
time
5
H Time

o
Ny
w
IS
o
o
~
©
)
S

N}
w
IS
o
o
~

®
)
S

2/6/09

Interval Scheduling: Greedy
Algorithm

Consider jobs in increasing order of finish time. Take each job
provided it's compatible with the ones already taken.

jobs Sort jobs by finish times so that f; < f, < ... < f,
selected
~A=

for j =1 ton
if (job j compatible with A)
A =AU {3}
return A

Implementation. O(n log n)
« Remember job j* that was added last to A
= Job j is compatible with A if s; = f;.

Interval Scheduling: Analysis

Know that the intervals are compatible
« Handle by the if statement

But is it optimal?
« What are we looking for?

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.

Proof Setup: (by contradiction)

« Assume greedy is not optimal, and let's see what happens

« Letiy, iy, ... iy denote set of jobs selected by greedy (k jobs)

« Letjy, o, ... j, denote set of jobs in the optimal solution (m jobs)
« Same ordering, by finish times

»\Vant to show that k = m

Greedy: i

i i

OPT: i J i

What can we say about iy and j;? f(i;) <= f(j)

Feb 6, 2009 c:

Interval Scheduling: Analysis

Lemma. For all indices r <k, f(i,) < f(j,)
Pf. (by induction)

« Base case: Since Greedy’s first job has the first finishing time, we know
that f(i;) < f(j,)

« Want to show that Greedy “stays ahead” of Optimal
—Each interval finishes at least as soon as Optimal’s
« Induction hypothesis: assume that f(i,) <= f(j,)
« For that not to be true for r+1, Greedy would need to fall behind

Jjob i..; finishes after j.,;

Greedy: i\ iy ir it

OPT: i i . | I—

why not replace job i..; with job j.,,? 2

2/6/09

Interval Scheduling: Analysis Problem Assumptions

Theorem. Greedy algorithm is optimal.

All requests were known to scheduling algorithm
Pf. (by contradiction)

. Assume Greedy is not optimal (i.c., m > k) « Online algorlthms: make decisions without knowledge
. We already showed that for all indices r < k, (i) < f(i) of future input
« Since m > k, there is a request j,,, in Optimal Each job was worth the same amount

- Starts after j, ends - after i, ends
« So, Greedy could also add j,
- Contradiction because now m ==

« What if jobs had different values?
-E.g., scaled with size
Why wouldn't Single resource requested

' Greedy have j,,;? . N
Greedy: i i\ 7 i 3 reedy Nave Ju = Rejected requests that didn't fit

opT: L i i N

Interval Partitioning

Lecture j starts at s; and finishes at f;

Goal: find minimum number of classrooms to
schedule all lectures so that no two occur at the
same time in the same room.

Wha
Ex: 4 classrooms, 10 lectures can J:Ze °f'“wconsrrmms>
er '"Ooms>
e J
c d 9
INTERVAL PARTITIONING . ’) " .»

9 930 10 1030 11 1130 12 1230 1 130 2 230 3 330 4 430
Time

e . Interval Partltlonlnlg Lower Bound on
Interval Partitioning Optimal Solution
Lecture j starts at s; and finishes at f; Def. The depth of a set of open intervals is the
Goal: find minimum number of classrooms to maximum number that contain any given time
schedule all lectures so that no two occur at the Key observation. Number,of classrooms needed
same time in the same room. = depth 4
Alternative Ex: This schedule uses only 3. Ex: Depth of schedule =3 = schedule is
optimal
c d f 1
b 9 U c d f j
a e h b g i
9 930 10 10:30 11 1130 12 1230 1 130 2 230 3 330 4 430 Time. al e h

Interval Partitioning

Q. Does there always exist a schedule equal to
depth of intervals?

» Can we make decisions locally to get a global
optimum?

« Or are there long-range obstacles that require more
resources?

2/6/09

Interval Partitioning: Greedy Algorithm

Consider lectures in increasing order of start time:
assign lecture to any compatible classroom

Sort intervals by starting time so that s; =s; = ... =5,
d = @ +— number of allocated classrooms
for j=1ton
if (lecture j is compatible with some classroom k)
schedule lecture j in classroom k
else
allocate a new classroom d + 1
schedule lecture j in classroom d + 1
d=d+1

Runtime/Implementation?

Interval Partitioning: Greedy Algorithm

Consider lectures in increasing order of start time:
assign lecture to any compatible classroom

Sort intervals by starting time so that s; s s; = ... s 5,
d = @ €= number of allocated classrooms
for j=1ton
if (lecture j is compatible with some classroom k)
schedule lecture j in classroom k
else
allocate a new classroom d + 1
schedule lecture j in classroom d + 1
d=d+1

Implementation. O(n log n)
« For each classroom k, maintain finish time of last job added
« Keep the classrooms in a priority queue

Interval Partitioning: Greedy
Analysis

Observation. Greedy algorithm never schedules two
incompatible lectures in the same classroom

Theorem. Greedy algorithm is optimal
Pf Intuition
« When do we add more classrooms?

« When would we add the d+1 classroom?

Interval Partitioning: Greedy
Analysis

Observation. Greedy algorithm never schedules two incompatible
lectures in the same classroom

Theorem. Greedy algorithm is optimal
Pf.

Let d = number of classrooms that the greedy algorithm allocates

Classroom d is opened because we needed to schedule a job, say j,
that is incompatible with all d-1 other classrooms

Since we sorted by start time, all these incompatibilities are caused by
lectures that start no later than s,

Thus, we have d lectures overlapping at time s; + ¢
d is the depth of the set of lectures

Exchange argument

SCHEDULING TO MINIMIZE
LATENESS

Scheduling to Minimizing Lateness

Single resource processes one job at a time

Job j requires t; units of processing time and is due at
time d;

If j starts at time s, it finishes at time f, = s, + t,
Lateness: ¢ =max{0, f-d}
Goal: schedule all jobs to minimize maximum lateness L

=max
j Ilﬂllln
Ex: 3 4 3 2
- 6 8 9 9 14 15
lateness = 2 lateness = 0 max lateness = 6
d;=9 d,=8 dy= 15 d=6 dy= 14 dy=9

o 1 2 3 4 5 6 7 8 9 10 1 2 13 14 15

2/6/09

M|n|m|zmg Latenhess Greedy
Igorithms

Greedy template. Consider jobs in some order.

What do we want to optimize?
What order?
« Intuition of order?

« Counter examples for order being optimal?

M|n|m|zmg Lateness: Greedy
Igorithms
Greedy template. Consider jobs in some order.

« [Shortest processing time first] Consider jobs in
ascending order of processing time t;.
[1] 2]
110 Counter example
El o o

« [Smallest slack] Consider jobs in ascending order of
slack d - ;.

Counter example

Minimizing Lateness: No Idle Time

Observation. There exists an optimal schedule with
no idle time

d=4 d=6 d=12
o 1 2 3 4 5 6 7 8 9 0 1

d=4 d=6 d=12

0 1 2 3 4 5 6 7 8 9 10 1

Observation. The greedy schedule has no idle time

M|n|m|zmg Lateness: Greedy
Algorithm

Greedy algorithm. Earliest deadline first.

Sort n jobs by deadline so that d; < d; < .. < d,

for j=1ton
Assign job j to interval [t, t + tj]

sj=t
fi=t+t
t=t+t
output intervals [s;, fjl
max Iaszss =1
4=6 d,=8 dyz9 d,=9 ;=14 4,215
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

What can we say abétt'this algorithm/its results?

28

Proving Optimality

Goal: Prove greedy algorithm produces optimal
solution

Approach: Exchange argument
« Start with an optimal schedule Opt
« Gradually modify Opt

—Preserving its optimality

« Transform into a schedule identical to greedy’s
schedule

Minimizing Lateness: Inversions

Def. Aninversion in schedule S is a pair of jobs i
and j such that:

d; < d, but j scheduled before i

inversion

before swap

Can Greedy'’s solution have any inversions?

2/6/09

Minimizing Lateness: Inversions

Claim. Swapping two adjacent jobs with the
same deadline does not increase the max
lateness

Pf Sketch. Let ¢ be the lateness before the
swap, and let /' be it afterwards

« Lateness of other jobs?

« Lateness of i? j?

f;
)

before swap

after swap

i

Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of jobs i
and j such that:

d; < d, but j scheduled before i

inversion

I

before swap

Observation. Greedy schedule has no inversions

