
2/2/11	

1	

Objectives

•  Greedy Algorithms
 Interval Scheduling
 Interval Partitioning

Feb 2, 2011 1 CSCI211 - Sprenkle

Review: Greedy Algorithms

•  Need a proof to show that the algorithm finds
an optimal solution

•  A counter example shows that a greedy
algorithm does not provide an optimal
solution

Feb 2, 2011 CSCI211 - Sprenkle 2

At each step, take as much as you can get
  “local” optimizations

INTERVAL SCHEDULING
Greedy algorithm stays ahead

Feb 2, 2011 3 CSCI211 - Sprenkle

Interval Scheduling
•  Job j starts at sj and finishes at fj
•  Two jobs are compatible if they don't overlap
•  Goal: find maximum subset of mutually

compatible jobs

Feb 2, 2011 CSCI211 - Sprenkle 4

Time	

0	

 1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

f	

g	

h	

e	

a	

b	

c	

d	

•  Every job is worth equal
money.	

•  To earn the most money 
schedule the most jobs	

Greedy Algorithm Template

•  Consider jobs (or whatever) in some order
 Decision: What order is best?

•  Take each job provided it's compatible with
the ones already taken

Feb 2, 2011 CSCI211 - Sprenkle 5

What are options for orders?	

What is our goal?	

What are we trying to

minimize/maximize?	

What is the worst case?	

Greedy Algorithm Pseudo-Code

Feb 2, 2011 CSCI211 - Sprenkle 6

Set Greedy (Set candidate){	
	solution = new Set();	
	while candidate.isNotEmpty()	
	 	next = candidate.select() //use selection criteria,	
	 	//remove from candidate and return value	
	 	if solution.isFeasible(next) //constraints satisfied	
	 	 	solution.union(next)	
	 	if solution.solves()	
	 	 	return solution	
		
	//No more candidates and no solution	
	return null	

}	

In some specified order	

2/2/11	

2	

Interval Scheduling
•  Earliest start time. Consider jobs in ascending

order of start time sj
 Utilize CPU as soon as possible

•  Earliest finish time. Consider jobs in ascending
order of finish time fj
 Resource becomes free ASAP
 Maximize time left for other requests

•  Shortest interval. Consider jobs in ascending order
of interval length fj – sj

•  Fewest conflicts. For each job, count the number of
conflicting jobs cj. Schedule in ascending order of
conflicts cj

Feb 2, 2011 CSCI211 - Sprenkle 7

Can we “break” any of these?	

i.e., prove they’re not optimal?	

Counterexamples to Optimality of
Various Job Orders

Feb 2, 2011 CSCI211 - Sprenkle 8

breaks earliest start time	

breaks shortest length	

breaks fewest conflicts	

Not optimal when …	

Interval Scheduling: Greedy Algorithm

•  Consider jobs in increasing order of finish time.
Take each job provided it's compatible with the
ones already taken.

Feb 2, 2011 CSCI211 - Sprenkle 9

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn	
	
G = {}	
for j = 1 to n 	
 if job j compatible with G	
 G = G ∪ {j}	
return G 	

jobs
selected 	

Interval Scheduling

Time	

0	

A 	

C	

F	

B	

D	

G	

E	

1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

H	

0	

 1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

Feb 2, 2011 10 CSCI211 - Sprenkle

Interval Scheduling

0	

 1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

B	

Time	

0	

A 	

C	

F	

B	

D	

G	

E	

1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

H	

Feb 2, 2011 11 CSCI211 - Sprenkle

Interval Scheduling

0	

 1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

B	

 C	

Time	

0	

A 	

C	

F	

B	

D	

G	

E	

1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

H	

Feb 2, 2011 12 CSCI211 - Sprenkle

2/2/11	

3	

Interval Scheduling

0	

 1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

B	

 A	

Time	

0	

A 	

C	

F	

B	

D	

G	

E	

1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

H	

Feb 2, 2011 13 CSCI211 - Sprenkle

Interval Scheduling

0	

 1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

B	

 E	

Time	

0	

A 	

C	

F	

B	

D	

G	

E	

1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

H	

Feb 2, 2011 14 CSCI211 - Sprenkle

Interval Scheduling

0	

 1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

B	

 E	

D	

Time	

0	

A 	

C	

F	

B	

D	

G	

E	

1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

H	

Feb 2, 2011 15 CSCI211 - Sprenkle

Interval Scheduling

0	

 1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

B	

 E	

 F	

Time	

0	

A 	

C	

F	

B	

D	

G	

E	

1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

H	

Feb 2, 2011 16 CSCI211 - Sprenkle

Interval Scheduling

0	

 1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

B	

 E	

 G	

Time	

0	

A 	

C	

F	

B	

D	

G	

E	

1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

H	

Feb 2, 2011 17 CSCI211 - Sprenkle

Interval Scheduling

0	

 1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

B	

 E	

 H	

Time	

0	

A 	

C	

F	

B	

D	

G	

E	

1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

H	

Feb 2, 2011 18 CSCI211 - Sprenkle

2/2/11	

4	

Interval Scheduling: Greedy Algorithm

•  Consider jobs in increasing order of finish time.
Take each job provided it's compatible with the
ones already taken.

•  Runtime of algorithm?
 Where/what are the costs?

Feb 2, 2011 CSCI211 - Sprenkle 19

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn	
	
G = {}	
for j = 1 to n 	
 if job j compatible with G	
 G = G ∪ {j}	
return G 	

jobs
selected 	

Interval Scheduling: Greedy Algorithm

•  Consider jobs in increasing order of finish time.
Take each job provided it's compatible with the
ones already taken.

•  Implementation. O(n log n)
 Remember job j* that was added last to A
 Job j is compatible with A if sj ≥ fj*

Feb 2, 2011 CSCI211 - Sprenkle 20

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn	
	
G = {}	
for j = 1 to n 	
 if job j compatible with G	
 G = G ∪ {j}	
return G 	

jobs
selected 	

O(1)	

 O(n)	

O(n logn)	

Interval Scheduling: Analysis

•  Know that the intervals are compatible
 Handled by the if statement

•  But is it optimal?
 What does it mean to be optimal?
 Recall our goal for maximization

Feb 2, 2011 21 CSCI211 - Sprenkle

Greedy Stays Ahead Proofs
1.  Define your solutions

  Describe the form of your greedy solution and of some other solution
(possibly the optimal solution)

•  Example: Let A be the solution constructed by the greedy algorithm and O
be an solution.

2.  Find a measure
  Find a measure by which greedy stays ahead of the optimal solution

•  Ex: Let a1, . . . , ak be the first k measures of greedy algorithm and
o1 , . . . , om be the first m measures of other solution (sometimes m = k)

3.  Prove greedy stays ahead
  Show that the partial solutions constructed by greedy are always just

as good as the initial segments of the optimal solution, based on the
measure

•  Ex: for all indices r ≤ min(k,m), prove by induction that ar ≥ or or ar ≤ or
  Use the greedy algorithm to help you argue the inductive step

4.  Prove optimality
  Prove that since greedy stays ahead of the other solution with respect

to the measure, then the greedy solution is optimal.

Feb 2, 2011 CSCI211 - Sprenkle 22

Interval Scheduling: Analysis
•  Theorem. Greedy algorithm is optimal.
•  Pf. (by contradiction)

  Assume greedy is not optimal, and let's see what happens
  Let i1, i2, ..., ik denote set of jobs selected by greedy (k jobs)
  Let j1, j2, ..., jm denote set of jobs in the optimal solution (m

jobs)
  Same ordering, by finish times because compatible jobs
 Want to show that k = m

Feb 2, 2011 CSCI211 - Sprenkle 23

j1	

 j2	

 jr	

i1	

 i2	

 ir	

Greedy:	

OPT:	

What can we say about i1 and j1? 	

 f(i1) ≤ f(j1)	

Interval Scheduling: Analysis
•  Theorem. Greedy algorithm is optimal.
•  Pf. (by contradiction)

  Since we picked the first job to have the first finishing time, we
know that f(i1) <= f(j1)	

 Want to show that Greedy “stays ahead”
 Each interval finishes at least as soon as Optimal’s
  Induction hypothesis: for all indices r <= k, f(ir) <= f(jr)	

Feb 2, 2011 CSCI211 - Sprenkle 24

j1	

 j2	

 jr	

i1	

 i2	

 ir	

Greedy:	

OPT:	

Prove for r+1	

2/2/11	

5	

Interval Scheduling: Analysis
•  Theorem. Greedy algorithm is optimal.
•  Pf. (by contradiction)

  Since we picked the first job to have the first finishing time, we
know that f(i1) <= f(j1)	

 Want to show that Greedy “stays ahead”
 Each interval finishes at least as soon as Optimal’s
  Induction hypothesis: for all indices r <= k, f(ir) <= f(jr)	

Feb 2, 2011 CSCI211 - Sprenkle 25

j1	

 j2	

 jr	

i1	

 i2	

 ir	

 ir+1	

. . .	

Greedy:	

OPT:	

 jr+1	

why not replace job ir+1 with job jr+1?	

job ir+1 finishes after jr+1	

How Greedy stays ahead	

26

Interval Scheduling: Analysis
•  Theorem. Greedy algorithm is optimal.
•  Pf. (by contradiction)

  Assume Greedy is not optimal (i.e., m > k)
  We already showed that for all indices r ≤ k, f(ir) ≤ f(jr)
  Since m > k, there is a request jk+1 in Optimal

Feb 2, 2011 CSCI211 - Sprenkle 26

jk+1	

jk	

Why wouldn't
Greedy have jk+1?	

j1	

 j2	

 jr	

i1	

 i2	

 ir	

 ik	

Greedy:	

OPT:	

27

Interval Scheduling: Analysis
•  Theorem. Greedy algorithm is optimal.
•  Pf. (by contradiction)

  Assume Greedy is not optimal (i.e., m > k)
  We already showed that for all indices r ≤ k, f(ir) ≤ f(jr)
  Since m > k, there is a request jk+1 in Optimal

•  Starts after jk ends  after ik ends
 So, Greedy could also add jk

•  Contradiction because now Greedy has another job

Feb 2, 2011 CSCI211 - Sprenkle 27

jk+1	

jk	

Why wouldn't
Greedy have jk+1?	

j1	

 j2	

 jr	

i1	

 i2	

 ir	

 ik	

Greedy:	

OPT:	

Greedy Algorithm Pseudo-Code

Feb 2, 2011 CSCI211 - Sprenkle 28

Set Greedy (Set candidate){	
	solution = new Set();	
	while candidate.isNotEmpty()	
	 	next = candidate.select() //use selection criteria,	
	 	//remove from candidate and return value	
	 	if solution.isFeasible(next) //constraints satisfied	
	 	 	solution.union(next)	
	 	if solution.solves()	
	 	 	return solution	
		
	//No more candidates and no solution	
	return null	

}	

In some specified order	

Problem Assumptions

•  All requests were known to scheduling
algorithm
 Online algorithms: make decisions without

knowledge of future input
•  Each job was worth the same amount

 What if jobs had different values?
•  E.g., scaled with size

•  Single resource requested
 Rejected requests that didn’t fit

Feb 2, 2011 CSCI211 - Sprenkle 29

INTERVAL PARTITIONING

Feb 2, 2011 CSCI211 - Sprenkle 30

2/2/11	

6	

Interval Partitioning

•  Lecture j starts at sj and finishes at fj
•  Goal: find minimum number of classrooms to

schedule all lectures so that no two occur at
the same time in the same room.

•  Ex: 10 lectures in 4 classrooms

Feb 2, 2011 CSCI211 - Sprenkle 31
Time	

9	

 9:30	

 10	

 10:30	

 11	

 11:30	

 12	

 12:30	

 1	

 1:30	

 2	

 2:30	

h	

c	

b	

a	

e	

d	

 g	

f	

 i	

j	

3	

 3:30	

 4	

 4:30	

What are our constraints?	

Can we use fewer rooms?	

Interval Partitioning

•  Lecture j starts at sj and finishes at fj
•  Goal: find minimum number of classrooms

to schedule all lectures so that no two occur
at the same time in the same room.

•  Alternative schedule uses only 3 classrooms

Feb 2, 2011 CSCI211 - Sprenkle 32
Time	

9	

 9:30	

 10	

 10:30	

 11	

 11:30	

 12	

 12:30	

 1	

 1:30	

 2	

 2:30	

h	

c	

a	

 e	

f	

g	

 i	

j	

3	

 3:30	

 4	

 4:30	

d	

b	

Time	

9	

 9:30	

 10	

 10:30	

 11	

 11:30	

 12	

 12:30	

 1	

 1:30	

 2	

 2:30	

h	

c	

a	

 e	

f	

g	

 i	

j	

3	

 3:30	

 4	

 4:30	

d	

b	

a, b, c all contain 9:30	

Interval Partitioning:
Lower Bound on Optimal Solution
•  Def. The depth of a set of open intervals is the

maximum number that contain any given time.
•  Key observation. # of classrooms needed ≥

depth.
•  Ex: Depth of schedule below = 3 ⇒ schedule

below is optimal.

Feb 2, 2011 33 CSCI211 - Sprenkle

Does there always exist a schedule equal
to depth of intervals?	

Interval Partitioning Discussion

•  Does there always exist a schedule equal to
depth of intervals?

•  Can we make decisions locally to get a
global optimum?
 Or are there long-range obstacles that require

more resources?

Feb 2, 2011 CSCI211 - Sprenkle 34

Interval Partitioning: Greedy Algorithm

•  Consider lectures in increasing order of start
time: assign lecture to any compatible
classroom

Feb 2, 2011 CSCI211 - Sprenkle 35

Sort intervals by starting time so that s1 ≤ s2 ≤ ... ≤ sn	
d = 0	
for j = 1 to n 	
 if lecture j is compatible with some classroom k	
 schedule lecture j in classroom k	
 else	
 allocate a new classroom d + 1	
 schedule lecture j in classroom d + 1	
 d = d + 1 	

number of allocated classrooms	

Sort intervals by starting time so that s1 ≤ s2 ≤ ... ≤ sn	
d = 0	
for j = 1 to n 	
 if (lecture j is compatible with some classroom k)	
 schedule lecture j in classroom k	
 else	
 allocate a new classroom d + 1	
 schedule lecture j in classroom d + 1	
 d = d + 1 	

Interval Partitioning: Greedy Algorithm

•  Consider lectures in increasing order of start time:
assign lecture to any compatible classroom

•  Implementation: O(n log n)
 For each classroom k, maintain the finish time of the last

job added.
 Keep the classrooms in a priority queue.

Feb 2, 2011 CSCI211 - Sprenkle 36

number of allocated classrooms	

2/2/11	

7	

Assignments

•  Read Chapter 4
•  Friday: Problem Set 3

Feb 2, 2011 CSCI211 - Sprenkle 37

