Objectives

Analyzing algorithms
Asymptotic running times

Jan 14, 2011 Sprenkle - CSCI211 1

Our Process

Understand/identify problem

» Simplify as appropriate

Design a solution

Analyze

» Correctness, efficiency

» May need to go back to step 2 and try again
Implement (On Monday)

» Within bounds shown in analysis

Computational Tractability

As soon as an Analytic Engine exists, it will necessarily guide the future
course of the science. Whenever any result is sought by its aid, the
question will arise - By what course of calculation can these results be
arrived at by the machine in the shortest time?

-- Charles Babbage

Charles Babbage Analytic Engine

http://www.telegraph.co.uk/science/science-news/8064569/
Campaign-launched-to-build-Charles-Babbages-Analytical-

Jan 14,1 Engine.html

Jan 14, 2011 Sprenkle - CSCI211 2
Today’s Goal:
DEFINE ALGORITHM
EFFICIENCY
Jan 14, 2011 Sprenkle - CSCI211 4

1/14/11

Brute Force

For many non-trivial problems, there is a
natural brute force search algorithm that
checks every possible solution
» Typically takes 2N time or worse for inputs of
size N

. . “Exponential”
» Unacceptable in practice P

Example: How many possible solutions are there in the
stable matching problem?

(In other words, how many possible perfect matchings are there?
We're not worried about stability right now.)

Jan 14, 2011 Sprenkle - CSCI211

Brute Force

For many non-trivial problems, there is a
natural brute force search algorithm that
checks every possible solution
> Typically takes 2N time or worse for inputs of
size N
» Unacceptable in practice
Example: Stable matching: n! with n men and
n women
~ If nincreases by 1, what happens to the running
time?

“Exponential”

Jan 14, 2011 Sprenkle - CSCI211 6

Worst-Case Running Time

Obtain bound on /argest possible running
time of algorithm on input of a given size N
~ Generally captures efficiency in practice

» Draconian view but hard to find effective
alternative

What are alternatives to worst-case analysis?

Jan 14, 2011 Sprenkle - CSCI211 7

Average Case Running Time

Obtain bound on running time of algorithm on
random input as a function of input size N

~ Hard (or impossible) to accurately model real
instances by random distributions

» Algorithm tuned for a certain distribution may
perform poorly on other inputs

Jan 14, 2011 Sprenkle - CSCI211 8

Towards a Definition of Efficient...

Desirable scaling property: When input size
doubles, algorithm should only slow down by
some constant factor C

» Doesn’t grow multiplicatively

Jan 14, 2011 Sprenkle - CSCI211 9

Polynomial-Time

Defn. There exists constants c > 0and d > 0
such that on every input of size N,
its running time is bounded by c N9 steps.

Desirable scaling property: When input size
doubles, algorithm should only slow down by
some constant factor C

» What happens if we double N?

Defn. An algorithm is polynomial time (or
polytime) if the above scaling property holds.

Jan 14, 2011 Sprenkle - CSCI211 10

Algorithm Efficiency

Defn. An algorithm is efficient if its running time is
polynomial
Justification: It really works in practice!

> In practice, poly-time algorithms that people develop
almost always have low constants and low exponents

» Breaking through the exponential barrier of brute force

typically exposes some crucial structure of the problem
Exceptions

» Some poly-time algorithms do have high constants and/
or exponents (6.02 x 102% x N2°) and are useless in
practice

» Some exponential-time (or worse) algorithms are widely
used because the worst-case instances seem to be rare

Jan 14, 2011 Sprenkle - CSCI211 "

Running Times

Table 2.1 The running times (rounded up) of different algorithms on inputs of
increasing size, for a processor performing a million high-level instructions per second.
In cases where the running time exceeds 10° years, we simply record the algorithm as
taking a very long time.

Input Size n nlog,n n? n 15" 2 n!
n=10 <lsec <lsec < lsec <lsec <1sec 4'sec
n=30 <lsec <1sec < 1sec <1sec 18min 10% years
n=50 <lsec <lsec <1sec Imin 36years verylong
n=100 <lsec <lsec Isec |12,892years 107 years very long

n=1,000 < lsec 1 sec 18 min verylong verylong very long

n=10,000 <lsec 2min 12 days verylong verylong very long
= 100,000 2sec 3 hours 32 years verylong verylong very long
= 1,000,000 20sec 12days 31,710 years verylong verylong very long
Polynomial
Jan 14,2011 Sprenkle - CSCI211 12

1/14/11

Visualizing Running Times

1E+282

1E+266 2
1E4250
1E+234
e
@ e
E e 1.50
= 1E+170
O 1E+154
£ e
£ 1Ev22
€ lerios
@ 1E+90
e
1E+58
1E+42 n'o
e nr312 Polynomial
0.000001 1 10 100 1000 N J
Input Size
* Huge difference from polynomial to not polynomial
* Differences in runtime matter more as input size increases
Jan 14,2011 Sprenkle - CSCI211 13

Comparing 10000 nZ and n3

1E424

122 n3
1E+20
1evs
1eve
o T
E 12
E, 1E410
£ 00000000
£ oo 10000 r?
10000
100
.\
001
00001
0000001
. 10 10 1000 10000 1000000 10000000 100000000

Input Size

As input size increases, n® dominates large constant * n2
=> Care about running time as input size approaches infinity
=>Only care about highest-order term

Jan 14, 2011 Sprenkle - CSCI211

Asymptotic Order of Growth:
Upper Bounds
T(n) is the worst case running time of an
algorithm
“order f(n)”
We say that T(n) is O(f(n)) if there exist

c cannot depend on n

constants ¢ > 0 and n, = 0 such that for all

T(n) is bounded above by a
constant multiple of f(n)

sufficiently large n

n = ny we have T(n) <c - f(n

=T is asymptotically upperbounded by f

Jan 14, 2011 Sprenkle - CSCI211 15

Asymptotic Order of Growth:
Upper Bounds f(n)

T(n)

Mo

Jan 14, 2011 Sprenkle - CSCI211

Point at which f(n) >T(n)

Upper Bounds Example

T(n)=pnZ2+qgn+r
» P, q, r are positive constants

Idea: Let’s inflate the terms in the
equation so that all terms are n?

Jan 14, 2011 Sprenkle - CSCI211 17

Upper Bounds Example

T(n)=pn2+qgn+r
» p, q, r are positive constants
Forallnz=1,

T(n) =pn2+qgn+r
< pn? + gn? + rn?
= (p*qtr) n?
=cn?

T(n) < cn?, where ¢ = p+q+r
T(n) = O(n?)
Also correct to say that T(n) = O(n3)

Jan 14, 2011 Sprenkle - CSCI211

1/14/11

Notation

T(n) = O(f(n)) is a slight abuse of notation

Asymmetric:

f(n) = 5n3; g(n) = 3n?
f(n) = O(n%) = g(n)
But f(n) = g(n).

Better notation: T(n) € O(f(n))
Meaningless statement. Any comparison-
based sorting algorithm requires at least
O(n log n) comparisons

Use Q for lower bounds

Jan 14, 2011 Sprenkle - CSCI211 19

Asymptotic Order of Growth:
Lower Bounds
Complementary to upper bound

€ cannot depend on n

T(n) is Q(f(n)) if there exist constants € > 0

sufficiently large n

and ny = 0 such that for all n = n, , we have
T(n) is bounded below by a
T(n) >€- f(n) constant multiple of f(n)

=T is asymptotically lowerbounded by f

Jan 14, 2011 Sprenkle - CSCI211 20

1/14/11

Example: Lower Bound

T(n)=pn2+qgn+r

p, g, r are positive constants
Idea: Deflate terms rather than inflate
Foralln =0,
T(n) = pn2 + qn + r 2 pn?
D T(n) 2 €n%,where € =p>0
>T(n) = Q(n?)

Also correct to say that T(n) = Q(n)

Jan 14, 2011 Sprenkle - CSCI211 21

Tight bounds
T(n) is ©(f(n)) if T(n) is both
O(f(n)) and Q(f(n))

The “right” bound

Jan 14, 2011 Sprenkle - CSCI211 22

Property: Transitivity
If f = O(g) and g = O(h) then f = O(h)
If f = Q(g) and g = Q(h) then f = Q(h)
If f = ©(g) and g = ©(h) then f = ©(h)
Proofs in book
0] N Q .

g g

Jan 14, 2011 Sprenkle - CSCI211 23

Property: Additivity
If f=0(h) and g = O(h) then f + g = O(h)
If f =Q(h) and g = Q(h) then f + g = Q(h)
If f=0(h)and g = O(h) then f + g = ©(h)

Proofs in book

Sketch proof for O:
By defn,f<c -h
By defn,g<d -h
f+g<c-h+d -h=(c+d)h=c -h
> f+gis O(h)

Jan 14, 2011 Sprenkle - CSCI211 24

Practice:
Asymptotic Order of Growth

What are the upper bounds, lower
bounds, and tight bound on T(n)?

T(n) =32n2+17n + 32

Jan 14, 2011 Sprenkle - CSCI211 25

Practice:
Asymptotic Order of Growth

T(n) =32n2 + 17n + 32
> T(n) is O(n2), O(n3), Q(n2), Q(n), and O(n?)
> T(n) is not O(n), 2(n), ©(n), or B(n3)

Jan 14, 2011 Sprenkle - CSCI211

26

ASYMPTOTIC BOUNDS FOR
CLASSES OF ALGORITHMS

Jan 14, 2011 Sprenkle - CSCI211 27

Asymptotic Bounds for Polynomials
a;+tan+...+and € 0nd)ifa,>0
-> Runtime determined by higher-order term

Polynomial time. Running time is O(n9) for
some constant d that is independent of the
input size n
Other examples of polynomial times:

> o(n1/2)

> O(n'98)

» O(n log n) £ O(n?)

Jan 14, 2011 Sprenkle - CSCI211

28

Asymptotic Bounds for Logarithms

Logarithms. logyn = x, where b*=n
» Approximate: To represent n in base-b, need

x+1 digits
100 10
1000 10
100 2
1000 2

Jan 14, 2011 Sprenkle - CSCI211 29

Asymptotic Bounds for Logarithms

Logarithms. logyn = x, where b*=n
»~ Approximate: To represent n in base-b, need

x+1 digits
100 10 2
1000 10 3
100 2 6.64
1000 2 9.92

Describe the running time of an O(log n)
algorithm as the input size grows.
Compare with polynomials.

Jan 14, 2011 Sprenkle - CSCI211

30

1/14/11

Asymptotic Bounds for Logarithms

Logarithms. logyn = x, where b*=n
» x is number of digits to represent n in base-b
representation

Y
log, n

logs n —log2n
logs n
—logton

Number of Instructions

logjo n

10 100 1000 10000 1000000 10000000100000000
Jan 1 Input Size 31

Asymptotic Bounds for Logarithms
Logarithms. logyh = X, where b*=n

-> Slowly growing functions

Identity: |log,n = log,n/log,a
> Means that

’Iogan = 1/log,a * logyn ‘

Constant!
O(log ,n) = O(log , n) for any constants
a,b>0

Jan 14, 2011 Sprenkle - CSCI211 32

Asymptotic Bounds for Logarithms

Logarithms. logyn = x, where b*=n
-> Slowly growing functions
O(log ,n) = O(log , n) for any constants

a,b>0
- Don’t need to specify the base

For every x>0, log n = O(nX)
=> Log grows slower than every polynomial

Jan 14, 2011 Sprenkle - CSCI211 33

Asymptotic Bounds for Exponentials

Exponentials: functions of the form f(n) = rm
for constant base r
» Faster growth rates as n increases

For every r>1 and every d >0, nd=0O(r)

=> Every exponential grows faster than every polynomial

Jan 14, 2011 Sprenkle - CSCI211 34

1/14/11

Summary of Asymptotic Bounds

In terms of growth rates

Logarithms < Polynomials < Exponentials

Jan 14, 2011 Sprenkle - CSCI211 35

Assignments

Continue reading Chapter 2

~ Covering later sections on Monday
Journal for Chapter 1-2.2 due Wednesday
Problem Set 1 due next Friday in class

» Start early!

» Read problems and let your brain start thinking
about them

Jan 14, 2011 Sprenkle - CSCI211 36

