
3/28/09

1

Dynamic Programming: Computational Biology
Applications

  Sequence Alignment in Linear Space

Objectives

1 Mar 27, 2009 CS211 1 2

[Levenshtein 1966, Needleman-Wunsch 1970]

  Gap penalty: δ
  Mismatch penalty: αpq

–  If p and q are the same, then mismatch penalty is 0
  Cost = sum of gap and mismatch penalties

2δ + αCA

C G A C C T A C C T

C T G A C T A C A T

T G A C C T A C C T

C T G A C T A C A T

- T

C

C

C
αTC + αGT + αAG+ 2αCA

-

Edit Distance

Mar 27, 2009 CS211

Parameters allow
us to tweak cost

3

Goal: Given two strings X = x1 x2 . . . xm and
Y = y1 y2 . . . yn find alignment of minimum cost

An alignment M is a set of ordered pairs xi-yj such
that each item occurs in at most one pair and no
crossings

The pair xi-yj and xi'-yj' cross if i < i', but j > j’.

Sequence Alignment

Mar 27, 2009 CS211

o c u r e r n c e

c c u r r e n c e o

c

crossing

o c u r e r n c e

c c u r r e n c e o

c

2 mismatches

4

X = CTACCG
Y = TACTG
Solution: M = x2-y1 , x3-y2, x4-y3, x5-y4 , x6-y6

Sequence Alignment Example

C T A C C -

T A C A T -

G

G
y1 y2 y3 y4 y5 y6

x2 x3 x4 x5 x1 x6

Mar 27, 2009 CS211

€

cost(M) = αxi y j
(xi, y j)∈ M
∑

mismatch
    

+ δ
i : xi unmatched

∑ + δ
j : y j unmatched

∑

gap
            

What is the cost of M?

Recall: mismatch penalty is 0 if xi and yj are the same

Consider last character of strings X and Y: xM and yN

  Case 1: xM and yN are aligned
  Case 2: xM is not matched
  Case 3: yN is not matched

Sequence Alignment Case Analysis

5 Mar 27, 2009 CS211

Consider last character of strings X and Y: xM and yN

  Case 1: xM and yN are aligned
–  Pay mismatch for xM-yN + min cost of aligning rest of

strings
–  OPT(M, N) = αXmYn + OPT(M-1, N-1)

  Case 2: xM is not matched
–  Pay gap for xM + min cost of aligning rest of strings
–  OPT(M, N) = δ + OPT(M-1, N)

  Case 3: yN is not matched
–  Pay gap for yN + min cost of aligning rest of strings
–  OPT(M, N) = δ + OPT(M, N-1)

Sequence Alignment Cost Analysis

6 Mar 27, 2009 CS211

3/28/09

2

Sequence Alignment: Problem
Structure

7 Mar 27, 2009 CS211

€

OPT(i, j) =






 







jδ if i = 0

min

αxi y j
+ OPT(i −1, j −1)

δ + OPT(i −1, j)
δ + OPT(i, j −1)









otherwise

iδ if j = 0

Gaps for remainder of X

Gaps for remainder of Y

8

Sequence Alignment: Analysis

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, δ, α) 	
 for i = 0 to m	
 M[0, i] = iδ	
 for j = 0 to n	
 M[j, 0] = jδ	

 for i = 1 to m	
 for j = 1 to n	
 M[i, j] = min(α[xi, yj] + M[i-1, j-1],	
 δ + M[i-1, j],	
 δ + M[i, j-1])	
 return M[m, n]	

Mar 27, 2009 CS211

O(mn)

Observation: to calculate the current value, we only
need the row above us and the entry to the left

SEQUENCE ALIGNMENT IN
LINEAR SPACE

9

Collapse into an m x 2 array
  M[i,0] represents previous row; M[i,1] -- current

Sequence Alignment: O(m) Space

10 Mar 27, 2009 CS211

Space-Efficient-Alignment(m, n, x1x2...xm, y1y2...yn, δ, α) 	
 for i = 0 to m 	# initialize first row	
 M[i, 0] = iδ	
 for j = 1 to n	
 M[0, 1] = jδ	 	# first gap	

 	for i = 1 to m	
	 	M[i, 1] = min(α[xi, yj] + M[i-1, 0],	

 δ + M[i, 0],	
 δ + M[i-1, 1])	

	for i = 1 to m 	# copy current row into previous	
	 	M[i, 0] = M[i, 1]	

 return M[m, 1]	
Any drawbacks?

Collapse into an m x 2 array
  M[i,0] represents previous row; M[i,1] -- current

Sequence Alignment: O(m) Space

11 Mar 27, 2009 CS211

Space-Efficient-Alignment(m, n, x1x2...xm, y1y2...yn, δ, α) 	
 for i = 0 to m	
 M[i, 0] = iδ	
 for j = 1 to n	
 M[0, 1] = jδ	

 	for i = 1 to m	
	 	M[i, 1] = min(α[xi, yj] + M[i-1, 0],	

 δ + M[i, 0],	
 δ + M[i-1, 1])	

	for i = 1 to m	
	 	M[i, 0] = M[i, 1]	

 return M[m, 1]	 Finds optimal value but won’t
be able to find the alignment

For English words or sentences, probably doesn’t
matter

Matters for Biological sequence alignment
  Consider: 2 strings with 100,000 symbols each

–  Processor can do 10 billion primitive operations
–  BUT dealing with a 10 GB array

Why Do We Care About Space?

12 Mar 27, 2009 CS211

3/28/09

3

13

Sequence Alignment: Linear Space
Can we avoid using quadratic space?
  Optimal value in O(m) space and O(mn) time.

–  Compute OPT(i, •) from OPT(i-1, •)
–  BUT, no longer a simple way to recover alignment itself

Theorem. [Hirschberg 1975] Optimal alignment in
O(m + n) space and O(mn) time.

  Clever combination of divide-and-conquer and
dynamic programming

  Inspired by idea of Savitch from complexity theory

Mar 27, 2009 CS211 14

Recall Our Example

Mar 25, 2009 CS211

X = bait Y = boot
α = 1, for vowel mismatch
α = 2, for other mismatches
δ = 2

b a i t
0 2 4 6 8

b 2 0 2 4 6
o 4 2 1 3 5
o 6 4 3 2 4
t 8 6 5 4 2

i=4

j

15

Mapping to a Graph Problem

b

o

b

o

a i t
ε

ε

Mar 27, 2009 CS211

α = 1, for vowel mismatch
α = 2, for other mismatches
δ = 2

Horizontal and vertical
edges cost δ

Diagonal edges cost α

t

Goal:
Find shortest path from
top-left to bottom-right

16

Mapping to a Graph Problem

b

o

b

o

a i t
ε

ε

Mar 27, 2009 CS211

α = 1, for vowel mismatch
α = 2, for other mismatches
δ = 2

Horizontal and vertical
edges cost δ

Diagonal edges cost α

t

Goal:
Find shortest path from
top-left to bottom-right

2

0
2

2 2 2

2

2

2

2

2

2

2

2 0

1

1 2

2

2
2

2

2

1

1

2

2 2

2

2

2

2
2

2

2

2
2

2

2

2

2

2 2
2

2
2 2

2
2

2

2

2

17

Edit distance graph
  Let f(i, j) be shortest path from (0,0) to (i, j)
  Observation: f(i, j) = OPT(i, j)

Sequence Alignment: Forward

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6
ε

ε
0-0

δ

δ

€

αxi y j

Mar 27, 2009 CS211 18

Edit distance graph
  Let f(i, j) be shortest path from (0,0) to (i, j)
  Can compute f (•, j) for any j in O(mn) time and O(m +

n) space

Sequence Alignment: Forward

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6
ε

ε
0-0

j

Mar 27, 2009 CS211

3/28/09

4

19

Edit distance graph
  Let g(i, j) be shortest path from (m, n) to (i, j)
  Can compute by reversing the edge orientations and

inverting the roles of (0, 0) and (m, n)

Sequence Alignment: Backward

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6
ε

ε
0-0

δ

δ

€

αxi y j

Mar 27, 2009 CS211 20

Edit distance graph
  Let g(i, j) be shortest path from (m, n) to (i, j)
  Can compute g(•, j) for any j in O(mn) time and

O(m + n) space

Sequence Alignment: Backward

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6
ε

ε
0-0

j

Mar 27, 2009 CS211

21

Observation 1. The cost of the shortest path that
uses (i, j) is f(i, j) + g(i, j)

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6
ε

ε
0-0

Mar 27, 2009 CS211 22

Observation 2. Let q be an index that minimizes
f(q, n/2) + g(q, n/2). Then, the shortest path from
(0, 0) to (m, n) uses (q, n/2)

Sequence Alignment: Linear Space

q-n/2

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6
ε

ε
0-0

n / 2

q

Mar 27, 2009 CS211

Have to go through one
node in this column

Divide: find index q that minimizes f(q, n/2) +
g(q, n/2) using DP

  Align xq and yn/2

23

Sequence Alignment: Linear Space

q-n/2 x1

x2

y1

x3

y2 y3 y4 y5 y6
ε

ε
0-0

q

n / 2

m-n

Mar 27, 2009 CS211

Conquer: recursively compute optimal alignment in
each piece

  Reuse working space from one recursive call to next

24

Sequence Alignment: Linear Space

q-n/2 x1

x2

y1

x3

y2 y3 y4 y5 y6
ε

ε
0-0

m-n

Mar 27, 2009 CS211

3/28/09

5

Divide and Conquer Sequence
Alignment

25 Mar 27, 2009 CS211

P contains node on shortest corner-to-corner path	
Divide-and-Conquer-Alignment (X, Y)	
	m = length of X	
	n = length of Y	
	if m <= 2 or n <= 2	
	 	compute optimal alignment using Alignment(X, Y)	
	 	return	

 	Space-Efficient-Alignment(X, Y[1:n/2])	
	Backward-Space-Efficient-Alignment(X, Y[n/2+1:n])	
	q = index that minimizes f(q, n/2) + g(q, n/2)	
	add(q, n/2) to P	
	Divide-and-Conquer-Alignment(X[1:q],Y[1:n/2])	
	Divide-and-Conquer-Alignment(X[q:m],Y[(n/2):n])	
	return P	

Example

26 Mar 27, 2009 CS211

G

E

G

N

E N E R A
0

0
0-0

m-n

Example

27 Mar 27, 2009 CS211

G

E

G

N

E N E R A
0

0
0-0

m-n

0

0

0

0

Example

28 Mar 27, 2009 CS211

G

E

G

N

E N E R A
0

0
0-0

m-n

0

0

0

0 1

Example

29 Mar 27, 2009 CS211

G

E

G

N

E N E R A
0

0
0-0

m-n

0

0

0

0 1 2

2

2

2

2

2

2

2

2

2

2

2

2 2

2

2

2

2

2 2

2 2

2

2 2 2

2

2 2
2

2

2

2 2

2

2

2 2 2 2

2

2
2

2 2 2

2

2 2

2

2 2 2

2

2

2

2 2

Space-efficient alignment: Left

30 Mar 27, 2009 CS211

G

E

G

N

E N
0

0
0-0

0

0

0

2

2

2

2

2

2

2

2

2

2

2

2

2 2

2

2

2

2

2 2

2 2

2

2 2 2

2

2 2

2

3/28/09

6

Space-efficient alignment: Left

31 Mar 27, 2009 CS211

G

E

G

N

E N
0

0
0-0

0

0

0

2

2

2

2

2

2

2

2

2

2

2

2

2 2

2

2

2

2

2 2

2 2

2

2 2 2

2

2 2

2

f()

6

4

2

0

Backwards Space Efficient

32 Mar 27, 2009 CS211

G

E

N

E R A
0

m-n

1

2 2

2

2

2 2 2 2

2

2
2

2 2 2

2 2 2

2

2

2

2 2

g()

6

4

6

6

N

0 2

2
2

2

2

2

2

2

2

Example

33 Mar 27, 2009 CS211

G

E

G

N

E N E R A
0

0
0-0

m-n

0

0

0

0 1 2

2

2

2

2

2

2

2

2

2

2

2

2 2

2

2

2

2

2 2

2 2

2

2 2 2

2

2 2
2

2

2

2 2

2

2

2 2 2 2

2

2
2

2 2 2

2

2 2

2

2 2 2

2

2

2

2 2

f()

6

4

2

0

g()

6

4

6

6

Example

34 Mar 27, 2009 CS211

G

E

G

N

E N E R A
0

0
0-0

m-n

0

0

0

0 1 2

2

2

2

2

2

2

2

2

2

2

2

2 2

2

2

2

2

2 2

2 2

2

2 2 2

2

2 2
2

2

2

2 2

2

2

2 2 2 2

2

2
2

2 2 2

2

2 2

2

2 2 2

2

2

2

2 2

f()

6

4

2

0

g()

6

4

6

6

Divide and Conquer Sequence
Alignment: Analysis

35 Mar 27, 2009 CS211

P contains node on shortest corner-to-corner path	
Divide-and-Conquer-Alignment (X, Y)	
	m = length of X	
	n = length of Y	
	if m <= 2 or n <= 2	
	 	compute optimal alignment using Alignment(X, Y)	
	 	return	

 	Space-Efficient-Alignment(X, Y[1:n/2])	
	Backward-Space-Efficient-Alignment(X, Y[n/2+1:n])	
	q = index that minimizes f(q, n/2) + g(q, n/2)	
	add(q, n/2) to P	
	Divide-and-Conquer-Alignment(X[1:q],Y[1:n/2])	
	Divide-and-Conquer-Alignment(X[q:m],Y[(n/2):n])	
	return P	

What is the recurrence relation?
36

Theorem. Let T(m, n) = max running time of
algorithm on strings of length at most m and n.
T(m, n) = O(mn log n).

Remark. Analysis is not tight because two sub-
problems are of size (q, n/2) and (m - q, n/2).

Sequence Alignment: Running Time
Analysis Warmup

€

T (m, n) ≤ 2T (m, n /2) + O(mn) ⇒ T (m, n) = O(mn logn)

Mar 27, 2009 CS211

3/28/09

7

37

Theorem. Let T(m, n) = max running time of
algorithm on strings of length m and n. T(m, n) =
O(mn)

Recurrence Relation:

Solve using substitution:

Sequence Alignment: Running Time
Analysis

cmn
cmncqncmncqn

cmnnqmccqn
cmnnqmTnqTnmT

2

2/)(22/2
)2/,()2/,(),(

=

+−+=

+−+≤

+−+≤

€

T(m, 2) ≤ cm
T(2, n) ≤ cn
T(m, n) ≤ cmn + T(q, n /2) + T(m− q, n /2)

Mar 27, 2009 CS211

Recurrence Relations

Review: Problem Set 4

38 Mar 27, 2009 CS211

Using formula we figured out O(nlog_2 q) for q > 2:
O(nlog_2 5)

1a: T(n) = 5T(n/2)+O(n)

39 Mar 27, 2009 CS211

Unrolling recurrence

1b. T(n) = 2T(n-1) + O(1)

40 Mar 27, 2009 CS211

Most common mistake:
O(n)

T(n)

T(n-1) T(n-1)

T(n-2) T(n-2) T(n-2) T(n-2)

How many levels?
How many problems at bottom level?
What is the cost of each problem?

Unrolling recurrence

1b. T(n) = 2T(n-1) + O(1)

41 Mar 27, 2009 CS211

Most common mistake:
O(n)

T(n)

T(n-1) T(n-1)

T(n-2) T(n-2) T(n-2) T(n-2)

How many levels? n-1
How many problems at bottom level? 2n
What is the cost of each problem? c O(1)

Therefore, bottom level is 2n and T(n) ∈ O(2n)

Recurrence: Like
Fibonacci sequence

Unrolling the recurrence

1c. T(n) = 9T(n/3) + O(n2)

42 Mar 27, 2009 CS211

T(n)

T(n/3) T(n/3)

T(n/32)

… 9 of these

T(n/32) T(n/32) T(n/32)

… 9 of these … 9 of these

Most common mistake:
O(n)

2nd most common mistake:
Not reducing problem

How many levels?
How many problems at each level?

3/28/09

8

Unrolling the recurrence

1c. T(n) = 9T(n/3) + O(n2)

43 Mar 27, 2009 CS211

c n2

c(n/3)2 c(n/3)2

c(n/32)2

… 9 of these

c(n/32)2 c(n/32)2 c(n/32)2

… 9 of these … 9 of these

Most common mistake:
O(n)

How many levels? log3 n
How many problems at each level? 9i
What is the cost of each level?

9

92

Unrolling the recurrence

1c. T(n) = 9T(n/3) + O(n2)

44 Mar 27, 2009 CS211

c n2

c(n/3)2 c(n/3)2

c(n/32)2

… 9 of these

c(n/32)2 c(n/32)2 c(n/32)2

… 9 of these … 9 of these

Most common mistake:
O(n)

How many levels? log3 n
How many problems at each level? 9i
What is the cost of each level? cn2

9

92

O(n2 log3n)

1 Standard DP Problem
1 DP Problem and program implementing algorithm
  Goal: “pretty print” text so that the slack between text

and right margin is minimized
–  Slack: number of spaces between text and right margin

  Write a Python program that pretty prints text given a
maximum length of a line

  Template Python program, test files on Course web
site

Problem Set 6

45 Mar 27, 2009 CS211

Python program (pp) must be executable
  chmod u+x pp	

–  Make pp executable by user
Data file and example output are in tgz format
  Tar , gzip
  Need to unzip and extract file

Unix Details

46 Mar 27, 2009 CS211

Python program (pp) must be executable
  chmod u+x pp	

–  Make pp executable by user
Data file and example output are in tgz format
  Tar , gzip
  Need to unzip and extract file

  tar xfz neruda.tgz	

Unix Details

47 Mar 27, 2009 CS211

