Objectives

Algorithm Approach: Divide and Conquer
« Recurrence Review
« Integer Multiplication

« Matrix Multiplication

3/16/09

Review: Counting Inversions

Recurrence Relation:
T(n) < T(n/2) + T(n/2) + O(n)
=2T(n) € O(nlog n)

Sort-and-Count(L)
if list L has one element
return @ and the list L

Divide the 1list into two halves A and B
(ras A) < Sort-and-Count(A) T(n/2)
(rg, B) <« Sort-and-Count(B) T(n/2)
(r, L) < Merge-and-Count(A, B) O(n)

return r = ry + rg + r and the sorted list L

Review: Closest Pair Algorithm

Closest-Pair(p;, .., pn)
Compute separation line L such that half the points o(nlogn)
are on one side and half on the other side.

8; = Closest-Pair(left half) 2T(n/ 2)
8, = Closest-Pair(right half)
& = min(8y, §;)

Delete all points further than & from separation o
line L
Sort remaining points by y-coordinate. 0O(n log n)

Scan points in y-order and compare distance between
each point and next 7 neighbors. If any of these o(n)
distances is less than 3, update 3.

return 3 ‘ T(n) = 2 T(n/2) + O(n log n) ‘

Know Your Recurrence Relations

What algorithm has this recurrence relation?
What is that algorithm's running time?

Recurrence Algorithm Running Time

T(n) = T(n/2) + O(1)
T(n) = T(n-1) + O(1)
T(n) = 2 T(n/2) + O(1)
T(n) = T(n-1) + O(n)
T(n) = 2 T(n/2) + O(n)

Merge Sort O(n log n)

Know Your Recurrence Relations

What algorithm has this recurrence relation?
What is that algorithm's running time?

Recurrence Algorithm Running Time

T(n) =T(n/2) + O(1) Binary Search O(log n)
S tial/

TO) =T+ 00) e om)
Binary Tree

T =2T(2)+0() oy 2 o(n)

T(n) = T(n-1) + O(n) Selection Sort O(n2

T(n) =2 T(n/2) + O(n) Merge Sort O(n log n)

INTEGER MULTIPLICATION

Integer Arithmetic
Add. Given two n-digit integers a and b, compute a
+b.
« Algorithm?
« Runtime?

+
olo = ~
o= o ~
o= o ~
o|l~ = o
~lo o ~

3/16/09

Integer Arithmetic
Multiply. Given two n-digit integers a and b, compute
axb
Algorithm?
Runtime?

11010101
*01111101

Integer Arithmetic

Multiply. Given two n-digit integers a and b, compute
axb.

« Brute force solution: ©(n2) bit operations

11010101
*01111101
110101010

000000000
110101010
110101010
110101010
110101010
110101010
000000000
M 16 2009 01101000000000010

Divide-and-Conquer Multiplication:
Warmup

To multiply two n-digit integers:
« Multiply four %2 n-digit integers
« Add two %2 n-digit integers and shift to obtain result

Higher order bits Lower order bits

Shift g
x 22" x4 x,
yo=2%ya
X o= (2 x) (277 +) = 2%+ 27 (x¥on) + XY

A B C D
What is the recurrence relation?
* How many subproblems?
» What is merge cost?
* What is its runtime?

Mar 16, 2009 cs211 10

Divide-and-Conquer Multiplication:
Warmup

To multiply two n-digit integers:

« Multiply four 2 n-digit integers

« Add two 2 n-digit integers and shift to obtain result
Higher order bits Lower order bits

Shift ﬁ»z"”i, + xy

2%y + 3,
(27230 %) (2231 + 30) = 27391 + 22 (xp0 +x001) + o3
A B C D

v
xy

T(n) = 4T(n/2) + O() = T(n)=O@*)

over brute force

assumes n is a power of 2

csait

Karatsuba Multiplication

To multiply two n-digit integers:
« Add two %zn digit integers
« Multiply 3 “zn-digit integers

« Add, subtract, and shift ¥zn-digit integers to obtain
result

"+ 27 (1o +xe) + Koy
S+ 27 (G) (4 30) = X = Xodo) + Koo
B A c c

Karatsuba Multiplication

Theorem. [Karatsuba-Ofman, 1962] Can multiply
two n-digit integers in O(n'585) bit operations

2" x + x,

2"y 4y

2% 3y + 277 (5o +3001) + Xo¥y

2"y, + 2" (06 +X) 0 +Y0) = X =%Xoo) + Xodo
A B A c c

x

Xy

T(n) = 7([n/2]) + 7([n/2]) + T(1+[n/2]) + _ ©(n)

——
recursive cal s add, subtract shift

) = 0W'™)

log, 3

= T(n) = O(n

3/16/09

MATRIX MULTIPLICATION

Matrix Multiplication

Given two n-by-n matrices A and B, compute C = AB

« Example: cip = ayy byy + @1y by +agg by + ..+ @y, by

Brute force. ©(n3) arithmetic operations

Fundamental question: Can we improve upon brute
force?

Matrix Multiplication: Warmup

Divide: partition A and B into 2n-by-%2n blocks
Conquer: multiply 8 ¥2n-by-n recursively

Combine: add appropriate products using 4 matrix

additions

[Cu
G

Ci
Cy

Il

Ay
Ay

A

Alz] X [Bll Blz]
B, By

A1 xBy) + (4 x By)
(42 % Bx,)
(4% By)
()

)+
A% Bp) +
)+
)+ (Anx By

(
(
(i x By,
(4% By

Matrix Multiplication: Warmup

Divide: partition A and B into 2n-by-%2n blocks
Conquer: multiply 8 ¥zn-by-2n recursively

Combine: add appropriate products using 4 matrix
additions

Gy = (AuyxBy) + (A xBy)
[ql CIZ] - [All AIZ] x [Bll BIZ] CIZ - (A“XB,Z) + (A,ZXBH)
CZI CZZ AZI AZZ BZI BZZ C21 - (An XB”) + (Azz XB“)
Cy = (AyxBpy) + (A x B)
T(n)= 8T(n/2) + e(n*) = T(n)=0(n’)
Aty
recursive calls add, form submatrices

Matrix Multiplication: Key Idea

Multiply 2-by-2 block matrices with only 7
multiplications and 15 additions

« Trading expensive multiplication for less expensive

addition/subtraction

|

G
Ca

B

A‘Aﬂx[ﬁ
Azl AZZ le

B+B-B+h
R+p,
)
B+R-B-P,

Bll
BZZ

]

e

B
Py
B
F
B

Ay % (B, = Byy)
(A +412) % By
(A + 45) x By,
Ay, X (Byy = Byy)
(A + 4y) X (Byy + Byy)
(Aiy = 4y)) % (By + Byy)
(Ayy = Ayy) x (Byy + Bpy)

Fast Matrix MuItiincation [Strassen,
1969]

Divide: partition A and B into Y2n-by-%2n blocks

Compute: 14 an-by-%n matrices via 10 matrix
additions

Conquer: multiply 7 “2n-by-%2n matrices recursively
Combine: 7 products into 4 terms using 8 matrix

additions
Tm)= 7T(n/2)+ O(®) = T(n)=6@"2")=0m"")
Analysis. e overdre o

« Assume n is a power of 2.
« T(n) = # arithmetic operations.

3/16/09

Fast Matrix Multiplication in Practice

Implementation issues.
« Sparsity

« Caching effects

= Numerical stability

—theoretically correct but possible problems with round off errors, etc
« Odd matrix dimensions

« Crossover to classical algorithm around n = 128
Common m'i'sperception: "Strassen is only a theoretical

curiosity.

« Advanced Computation Group at Apple Coméauter reports 8x
speedup on G4 Velocity Engine when n ~ 2,500

« Range of instances where it's useful is a subject of controversy

Remark. Can "Strassenize" Ax=b, determinant, eigenvalues,
and other matrix ops

Fast Matrix Multiplication in Theory

. Multiply two 2-by-2 matrices with only 7 scalar multiplications?

. Yes! [Strassen, 1969] o) =0m™")

. Multiply two 2-by-2 matrices with only 6 scalar multiplications?

. Impossible [Hopcroft and Kerr, 1971] O % = 0(mn™”)

. Two 3-by-3 matrices with only 21 scalar multiplications?

. Also impossible 0™ ™M)= 0(m™")

. Two 70-by-70 matrices with only 143,640 scalar multiplications?
. Yes! [Pan, 1980] O) = 0™

>0 >»O0>»O0>XO

Decimal wars.
« December, 1979: O(nzs21e13)
« January, 1980: O(nzs2teot)

Mar 16, 2009 csai 21

Fast Matrix Multiplication in Theory

Best known. O(n2376) [Coppersmith-Winograd,
1987.]

« But really large constant

Conjecture. O(nz+) for any ¢ > 0.

Caveat. Theoretical improvements to Strassen are
progressively less practical.

MIDTERM FEEDBACK

Mar 16, 2009 cs211 s

Problem 1

O is an upperbound
« Defn: Bounded by a constant
“at least” an upperbound doesn’t make sense

3/16/09

Problem 3
Need representation/

. . 5
Creating the graph: O(n?) implementation, costs,
« Adjacency matrix runtimes

« For each node, keep count of number of red edges, blue
edges

-Saves time later

Removing invalid nodes (nodes w/ less than 5 red or
blue edges): O(n?)

« When removing node, remove its edges O(n)

—Decrease the connected node’s red or blue count

« A node will never become valid after invalid nodes are
removed

Remaining graph’s nodes represent people to invite
O(n?): Efficient algorithm because polynomial time

1 26

Problem 2

Feg=logn

F,=n2

F,=nlogn

Fs=nd

F,=2n=2*2*...%2 ntimes

Fs=nl =n*n-1*n2~*..*1

Fy=22n=m@nN)=2%2% %2 2 times
Problem 4

Algorithm: Shortest Job First O(n log n)

« Sort jobs in order of increasing wait time

« Wait on customers in this order

Prove that algorithm is optimal

« Similar to minimizing lateness problem

= What happens if two customers are inverted?

-All previous k customers have same wait time (W)

—Inversion: Customer k+1 and k+2 have service times
tieq < tp but k+2 is served first

-SJF: W + t,, ; Other: W + t,,, & SJF < Other
—Inversions = increase wait time

Mar 16, 2009 cse1 27

Plan for the Week

Chapter 6: Dynamic programming
= More powerful technique
Friday: Problem set due

