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Data structures: Heaps & Graphs 

1 

Objectives 

Jan 28, 2009 

Can use priority queues to sort 
Sort runtime should be O(n log n) 
However, cannot implement PQs with “known” data 
structures arrays and lists to meet desired runtime 
→ Motivates use of Heap to implement PQ 
→ Goal: show results in O(n log n) time 
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Review: Priority Queues 
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Implementing Priority Queues 
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Operation Unsorted 
List 

Sorted 
List 

Sorted 
Array 

StartHeap(N) 
Insert(H, v) 
FindMin(H) 
Delete(H, i) 
ExtractMin(H) 
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Implementing Priority Queues 
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Operation Unsorted 
List 

Sorted 
List 

Sorted 
Array 

StartHeap(N) O(1) O(1) O(N) 
Insert(H, v) O(1) O(n) O(n) 
FindMin(H) O(n) O(1) O(1) 
Delete(H, i) O(n) O(n) O(n) 
ExtractMin(H) O(n) O(1) O(n) 

Combines benefits of sorted array and list 
Balanced binary tree 
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Review: Heap 
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root 
•  Each node has at most 2 children 
• Node value is its key 

Heap order: each node’s key is at 
least as large as its parent’s 

Note: not a binary search tree 

Option 1: Use pointers 
  Each node keeps 

– Element it stores, key 

– 3 pointers: 2 children, parent 

Option 2: No pointers 
  Requires knowing upper bound on n 

  For node at position i 
– left child is at 2i 

– right child is at 2i+1 
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Implementing a Heap 

Jan 28, 2009 
If know child’s position, what is the position of parent? 
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Adding an element? 
  Could add element to last position 

– What are possible scenarios? 
•  Heap is no longer balanced 

•  Something that is almost a heap but a little off 

•  Need a Heapify-up procedure to fix our heap 
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Implementing a Heap: Operations 
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Can insert a new element in a heap of n elements in 
O(log n) time 
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Heapify-Up	
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Heapify-up(H, i):	
	if i > 1 then	
	 	let j=parent(i)=floor(i/2)	
	 	if key[H[i]] < key[H[j]] then	
	 	 	swap array entries H[i] and H[j]	
	 	 	Heapify-up(H, j)	

Heap Position where node added 

Delete at position i 
Not only removes an element 
  Messes up heap order 
  Leaves a “hole” in the heap 

Not as straightforward as Heapify-Up	
  Need to fill-in element where hole was 

– Patch hole: move nth element into ith spot 

  Then adjust heap to be in order 
– At position i because moved nth item up to i 
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Deleting an Element 
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Deleting an Element 
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Moved 21 to where 
element was removed 

Two possibilities: element w is 
  Too small: violation is between it and parent  
Heapify-Up	

  Too big: with one or both children  Heapify-Down 
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Deleting an Element 
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Delete 9 
Replace with 5 

Example where new key is to small 

3 

4 7 

5 

6 

2 

9 10 
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Deleting an Element 
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Delete 9 
Replace with 5 
But 5 < 6, so need to Heapify-Up	

Example where new key is to small 

3 

4 7 5 

6 

2 

10 
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Heapify-Down 
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Heapify-down(H, i):	
	Let n = length(H)	
	if 2i > n then	
	 	Terminate with H unchanged	
	else if 2i < n then	
	 	let left=2i and right=2i+1	
	 	let j be index that minimizes	
	 	 	 	key[H[left]] and key[[H[right]]	
	else if 2i = n then	
	 	Let j=2i	

	if key[H[j]] < key[H[i]] then	
	 	swap array entries H[i] and H[j]	
	 	Heapify-down(H, j)	
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Practice: Heapify-Down 
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Moved 21 to where 
element was removed 

21 
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Practice: Heapify-Down 
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21 

21 

7 
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Practice: Heapify-Down 
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21 

7 

8 

7 

21 
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Runtime of Heapify-Down? 
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Heapify-down(H, i):	
	Let n = length(H)	
	if 2i > n then	
	 	Terminate with H unchanged	
	else if 2i < n then	
	 	let left=2i and right=2i+1	
	 	let j be index that minimizes	
	 	 	 	key[H[left]] and key[[H[right]]	
	else if 2i = n then	
	 	Let j=2i	

	if key[H[j]] < key[H[i]] then	
	 	swap array entries H[i] and H[j]	
	 	Heapify-down(H, j)	

Computation of j: O(1) 
Swap: O(1) 
How many swaps: O(log n) 
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Runtime of Heapify-Down: O(log n) 

Jan 28, 2009 
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Implementing Priority Queues 
with Heaps 
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Operation Description Run Time 

StartHeap(N) Creates an empty heap that can 
hold N elements 

Insert(H, v) Inserts item v into heap H 

FindMin(H) Identifies minimum element in 
heap H but does not remove it 

Delete(H, i) Deletes element in heap position i 

ExtractMin(H) Identifies and deletes an element 
with minimum key from heap 
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Implementing Priority Queues 
with Heaps 

Jan 28, 2009 

Operation Description Run Time 

StartHeap(N) Creates an empty heap that 
can hold N elements O(N) 

Insert(H, v) Inserts item v into heap H O(log n) 

FindMin(H) 
Identifies minimum element 
in heap H but does not 
remove it 

O(1) 

Delete(H, i) Deletes element in heap 
position i O(log n) 

ExtractMin(H) 
Identifies and deletes an 
element with minimum key 
from heap 

O(log n) 
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Implementing Priority Queues 

Jan 28, 2009 

Operation Heap Unsorted 
List 

Sorted 
List 

StartHeap(N) O(N) 
Insert(H, v) O(log n) 
FindMin(H) O(1) 
Delete(H, i) O(log n) 
ExtractMin(H) O(log n) 

22 

Implementing Priority Queues 
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Operation Heap Unsorted 
List 

Sorted 
List 

StartHeap(N) O(N) O(1) O(1) 
Insert(H, v) O(log n) O(1) O(n) 
FindMin(H) O(1) O(n) O(1) 
Delete(H, i) O(log n) O(n) O(n) 
ExtractMin(H) O(log n) O(n) O(1) 

Access given element of PQ 
  Maintain additional array Position that stores 

current position of each element in heap 

Operations: 
  Delete(H, Position[v]) 

– Does not increase overall running time 

  ChangeKey(H, v, a) 
– Changes key value of element v to key(v) = a 

– Identify position of element v in array (Position array) 

– Change key, heapify 
23 

Additional Heap Operations 
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GRAPHS 

24 Jan 28, 2009 
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Undirected Graphs G = (V, E) 
V = nodes (vertices) 
E = edges between pairs of nodes 
Captures pairwise relationship between objects 
Graph size parameters:  n = |V|, m = |E| 

V = { 1, 2, 3, 4, 5, 6, 7, 8 } 
E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 } 
n = 8 
m = 11 
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World Wide Web 
Web graph 
  Node:  web page 
  Edge:  hyperlink from one page to another 

cnn.com 

people.com sportsillustrated.cnn.com netscape.com time.com 

hbo.com 

sorpranos.com 

Directed Graph 

Node: people; Edge: relationship between 2 people 
Everything Bad Is Good for You: How Today's 
Popular Culture Is Actually Making Us Smarter 
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Social Networks 

•  Television shows 
have complex 
plots, complex 
social networks 

Social network of 
24's Jack Bauer 

http://www.cs.duke.edu/csed/harambeenet/
modules.html 

Food web graph 
  Node = species  
  Edge = from prey to predator 
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Ecological Food Web 

Reference:  http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff 

Directed Graph 
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Graph Applications 

transportation 

Graph 
street intersections 

Nodes Edges 
highways 

communication computers fiber optic cables 

World Wide Web web pages hyperlinks 

social people relationships 

food web species predator-prey 

software systems functions function calls 

scheduling tasks precedence constraints 

circuits gates wires 

n×n matrix with Auv = 1 if (u, v) is an edge 
  Two representations of each edge (symmetric matrix) 
  Space? 

  Checking if (u, v) is an edge? 
  Identifying all edges? 

30 

Graph Representation:   
Adjacency Matrix 

  1 2 3 4 5 6 7 8 
1 0 1 1 0 0 0 0 0 
2 1 0 1 1 1 0 0 0 
3 1 1 0 0 1 0 1 1 
4 0 1 0 1 1 0 0 0 
5 0 1 1 1 0 1 0 0 
6 0 0 0 0 1 0 0 0 
7 0 0 1 0 0 0 0 1 
8 0 0 1 0 0 0 1 0 
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n×n matrix with Auv = 1 if (u, v) is an edge 
  Two representations of each edge (symmetric matrix) 
  Space proportional to n2 

  Checking if (u, v) is an edge takes Θ(1) time 
  Identifying all edges takes Θ(n2) time 
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Graph Representation:   
Adjacency Matrix 

  1 2 3 4 5 6 7 8 
1 0 1 1 0 0 0 0 0 
2 1 0 1 1 1 0 0 0 
3 1 1 0 0 1 0 1 1 
4 0 1 0 1 1 0 0 0 
5 0 1 1 1 0 1 0 0 
6 0 0 0 0 1 0 0 0 
7 0 0 1 0 0 0 0 1 
8 0 0 1 0 0 0 1 0 

Node indexed array of lists 
  Two representations of each edge 
  Space? 
  Checking if (u, v) is an edge? 
  Identifying all edges? 
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Graph Representation:  
Adjacency List 

1 2 3 

2 

3 

4 2 5 

5 

6 

7 3 8 

8 

1 3 4 5 

1 2 5 8 7 

2 3 4 6 

5 

3 7 

no
de

 

edges 

Node indexed array of lists 
  Two representations of each edge 
  Space = 2m + n = O(m + n) 
  Checking if (u, v) is an edge takes O(deg(u)) time 
  Identifying all edges takes Θ(m + n) time 
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Graph Representation:  
Adjacency List 

degree = number of 
neighbors of u 

1 2 3 

2 

3 

4 2 5 

5 

6 

7 3 8 

8 

1 3 4 5 

1 2 5 8 7 

2 3 4 6 

5 

3 7 

no
de

 

edges 
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Paths and Connectivity 
Def.  A path in an undirected graph G = (V, E) is a 
sequence P of nodes v1, v2, …, vk-1, vk  
  each consecutive pair vi, vi+1 is joined by an edge in E 

Def.  A path is simple if all nodes are distinct 
Def.  An undirected graph is connected if ∀ pair of 
nodes u and v, there is a path between u and v 

• Short path 
• Distance 
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Cycles 
Def.  A cycle is a path v1, v2, …, vk-1, vk in which      
v1 = vk, k > 2, and the first k-1 nodes are all distinct 

cycle C = 1-2-4-5-3-1 
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Trees 
Def.  An undirected graph is a tree if it is connected 
and does not contain a cycle 
Simplest connected graph 
  Deleting any edge from a tree will disconnect it 
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Trees 
Theorem.  Let G be an undirected graph on n nodes. 
Any two of the following statements imply the third. 
  G is connected 
  G does not contain a cycle 

  G has n-1 edges 
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Rooted Trees 
Given a tree T, choose a root node r and orient each 
edge away from r 
Models hierarchical structure 

a tree the same tree, rooted at 1 

v 

parent of v 

child of v 

root r Why n-1 edges? 
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Rooted Trees 
Why n-1 edges? 
  Each node except for root has an edge to its parent 

a tree the same tree, rooted at 1 

v 

parent of v 

child of v 

root r 
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Phylogeny Trees 
Describe evolutionary history of 
species 
  ancestral species to mammals 

and birds 
– not to other species shown 

  mammals and birds share a 
common ancestor that they do 
not share with other species 

  all animals are descended from 
an ancestor not shared with 
mushrooms, trees, and bacteria 

anim
als 
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GUI Containment Hierarchy 

Reference:  http://java.sun.com/docs/books/tutorial/uiswing/overview/anatomy.html 

Describe organization of GUI widgets 

GRAPH TRAVERSAL 
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s-t connectivity problem.  Given two node s and t, is 
there a path between s and t? 
s-t shortest path problem.  Given two node s and t, 
what is the length of the shortest path between s and 
t? 
Applications 
  Facebook 
  Maze traversal 
  Kevin Bacon number 
  Fewest number of hops in a communication network 
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Connectivity 
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Breadth First Search 
Intuition.  Explore outward from s in all possible 
directions, adding nodes one "layer" at a time 
Algorithm  
  L0 = { s } 
  L1 = all neighbors of L0 
  L2 = all nodes that do not belong to L0 or L1, and that have 

an edge to a node in L1 
  Li+1 = all nodes that do not belong to an earlier layer, and 

that have an edge to a node in Li 
Theorem.  For each i, Li consists of all nodes at distance 
exactly i from s.  There is a path from s to t iff t appears 
in some layer. 

s L1 L2 L n-1 
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Breadth First Search 
Property.  Let T be a BFS tree of G = (V, E), and let 
(x, y) be an edge of G. Then the level of x and y 
differ by at most 1. 

L0 

L1 

L2 

L3 

G:  
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Breadth First Search:  Analysis 
Theorem.  The BFS implementation runs in O(m + n) 
time if graph is given by its adjacency representation 
Pf. 
  Easy to prove O(n2) running time: 

– at most n lists L[i] 

– each node occurs on at most one list; for loop runs ≤ n 
times 

– when we consider node u, there are ≤ n incident edges 
(u, v), and we spend O(1) processing each edge 
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Breadth First Search:  Analysis 
Theorem.  The BFS implementation runs in O(m + n) 
time if graph is given by its adjacency representation 
Pf. 
  Actually runs in O(m + n) time: 

– when we consider node u, there are deg(u) incident 
edges (u, v) 

– total time processing edges is Σu∈V deg(u) = 2m     ▪ 

each edge (u, v) is counted exactly twice 
in sum: once in deg(u) and once in deg(v) 


