
1/27/10

1

•  Graph Traversal
•  BFS & DFS Implementations, Analysis

•  Designing algorithms
 Be as descriptive as possible, provide intuition
 Explain running time

•  Match prescribed running time
•  Or what you think the running time is

• Wiki
 Say something about how readable/interesting

the section was on scale of 1 to 10

• What do they do?
•  How are their outcomes different?
• When would we want to use one over the

other?

• What do they do?
 Techniques for finding connected components

•  Create a tree of connected components
 Other uses as well

•  How are their outcomes different?
 BFS: shortest path; bushy tree
 DFS: spindly tree

• When would we want to use one over the
other?
 DFS: what you’d do in a maze (can’t split)

•  Find all nodes reachable from s

•  Theorem. Upon termination, R is the
connected component containing s
 BFS = explore in order of distance from s
 DFS = explore until hit “deadend”

5 Jan 30, 2009

In general….
R will consist of nodes to which s has a path	
R = {s}	
While there is an edge (u,v) where u∈R and v∉R	

	add v to R	

•  Intuition. Explore outward from s in all
possible directions (edges), adding nodes
one "layer" at a time

•  Algorithm
 L0 = { s }
 L1 = all neighbors of L0

 L2 = all nodes that do not belong to L0 or L1 and
that have an edge to a node in L1

 Li+1 = all nodes that do not belong to an earlier
layer and that have an edge to a node in Li

s L1 L2 L n-1

1/27/10

2

•  Need to keep track of where
you’ve been

• When reach a “dead-end” (already
explored all neighbors), backtrack
to node with unexplored neighbor

•  Algorithm:
DFS(u):	

	Mark u as “Explored” and add u to R	
	For each edge (u, v) incident to u	
	 	If v is not marked “Explored” then	
	 	 	DFS(v)	

Explored: 1, 2, 4, 5, 3, 7, 8, 6
Now: 1, 2, 4, 5, 3, 7, 8, 7, 3, 5, 6, 5, 4, 2, 1
R: 1, 2, 4, 5, 7, 8, 6

1

2

4

5

6 3

7

8

•  Let T be a depth-first search tree, let x and y
by nodes in T, and let (x, y) be an edge of G
that is not an edge of T. Then one of x or y
is an ancestor of the other.

•  Let T be a depth-first search tree, let x and y by
nodes in T, and let (x, y) be an edge of G that is not
an edge of T. Then one of x or y is an ancestor of the
other.

•  Proof.
 Suppose that x-y is an edge in G but not in T. (From

problem statement)
 WLOG, assume that DFS reaches x before y
 When edge x-y is considered in the DFS algorithm, we

don’t add it to T (from problem statement), which means
that y must have been explored.

 But, since we reached x first, y had to be discovered
between invocation and end of the recursive call DFS(x)
•  i.e., y is a descendent of x

•  For any two nodes s and t in a graph, their
connected components are either identical or
disjoint

•  Proof?

•  For any two nodes s and t in a graph, their
connected components are either identical or
disjoint

•  Proof sketch:
(i) There is a path between s and t  same set of

connected components
(ii) There is no path between s and t  disjoint set

of connected components

1/27/10

3

•  How can we find the set of all connected
components of graph?

•  How can we find the set of all connected
components of graph?

R* = set of connected components	
While there is a node that does not belong to R*	

	select s not in R*	

	R = {s}	

	While there is an edge (u,v) where u∈R and v∉R	
	 	add v to R	

	Add R to R*	

•  How are queues and stacks similar?
•  How are queues and stacks different?

•  Both: doubly linked list
 Always take first on list
 Difference in where extracted
 Have first and last pointers
 Done in constant time

•  Queue: FIFO
 First in, first out

•  Stack: LIFO
 Last in, last out

Queue
Removes

Stack
Removes

Described differently in book
- Inserted differently
- Extracted at same place

•  Graph: Adjacency list
•  Discovered array
•  Maintain layers in separate lists, L[i]

1/27/10

4

•  Graph: Adjacency list
•  Discovered array
•  Maintain layers in separate lists, L[i]

BFS(s):	
	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	For each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] == false then	
	 	 	 	Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	

L[i] as a queue
or stack?

What does this
stopping

condition mean?

BFS(s):	
	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	For each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] == false then	
	 	 	 	Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	

L[i] as a queue or stack?

 - Doesn’t matter because algorithm
can consider nodes in any order

BFS(s):	
	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	For each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] == false then	
	 	 	 	Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	

A
t

m
os

t
n

A
t

m
os

t
n-

1

O(n2)

n
BFS(s):	

	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	For each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] == false then	
	 	 	 	Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	

O(deg(u))

A
t

m
os

t
n

n

Σu∈V deg(u) = 2m

 O(n+m)

•  Defined iteratively rather than recursively
 Analogous to BFS

•  Keep nodes to be processed in a stack
DFS(s):	

	Initialize S to be a stack with one element s	
	Explored[v] = false, for all v	
	Parent[v] = 0, for all v	
	DFS tree T = {}	
	while S != {}	
	 	Take a node u from S	
	 	If Explored[u] = false	
	 	 	Explored[u] = true	
	 	 	Add edge (u, parent[u]) to T (if u ≠ s)	
	 	 	For each edge (u, v) incident to u	
	 	 	 	Add v to the stack S	
	 	 	 	Parent[v] = u	

1/27/10

5

•  Continue reading Chapter 3
 Post summaries on Wiki

•  Problem Set 2 due Friday

