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Data structures: Graphs 
  DAGs and Topological order 

Greedy Algorithms 

Objectives 
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Strong Connectivity:  Algorithm 
Theorem.  Can determine if G is strongly connected 
in O(m + n) time. 
Pf. 
  Pick any node s 
  Run BFS from s in G 
  Run BFS from s in Grev 
  Return true iff all nodes reached in both BFS 

executions 
  Correctness follows immediately from previous lemma 

– All reachable from one node, s is reached by all 

reverse orientation of every edge in G 
Or, the BFS using the in edges 

Either DFS or BFS 
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Directed Acyclic Graphs 
Def.  A DAG is a directed graph that contains no 
directed cycles. 
Example.  Precedence constraints: edge (vi, vj) 
means vi must precede vj 
  Course prerequisite graph:  course vi must be taken 

before vj 
  Compilation:  module vi must be compiled before vj 
  Pipeline of computing jobs:  output of job vi needed to 

determine input of job vj 

a DAG: 

v2 v3 

v6 v5 v4 

v7 v1 
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Directed Acyclic Graphs 
Given a set of tasks with dependencies, what is a 

valid order in which the tasks could be performed? 
Def.  A topological order of a directed graph G = 
(V, E) is an ordering of its nodes as v1, v2, …, vn so 
that for every edge (vi, vj) we have i < j. 

a DAG 
a topological ordering 

All edges point “forward” 

v2 v3 

v6 v5 v4 

v7 v1 

v1 v2 v3 v4 v5 v6 v7 

Does every DAG have a topological ordering? 
  If so, how do we compute one? 

What would we need to be able to create a 
topological ordering? 

  What are some characteristics of this graph? 

Directed Acyclic Graphs 
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v1 v2 v3 v4 v5 v6 v7 

Need some place to start …  Where? 

Does every DAG have a topological ordering? 
  If so, how do we compute one? 

What would we need to be able to create a 
topological ordering? 

  What are some characteristics of this graph? 

Directed Acyclic Graphs 

6 Feb 4, 2009 CS211 6 

v1 v2 v3 v4 v5 v6 v7 

Need someplace to 
start: 

a node with no 
incoming edges (no 

dependencies) Note that both v1 and v2 
have no incoming edges 
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Does every DAG have a node with no incoming 
edges? 

Directed Acyclic Graphs 
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Lemma.  If G is a DAG, then G has a node with no 
incoming edges 

  That node is our starting point of the topological 
ordering 

How to prove? 

Directed Acyclic Graphs 
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Lemma.  If G is a DAG, then G has a node with no 
incoming edges 

Proof idea: consider if there is no node without 
incoming edges 

  What does that mean? 

  Recall that we know that G is a DAG 
– What are its properties? 

Directed Acyclic Graphs 
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Directed Acyclic Graphs 
Lemma.  If G is a DAG, then G has a node with no incoming 
edges. 
Pf.  (by contradiction) 
  Suppose that G is a DAG and every node has at least one 

incoming edge 
  Pick any node v, and follow edges backward from v 

– Since v has at least one incoming edge (u, v), we can walk 
backward to u 

  Since u has at least one incoming edge (x, u), we can walk 
backward to x 

  Repeat until we visit a node, say w, twice 
– Has to happen at least by n+1 steps (What if can’t go n+1 steps?) 

  Let C denote the sequence of nodes encountered between 
successive visits to w.  C is a cycle.   ▪ 

w x u v 

With a node with no incoming edges, can create a 
topological ordering 

Think about a DAG with only one node.  What is its 
topological ordering? 

Only two nodes? 

Three nodes? 
  What are the DAG, TO possibilities? 

Creating a Topological Order 
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What are the possibilities? 

Topological Order for Three Nodes 
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Can’t add any more edges without creating a cycle. 
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Directed Acyclic Graphs 
Lemma.  If G is a DAG, then G has a topological 
ordering. 
Pf.  (by induction on n) 
  Base case:  true if n = 1 
  Given DAG on n > 1 nodes, find a node v with no incoming 

edges 
  G - { v } is a DAG, since deleting v cannot create cycles 
  By inductive hypothesis, G - { v } has a topological ordering 
  Place v first in topological ordering; then append nodes of 

G - { v } 
  in topological order. This is valid since v has no incoming 

edges.   ▪ 

DAG 
v 
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Directed Acyclic Graphs 
Lemma.  If G is a DAG, then G has a topological 
ordering. 
Algorithm: 

DAG 

v 
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v1 

Topological Ordering Algorithm:  
Example 

Topological order:   

v2 v3 

v6 v5 v4 

v7 v1 
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v2 

Topological Ordering Algorithm:  
Example 

Topological order:  v1 

v2 v3 

v6 v5 v4 

v7 
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v3 

Topological Ordering Algorithm:  
Example 

Topological order:  v1, v2 

v3 

v6 v5 v4 

v7 
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v4 

Topological Ordering Algorithm:  
Example 

Topological order:  v1, v2, v3 

v6 v5 v4 

v7 

Feb 4, 2009 CS211 
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v5 

Topological Ordering Algorithm:  
Example 

Topological order:  v1, v2, v3, v4 

v6 v5 

v7 
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v6 

Topological Ordering Algorithm:  
Example 

Topological order:  v1, v2, v3, v4, v5 

v6 

v7 
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v7 

Topological Ordering Algorithm:  
Example 

Topological order:  v1, v2, v3, v4, v5, v6 

v7 
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Topological Ordering Algorithm:  
Example 

Topological order:  v1, v2, v3, v4, v5, v6, v7. 

v2 v3 

v6 v5 v4 

v7 v1 

v1 v2 v3 v4 v5 v6 v7 
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Where are the costs? 

Topological Order Runtime 
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Where are the costs? 

Find a node without incoming edges and delete it: 
O(n) 

Repeat on all nodes 
 O(n2) 

Topological Order Runtime 
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Can we do better? 
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Topological Sorting Algorithm:  
Running Time 

Theorem. Find a topological order in O(m + n) time 
Pf.   
  Maintain the following information: 

– count[w] = remaining number of incoming edges 
– S = set of remaining nodes with no incoming edges 

  Initialization:  O(m + n) via single scan through graph 
  Update:  to delete v 

– remove v from S 

– decrement count[w] for all edges from v to w 
•  add w to S if c count[w] hits 0 

– O(1) per edge    ▪ 

GREEDY ALGORITHMS 
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At each step 
  Take as much as you can get 

– “local” optimizations 

Greedy Algorithms 
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How do you make change to give out the fewest 
coins? 

Example of Greedy Algorithm 
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How do you make change to give out the fewest 
coins? 

  Local optimum: coin of the highest value, less than the 
remaining change owed 

Example of Greedy Algorithm 
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while change > 0:	
	if change >= 25:	
	 	print “Quarter”	
	 	change -= 25	
	elif change >= 10:	
	 	print “Dime”	
	 	change -= 10	
	…	

Specifically, produce an optimal solution 

Two approaches: 
  Greedy algorithm stays ahead 

– Does better than any other algorithm at each step 

  Exchange argument 
– Transform any solution into a greedy solution 

Proving Greedy Algorithms Work 
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INTERVAL SCHEDULING 
Greedy algorithm stays ahead 

32 

Interval Scheduling 
Job j starts at sj and finishes at fj 
Two jobs compatible if they don't overlap 
Goal: find maximum subset of mutually compatible 

jobs 

Time 
0 1 2 3 4 5 6 7 8 9 10 11 

f 
g 

h 

e 

a 
b 

c 
d 

• Every job is worth 
equal money. 

• To earn the most 
money  schedule the 
most jobs 

Consider jobs (or whatever) in some order 
  Decision: what order is best 

Take each job provided it's compatible with the ones 
already taken 

Greedy Algorithm Template 
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What are options for orders? 

What is our goal? 
What are we trying to 
minimize/maximize? 

What is the worst case? 
34 

Interval Scheduling:  Greedy 
Algorithms 

Earliest start time.  Consider jobs in ascending order of start 
time sj 

  Utilize CPU as soon as possible 

Earliest finish time.  Consider jobs in ascending order of finish 
time fj 

  Resource becomes free ASAP 
  Maximize time left for other requests 

Shortest interval.  Consider jobs in ascending order of interval 
length  fj – sj 

Fewest conflicts.  For each job, count number of conflicting 
jobs cj. Schedule in ascending order of conflicts cj 
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Interval Scheduling:  Greedy 
Algorithms 

breaks earliest start time 

breaks shortest interval 

breaks fewest conflicts 

Not optimal when … 

36 

Consider jobs in increasing order of finish time. Take each job 
provided it's compatible with the ones already taken. 

Runtime of algorithm? 
  Where/what are the costs? 

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn	

A = {}	
for j = 1 to n 	
   if (job j compatible with A)	
      A = A ∪ {j}	
return A  	

jobs 
selected  

Interval Scheduling:  Greedy 
Algorithm 
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Interval Scheduling 

Time 
0 

A  

C 

F 

B 

D 

G 

E 

1 2 3 4 5 6 7 8 9 10 11 
H 

0 1 2 3 4 5 6 7 8 9 10 11 

Jobs in order 
of finishing 

time 

Interval Scheduling 

0 1 2 3 4 5 6 7 8 9 10 11 
B 

Time 
0 

A  

C 

F 

B 

D 

G 

E 

1 2 3 4 5 6 7 8 9 10 11 
H 

Interval Scheduling 

0 1 2 3 4 5 6 7 8 9 10 11 
B C 

Time 
0 

A  

C 

F 

B 

D 

G 

E 

1 2 3 4 5 6 7 8 9 10 11 
H 

Interval Scheduling 

0 1 2 3 4 5 6 7 8 9 10 11 
B A 

Time 
0 

A  

C 

F 

B 

D 

G 

E 

1 2 3 4 5 6 7 8 9 10 11 
H 

Interval Scheduling 

0 1 2 3 4 5 6 7 8 9 10 11 
B E 

Time 
0 

A  

C 

F 

B 

D 

G 

E 

1 2 3 4 5 6 7 8 9 10 11 
H 

Interval Scheduling 

0 1 2 3 4 5 6 7 8 9 10 11 
B E D 

Time 
0 

A  

C 

F 

B 

D 

G 

E 

1 2 3 4 5 6 7 8 9 10 11 
H 
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Interval Scheduling 

0 1 2 3 4 5 6 7 8 9 10 11 
B E F 

Time 
0 

A  

C 

F 

B 

D 

G 

E 

1 2 3 4 5 6 7 8 9 10 11 
H 

Interval Scheduling 

0 1 2 3 4 5 6 7 8 9 10 11 
B E G 

Time 
0 

A  

C 

F 

B 

D 

G 

E 

1 2 3 4 5 6 7 8 9 10 11 
H 

Interval Scheduling 

0 1 2 3 4 5 6 7 8 9 10 11 
B E H 

Time 
0 

A  

C 

F 

B 

D 

G 

E 

1 2 3 4 5 6 7 8 9 10 11 
H 
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Consider jobs in increasing order of finish time. Take each job 
provided it's compatible with the ones already taken. 

Implementation.  O(n log n) 
  Remember job j* that was added last to A 
  Job j is compatible with A if sj ≥ fj* 

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn	

A = {}	
for j = 1 to n 	
   if (job j compatible with A)	
      A = A ∪ {j}	
return A  	

jobs 
selected  

Interval Scheduling:  Greedy 
Algorithm 

Interval Scheduling: Analysis 

Know that the intervals are compatible 
  Handle by the if statement 

But is it optimal? 
  What are we looking for? 
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Interval Scheduling:  Analysis 
Theorem.  Greedy algorithm is optimal. 
Pf.  (by contradiction) 
  Assume greedy is not optimal, and let's see what happens 
  Let i1, i2, ... ik denote set of jobs selected by greedy (k jobs) 
  Let j1, j2, ... jm  denote set of jobs in the optimal solution (m jobs) 
  Same ordering, by finish times 
 Want to show that k = m 

j1 j2 jr 

i1 i1 ir Greedy: 

OPT: 

What can we say about i1 and j1?  f(i1) <= f(j1) 


