
3/11/09

1

Registrar Review
Algorithm Approach: Divide and Conquer
  Recurrence Relations
  Algorithm development

Objectives

1 Mar 11, 2009 CS211 1 2

Divide-and-Conquer

Divide-and-conquer process
  Break up problem into several parts
  Solve each part recursively
  Combine solutions to sub-problems into overall solution

Most common usage
  Break up problem of size n into two equal parts of size ½n
  Solve two parts recursively
  Combine two solutions into overall solution

Divide et impera.
Veni, vidi, vici.
 - Julius Caesar

Mar 11, 2009 CS211

What is a well-known divide and conquer algorithm?

Discussion

3 Mar 11, 2009 CS211

MERGE SORT

How does Merge Sort work?

When do we stop?

Merge Sort

4 Mar 11, 2009 CS211

Merge Sort

5 Mar 11, 2009 CS211

Divide list into
two lists

Until only 2
elements

Sort elements

Combine
sorted lists
(how?)

Costs?
Running
Time?

RECURRENCE RELATIONS

6 Mar 11, 2009 CS211

3/11/09

2

Def. T(n) = number of comparisons to mergesort an
input of size n

Want to say a bit more about what T(n) is
  Break it down more…
  What can we say about the running time w.r.t. to the

different parts of the above template?

Analyzing Merge Sort

7

General Template
•  Break up problem of size n into two equal

parts of size ½n
•  Solve two parts recursively
•  Combine two solutions into overall solution

Def. T(n) = number of comparisons to mergesort an
input of size n

Want to say a bit more about what T(n) is
  Break it down more…
  What can we say about the running time w.r.t. to the

different parts of the above template?

Analyzing Merge Sort

8

General Template
•  Break up problem of size n into two equal

parts of size ½n
•  Solve two parts recursively
•  Combine two solutions into overall solution O(n)

T(n/2) + T(n/2)

Put an upperbound on T(n):

For some constant c,
 T(n) ≤ 2 T(n/2) + cn when n > 2,
 T(2) ≤ c.

Merge Sort’s Recurrence Relation

9 Mar 11, 2009 CS211

O(n)

Solve T(n) to come up with explicit bound

1.  Unroll recursion
  Look for patterns in runtime at each level
  Sum up running times over all levels

2.  Substitute guess solution into recurrence
  Check that it works
  Induction on n

Approaches to Solving Recurrences

10 Mar 11, 2009 CS211

Unrolling Recurrence

11 Mar 11, 2009 CS211

First level: 2 T(n/2) + cn

Unrolling Recurrence

12 Mar 11, 2009 CS211

cn

T(n/2) T(n/2)

How does the next level break down?

3/11/09

3

Next level:
Each one is 2 T(n/4) + c(n/2)

Unrolling Recurrence

13 Mar 11, 2009 CS211

cn

c n/2 c n/2

T(n/4) T(n/4) T(n/4) T(n/4)

Next level?

Next level:
Each one is 2 T(n/8) + c(n/4)

Unrolling Recurrence

14 Mar 11, 2009 CS211

cn

c n/2 c n/2

c n/4 c n/4 c n/4 c n/4

And so on…

T(n/8) T(n/8)
… T(n/8) T(n/8)

How much does each level
cost, in terms of the level?

How many levels are there
(assuming n is a power of 2)?

What is the total run time?

Unrolling Recurrence

15 Mar 11, 2009 CS211

cn

c n/2 c n/2

c n/4 c n/4 c n/4 c n/4

c c c c c c c c

T(n / 2k)

T(n)

T(2)

0

1

2

Unrolling Recurrence

16 Mar 11, 2009 CS211

cn

c n/2 c n/2

c n/4 c n/4 c n/4 c n/4

c c c c c c c c

T(n / 2k)

T(n)

T(2)

2k problems
Size: n/2k

0

1

2

Each level takes 2k * c * (n/2k) = cn

Number of levels:
log2n

O(n log n)

How much does each level
cost, in terms of the level?

How many levels are there
(assuming n is a power of 2)?

What is the total run time?

17

Alternative: Proof by Induction
Claim. If T(n) satisfies this recurrence, then T(n) = n

log2 n.

Pf. (by induction on n)
  Base case: n = 1
  Inductive hypothesis: T(n) = n log2 n

  Goal: show that T(2n) = 2n log2 (2n)

€

T(n) =
0 if n =1
2T(n /2)

sorting both halves
    

+ n
merging


otherwise





 

Mar 11, 2009 CS211

Why doubling n?

18

Proof by Induction
Claim. If T(n) satisfies this recurrence, then T(n) = n

log2 n.

Pf. (by induction on n)
  Inductive hypothesis: T(n) = n log2 n

€

T(2n) = 2T(n) + 2n
= 2n log2 n + 2n
= 2n log2(2n)−1() + 2n
= 2n log2(2n)

€

T(n) =
0 if n =1
2T(n /2)

sorting both halves
    

+ n
merging


otherwise





 

Mar 11, 2009 CS211

3/11/09

4

Instead of recursively solving 2 problems, solve q
problems

  Size of problems is still n/2

Combining solutions is still O(n)

Another Example

19 Mar 11, 2009 CS211

Instead of recursively solving 2 problems, solve q
problems

  Size of problems is still n/2

Combining solutions is still O(n)
Recurrence relation:
  For some constant c,

T(n) ≤ q T(n/2) + cn when n > 2
T(2) ≤ c

Another Example

20 Mar 11, 2009 CS211

Intuition about running time?

Unrolling Recurrence, q > 2

21 Mar 11, 2009 CS211

First level: q T(n/2) + cn

Unrolling Recurrence, q > 2

22 Mar 11, 2009 CS211

cn

T(n/2) T(n/2) … q

Next level: q T(n/4) + c(n/2)

Unrolling Recurrence, q > 2

23 Mar 11, 2009 CS211

cn

c n/2 c n/2 … q

T(n/4) T(n/4) T(n/4) T(n/4) … q … q …

Unrolling Recurrence, q > 2

24 Mar 11, 2009 CS211

cn

c n/2 c n/2 … q

T(n/4) T(n/4) T(n/4) T(n/4) … q … q

qk problems at level k
Size: n/2k

Each level takes qk * c * (n/2k) = (q/2)j cn
 Total work per level is increasing as level increases

Number of levels: log2n

How much does each level
cost, in terms of the level?

Number of levels?
What is the total run time?

0

1

3/11/09

5

Unrolling Recurrence, q > 2

25 Mar 11, 2009 CS211

cn

c n/2 c n/2 … q

T(n/4) T(n/4) T(n/4) T(n/4) … q … q

T(n) ≤ Σj=0,logn (q/2)j cn

Geometric series: O(n log2 q)

How much does each level
cost, in terms of the level?

Number of levels?
What is the total run time?

0

1

Use recurrences to analyze the run time of divide
and conquer algorithms

  Number of sub problems
  Size of sub problems

  Number of times divided (number of levels)
  Cost of merging problems

Summary

26 Mar 11, 2009 CS211

COUNTING INVERSIONS

28

Movie site tries to match your song preferences with
others

  You rank n movies
  Movie site consults database to find people with

similar tastes
– Collaborative filtering

Meta-search tools
  Do same query on several search engines
  Synthesize results by looking for similarities and

differences in search engines’ results rankings

Problem Context

Mar 11, 2009 CS211

29

To determine similarity of rankings, need a metric
Similarity metric: number of inversions between two

rankings
  My rank: 1, 2, …, n
  Your rank: a1, a2, …, an
  Movies i and j inverted if i < j, but ai > aj

You
Me

1 4 3 2 5
1 3 2 4 5
A B C D E

Movies

Comparing Rankings

What are the
inversions?

Mar 11, 2009 CS211 30

To determine similarity of rankings, need a metric
Similarity metric: number of inversions between two

rankings
  My rank: 1, 2, …, n
  Your rank: a1, a2, …, an
  Movies i and j inverted if i < j, but ai > aj

You
Me

1 4 3 2 5
1 3 2 4 5
A B C D E

Movies

Comparing Rankings

Inversions:
3-2, 4-2

Mar 11, 2009 CS211

Naïve/Brute force
solution?

3/11/09

6

Look at every pair (i,j) and determine if they are an
inversion

Requires Θ(n2) time

Brute Force Solution

31 Mar 11, 2009 CS211 32

Applications
Voting theory
Collaborative filtering
Measuring the "sortedness" of an array
Sensitivity analysis of Google's ranking function
Rank aggregation for meta-searching on the Web
Nonparametric statistics (e.g., Kendall's Tau

distance)

Mar 11, 2009 CS211

Better than brute force Θ(n2)
  Can’t look at each inversion individually

Continued on Friday …

Forming a Better Solution

33 Mar 11, 2009 CS211

