Objectives

Data structures: Graphs
« DAGs and Topological order
Greedy Algorithms

Directed Acyclic Graphs
Def. A DAG is a directed graph that contains no
directed cycles.

Example. Precedence constraints: edge (v;, v;)
means v, must precede v,

« Course prerequisite graph: course v; must be taken
before v,

= Compilation: module v;must be compiled before v,

« Pipeline of computing jobs: output of job v, needed to
determine input of job v,

2/4/09

Strong Connectivity: Algorithm

Theorem. Can determine if G is strongly connected
in O(m + n) time.

Pf. Either DFS or BFS
« Pick any node s
« Run BFS from sin G

reverse orientation of every edge in 6
Or, the BFS using the in edges

« Run BFS from s in Gr¥

« Return true iff all nodes reached in both BFS
executions

« Correctness follows immediately from previous lemma

-All reachable from one node, s is reached by all

Directed Acyclic Graphs

Given a set of tasks with dependencies, what is a

valid order in which the tasks could be performed?
Def. A topological order of a directed graph G =
(V, E) is an ordering of its nodes as vy, vy, ..., V,, SO
that for every edge (v, v;) we have i <j.

a topological ordering
All edges point “forward”

Directed Acyclic Graphs

Does every DAG have a topological ordering?
« If so, how do we compute one?

What would we need to be able to create a
topological ordering?

« What are some characteristics of this graph?

Need some place to start ... Where?

Feb 4, 2009

Directed Acyclic Graphs

Does every DAG have a topological ordering?
« If so, how do we compute one?

What would we need to be able to create a
topological ordering?

« What are some characteristics of this graph?

Need someplace to
start:
a node with no
incoming edges (no
dependencies)

Note that both v; and v,

have no incoming edges .

Directed Acyclic Graphs

Does every DAG have a node with no incoming
edges?

2/4/09

Directed Acyclic Graphs

Lemma. If Gis a DAG, then G has a node with no
incoming edges

« That node is our starting point of the topological
ordering

How to prove?

Directed Acyclic Graphs

Lemma. If Gis a DAG, then G has a node with no
incoming edges

Proof idea: consider if there is no node without
incoming edges

« What does that mean?

« Recall that we know that G is a DAG

-What are its properties?

Directed Acyclic Graphs

Lemma. If Gis a DAG, then G has a node with no incoming
edges.

Pf. (by contradiction)

« Suppose that G is a DAG and every node has at least one
incoming edge

« Pick any node v, and follow edges backward from v

- Since v has at least one incoming edge (u, v), we can walk
backward to u

« Since u has at least one incoming edge (x, u), we can walk
backward to x

« Repeat until we visit a node, say w, twice
- Has to happen at least by n+1 steps (What if can’t go n+1 steps?)

« Let C denote the sequence of nodes encountered between
successive visits to w. Cisacycle. =

Creating a Topological Order

With a node with no incoming edges, can create a
topological ordering

Think about a DAG with only one node. What is its
topological ordering?

Only two nodes?

Three nodes?
= What are the DAG, TO possibilities?

What are the possibilities?

Topological Order for Three Nodes
- -

66“&&

Can't add any more edges without creating a cycle.

2/4/09

Directed Acyclic Graphs

Lemma. If Gis a DAG, then G has a topological
ordering.

Pf. (by induction on n)
« Base case: trueifn=1

« Given DAG on n > 1 nodes, find a node v with no incoming
edges

« G-{v}is aDAG, since deleting v cannot create cycles
« By inductive hypothesis, G - { v } has a topological ordering

. gla(ie \gfirst in topological ordering; then append nodes of
-{v

« in topological order. This is valid since v has no incoming
edges. =

Directed Acyclic Graphs

Lemma. If Gis a DAG, then G has a topological
ordering.

Algorithm:

To compute a topological ordering of G:

Find a node v with no incoming edges and order it first

Delete v from G

Recursively compute a topological ordering of G—{v}
and append this order after v

Topological Orderlng Algorithm:
Example

Topological order:

Topological Orderlng Algorithm:
Example

Topological order: v,

Topological Ordering Algorithm:
Example

Topological order: vy, v,

Topological Ordering Algorithm:
Example

Topological order: v, v,, v3

Topological Orderlng Algorithm:
Example

AV

Topological order: v, v,, vs, vy

Topological Orderlng Algorithm:
Example

™

Topological order: v, v,, v3, V4, Vs

Topological Orderlng Algorithm:
Example

Topological order: v, v,, Vs, Vg4, Vs, Vg

Topological Order Runtime

Where are the costs?

To compute a topological ordering of G:

Find a node v with no incoming edges and order it first

Delete v from G

Recursively compute a topological ordering of G—{v}
and append this order after v

Topological Orderlng Algorithm:
Example

(EEIF I

Topological Order Runtime

Where are the costs?

To compute a topological ordering of G:
Find a node v with no incoming edges and order it first
Delete v from G

Recursively compute a topological ordering of G-—(v}
and append this order after v

Find a node without incoming edges and delete it:

O(n)

Repeat on all nodes Can we do better?

> 0(n2)

Topological Sorting Algorithm:
Running Time

Theorem. Find a topological order in O(m + n) time
Pf.
« Maintain the following information:
- count[w] = remaining number of incoming edges
-S = set of remaining nodes with no incoming edges
Initialization: O(m + n) via single scan through graph
Update: to delete v
-remove v from S

—decrement count[w] for all edges from v to w
+ add wto S if ¢ count[w] hits 0
-O(1) peredge =

Feb 4, 2009 csa1

2/4/09

GREEDY ALGORITHMS

Feb 4, 2009 cs21 2

Greedy Algorithms

At each step

« Take as much as you can get
-“local” optimizations

Example of Greedy Algorithm

How do you make change to give out the fewest
coins?

« Local optimum: coin of the highest value, less than the
remaining change owed

while change > 0:
if change >= 25:
print “Quarter”
change -= 25
elif change >= 10:
print “Dime”
change -= 10

Example of Greedy Algorithm

How do you make change to give out the fewest
coins?

Proving Greedy Algorithms Work

Specifically, produce an optimal solution

Two approaches:
« Greedy algorithm stays ahead

-Does better than any other algorithm at each step
« Exchange argument

—Transform any solution into a greedy solution

Greedy algorithm stays ahead

INTERVAL SCHEDULING

Greedy Algorithm Template

Consider jobs (or whatever) in some order
« Decision: what order is best

Take each job provided it's compatible with the ones
already taken

What are options for orders?

What is our goal?
What are we trying to
minimize/maximize?

What is the worst case?

2/4/09

Interval Scheduling

Job j starts at s, and finishes at f,
Two jobs compatible if they don't overlap

Goal: find maximum subset of mutually compatible
jobs
& « Every job is worth
equal money.
« To earn the most
c money > schedule the
d most jobs

Time

Interval Scheduling: Greedy
Algorithms
Earliest start time. Consider jobs in ascending order of start
time s;
« Utilize CPU as soon as possible

Earliest finish time. Consider jobs in ascending order of finish
time f;

« Resource becomes free ASAP

« Maximize time left for other requests

Shortest interval. Consider jobs in ascending order of interval
length f,—s;

Fewest conflicts. For each job, count number of conflicting
jobs ¢;. Schedule in ascending order of conflicts ¢

Interval Scheduling: Greedy
Algorithms

Not optimal when ...

breaks earliest start time

breaks shortest interval

breaks fewest conflicts

Interval Scheduling: Greedy
Algorithm

Consider jobs in increasing order of finish time. Take each job
provided it's compatible with the ones already taken.

jobs Sort jobs by finish times so that f; < f, = ... s f
selected
~A- {3
for j =1ton
if (job j compatible with A)
A =AU {j}
return A

n

Runtime of algorithm?

« Where/what are the costs?

Interval Scheduling

B |
Jobs in order
of finishing
time

2/4/09

Interval Scheduling
- .

H Time
0 1 2 3 4 5 6 7 8 9 10 1
0 1 2 3 4 5 6 7 8 9 10 1
Interval Scheduling
5]
-
1E]
H Time
0 1 2 3 4 5 6 7 8 9 10 1
5
0 1 2 3 4 5 6 7 8 9 10 1
Interval Scheduling
B]
- TE]
S N I
H Time

1E |
AH Time
0 1 2 3 4 5 6 7 8 9 10 1
&]
0 1 2 3 4 5 6 7 8 9 10 1
Interval Scheduling
CHE
-
AH Time
0 1 2 3 4 5 6 7 8 9 10 1
S -
0 1 2 3 4 5 6 7 8 9 10 1
Interval Scheduling
8]
71
- I A
AH Time

Interval Scheduling

B[|

A

Time

2/4/09

Interval Scheduling

B |
|
) 3
H Time
0 1 2 3 4 5 6 7 8 9 10 1

©
m
@

Interval Scheduling

B[|

A

‘ H - Time

o
Ny
w
IS
o
o
~
©
)
S

1)
N
w
IS
@
o
~
®
©
S

Interval Schedullng: Greedy
Algorithm

Consider jobs in increasing order of finish time. Take each job
provided it's compatible with the ones already taken.

jobs Sort jobs by finish times so that f; < f, < ... < f,
selected

SA =

=1 ¥
(job J compat1b1e with A)
A =AU {j}

return A

Implementation. O(n log n)
« Remember job j* that was added last to A
= Job jis compatible with A if s; = .

46

Interval Scheduling: Analysis

Know that the intervals are compatible
« Handle by the if statement

But is it optimal?

« What are we looking for?

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)

« Assume greedy is not optimal, and let's see what happens

« Letiy, iy, ... idenote set of jobs selected by greedy (k jobs)

« Letj, j, ... jm denote set of jobs in the optimal solution (m jobs)
« Same ordering, by finish times

»\Vant to show that k = m

Greedy: i i i

OPT: dt Je i

What can we say about i; and j? f(iy) <= f(j;)

48

