
2/25/09

1

Greedy Algorithms
  Data Compression

Objectives

1 Feb 25, 2009 CS211 1

Looking at various problems with greedy solutions
  Greedy: at each step, make locally optimal choice and

build from there
  How to prove optimal: stays ahead, exchange

Solving problems using greedy solutions
  Shortest path
  Minimal spanning tree
  Applying minimal spanning tree

– Clustering
  Today: data compression

Recap

2 Feb 25, 2009 CS211

Friday:
  Problem Set 3 due
  SSA – Extra credit opportunities

– Added to homework grade
– Answer easy for 1 pt, harder for 3 pts

Monday: Wrap-up Chapter 4, Review
Tue-Fri: Open-book midterm
  Covers chapters 1—4 of book
  Similar to problem set
  Turned into my mailbox in CS office by Friday
  I’ll be at a conference Tuesday through Saturday

– Available by email

The Plan

3 Feb 25, 2009 CS211

DATA COMPRESSION

4 Feb 25, 2009 CS211

Which is Better?

5 Feb 25, 2009 CS211

Large
File

Server Client Internet

Large
File

Server Client Internet

Compressed
File

Large
File

Large
File

Compressed
File

OR

Depends on your metrics, compression time/amount
Case 1 requires
  More network resources
  Less CPU time (server: compress; client: uncompress)

Case 2 requires
  Less network resources
  More CPU time (client and server)

Overall best
  Depends on file size, network speed, compression time/

amount
➡ Bigger files  Case 2

Which is Better?

6 Feb 25, 2009 CS211

2/25/09

2

Computers use bits: 0s and 1s
Need to represent what we (humans) know as 0s and 1s
  Map symbol to unique sequence of 0s and 1s

  Process is called encoding

Let’s say we want to encode characters using 0s and 1s
  Lower case letters (26)

  Space

  Punctuation (, . ? ! ‘)

What is the least number of bits we would we need to
encode them?

Problem: Encoding Symbols

7 Feb 25, 2009 CS211

32 characters to encode
  log2(32) = 5 bits
  Can’t use fewer bits

Examples:
  a  00000
  b  00001

Actual mapping from character to encoding doesn’t
matter

  Easier if have a way to compare …

Problem: Encoding Symbols

8 Feb 25, 2009 CS211

Do we need an average of 5 bits/character always?
What if we could use shorter encodings for

frequently used characters, like a, e, s, t?

Goal. Optimal encoding that takes advantage of
nonuniformity of letter frequencies

A fundamental problem for data compression
  Represent data as compactly as possible

For Long Strings of Characters…

9 Feb 25, 2009 CS211

Used for encoding messages over telegraph
Example of variable-length encoding

How are letters encoded?
How are letters differentiated?

Example: Morse Code

10 Feb 25, 2009 CS211

Used for encoding messages over telegraph
Example of variable-length encoding
How are letters encoded?
  Dots, dashes
  Most frequent letters use shorter sequences

– e  dot; t  dash; a  dot-dash
How are letters differentiated?
  Spaces in between letters

– Otherwise, ambiguous

Morse Code

11 Feb 25, 2009 CS211

Encoding:
  e  dot; t  dash; a  dot-dash

Example: dot-dash-dot-dash could correspond to

Ambiguity in Morse Code

12 Feb 25, 2009 CS211

2/25/09

3

Encoding:
  e  dot; t  dash; a  dot-dash

Example: dot-dash-dot-dash could correspond to
  eta

  aa
  etet
  aet

Ambiguity in Morse Code

13 Feb 25, 2009 CS211

What’s the problem?

Ambiguity caused by encoding of one character is a
prefix of encoding of another

Problem

14 Feb 25, 2009 CS211

Problem: Encoding of one character is a prefix of
encoding of another

Solution: Prefix Codes: map letters to bit strings
such that no encoding is a prefix of any other

  Won’t need artificial devices like spaces to separate
characters

Example encodings:

  Verify that no encoding is a prefix of another
  What is this? 0010000011101	

Prefix Codes

15 Feb 25, 2009 CS211

a: 11 	d: 10	
b: 01 	e: 000	
c: 001	

Problem: Encoding of one character is a prefix of
encoding of another

Solution: Prefix Codes: map letters to bit strings
such that no encoding is a prefix of any other

  Won’t need artificial devices like spaces to separate
characters

Example encodings:

  Verify that no encoding is a prefix of another
  What is this? 0010000011101	

Prefix Codes

16 Feb 25, 2009 CS211

a: 11 	d: 10	
b: 01 	e: 000	
c: 001	

cecab

Better name: prefix-free?

For typical English messages, this set of prefix codes
is not the optimal set

Why?

Optimal Prefix Codes

17 Feb 25, 2009 CS211

a: 11 	d: 10	
b: 01 	e: 000	
c: 001	

For typical English messages, this set of prefix codes
is not the optimal set

Why?
  ‘e’ is more commonly used than other letters and

should therefore have a shorter encoding

Optimal Prefix Codes

18 Feb 25, 2009 CS211

a: 11 	d: 10	
b: 01 	e: 000	
c: 001	

2/25/09

4

Goal: minimize Average number of Bits per Letter
(ABL):

Σx∈Sfrequency of x * length of encoding of x

fx: frequency that letter x occurs
γ(x): encoding of x
  |γ(x)|: length of encoding of x

Minimize ABL = Σx∈Sfx |γ(x)|

Optimal Prefix Codes

19 Feb 25, 2009 CS211

For all characters in our alphabet

ABL = Σx∈Sfx |γ(x)| = ?

Example: Calculating ABL

20 Feb 25, 2009 CS211

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

a: 11	
b: 01	
c: 001	
d: 10	
e: 000	

handout

ABL = Σx∈Sfx |γ(x)|
= .32 * 2 + .25 * 2 + .20 * 3 + .18 * 2 + .05 * 2
= 2.25
What about a fixed-length encoding?
  Is it a prefix code? What is ABL?

Example: Calculating ABL

21 Feb 25, 2009 CS211

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

a: 11	
b: 01	
c: 001	
d: 10	
e: 000	

Consider a fixed-length encoding
  Is it a prefix code?
  What is its ABL?

Example: Calculating ABL

22 Feb 25, 2009 CS211

Consider a fixed-length encoding
  Is it a prefix code?

– Yes. Always look at fixed number of characters
  What is its ABL?

– ABL is the length of the encoding

For 5 characters, ABL is 3
Variable-length prefix code’s ABL (2.25) is an

improvement

Example: Calculating ABL

23 Feb 25, 2009 CS211

a: 11	
b: 01	
c: 001	
d: 10	
e: 000	

Can We Improve On This?

24 Feb 25, 2009 CS211

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

a: 11	
b: 01	
c: 001	
d: 10	
e: 000	

2/25/09

5

ABL = Σx∈Sfx |γ(x)| = 2.23

Can We Improve On This?

25 Feb 25, 2009 CS211

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

a: 11	
b: 01	
c: 001	
d: 10	
e: 000	

Swap these because
c occurs more
frequently than d.
So, give c the
shorter encoding

Given an alphabet and a set of frequencies for the
letters, produce optimal (most efficient) prefix code

  Minimizes average number of bits per letter

Problem Statement

26 Feb 25, 2009 CS211

Brute force
  Search space is complicated  all ways to map letters

to bit strings that adhere to prefix code property

Build towards greedy approach
  Start: representing prefix codes

Approaches to Solution

27 Feb 25, 2009 CS211

Exposes structure better than list of mappings
  Each leaf node is a letter
  Follow path to the letter

– Going left: 0
– Going right: 1

Binary Trees to Represent Prefix Codes

28 Feb 25, 2009 CS211

Are these really prefix codes?
How could we show they weren’t?

Proof. If it weren’t: a letter’s encoding is a prefix of
another letter

  Letter is in the path of another letter
  But, all letters are leaf nodes

– Contradiction

Binary Trees to Represent Prefix Codes

29 Feb 25, 2009 CS211

How do we build the binary tree for this mapping?

Tree Rules:
  Each leaf node is a letter
  Follow path to the letter

– Going left: 0
– Going right: 1

Building the Binary Tree

30 Feb 25, 2009 CS211

a: 11	
b: 01	
c: 001	
d: 10	
e: 000	

2/25/09

6

All letters are in root node
For all letters in node
  If encoding begins with 0, letter belongs in left subtree
  Otherwise (encoding begins with 1), letter belongs in

right subtree
  If last bit of encoding, make the letter a leaf node of

that subtree
  Shift encoding one bit
  Process left and right children

Recursively Generate Tree

31 Feb 25, 2009 CS211

What is the length of a letter’s encoding?

Define our optimal goal in tree terms

Tree Properties

32 Feb 25, 2009 CS211

What is the length of a letter’s encoding?
  Length of path from root to leaf  its depth

Define our optimal goal in tree terms
  ABL = Σx∈Sfx |γ(x)| = Σx∈Sfx depth(x)

Tree Properties

33 Feb 25, 2009 CS211

What do we want our tree to look like for the optimal
solution?

  How many leaves?
  How many internal nodes?

– Think about parent nodes vs child nodes
  When uniform frequencies?

  Nonuniform frequencies?

Tree Properties

34 Feb 25, 2009 CS211

Claim. The binary tree corresponding to the optimal
prefix code is full, i.e., each internal node has two
children.

Proof?

Tree Properties

35 Feb 25, 2009 CS211

Claim. The binary tree T corresponding to the
optimal prefix code is full, i.e., each internal node
has two children.

Proof. Assume that T has an internal node with only
one child

  Without loss of generality, assume left child

Tree Properties

36 Feb 25, 2009 CS211

u

v:
 root of
Subtree

u

v

2/25/09

7

Claim. The binary tree T corresponding to the
optimal prefix code is full, i.e., each internal node
has two children.

Proof. Assume that T has an internal node with only
one child

Tree Properties

37 Feb 25, 2009 CS211

u

v:
 root of
Subtree

u

v

v

Replace u with v  decrease depth  original wasn’t optimal

v:
 root of
Subtree

Two problems to solve:
  Creating the prefix code tree
  Labeling the prefix code tree with alphabet/frequencies

Toward a Solution…

38 Feb 25, 2009 CS211

Process: assume knowledge of optimal solution to
gain insight into finding solution

Assume we knew the tree structure of the optimal
prefix code, how would you label the leaf nodes?

Simplifying: Know Optimal Prefix
Code

39 Feb 25, 2009 CS211

Process: assume knowledge of optimal solution to
gain insight into finding solution

Assume we knew the tree structure of the optimal
prefix code, how would you label the leaf nodes?

Simplifying: Know Optimal Prefix
Code

40 Feb 25, 2009 CS211

In
cr

ea
si

ng

 f
re

qu
en

cy

The binary tree corresponding to the optimal prefix
code is full, i.e., each internal node has two
children

We want to label the leaf nodes of the binary tree
corresponding to the optimal prefix code such that
nodes with greatest depth have least frequency

Combining Our Conclusions

41 Feb 25, 2009 CS211

What does this mean the bottom of
our tree looks like?

The binary tree corresponding to the optimal prefix
code is full, i.e., each internal node has two
children

We want to label the leaf nodes of the binary tree
corresponding to the optimal prefix code such that
nodes with greatest depth have least frequency

Combining Our Conclusions

42 Feb 25, 2009 CS211

What does this mean the bottom of
our tree looks like?

fn-1 fn
2 letters with

least frequency:

Could be flipped

2/25/09

8

Two letters with least frequency are definitely going
to be siblings

  Tie them together
  Their parent is a “meta-letter”

– Frequency is sum of fn + fn-1

How Can We Use This?

43 Feb 25, 2009 CS211

fn + fn-1

fn-1 fn
2 letters with

least frequency:

Could be flipped

Meta-letter:

Constructing an Optimal Prefix Code

44 Feb 25, 2009 CS211

Huffman’s Algorithm:

Replace lowest-freq
letters with meta

letter

Re
du

ce

Bu
ild

 u
p

Create a leaf node for each symbol, labeled by its
frequency, and add to a queue

While there is more than one node in the queue
  Remove the two nodes of lowest frequency
  Create a new internal node with these two nodes as

children and with frequency equal to the sum of the
two nodes' probabilities

  Add the new node to the queue

The remaining node is the tree’s root node

Alternative Description

45 Feb 25, 2009 CS211

Creating the Optimal Prefix Code

46 Feb 25, 2009 CS211

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

Creating the Optimal Prefix Code

47 Feb 25, 2009 CS211

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

e d c a b

de=
.23

Lowest frequencies
Merge

Creating the Optimal Prefix Code

48 Feb 25, 2009 CS211

fa = .32
fb = .25
fc = .20
fde = .23

e d

c

a b

de=
.23

Lowest frequencies
Merge cde=

.43

2/25/09

9

Creating the Optimal Prefix Code

49 Feb 25, 2009 CS211

fa = .32
fb = .25
fcde = .43

e d

c a b
de=
.23

Lowest frequencies
Merge

cde=
.43

ab=
.57

Creating the Optimal Prefix Code

50 Feb 25, 2009 CS211

fab = .57
fcde = .43

e d

c a b
de=
.23

Lowest frequencies
Merge

cde=
.43

ab=
.57

abc
de=1

What are the resulting encodings?
What is the ABL?

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

Creating the Optimal Prefix Code

51 Feb 25, 2009 CS211

e d

c a b
de=
.23

cde=
.43

ab=
.57

abc
de=1 0

0 0

0

1

1 1

1

a: 00	
b: 01	
c: 10	
d: 110	
e: 111	

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

ABL=.32*2 + .25*2 + .20*2 + .18*3 + .05*3
 = .64 + .5 + .4 + .54 + .15
 = 2.23

I chose to build the tree this way.
What if I had switched the order of
the children?

What are the data structures we need?

Implementation

52 Feb 25, 2009 CS211

What are the data structures we need?
  Binary tree for the prefix codes
  Priority queue for choosing the node with lowest

frequency

Where are the costs?

Implementation

53 Feb 25, 2009 CS211

Can we prove that the solution is optimal?

Reminders:
  Problem Set, Friday at 5 p.m. under my door or in my

mailbox
  SSA EC Opportunities

Next Time: Analysis

54 Feb 25, 2009 CS211

