
1/18/10

1

•  Analyzing algorithms
•  Asymptotic running times

•  Results: some preference to journals
 Check out Wiki on Sakai

 Due dates?

1. Understand/identify problem
  Simplify as appropriate

2. Design a solution
3. Analyze

  Correctness, efficiency
  May need to go back to step 2 and try again

4.  Implement
  Within bounds shown in analysis

•  Desirable scaling property: When input size
doubles, algorithm should only slow down by
some constant factor C

•  Def. An algorithm is polynomial time (or
polytime) if the above scaling property holds.

There exists constants c > 0 and d > 0
such that on every input of size N, its
running time is bounded by c Nd steps.

choose C = 2d

•  T(n) is the worst case running time of an
algorithm

• We say that T(n) is O(f(n)) if there exist

constants c > 0 and n0 ≥ 0 such that for all

n ≥ n0, we have T(n) ≤ c · f(n)
sufficiently large n T(n) is bounded above by a

constant multiple of f(n)

T is asymptotically upperbounded by f

c cannot depend on n

“order f(n)”

•  Complementary to upper bound

•  T(n) is Ω(f(n)) if there exist constants ε > 0

and n0 ≥ 0 such that for all n ≥ n0 , we have

T(n) ≥ ε · f(n)

T is asymptotically lowerbounded by f

sufficiently large n

T(n) is bounded below by a
constant multiple of f(n)

ε cannot depend on n

1/18/10

2

 The “right” bound

T(n) is Θ(f(n)) if T(n) is both
O(f(n)) and Ω(f(n))

•  T(n) = 32n2 + 17n + 32

What are the upper bounds, lower
bounds, and tight bound on T(n)?

•  T(n) = 32n2 + 17n + 32
 T(n) is O(n2), O(n3), Ω(n2), Ω(n), and Θ(n2)
 T(n) is not O(n), Ω(n3), Θ(n), or Θ(n3)

•  a0 + a1n + … + adnd is Θ(nd) if ad > 0

•  Polynomial time. Running time is O(nd) for
some constant d that is independent of the
input size n

•  Other examples of polynomial times:
 O(n1/2)
 O(n1.58)
 O(n log n) ≤ O(n2)

➔  Runtime determined by higher-order term

•  Logarithms. logbn = x, where bx=n
 Approximate: To represent n in base-b, need

x+1 digits

N b x
100 10
1000 10
100 2
1000 2

1/18/10

3

•  Logarithms. logbn = x, where bx=n
 Approximate: To represent n in base-b, need

x+1 digits

Describe the running time of an O(log n)
algorithm as the input size grows.

Compare with polynomials.

N b x
100 10 2
1000 10 3
100 2 6.64
1000 2 9.92

•  Logarithms. logbn = x, where bx=n

0

5

10

15

20

25

30

1 10 100 1000 10000 1000000 10000000 100000000

R
un

ni
ng

 T
im

e

Input Size

log2 n

log5 n

log10 n

log2 n

log5 n

log10 n

•  Logarithms. logbn = x, where bx=n

•  Identity:
 Means that

•  O(log a n) = O(log b n) for any constants
a, b > 0

➔  Slowly growing functions

logan = logbn/logba

logan = 1/logba * logbn
Constant!

•  Logarithms. logbn = x, where bx=n

•  O(log a n) = O(log b n) for any constants
a, b > 0

•  For every x > 0, log n = O(nx)

➔  Slowly growing functions

➔  Don’t need to specify the base

➔  Log grows slower than every polynomial

•  Exponentials: functions of the form f(n) = rn
for constant base r
 Faster growth rates as n increases

•  For every r > 1 and every d > 0, nd = O(rn)

➔  Every exponential grows faster than
every polynomial

•  In terms of growth rates ….

Logarithms < Polynomials < Exponentials

1/18/10

4

•  Running time is at most a constant factor
times the size of the input

•  Example. Computing the maximum:
Compute maximum of n numbers a1, …, an

max = a1	
for i = 2 to n 	
 if (ai > max)	
 max = ai	

Constant work for
each input

(does not depend
on n)

•  Merge: Combine two sorted lists A = a1,a2,
…,an with B = b1,b2,…,bn into sorted whole

•  Merge: Combine two sorted lists A = a1,a2,
…,an with B = b1,b2,…,bn into sorted whole

•  Claim. Merging two lists of size n takes O(n)
time
i = 1, j = 1	
while (both lists are nonempty)	
 if (ai ≤ bj)	

	append ai to output list and increment i	
 else (ai ≤ bj)	

	append bj to output list and increment j	

append remainder of nonempty list to output list	

•  Merge: Combine two sorted lists A = a1,a2,
…,an with B = b1,b2,…,bn into sorted whole

•  Claim. Merging two lists of size n takes O(n)
time

•  Proof. After each comparison, the length of
output list increases by 1
i = 1, j = 1	
while (both lists are nonempty)	
 if (ai ≤ bj)	

	append ai to output list and increment i	
 else (ai ≤ bj)	

	append bj to output list and increment j	

append remainder of nonempty list to output list	

•  Also referred to as linearithmic time
•  Arises in divide-and-conquer algorithms

 Splitting input into equal pieces, solve
recursively, combine solutions in linear time

What well-known set of algorithms has
an O(n logn) running time?

1/18/10

5

•  Sorting: Mergesort and heapsort are sorting
algorithms that perform O(n log n)
comparisons

•  Mergesort
1.  Break input into equal-sized pieces
2.  Sorts each half recursively
3.  Merges sorted halves into a sorted list

Talk about the bound on
running time later…

•  Largest empty interval. Given n (not
necessarily ordered) time-stamps x1, …, xn at
which copies of a file arrive at a server, what
is largest interval of time when no copies of
the file arrive?

•  O(n log n) solution
1.  Sort time-stamps
2.  Scan sorted list in order, identifying the

maximum gap between successive time-
stamps

•  Examples? •  Examples:
 Enumerate all pairs of elements
 Two nested loops, each O(n) iterations

•  Closest pair of points. Given a list of n points
in the plane (x1, y1), …, (xn, yn), find the pair
that is closest

•  O(n2) solution. Try all pairs of points
min = (x1 - x2)2 + (y1 - y2)2	
for i = 1 to n 	
 for j = i+1 to n 	
 d = (xi - xj)2 + (yi - yj)2	
 if (d < min)	
 min = d	

don't need to
take square roots

Ω(n2) seems inevitable, but Chapter 5 has an O(n logn) solution

•  Examples?

1/18/10

6

•  Enumerate all triples of elements
•  Set disjointness. Given n sets S1, …, Sn

each of which is a subset of 1, 2, …, n, is
there some pair of these which are disjoint?

•  Enumerate all triples of elements
•  Set disjointness. Given n sets S1, …, Sn

each of which is a subset of 1, 2, …, n, is
there some pair of these which are disjoint?

•  O(n3) solution. For each pair of sets,
determine if they are disjoint

foreach set Si 	
 foreach other set Sj 	
 foreach element p of Si 	
 determine whether p also belongs to Sj	

 if (no element of Si belongs to Sj)	
 report that Si and Sj are disjoint 	

