
1/26/09

1

Data structures

1

Objectives

Jan 26, 2009

What do we need to represent?
How should we represent them?

2

Stable Matching Implementation

Jan 26, 2009

What do we need to represent? How should we
represent them?

What’s the difference between an array and a list?

3

Stable Matching Implementation

Data How represented
Preference lists Array of arrays
Unmatched men List
Who men proposed to Integer
Engagements Array

Jan 26, 2009

Fixed number of elements
What is the runtime of
  The value of the ith item in the list?
  Determining if a value e is in the list?

  Determining if a value e is in the list if the list is sorted?

4

Arrays

Jan 26, 2009

What is the runtime of
  The value of the ith item in the array?

– O(1)  direct access

  Determining if a value e is in the array?
– O(n)  look through all the elements

  Determining if a value e is in the list if the array is
sorted?
– O(log n)  binary search

5

Arrays

Jan 26, 2009

What is the runtime of
  Adding an element to the array?
  Deleting an element from the array?

6

Arrays

Jan 26, 2009

1/26/09

2

Dynamic set of elements
  Linked list
  Doubly linked list

What is the running time to
  Add an element to the list?
  Delete an element from the list?
  Find an element e in the list?
  Find the ith element in the list?

7

Lists

Jan 26, 2009

What is the running time to
  Add an element to the list?

– O(1)

  Delete an element from the list?
– O(1)

  Find an element e in the list?
– O(n)

  Find the ith element in the list?
– O(i)

8

Lists

Jan 26, 2009

What is the running time of converting a list to an
array?
An array to a list?

9

Converting between Lists and
Arrays (and Vice Versa)

Jan 26, 2009

What is the running time of converting a list to an
array?
An array to a list?
  O(n)

10

Converting between Lists and
Arrays (and Vice Versa)

Jan 26, 2009

MORE COMPLEX DATA
STRUCTURES

11 Jan 26, 2009

After overcoming higher-level obstacles, lower-level
implementation details can improve runtime

12

Improving Running Times

1/26/09

3

PRIORITY QUEUES

13 Jan 26, 2009

Elements have priority or key
Each time select an element from the priority queue,
want the one with highest priority
More formally…
  Maintains a set of elements S

– Each element v ∈ S has a value key(v) for its priority
•  Smaller keys represent higher priorities

  Supported operations
– Add, delete elements
– Selection of element with smallest key

14

Priority Queues

Jan 26, 2009

Each process has priority or urgency
Processes do not arrive in priority order
Goal: run process with highest priority

15

Motivating Example:
Scheduling Processes

Jan 26, 2009

How could we use a PQ to sort a list of numbers?

16

Priority Queues for Sorting

Jan 26, 2009

Add elements into PQ with the number’s value as its
priority
Then extract the smallest number until done
  Come out in sorted order

  Any sequence of PQ operations that results in
sorting n numbers must take at least O(n logn) time
 Goal running time for our operations?

17

Priority Queues for Sorting

Jan 26, 2009

Add elements into PQ with the number’s value as its
priority
Then extract the smallest number until done
  Come out in sorted order

  Any sequence of PQ operations that results in
sorting n numbers must take at least O(n logn) time
 Goal running time for our operations? O(log n)

18

Priority Queues for Sorting

Jan 26, 2009

1/26/09

4

List?
  Keep elements in an unordered list
  Pointer to minimum
  How difficult is

– Adding new elements

– Extraction

19

Implementing a Priority Queue

Jan 26, 2009

List?
  Keep elements in an unordered list
  Pointer to minimum
  How difficult is

– Adding new elements: easy

– Extraction: difficult
•  Need to find “new” minimum

20

Implementing a Priority Queue

Jan 26, 2009

Sorted List?
  Min is at the beginning
  Array or Linked list?
  How difficult is

– Adding new elements

– Extraction

21

Implementing a Priority Queue

Jan 26, 2009

Sorted List?
  Min is at the beginning
  How difficult is

– Adding new elements: more difficult (insertion)

– Extraction: easy

22

Implementing a Priority Queue

Jan 26, 2009

All of “known” data structures has one operation that
takes O(n) time

23

Summary

Jan 26, 2009

Combines benefits of sorted array and list
Balanced binary tree

24

Data Structure: Heap

Jan 26, 2009

root
•  Each node has at most 2 children
• Node value is its key

Heap order: each node’s key is at
least as large as its parent’s

Note: not a binary search tree

1/26/09

5

Option 1: Use pointers
  Each node keeps

– Element it stores, key

– 3 pointers: 2 children, parent

Option 2: No pointers
  Requires knowing upper bound on n

  For node at position i
– left child is at 2i

– right child is at 2i+1

25

Implementing a Heap

Jan 26, 2009
If know child’s position, what is the position of parent?

Finding the minimal element?

26

Implementing a Heap: Operations

Jan 26, 2009

Finding the minimal element
  First element
  O(1)

27

Implementing a Heap: Operations

Jan 26, 2009

Adding an element?
  Assume heap has less than N elements

28

Implementing a Heap: Operations

Jan 26, 2009

Adding an element?
  Could add element to last position

– What are possible scenarios?

29

Implementing a Heap: Operations

Jan 26, 2009

Adding an element?
  Could add element to last position

– What are possible scenarios?
•  Heap is no longer balanced

•  Something that is almost a heap but a little off

•  Need a Heapify-up procedure to fix our heap

30

Implementing a Heap: Operations

Jan 26, 2009

1/26/09

6

31

Heapify-Up	

Jan 26, 2009

Heapify-up(H, i):	
	if i > 1 then	
	 	let j=parent(i)=floor(i/2)	
	 	if key[H[i]] < key[H[j]] then	
	 	 	swap array entries H[i] and H[j]	
	 	 	Heapify-up(H, j)	

Heap Position where node added

32

Practice: Heapify-Up

Jan 26, 2009

Add 3

3

33

Practice: Heapify-Up

Jan 26, 2009

Swap with 11

11

3

34

Practice: Heapify-Up

Jan 26, 2009

Swap with 5

11

5

3

Claim. Assuming array H is almost a heap with key
of H[i] too small, Heapify-Up fixes the heap
property in O(log i) time
  Can insert a new element in a heap of n elements in

O(log n) time

35

Heapify-Up

Jan 26, 2009

Claim. Assuming array H is almost a heap with key
of H[i] too small, Heapify-Up fixes the heap
property in O(log i) time
  Can insert a new element in a heap of n elements in

O(log n) time

Proof. By induction
  If i=1 …

36

Heapify-Up

Jan 26, 2009

1/26/09

7

Claim. Assuming array H is almost a heap with key
of H[i] too small, Heapify-Up fixes the heap
property in O(log i) time
  Can insert a new element in a heap of n elements in

O(log n) time

Proof. By induction
  If i=1, is already a heap
  If i>1, …

37

Heapify-Up

Jan 26, 2009

Claim. Assuming array H is almost a heap with key
of H[i] too small, Heapify-Up fixes the heap
property in O(log i) time
  Can insert a new element in a heap of n elements in

O(log n) time

Proof. By induction
  If i=1, is already a heap
  If i>1,

– Swaps are O(1)

– Swaps continue up to root (max)

38

Heapify-Up

Jan 26, 2009

Delete at position i

39

Deleting an Element

Jan 26, 2009

Delete at
position 3

Delete at position i
Not only removes an element
  Messes up heap order
  Leaves a “hole” in the heap

Not as straightforward as Heapify-Up	
  Need to fill-in element where hole was

– Patch hole: move nth element into ith spot

  Then adjust heap to be in order
– At position i because moved nth item up to i

40

Deleting an Element

Jan 26, 2009

41

Deleting an Element

Jan 26, 2009

Moved 21 to where
element was removed

Two possibilities: element w is
  Too big: violation is between it and parent 
Heapify-Up	

  Too small: with one or both children  Heapify-
Down

42

Heapify-Down

Jan 26, 2009

Heapify-down(H, i):	
	Let n = length(H)	
	if 2i > n then	
	 	Terminate with H unchanged	
	else if 2i < n then	
	 	let left=2i and right=2i+1	
	 	let j be index that minimizes	
	 	 	 	key[H[left]] and key[[H[right]]	
	else if 2i = n then	
	 	Let j=2i	

	if key[H[j]] < key[H[i]] then	
	 	swap array entries H[i] and H[j]	
	 	Heapify-down(H, j)	

