
2/9/09

1

Greedy Algorithms

Objectives

1 Feb 9, 2009 CS211 1

At each step
  Decision: Take as much as you can get

– Feasible – satisfy problem’s constraints
– Locally optimal – best local choice among available
feasible choices

– Irrevocable – after decided, no going back

Greedy Algorithms

2 Feb 9, 2009 CS211

3

Scheduling to Minimizing Lateness
Single resource processes one job at a time
Job j requires tj units of processing time and is due at

time dj
If j starts at time sj, it finishes at time fj = sj + tj
Lateness: j = max { 0, fj - dj }
Goal: schedule all jobs to minimize maximum lateness L

= max j
Ex:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14 d2 = 8 d6 = 15 d1 = 6 d4 = 9 d3 = 9

lateness = 0 lateness = 2

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

max lateness = 6

Feb 9, 2009 CS211

Greedy algorithm. Earliest deadline first.

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14 d2 = 8 d6 = 15 d1 = 6 d4 = 9 d3 = 9

max lateness = 1

Sort n jobs by deadline so that d1 ≤ d2 ≤ … ≤ dn	
t = 0	
for j = 1 to n	
 Assign job j to interval [t, t + tj]	
 sj = t	
 fj = t + tj	
 t = t + tj	
output intervals [sj, fj]	

Minimizing Lateness: Greedy
Algorithm

Feb 9, 2009 CS211 What can we say about this algorithm/its results?

5

Minimizing Lateness: No Idle Time
Observation. There exists an optimal schedule with

no idle time

Observation. The greedy schedule has no idle time

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

Feb 9, 2009 CS211

Proving Optimality

Goal: Prove greedy algorithm produces optimal
solution

Approach: Exchange argument
  Start with an optimal schedule Opt
  Gradually modify Opt

– Preserving its optimality
•  How do we measure optimality in this case?

  Transform into a schedule identical to greedy’s
schedule

Feb 9, 2009 6 CS211

2/9/09

2

7

Minimizing Lateness: Inversions
Def. An inversion in schedule S is a pair of jobs i

and j such that:
di < dj but j scheduled before i

Can Greedy’s solution have any inversions?

i j before swap

inversion

Feb 9, 2009 CS211 8

Minimizing Lateness: Inversions
Def. An inversion in schedule S is a pair of jobs i

and j such that:
di < dj but j scheduled before i

Observation. Greedy schedule has no inversions

i j before swap

inversion

CS211 Feb 9, 2009 8 CS211

9

Minimizing Lateness: Inversions
Claim. Swapping two adjacent jobs with the

same deadline does not increase the max
lateness

Pf Sketch. Let  be the lateness before the
swap, and let  ' be it afterwards

  Lateness of other jobs?
  Lateness of i? j?

i j

i j

before swap

after swap

f'j

fi

Feb 9, 2009 CS211 10

Minimizing Lateness: Inversions
Claim. Swapping two adjacent jobs with the same

deadline does not change the max lateness
Pf. Let  be the lateness before the swap, and let  ' be

it afterwards
  Lateness remains the same for all other jobs:

– 'k = k for all k ≠ i, j
  Lateness of i before is fi-di = ti+tj-di

  Lateness of j after is fj’-dj = ti+tj-dj

– But di= dj

i j

i j

before swap

after swap

f'j

fi

CS211 Feb 9, 2009 10 CS211

11

Minimizing Lateness: Inversions
Claim. Swapping two adjacent, inverted jobs

reduces the number of inversions by one and does
not increase the max lateness

  How do we know inversions are adjacent?

Pf Setup. Let  be the lateness before the swap,
and let  ' be it afterwards

  What can we say about i’s, j’s, and other jobs’
lateness?

i j

i j

before swap

after swap

f'j

fi
inversion

By def of inversion, di < dj 12

Minimizing Lateness: Inversions
Claim. Swapping two adjacent, inverted jobs

reduces the number of inversions by one and does
not increase the max lateness.

Pf. Let  be the lateness before the swap, and let  '
be it afterwards

  'k = k for all k ≠ i, j
  'i ≤ i
  If job j is late:

n)(definitio
)(

) time at finishes (
n)(definitio

i

ii

iji

jjj

jidf
fjdf

df





≤

<−≤

−=

−′=′

2/9/09

3

13

Minimizing Lateness: Analysis of
Greedy Algorithm

Theorem. Greedy schedule S is optimal
Pf idea. Convert Opt to Greedy
  Does opt schedule have idle time?
  What if opt schedule has no inversions?

  What if opt schedule has inversions?

Feb 9, 2009 CS211 14

Minimizing Lateness: Analysis of
Greedy Algorithm

Theorem. Greedy schedule S is optimal
Pf. Define S* to be an optimal schedule that has the

fewest number of inversions, and let's see what
happens

  Can assume S* has no idle time

  If S* has no inversions, then S = S*
  If S* has an inversion, let i-j be an adjacent inversion

– swapping i and j does not increase the maximum
lateness and strictly decreases the number of inversions

– this contradicts definition of S* ▪

Feb 9, 2009 CS211

15

Greedy Analysis Strategies
Greedy algorithm stays ahead. Show that after each

step of the greedy algorithm, its solution is at least
as good as any other algorithm's.

Exchange argument. Gradually transform any
solution to the one found by the greedy algorithm
without hurting its quality.

Structural. Discover a simple "structural" bound
asserting that every possible solution must have a
certain value. Then show that your algorithm
always achieves this bound.

Feb 9, 2009 CS211

OPTIMAL CACHING

16 Feb 9, 2009 CS211

On an airplane, where do you keep the stuff that
  You need to use most often/have fastest access to?

– How large is that space?
  Where do you keep the stuff that you want access to

during the flight?

Motivating Caching

17

Memory: smaller capacity but fast access
Disk: larger capacity but slower access

Other examples of caches
  Web browser cache

  DNS cache
  DB cache

Caching

18 Feb 9, 2009 CS211

2/9/09

4

Optimal Offline Caching
Cache with capacity to store k items
Sequence of m item requests d1, d2, …, dm
Cache hit: item already in cache when requested
Cache miss: item not already in cache when requested
  Must bring requested item into cache
  Evict an existing item, if full

Goal. Eviction schedule that minimizes number of
cache misses

Ex: k = 2, initial cache = ab,
 requests: a, b, c, b, c, a, a, b

Optimal eviction schedule: 2 cache misses

a b
a b
c b
c b
c b
a b

a
b
c
b
c
a

a b a
a b b

cache requests

Feb 9, 2009 19 CS211

Caching Perspective
Online vs. offline algorithms
  Offline: full sequence of requests is known a priori
  Online (reality): requests are not known in advance
  Caching is among most fundamental online problems in CS

Feb 9, 2009 20 CS211

Ideas for Eviction Selection Criteria?

21 Feb 9, 2009 CS211

Optimal Offline Caching:
Farthest-In-Future

Evict item in cache that is not requested until farthest
in the future

Example:
  g is requested but not in the cache
  Which element should we eject from the cache?

a	 b	

g a b c e d a b b a c d e a f a d e f g h ... 	

current cache: c	 d	 e	 f	

future queries:

cache miss

Feb 9, 2009 22 CS211

Optimal Offline Caching:
Farthest-In-Future

Evict item in cache that is not requested until farthest
in the future

Theorem. [Bellady, 1960s] FF is optimal eviction
schedule

Pf. Algorithm and theorem are intuitive; proof is
subtle

  Better than least frequently used?

a	 b	

g a b c e d a b b a c d e a f a d e f g h ... 	

current cache: c	 d	 e	 f	

future queries:

cache miss eject this one

Feb 9, 2009 23 CS211

Reduced Eviction Schedules

Def. A reduced schedule is a schedule that only inserts
an item into the cache when that item is requested

  No bringing in an item ahead of time; minimal amt of work
per step

➙ Why might we want/have an unreduced schedule?

a x

an unreduced schedule

c
a d c
a d b
a c b
a x b
a c b
a b c
a b c

a
c
d
a
b
c
a
a

a b

a reduced schedule

c
a b c
a d c
a d c
a d b
a c b
a c b
a c b

a
c
d
a
b
c
a
a

a b c a a b c a

Feb 9, 2009 24 CS211

re
qu

es
t

re
qu

es
t

Bringing in
items before

requested Cache miss

2/9/09

5

Reduced Eviction Schedules
Claim. Given any unreduced schedule S, can transform it into

a reduced schedule S' with no more cache misses
Pf. (by induction on number of unreduced items)
  Suppose S brings d into the cache at time t, without a request
  Let c be the item S evicts when it brings d into the cache

t

t'

d

c
S

d requested at time t'

doesn't enter cache
at requested time

t

t'

d

c
S

d evicted at time t',
before next d request

e

Case 1 Case 2 Feb 9, 2009 25 CS211

evicted evicted

unreduced reduced? unreduced reduced?

Reduced Eviction Schedules
Claim. Given any unreduced schedule S, can transform it into

a reduced schedule S' with no more cache misses
Pf. (by induction on number of unreduced items)
  Case 1: d evicted at time t', before next request for d
  Case 2: d requested at time t' before d is evicted

t

t'

d

c

t

t'

c
S'

d

S

d requested at time t'

t

t'

d

c

t

t'

c
S'

e

S

d evicted at time t',
before next d request

e

Case 1 Case 2 Feb 9, 2009 26 CS211

evicted evicted

unreduced reduced unreduced reduced

Theorem. FF is optimal eviction algorithm
Pf Sketch
  Let SFF be schedule by Farthest-in-Future
  Let S* be optimal schedule

– Fewest possible cache misses
  Transform S* into SFF

– One eviction decision at a time
– Not increasing number of cache misses

Farthest-In-Future: Analysis

27 Feb 9, 2009 CS211

Overall, did well
  More lenient grading because I’m figuring out what I want/

expect

Looking for a little more of your work/thinking
  To understand what you were thinking

– Problem misunderstanding or otherwise
  Comments and/or descriptive variable names

  Some background on your approach, outside of algorithm
– Picture

Brief description of why algorithm has that running time

Feedback on Problem Sets

28 Feb 9, 2009 CS211

