
2/6/09

1

Greedy Algorithms

Objectives

1 Feb 6, 2009 CS211 1

At each step
  Decision: Take as much as you can get

– Feasible – satisfy problem’s constraints

– Locally optimal – best local choice among available
feasible choices

– Irrevocable – after decided, no going back

Greedy Algorithms

2 Feb 6, 2009 CS211

Specifically, produce an optimal solution

Two approaches:
  Greedy algorithm stays ahead

– Does better than any other algorithm at each step

  Exchange argument
– Transform any solution into a greedy solution

Proving Greedy Algorithms Work

3 Feb 6, 2009 CS211 4

Interval Scheduling
Job j starts at sj and finishes at fj
Two jobs compatible if they don't overlap
Goal: find maximum subset of mutually compatible

jobs

Time
0 1 2 3 4 5 6 7 8 9 10 11

f
g

h

e

a
b

c
d

• Every job is worth
equal money.

• To earn the most
money  schedule the
most jobs

Feb 6, 2009 CS211

Consider jobs (or whatever) in some order
  Decision: what order is best

Take each job provided it's compatible with the ones
already taken

Greedy Algorithm Template

5 Feb 6, 2009 CS211 6

Interval Scheduling: Greedy
Algorithms

Earliest start time. Consider jobs in ascending order of start
time sj

  Utilize CPU as soon as possible

Earliest finish time. Consider jobs in ascending order of finish
time fj

  Resource becomes free ASAP
  Maximize time left for other requests

Shortest interval. Consider jobs in ascending order of interval
length fj – sj

Fewest conflicts. For each job, count number of conflicting
jobs cj. Schedule in ascending order of conflicts cj

Feb 6, 2009 CS211

2/6/09

2

7

Interval Scheduling: Greedy
Algorithms

breaks earliest start time

breaks shortest interval

breaks fewest conflicts

Not optimal when …

Feb 6, 2009 CS211 8

Consider jobs in increasing order of finish time. Take each job
provided it's compatible with the ones already taken.

Implementation. O(n log n)
  Remember job j* that was added last to A
  Job j is compatible with A if sj ≥ fj*

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn	

A = {}	
for j = 1 to n 	
 if (job j compatible with A)	
 A = A ∪ {j}	
return A 	

jobs
selected

Interval Scheduling: Greedy
Algorithm

Feb 6, 2009 8 CS211

Interval Scheduling

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

0 1 2 3 4 5 6 7 8 9 10 11

Jobs in order
of finishing

time

Feb 6, 2009 9 CS211

Interval Scheduling: Analysis

Know that the intervals are compatible
  Handle by the if statement

But is it optimal?
  What are we looking for?

Feb 6, 2009 10 CS211

11

Interval Scheduling: Analysis
Theorem. Greedy algorithm is optimal.
Proof Setup: (by contradiction)
  Assume greedy is not optimal, and let's see what happens
  Let i1, i2, ... ik denote set of jobs selected by greedy (k jobs)
  Let j1, j2, ... jm denote set of jobs in the optimal solution (m jobs)
  Same ordering, by finish times
 Want to show that k = m

j1 j2 jr

i1 i1 ir Greedy:

OPT:

What can we say about i1 and j1? f(i1) <= f(j1)
Feb 6, 2009 CS211 12

Lemma. For all indices r ≤ k, f(ir) ≤ f(jr)
Pf. (by induction)
  Base case: Since Greedy’s first job has the first finishing time, we know

that f(i1) ≤ f(j1)
  Want to show that Greedy “stays ahead” of Optimal

– Each interval finishes at least as soon as Optimal’s
  Induction hypothesis: assume that f(ir) <= f(jr)
  For that not to be true for r+1, Greedy would need to fall behind

Interval Scheduling: Analysis

12 Feb 6, 2009 CS211

j1 j2 jr

i1 i1 ir Greedy:

OPT:

ir+1

. . . jr+1

why not replace job ir+1 with job jr+1?

job ir+1 finishes after jr+1

2/6/09

3

13

Interval Scheduling: Analysis
Theorem. Greedy algorithm is optimal.
Pf. (by contradiction)
  Assume Greedy is not optimal (i.e., m > k)
  We already showed that for all indices r ≤ k, f(ir) ≤ f(jr)
  Since m > k, there is a request jk+1 in Optimal

– Starts after jk ends  after ik ends

  So, Greedy could also add jk
– Contradiction because now m == k

j1 j2 jr

i1 i1 ir ik

jk+1

Greedy:

OPT: jk

Feb 6, 2009 13 CS211

Why wouldn’t
Greedy have jk+1?

All requests were known to scheduling algorithm
  Online algorithms: make decisions without knowledge

of future input

Each job was worth the same amount
  What if jobs had different values?

– E.g., scaled with size

Single resource requested
  Rejected requests that didn’t fit

Problem Assumptions

14 Feb 6, 2009 CS211

INTERVAL PARTITIONING

15

Lecture j starts at sj and finishes at fj
Goal: find minimum number of classrooms to

schedule all lectures so that no two occur at the
same time in the same room.

Ex: 4 classrooms, 10 lectures

Interval Partitioning

16 Feb 6, 2009 CS211
Time

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

What are our constraints? Can we use fewer rooms?

Lecture j starts at sj and finishes at fj
Goal: find minimum number of classrooms to

schedule all lectures so that no two occur at the
same time in the same room.

Alternative Ex: This schedule uses only 3.

Interval Partitioning

17 Feb 6, 2009 CS211

Time 9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

a, b, c all contain 9:30

Interval Partitioning: Lower Bound on
Optimal Solution

Def. The depth of a set of open intervals is the
maximum number that contain any given time

Key observation. Number of classrooms needed
≥ depth

Ex: Depth of schedule = 3 ⇒ schedule is
optimal

Feb 6, 2009 18 CS211

2/6/09

4

Interval Partitioning

Q. Does there always exist a schedule equal to
depth of intervals?

  Can we make decisions locally to get a global
optimum?

  Or are there long-range obstacles that require more
resources?

Consider lectures in increasing order of start time:
assign lecture to any compatible classroom

Runtime/Implementation?

Interval Partitioning: Greedy Algorithm

20 Feb 6, 2009 CS211

Sort intervals by starting time so that s1 ≤ s2 ≤ ... ≤ sn	
d = 0	
for j = 1 to n 	
 if (lecture j is compatible with some classroom k)	
 schedule lecture j in classroom k	
 else	
 allocate a new classroom d + 1	
 schedule lecture j in classroom d + 1	
 d = d + 1 	

number of allocated classrooms

Consider lectures in increasing order of start time:
assign lecture to any compatible classroom

Implementation. O(n log n)
  For each classroom k, maintain finish time of last job added

  Keep the classrooms in a priority queue

Interval Partitioning: Greedy Algorithm

21 Feb 6, 2009 CS211

Sort intervals by starting time so that s1 ≤ s2 ≤ ... ≤ sn	
d = 0	
for j = 1 to n 	
 if (lecture j is compatible with some classroom k)	
 schedule lecture j in classroom k	
 else	
 allocate a new classroom d + 1	
 schedule lecture j in classroom d + 1	
 d = d + 1 	

number of allocated classrooms

Observation. Greedy algorithm never schedules two
incompatible lectures in the same classroom

Theorem. Greedy algorithm is optimal

Pf Intuition
  When do we add more classrooms?

  When would we add the d+1 classroom?

Interval Partitioning: Greedy
Analysis

22 Feb 6, 2009 CS211

Observation. Greedy algorithm never schedules two incompatible
lectures in the same classroom

Theorem. Greedy algorithm is optimal
Pf.
  Let d = number of classrooms that the greedy algorithm allocates

  Classroom d is opened because we needed to schedule a job, say j,
that is incompatible with all d-1 other classrooms

  Since we sorted by start time, all these incompatibilities are caused by
lectures that start no later than sj

  Thus, we have d lectures overlapping at time sj + ε

  d is the depth of the set of lectures

Interval Partitioning: Greedy
Analysis

23 Feb 6, 2009 CS211

SCHEDULING TO MINIMIZE
LATENESS

Exchange argument

24

2/6/09

5

25

Scheduling to Minimizing Lateness
Single resource processes one job at a time
Job j requires tj units of processing time and is due at

time dj
If j starts at time sj, it finishes at time fj = sj + tj
Lateness: j = max { 0, fj - dj }
Goal: schedule all jobs to minimize maximum lateness L

= max j
Ex:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14 d2 = 8 d6 = 15 d1 = 6 d4 = 9 d3 = 9

lateness = 0 lateness = 2

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

max lateness = 6

Feb 6, 2009 CS211 26

Minimizing Lateness: Greedy
Algorithms

Greedy template. Consider jobs in some order.

What do we want to optimize?
What order?
  Intuition of order?

  Counter examples for order being optimal?

Feb 6, 2009 CS211

27

Greedy template. Consider jobs in some order.
  [Shortest processing time first] Consider jobs in

ascending order of processing time tj.

  [Smallest slack] Consider jobs in ascending order of
slack dj - tj.

Counter example

Counter example

dj

tj

100

1

1

10

10

2

dj

tj

2

1

1

10

10

2

Minimizing Lateness: Greedy
Algorithms

Feb 6, 2009 CS211

Greedy algorithm. Earliest deadline first.

28

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14 d2 = 8 d6 = 15 d1 = 6 d4 = 9 d3 = 9

max lateness = 1

Sort n jobs by deadline so that d1 ≤ d2 ≤ … ≤ dn	
t = 0	
for j = 1 to n	
 Assign job j to interval [t, t + tj]	
 sj = t	
 fj = t + tj	
 t = t + tj	
output intervals [sj, fj]	

Minimizing Lateness: Greedy
Algorithm

Feb 6, 2009 CS211 What can we say about this algorithm/its results?

29

Minimizing Lateness: No Idle Time
Observation. There exists an optimal schedule with

no idle time

Observation. The greedy schedule has no idle time

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

Feb 6, 2009 CS211

Proving Optimality

Goal: Prove greedy algorithm produces optimal
solution

Approach: Exchange argument
  Start with an optimal schedule Opt
  Gradually modify Opt

– Preserving its optimality

  Transform into a schedule identical to greedy’s
schedule

2/6/09

6

31

Minimizing Lateness: Inversions
Def. An inversion in schedule S is a pair of jobs i

and j such that:
di < dj but j scheduled before i

Can Greedy’s solution have any inversions?

i j before swap

inversion

Feb 6, 2009 CS211 32

Minimizing Lateness: Inversions
Def. An inversion in schedule S is a pair of jobs i

and j such that:
di < dj but j scheduled before i

Observation. Greedy schedule has no inversions

i j before swap

inversion

Feb 6, 2009 CS211

33

Minimizing Lateness: Inversions
Claim. Swapping two adjacent jobs with the

same deadline does not increase the max
lateness

Pf Sketch. Let  be the lateness before the
swap, and let  ' be it afterwards

  Lateness of other jobs?
  Lateness of i? j?

i j

i j

before swap

after swap

f'j

fi

Feb 6, 2009 CS211

