Objectives

Dynamic Programming
~ Knapsacks
» RNA Substructure

Mar 14, 2011 CSCI211 - Sprenkle

Knapsack Problem

Given n objects and a "knapsack"

Item i weighs w; > 0 kilograms and has value
v;>0

» Example: jobs require w; time

Knapsack has capacity of W kilograms

» Example: W is time interval that resource is

aVaiIabIe ltem Value Weight
1 1 1
Goal: fill knapsack so as
Il knap N
to maximize total value SRR =
4 22 6
Mar 14, 2011 CSCI211 - Sprenkle 5 28 Il

Towards a Recurrence...

What do we know about the knapsack with
respect to item i?

Mar 14, 2011 CSCI211 - Sprenkle

Towards a Recurrence...

What do we know about the knapsack with
respect to item i?
» Either select item i or not
~ If don'’t select
Pick optimum solution of remaining items
» Otherwise
What happens?
How does problem change?

Mar 14, 2011 CSCI211 - Sprenkle 4

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1,

ey

» Case 1: OPT does not select item i
OPT selects bestof {1, 2, ..., i-1}

» Case 2: OPT selects item i
Accepting item i does not immediately imply that
we will have to reject other items
» No known conflicts
Without knowing what other items were selected

before i, we don't even know if we have enough

room for i
=Need more sub-problems!
Mar 14, 2011 CSCI211 - Sprenkle 5

Dynamic Programming:
Adding a New Variable
Def. OPT(i, w) = max profit subset of items 1,
..., i with weight limit w
» Case 1: OPT does not select item i
OPT selects bestof { 1, 2, ..., i-1 } using weight
limit w
» Case 2: OPT selects item i
new weight limit = w — w;
OPT selects bestof { 1, 2, ..., i-1 } using new
weight limit, w — w;

0 if i=0
OPT(i,w)={OPT(i-1,w) if wi>w

Mar 14, - max{ OPT(i=1,w), v;+ OPT(i-1,w=-w,)} otherwise ¢

3/14/11

Knapsack Problem: Bottom-Up
Fill up an n-by-W array

Input: N, Wy,e,Wy, ViymsVy

for w=0 to W
M[@, W] = @

fori=1toN # for all items
for w=1toW # for all possible weights
if wg > w : # item’s weight is more than available
M[i, Wl = M[i-1, wl
else
M[i, w] = max{ M[i-1, wl, v; + M[i-1, w-w;] }

return M[n, W]

Mar 14, 2011 CSCI211 - Sprenkle 7

Knapsack Algorithm

1 0 1 2 3 4 5 6 7 8 9 10 1

¢ o|lofofOfOfO]|]O]O]|]O|O|O]|O
{1} 0
n+l (1,2} S
{1,2,3} 0
{1,2,3,4} 0
{1,2,3,4,5} | O
OPT: 1 1 1
Value= 2 6 2
3 18 5,
4 22 6
5 28 7
Mar 14, 2011 CSCI211 - Sprenkle)

Knapsack Algorithm

[0 0 0 0 0 0 0 0 0 0 0 0
{1} O 111111 [1]1]1][1]1

per |_t12) |0
{1,2,3} 0
{1,2,3,4} 0
{1,2,3,45} | 0

OPT: 1 1 1

Value= 2 6 2

3 18 5

4 22 6

5 28 7

Mar 14, 2011 CSCI211 - Sprenkle v

Knapsack Algorithm

2 3 4) 6 7 8 9
[0 0 0 0 0 0 0 0 0 0 0 0
{1} Ol 1|11t [1{1][1[1]1][1]1
N+l {1,2} o1 (6|7 |7 |7 |7 |7 |7 |7 |7]|7
{1,2,3} 0
{1,2,3,4} 0
{1,2,3,4,5} | O
OPT: 1 1 1
Value= 2 6 2
3 18 5
4 22 6
5 28 7
Mar 14, 2011 CSCI211 - Sprenkle U

Knapsack Algorithm

I
w
)
2
¥
>

2 3 4 5 6 7 8 9
¢ ojlofofofO]JO]|J]O]J]O|[O|O|O]|O
{1} o111 111]1 111 1[1]1 1
N+l {1,2} o1 (6|7 (7|7 |7 |7 |7 |7|7]|7
{1,2,3} 0|1 |6 |7 |7]|18]|19]|24|25|25|25]|25
{1,2,3,4} 0
{1,2,3,4,5} | O
Item Value Weight
OPT: 1 1 1
Value= 2 6 2
3 18 5
4 22 6
Mar 14, 2011 CSCI211 - Sprenkle 5 % U T

Knapsack Algorithm

2 3 4 5 6 7 8 9
i} oflo|ofofofof[of|o|o]o|o]o
{1} o111]1]1]1]1
nel {1,2} o|l1|e|7|7|7|7|7|7|7|7]|7
{1,2,3} o 1|6 |7 |7]|18|19]|24|25|25|25|25
{1,234y |o| 1|6 | 7|7 |18]|22|24]|28|29]29]40
£1,2,3,4,5) | 0

ltem Value Weight

OPT: 1 1 1
Value= 2 6 2
B 18 5
4 22 6
5 28 7

Mar 14, 2011 CSCI211 - Sprenkle

Knapsack Algorithm

Knapsack Algorithm

1.2 3 4 5 6 7 8 9
o o|lofo|Jo|o|Jo|o|fo|o|o]|oO]|oO
{1} [111]1 111] 1 111 1
N+l {1,2} o1 |6 |7 |7 |7 |7 |7 |7 |7]|7|7
{1,2,3} 0|16 |7 |7 |18|19|24|25|25|25|25
{1,2,3,4} 0|1 |6 |7 |7 |18]|22|24|28|29|29]|40
{1,2,345} (0 | 1|6 | 7|7 |18[|22|28|29|34]|35|40
OPT: 1 1 1
Value= 2 6 2
3 18 5
4 22 6
5 28 7
Mar 14, 2011 CSCI211 - Sprenkle TS
‘ How do we figure out the optimal solution?
Input: N, Wy,—,Wy, Vi,.., Wy
for w=10 to W
M[O, w] = 0
fori=1toN # for all items
for w=1toW # for all possible weights
if wg > w : # item’s weight is more than available
M[i, w]l = M[i-1, w]
else
M[i, w] = max{ M[i-1, wl, v; + M[i-1, w-w] }
return M[n, W]
Mar 14, 2011 CSCI211 - Sprenkle 15

1 2 3 4 5 6 7 8 £l
[0 0 0 0 0 0 0 0 0 0 0 0
{1} [1111 1 1111 111
nrl (1,2} ol1]el|z]z]7z|7]7][7|7]|7]7
{1,2,3} 0 1 6 |7 |7 |18]|19|24|25|25|25]|25
{1,2,3,4} 0 1 6 | 7|7 |18]|22|24|28|29|29]40
{1,2,3,4,5} | 0 1 6 |7 |7 |18]|22[28|29|34|35]|40
OPT:40=22+ 18 1 1 1
Value={4, 3} 2 6 2
3 18 5
4 22 6
5 28 7
Mar 14, 2011 CSCI211 - Sprenkle L3
Analyzing Solution
Costs?
Input: N, Wy,—,Wy, Vi,—,Vy
for w=0to W oWw)

MO, w] = @

fori=1toN # for all items
forw=1toW # for all possible weights O(NW)
if w, > w : # item’s weight is more than available
M[i, wl = M[i-1, w]
else
M[i, w] = max{ M[i-1, wl, v; + M[i-1, w-w;] 3}

return M[n, W]

Mar 14, 2011 CSCI211 - Sprenkle

Knapsack Problem: Running Time

Running time. ©(n W)

» Not polynomial in input size!

» "Pseudo-polynomial”

Reasonably efficient when W is reasonably small
» Decision version of Knapsack is NP-complete
[Chapter 8]

Knapsack approximation algorithm. There
exists a polynomial algorithm that produces a
feasible solution that has value within 0.01%
of optimum. [Section 11.8]

Mar 14, 2011 CSCI211 - Sprenkle 17

Review: Dynamic Programming
What is the key idea?

What is our approach to solve a problem
using dynamic programming?

Mar 14, 2011 CSCI211 - Sprenkle

3/14/11

Review: Dynamic Programming

What is the key idea?
» Memoization: remember the answer for
subproblems
Improves running time
Tradeoff in space
What is our approach to solve a problem using
dynamic programming?
» Figure out what we’re optimizing

> FI% re out how to break the problem into
problems

» Figure out how to compute solution from
subproblems

» Define the recurrence relation between the problems

Mar 14, 2011 CSCI211 - Sprenkle 19

What was the Key to Solving each of
these Problems?
Weighted interval scheduling

Segmented least squares

Knapsack

Mar 14, 2011 CSCI211 - Sprenkle 20

What was the Key to Solving each of

these Problems?
Weighted interval scheduling
» Binary decision: job was in or wasn’t
» Know conflicts> reduce problem
Segmented least squares
» Knew last point was definitely in one segment
Could reduce
> Multlwa)(decision—> many possibilities for
segment starting point
Knapsack

» If select an item, reduce available size by item’s
size

Find opt solution for smaller weight, remaining
items

Mar 14, 2011 CSCI211 - Sprenkle 21

Applications of Dynamic Programming to Computational Biology

RNA SECONDARY
STRUCTURE

Mar 14, 2011 CSCI211 - Sprenkle 22

RNA Secondary Structure

RNA. String B = b,b,...b, over alphabet { A, C, G, U }
Secondary structure. RNA is single-stranded so it
tends to loop back and form base pairs with itself

~ This structure is essential for understanding behavior of a

molecule.
c—a
7 A
A\ /A
Ex: GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA ‘I‘ lIJ /G - c\
c G=—U—A—A G
/ |
G
u A—U—uU A
N |) ~c—
A C—G—C—U G
| Ve
c G—C—G—A—G -~ C
N 7 | |
G
A u
|
complementary base pairs: A-U, C-G G
Mar 14, 2011 CSCI211 - Sprenkle 23

RNA Secondary Structure:
Which Pairs Can We Combine?

A set of pairs S = { (b;, b)) } that satisfy:

» [Watson-Crick] S is a matching and each pair in
S is a Watson-Crick complement: A-U, U-A, C-
G, orG-C
» [No sharp turns] The ends of each pair are
separated by at least 4 intervening bases. If (b,
b)e S, theni<j-4
[Non crossing] If (b;, b;) and (by, b)) are two
pairs in S, then we cannot have | < k <j<l

Mar 14, 2011 CSCI211 - Sprenkle 24

3/14/11

Examples of RNA Secondary Structure

G
G—G, G—G,

s N & N6 s N
C /U \ / C /U
C G C G C u
[| | 1>l
A u A u A G
| | | | | |
u A u A u A

[—l [l |]

AUGUGGCCAU AUGGGGCAU AGUUGGCCAU
— —
ok sharp turn crossing
Mar 14, 2011 CSCI211 - Sprenkle 25

RNA Secondary Structure

A set of pairs S = { (b;, b)) } that satisfy:
» [Watson-Crick] S is a matching and each pair in
is a Watson-Crick complement: A-U, U-A, C-
G, orG-C
» [No sharp turns] The ends of each pair are
separated by at least 4 intervening bases. If (b;,
b)€E S, theni<j-4
» [Non-crossing] If (b, b;) and (by, b) are two
pairs in S, then we canhot have'i <k <j <1
Free energy. Usual hypothesis is that an RNA
molecule will form the’secondary structure with the

Optimum total free ener: qy. 4\‘ approximate by number of base pairs

Goal. Given an RNA molecule B =b,b,...b, find a

secondary structure S that maximize$ the nlimber
of base pairs

Mar 14, 2011 CSCI211 - Sprenkle 26

Toward a Solution: First Attempt

OPT(j) = maximum number of base pairs in a
secondary structure of the substring b,b,...b,

b:

I i

Towards a recurrence relation...
» What are the possibilities?
What does b; match with?
» What are the subproblems?

Mar 14, 2011 CSCI211 - Sprenkle 27

Toward a Solution: First Attempt

OPT(j) = maximum number of base pairs in a
secondary structure of the substring b;b,...b;

match b, and b,

Relation:
» If jisn’t involved in a pair
» If j is involved, results in two sub-problems

Mar 14, 2011 CSCI211 - Sprenkle 28

Toward a Solution: First Attempt

OPT(j) = maximum number of base pairs in a
secondary structure of the substring bb,...b,

match b, and b,

Relation: I t i

» If jisn’t involved in a pair: Opt(j-1)

» If j is involved, results in two sub-problems
Finding secondary structure in: b,b,...b,; <"

Finding secondary structure in: by,4by,...b, 1 S

Doesn't match our subproblem (doesn’t start at I)

Need to start anywhere
Mar 14, 2011 CSCI211 - Sprenkle 29

Dynamic Programming Over Intervals

OPT(i, j) = maximum number of base pairs in
a secondary structure of the substring
bibM...bJ-

» What are the different cases?

» How does it affect the recurrence relation?

For example, when will we know that there isn’t a
pair?

Mar 14, 2011 CSCI211 - Sprenkle 30

3/14/11

Dynamic Programming Over Intervals

OPT(i, j) = maximum number of base pairs in

a secondary structure of the substring

bibi+1 e bj

~Case 1. Ifizj-4
OPT(i, j) = 0 by no-sharp turns condition

~ Case 2. Base b; is not involved in a pair
OPT(i, j) = OPT(i, j-1)

» Case 3. Base b; pairs with b for some i<t<j-4
non-crossing constraint decouples resulting sub-
problems
OPT(j, j) = 1 + max,{ OPT(i, t-1) + OPT(t+1, j-1))

take max over t such thati =< t <j-4 and

Mar 14, 2011 pairing CSCI211 b, and b, are Watson-Crick complements 1

Recurrence Relation
Putting it all together...

j not in a base pair in optimal solution

»0pt(i,j) = max(Opt(i,j-1),
max,.C 1+0pt(1'.,t—l)/tOpt(t+1,j—1))

jin a base pair in optimal solution
Adds | pair
Look at remaining letters

Mar 14, 2011 CSCI211 - Sprenkle 32

3/14/11

RNA Algorithm

What order to solve the sub-problems? ¢
» Do shortest intervals first Left endpoint 3
5
Initialize M[i,j] = 0 for i >= j-4 A ¢
i
RNACb, ,-.,b,): 200 Z
for k = 5, 6, .., n-1 (distances) | /
fori=1, 2, .., n-k (starp) 67 89
j=1+k (end) i
MLi, j1 = max(M[i,j-11,
max,CL+M[1, t-11+M[t+1,3-11)) t

return M[1, n] Right endpoint

Costs?

Mar 14, 2011 CSCI211 - Sprenkle 33

RNA Algorithm

What order to solve the sub-problems?
» Do shortest intervals first

Left endpoint

Distance

® N & w»

Initialize M[i,j] = 0 for i >= j-4 ‘; g g 9
i
RNACby, ., by 2[0
for k =5, 6, ., n-1 (distances) I 7
for i =1, 2, .., n-k (stary) 6 7 89
j=i+k (g j
MLi, j1 = max(M[i,j-1],
max,(1+M[i, t-1]+M[t+1,3-11) D t

return M[1, n]

Running time: O(n?3)

Mar 14, 2011

Right endpoint

CSCI211 - Sprenkle 34

Dynamic Programming Summary

Recipe
» Characterize structure of problem
» Recursively define value of optimal solution
» Compute value of optimal solution
» Construct optimal solution from computed information

Dynamic programming techniques
» Binary choice: weighted interval scheduling
» Multi-way choice: segmented least squares
~ Adding a new variable: knapsack
» Dynamic programming over intervals: RNA secondary
structure

Top-down vs. bottom-up: different people have different
intuitions

Mar 14, 2011 CSCI211 - Sprenkle 35

This Week

Wed: Wiki
» Chapter 5.5; 6, up to and including 6.4
»Jan Cuny’s visit
3 p.m. — reception to meet Jan
4 p.m. — Broadening Participation in Computing
Friday: Problem Set 7 due
» Looks short but lots of parts
» Exam 2 will be handed out

Mar 14, 2011 CSCI211 - Sprenkle

36

