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•  Dynamic Programming 
 Shortest Path 

•  Problem: Given a directed graph G = (V, E), 
with edge weights cvw, find shortest path from 
node s to node t 

•  Allows modeling other phenomena 
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allow negative weights 

•  Dijkstra.  Can fail if negative edge costs 
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Shortest path from s t? 

•  Dijkstra.  Can fail if negative edge costs 

•  Re-weighting.  Adding a constant to every 
edge weight can fail 
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Why? 
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•  If some path from s to t contains a negative 
cost cycle, there does not exist a shortest s-t 
path 

•  Otherwise, there exists one that is simple 
(i.e., does not repeat nodes) 

s t 
W 

c(W) < 0 

 -6 

 7 

 -4 

Why? 

What does this mean about number of edges in path? 

•  If some path from s to t contains a negative 
cost cycle, there does not exist a shortest s-t 
path 

•  Otherwise, there exists one that is simple 
(i.e., does not repeat nodes) 
 Path has at most n-1 edges, where n is # of 

nodes in graph 
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•  OPT(i,v): minimum cost of a v-t path P using 
at most i edges 
 This formulation eases later discussion 

•  Original problem is OPT(n-1, s) 
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Path P 

Break down into subproblems based on i and v 

•  Def.  OPT(i, v) = minimum cost of a v-t path 
P using at most i edges 
 Case 1:  P uses at most i-1 edges 

•  OPT(i, v) = OPT(i-1, v) 
 Case 2:  P uses exactly i edges 

•  if (v, w) is first edge, then OPT uses (v, w), and 
then selects best w-t path using at most i-1 edges 

•  Cost: cost of chosen edge 
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•  Shortest path is M[n-1, s] 

Shortest-Path(G, t) 	
   n = number of nodes in G	
   foreach node v ∈ V	
      M[0, v] = ∞    # infinite cost to reach all nodes	
   M[0, t] = 0    # no cost to reach destination from dest	

   for i = 1 to n-1	
      foreach node v ∈ V	
         M[i, v] = M[i-1, v]  # at most cost of 1 less	
         foreach edge (v, w) ∈ E	
             M[i, v] = min(M[i, v], M[i-1, w] + cvw )	

Starting node 

Analysis? 

Cost of 
chosen edge 

0 1 2 3 4 5 
t 0 0 0 0 0 0 
a ∞ 
b ∞ 
c ∞ 
d ∞ 
e ∞ 

What edges do we need to look at for each node? 

Number of edges in path 

0 1 2 3 4 5 
t 0 0 0 0 0 0 
a ∞ 
b ∞ 
c ∞ 
d ∞ 
e ∞ 

Edges 
b , t 

d, e 
b, t 

a, t 
c, t 

0 1 2 3 4 5 
t 0 0 0 0 0 0 
a ∞ -3 
b ∞ ∞ 
c ∞ 3 
d ∞ 4 
e ∞ 2 

Edges 
b , t 

d, e 
b, t 

a, t 
c, t 
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0 1 2 3 4 5 
t 0 0 0 0 0 0 
a ∞ -3 -3 
b ∞ ∞ 0 
c ∞ 3 3 
d ∞ 4 3 
e ∞ 2 0 

Edges 
b , t 

d, e 
b, t 

a, t 
c, t 

0 1 2 3 4 5 
t 0 0 0 0 0 0 
a ∞ -3 -3 -4 
b ∞ ∞ 0 -2 
c ∞ 3 3 3 
d ∞ 4 3 2 
e ∞ 2 0 0 

Edges 
b , t 

d, e 
b, t 

a, t 
c, t 

0 1 2 3 4 5 
t 0 0 0 0 0 0 
a ∞ -3 -3 -4 -6 
b ∞ ∞ 0 -2 -2 
c ∞ 3 3 3 3 
d ∞ 4 3 2 0 
e ∞ 2 0 0 0 

Edges 
b , t 

d, e 
b, t 

a, t 
c, t 

0 1 2 3 4 5 
t 0 0 0 0 0 0 
a ∞ -3 -3 -4 -6 -6 
b ∞ ∞ 0 -2 -2 -2 
c ∞ 3 3 3 3 3 
d ∞ 4 3 2 0 0 
e ∞ 2 0 0 0 0 

Edges 
b , t 

d, e 
b, t 

a, t 
c, t 

•  Shortest path is M[n-1, s] 

Shortest-Path(G, t) 	
   n = number of nodes in G	
   foreach node v ∈ V	
      M[0, v] = ∞    # infinite cost to reach all nodes	
   M[0, t] = 0    # no cost to reach destination from dest	

   for i = 1 to n-1	
      foreach node v ∈ V	
         M[i, v] = M[i-1, v]  # at most cost of 1 less	
         foreach edge (v, w) ∈ E	
             M[i, v] = min(M[i, v], M[i-1, w] + cvw )	

O(n3) 

• What could we do to improve the algorithm’s 
runtime/space requirements? 
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•  Practical improvements 
 Maintain only one array M[v] = shortest v-t path that we 

have found so far 
 No need to check edges of the form (v, w) unless M[w] 

changed in previous iteration 
•  Theorem.  Throughout algorithm, M[v] is length of 

some v-t path, and after i rounds of updates, the 
value M[v] is no larger than the length of shortest v-
t path using ≤ i edges. 

•  Overall impact 
 Memory:  O(m + n) 
 Running time:  O(mn) worst case but substantially faster 

in practice 

Push-Based-Shortest-Path(G, s, t) 	
   foreach node v ∈ V 	
      M[v] = ∞	
      successor[v] = φ 	

   M[t] = 0	
   for i = 1 to n-1 	
      foreach node w ∈ V 	
         if M[w] has been updated in previous iteration 	
            foreach node v such that (v, w) ∈ E 	
               if M[v] > M[w] + cvw	
                  M[v] = M[w] + cvw 	
                  successor[v] = w	

      If no M[w] value changed in iteration i, stop.	

•  Application of shortest-path problem: routers 
in communication network find most efficient 
path to destination 

•  Model of communication network 
 Nodes ≈ routers 
 Edge ≈ direct communication link 
 Cost of edge ≈ delay on link 

•  Possible solution: Dijkstra’s algorithm 

Naturally nonnegative 

•  Model of communication network 
 Nodes ≈ routers 
 Edge ≈ direct communication link 
 Cost of edge ≈ delay on link 

•  Dijkstra's algorithm.  Requires global 
information of network 

•  Bellman-Ford.  Uses only local knowledge of 
neighboring nodes 
 Distribute algorithm: each node v maintains its 

value M[v] 
•  Updates its value after getting neighbor’s values: 

 minw∈V (cvw + M[w]) 

Naturally nonnegative but 
Bellman-Ford used anyway! 

•  Each router maintains a vector of shortest path 
lengths to every other node (distances) and the first 
hop on each path (directions) 

•  Algorithm:  each router performs n separate 
computations, one for each potential destination 
node 

•  Synchronization.  We don't expect routers to run in 
lockstep. The order in which each foreach loop 
executes in not important. Moreover, algorithm still 
converges even if updates are asynchronous. 

•  "Routing by rumor.” 
•  Used in many routers, e.g.  RIP, Xerox XNS RIP, 

Novell's IPX RIP, … 
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•  Original algorithm developed for one central 
machine; costs known in advance, didn’t 
change 

•  Edge costs may change during algorithm (or 
fail completely) 
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•  Link state routing 
 Each router stores the entire path 

•  Not just the distance and the first hop 
 Based on Dijkstra's algorithm 
 Avoids "counting-to-infinity" problem and related 

difficulties 
 Requires significantly more storage 

•  Ex.  Border Gateway Protocol (BGP), Open 
Shortest Path First (OSPF) 

•  Keep reading Chapter 6 
•  Exam 2 due Friday 

 Wednesday: work day 
 No “outside resources” 
 OK: Your notes, my slides, book 


