
3/14/11	

1	

Objectives

•  Dynamic Programming
 Knapsacks
 RNA Substructure

Mar 14, 2011 1 CSCI211 - Sprenkle

Knapsack Problem

•  Given n objects and a "knapsack"
•  Item i weighs wi > 0 kilograms and has value

vi > 0
 Example: jobs require wi time

•  Knapsack has capacity of W kilograms
 Example: W is time interval that resource is

available

•  Greedy: repeatedly add item with maximum
ratio vi / wi.

•  Ex: { 5, 2, 1 } achieves only value = 35 ⇒
greedy not optimal.

Mar 14, 2011 CSCI211 - Sprenkle 2

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2
W = 11 Goal: fill knapsack so as

to maximize total value	

Towards a Recurrence…

• What do we know about the knapsack with
respect to item i?

Mar 14, 2011 CSCI211 - Sprenkle 3

Towards a Recurrence…

• What do we know about the knapsack with
respect to item i?
 Either select item i or not
 If don’t select

•  Pick optimum solution of remaining items
 Otherwise

•  What happens?
•  How does problem change?

Mar 14, 2011 CSCI211 - Sprenkle 4

Dynamic Programming: False Start

•  Def. OPT(i) = max profit subset of items 1,
…, i
 Case 1: OPT does not select item i

•  OPT selects best of { 1, 2, …, i-1 }
 Case 2: OPT selects item i

•  Accepting item i does not immediately imply that
we will have to reject other items
 No known conflicts

•  Without knowing what other items were selected
before i, we don't even know if we have enough
room for i

Mar 14, 2011 CSCI211 - Sprenkle 5
➡ Need more sub-problems!	

Dynamic Programming:
Adding a New Variable
•  Def. OPT(i, w) = max profit subset of items 1,
…, i with weight limit w
 Case 1: OPT does not select item i

•  OPT selects best of { 1, 2, …, i-1 } using weight
limit w

 Case 2: OPT selects item i
•  new weight limit = w – wi

•  OPT selects best of { 1, 2, …, i–1 } using new
weight limit, w – wi

Mar 14, 2011 CSCI211 - Sprenkle 6

!

OPT(i, w) =

0 if i = 0
OPT(i "1, w) if wi > w
max OPT(i "1, w), vi + OPT(i "1, w"wi){ } otherwise

$
%

&
%

3/14/11	

2	

Knapsack Problem: Bottom-Up

•  Fill up an n-by-W array

Mar 14, 2011 CSCI211 - Sprenkle 7

	
Input: N, w1,…,wN, v1,…,vN	
	
for w = 0 to W	
 M[0, w] = 0	
	
for i = 1 to N # for all items 	
 for w = 1 to W # for all possible weights	
 if wi > w : # item’s weight is more than available	
 M[i, w] = M[i-1, w]	
 else	
 M[i, w] = max{ M[i-1, w], vi + M[i-1, w-wi] }	
	
return M[n, W]	

Knapsack Algorithm

Mar 14, 2011 CSCI211 - Sprenkle 8

n + 1	

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2

φ

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

2

0

3

0

4

0

5

0

6

0

7

0

8

0

9

0

10

0

11

0

W + 1	

W = 11

OPT:	

Value=	

i	
w	

Knapsack Algorithm

Mar 14, 2011 CSCI211 - Sprenkle 9

n + 1	

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2

φ

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

2

0

1

3

0

1

4

0

1

5

0

1

6

0

1

7

0

1

8

0

1

9

0

1

10

0

1

11

0

1

W + 1	

W = 11

OPT:	

Value=	

i = 1	

Knapsack Algorithm

Mar 14, 2011 CSCI211 - Sprenkle 10

n + 1	

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2

φ

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1
1

2

0

6
1

3

0

7
1

4

0

7
1

5

0

7
1

6

0

7
1

7

0

7
1

8

0

7
1

9

0

7
1

10

0

7
1

11

0

7
1

W + 1	

W = 11

OPT:	

Value=	

i = 2	

Knapsack Algorithm

Mar 14, 2011 CSCI211 - Sprenkle 11

n + 1	

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2

φ

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1
1

1

2

0

6
6

1

3

0

7
7

1

4

0

7
7

1

5

0

7
18

1

6

0

7
19

1

7

0

7
24

1

8

0

7
25

1

9

0

7
25

1

10

0

7
25

1

11

0

7
25

1

W + 1	

W = 11

OPT:	

Value=	

i = 3	

Knapsack Algorithm

Mar 14, 2011 CSCI211 - Sprenkle 12

n + 1	

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2

φ

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1
1
1

1

2

0

6
6
6

1

3

0

7
7
7

1

4

0

7
7
7

1

5

0

7
18
18

1

6

0

7
19
22

1

7

0

7
24
24

1

8

0

7
25
28

1

9

0

7
25
29

1

10

0

7
25
29

1

11

0

7
25
40

1

W + 1	

W = 11

OPT:	

Value=	

i = 4	

3/14/11	

3	

Knapsack Algorithm

Mar 14, 2011 CSCI211 - Sprenkle 13

n + 1	

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2

φ

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1
1
1

1

1

2

0

6
6
6

1

6

3

0

7
7
7

1

7

4

0

7
7
7

1

7

5

0

7
18
18

1

18

6

0

7
19
22

1

22

7

0

7
24
24

1

28

8

0

7
25
28

1

29

9

0

7
25
29

1

34

10

0

7
25
29

1

35

11

0

7
25
40

1

40

W + 1	

W = 11

OPT:	

Value=	

i = 5	

Knapsack Algorithm

Mar 14, 2011 CSCI211 - Sprenkle 14

n + 1	

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2

φ

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1
1
1

1

1

2

0

6
6
6

1

6

3

0

7
7
7

1

7

4

0

7
7
7

1

7

5

0

7
18
18

1

18

6

0

7
19
22

1

22

7

0

7
24
24

1

28

8

0

7
25
28

1

29

9

0

7
25
29

1

34

10

0

7
25
29

1

35

11

0

7
25
40

1

40

W + 1	

W = 11

OPT: 40 = 22 + 18	

Value={4, 3}	

Analyzing Solution

Mar 14, 2011 CSCI211 - Sprenkle 15

	
Input: N, w1,…,wN, v1,…,vN	
	
for w = 0 to W	
 M[0, w] = 0	
	
for i = 1 to N # for all items 	
 for w = 1 to W # for all possible weights	
 if wi > w : # item’s weight is more than available	
 M[i, w] = M[i-1, w]	
 else	
 M[i, w] = max{ M[i-1, w], vi + M[i-1, w-wi] }	
	
return M[n, W]	

How do we figure out the optimal solution?	

Costs?	

Analyzing Solution

•  Costs?

Mar 14, 2011 CSCI211 - Sprenkle 16

	
Input: N, w1,…,wN, v1,…,vN	
	
for w = 0 to W	
 M[0, w] = 0	
	
for i = 1 to N # for all items 	
 for w = 1 to W # for all possible weights	
 if wi > w : # item’s weight is more than available	
 M[i, w] = M[i-1, w]	
 else	
 M[i, w] = max{ M[i-1, w], vi + M[i-1, w-wi] }	
	
return M[n, W]	

O(W)	

O(N W)	

Knapsack Problem: Running Time

•  Running time. Θ(n W)
 Not polynomial in input size!
 "Pseudo-polynomial”

•  Reasonably efficient when W is reasonably small
 Decision version of Knapsack is NP-complete

[Chapter 8]
•  Knapsack approximation algorithm. There

exists a polynomial algorithm that produces a
feasible solution that has value within 0.01%
of optimum. [Section 11.8]

Mar 14, 2011 CSCI211 - Sprenkle 17

Review: Dynamic Programming

• What is the key idea?

• What is our approach to solve a problem
using dynamic programming?

Mar 14, 2011 CSCI211 - Sprenkle 18

3/14/11	

4	

Review: Dynamic Programming
•  What is the key idea?

 Memoization: remember the answer for
subproblems
•  Improves running time
•  Tradeoff in space

•  What is our approach to solve a problem using
dynamic programming?
 Figure out what we’re optimizing
 Figure out how to break the problem into

subproblems
 Figure out how to compute solution from

subproblems
 Define the recurrence relation between the problems

Mar 14, 2011 CSCI211 - Sprenkle 19

What was the Key to Solving each of
these Problems?
• Weighted interval scheduling

•  Segmented least squares

•  Knapsack

Mar 14, 2011 CSCI211 - Sprenkle 20

What was the Key to Solving each of
these Problems?
• Weighted interval scheduling

 Binary decision: job was in or wasn’t
 Know conflicts reduce problem

•  Segmented least squares
 Knew last point was definitely in one segment

•  Could reduce
 Multiway decision many possibilities for

segment starting point
•  Knapsack

 If select an item, reduce available size by item’s
size
•  Find opt solution for smaller weight, remaining

items

Mar 14, 2011 CSCI211 - Sprenkle 21

RNA SECONDARY
STRUCTURE

Applications of Dynamic Programming to Computational Biology

Mar 14, 2011 CSCI211 - Sprenkle 22

RNA Secondary Structure
•  RNA. String B = b1b2…bn over alphabet { A, C, G, U }
•  Secondary structure. RNA is single-stranded so it

tends to loop back and form base pairs with itself
  This structure is essential for understanding behavior of a

molecule.

Mar 14, 2011 CSCI211 - Sprenkle 23

G	

U	

C	

A	

G	

A	

A	

G	

C	

G	

A	

U	

G	

A	

U	

U	

A	

G	

A	

C	

 A	

A	

C	

U	

G	

A	

G	

U	

C	

A	

U	

C	

G	

G	

G	

C	

C	

G	

Ex: GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA	

complementary base pairs: A-U, C-G	

RNA Secondary Structure:
Which Pairs Can We Combine?

•  A set of pairs S = { (bi, bj) } that satisfy:
 [Watson-Crick] S is a matching and each pair in

S is a Watson-Crick complement: A-U, U-A, C-
G, or G-C

 [No sharp turns] The ends of each pair are
separated by at least 4 intervening bases. If (bi,
bj) ∈ S, then i < j - 4

 [Non-crossing] If (bi, bj) and (bk, bl) are two
pairs in S, then we cannot have i < k < j < l

Mar 14, 2011 CSCI211 - Sprenkle 24

3/14/11	

5	

Examples of RNA Secondary Structure

Mar 14, 2011 CSCI211 - Sprenkle 25

C	

G	

 G	

C	

A	

G	

U	

U	

U	

 A	

A	

 U	

 G	

 U	

 G	

 G	

 C	

 C	

 A	

 U	

ok	

G	

 G	

C	

A	

G	

U	

U	

 A	

A	

 U	

 G	

 G	

 G	

 C	

 A	

 U	

sharp turn	

G	

G	

≤4	

C	

G	

 G	

C	

A	

U	

G	

U	

U	

 A	

A	

 G	

 U	

 U	

 G	

 G	

 C	

 C	

 A	

 U	

crossing	

base pair	

RNA Secondary Structure
•  A set of pairs S = { (bi, bj) } that satisfy:

 [Watson-Crick] S is a matching and each pair in
S is a Watson-Crick complement: A-U, U-A, C-
G, or G-C

 [No sharp turns] The ends of each pair are
separated by at least 4 intervening bases. If (bi, bj) ∈ S, then i < j - 4

 [Non-crossing] If (bi, bj) and (bk, bl) are two
pairs in S, then we cannot have i < k < j < l

•  Free energy. Usual hypothesis is that an RNA
molecule will form the secondary structure with the
optimum total free energy.

•  Goal. Given an RNA molecule B = b1b2…bn, find a
secondary structure S that maximizes the number
of base pairs

Mar 14, 2011 CSCI211 - Sprenkle 26

approximate by number of base pairs

Toward a Solution: First Attempt

•  OPT(j) = maximum number of base pairs in a
secondary structure of the substring b1b2…bj

•  Towards a recurrence relation…
 What are the possibilities?

•  What does bj match with?
 What are the subproblems?

Mar 14, 2011 CSCI211 - Sprenkle 27

1	

 j	

b:	

Toward a Solution: First Attempt

•  OPT(j) = maximum number of base pairs in a
secondary structure of the substring b1b2…bj

•  Relation:
 If j isn’t involved in a pair
 If j is involved, results in two sub-problems

Mar 14, 2011 CSCI211 - Sprenkle 28

1	

 t	

 j	

match bt and bj	

Toward a Solution: First Attempt

•  OPT(j) = maximum number of base pairs in a
secondary structure of the substring b1b2…bj

•  Relation:
 If j isn’t involved in a pair: Opt(j-1)
 If j is involved, results in two sub-problems

•  Finding secondary structure in: b1b2…bt-1
•  Finding secondary structure in: bt+1bt+2…bj-1

Mar 14, 2011 CSCI211 - Sprenkle 29

1	

 t	

 j	

match bt and bj	

OPT(t-1)	

need more
subproblems	

Doesn’t match our subproblem (doesn’t start at 1)	

Need to start anywhere	

Dynamic Programming Over Intervals

•  OPT(i, j) = maximum number of base pairs in
a secondary structure of the substring
 bibi+1…bj
 What are the different cases?
 How does it affect the recurrence relation?

•  For example, when will we know that there isn’t a
pair?

Mar 14, 2011 CSCI211 - Sprenkle 30

3/14/11	

6	

Dynamic Programming Over Intervals
•  OPT(i, j) = maximum number of base pairs in

a secondary structure of the substring
bibi+1…bj
 Case 1. If i ≥ j - 4

•  OPT(i, j) = 0 by no-sharp turns condition
 Case 2. Base bj is not involved in a pair

•  OPT(i, j) = OPT(i, j-1)
 Case 3. Base bj pairs with bt for some i ≤ t < j - 4

•  non-crossing constraint decouples resulting sub-
problems

•  OPT(i, j) = 1 + maxt { OPT(i, t-1) + OPT(t+1, j-1) }

Mar 14, 2011 CSCI211 - Sprenkle 31
take max over t such that i ≤ t < j-4 and���
bt and bj are Watson-Crick complements	

pairing	

Recurrence Relation

•  Putting it all together…

 Opt(i,j) = max(Opt(i,j-1), 	 		
maxt(1+Opt(i,t-1)+Opt(t+1,j-1)))

Mar 14, 2011 CSCI211 - Sprenkle 32

j not in a base pair in optimal solution	

j in a base pair in optimal solution	

Adds 1 pair	

Look at remaining letters	

RNA Algorithm

• What order to solve the sub-problems?
 Do shortest intervals first

Mar 14, 2011 CSCI211 - Sprenkle 33

0	

 0	

 0	

0	

 0	

0	

2	

3	

4	

1	

i	

6	

 7	

 8	

 9	

j	

Right endpoint	

5	

6	

7	

8	

D
is

ta
nc

e	

(distances)	

(start)	

(end)	

Costs?	

	
Initialize M[i,j] = 0 for i >= j-4	
	
RNA(b1,…,bn):	
 for k = 5, 6, …, n-1	
 for i = 1, 2, …, n-k	
 	 j = i + k	

	 M[i, j] = max(M[i,j-1],	
	 	 maxt(1+M[i,t-1]+M[t+1,j-1]))	

	
 return M[1, n]	

(distances)	

(start)	

(end)	

Left endpoint	

RNA Algorithm

• What order to solve the sub-problems?
 Do shortest intervals first

•  Running time: O(n3)
Mar 14, 2011 CSCI211 - Sprenkle 34

0	

 0	

 0	

0	

 0	

0	

2	

3	

4	

1	

i	

6	

 7	

 8	

 9	

j	

5	

6	

7	

8	

D
is

ta
nc

e	

	
Initialize M[i,j] = 0 for i >= j-4	
	
RNA(b1,…,bn):	
 for k = 5, 6, …, n-1	
 for i = 1, 2, …, n-k	
 	 j = i + k	

	 M[i, j] = max(M[i,j-1],	
	 	 maxt(1+M[i,t-1]+M[t+1,j-1]))	

	
 return M[1, n]	

(distances)	

(start)	

(end)	

Right endpoint	

Left endpoint	

Dynamic Programming Summary
•  Recipe

  Characterize structure of problem
  Recursively define value of optimal solution
  Compute value of optimal solution
  Construct optimal solution from computed information

•  Dynamic programming techniques
  Binary choice: weighted interval scheduling
  Multi-way choice: segmented least squares
  Adding a new variable: knapsack
  Dynamic programming over intervals: RNA secondary

structure

•  Top-down vs. bottom-up: different people have different
intuitions

Mar 14, 2011 CSCI211 - Sprenkle 35

This Week

• Wed: Wiki
 Chapter 5.5; 6, up to and including 6.4
 Jan Cuny’s visit

•  3 p.m. – reception to meet Jan
•  4 p.m. – Broadening Participation in Computing

•  Friday: Problem Set 7 due
 Looks short but lots of parts
 Exam 2 will be handed out

Mar 14, 2011 CSCI211 - Sprenkle 36

