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Algorithm analysis 
Data structures 
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Objectives 

Jan 21, 2009 

How do we define efficiency in algorithms? 
  In what “case” do we analyze algorithms? 

What term do we care about in algorithms?  Why? 
What is the definition of “big O”? 
What is the symbol for the asymptotic lower bound? 
What is the symbol for the asymptotic tight bound? 
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Review 
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Review:  
Worst-Case Polynomial-Time 

Def.  An algorithm is efficient if its running time is 
polynomial 
Justification:  It really works in practice! 
  In practice, poly-time algorithms that people develop almost 

always have low constants and low exponents 
  Although 6.02 × 1023 × N20 is technically poly-time, it would 

be useless in practice 
Exceptions. 
  Some poly-time algorithms do have high constants and/or 

exponents, and are useless in practice 
  Some exponential-time (or worse) algorithms are widely 

used because the worst-case instances seem to be rare 
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Review: Running Times 
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•  Huge difference from polynomial to not polynomial 
•  Differences in runtime matter more as input size increases 

Polynomial 
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Review: Running Times 
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As input size increases, n3 dominates large constant * n2 

 Care about running time as input size approaches infinity 
 Only care about highest-order term 
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asymptotic 

T(n) is the worst case running time of an algorithm 
We say that T(n) is O(f(n)) 
  “order f(n)” 

if there exist constants c > 0 and n0 ≥ 0 such that for 
all n ≥ n0  
  i.e., sufficiently large n, c cannot depend on n 

we have T(n) ≤ c · f(n) 
  i.e., T(n) is bounded above by a constant multiple of 

f(n) 

 T is asymptotically upperbounded by f 
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Review: Asymptotic Order of Growth 
Upper Bounds 
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T(n) = pn2 + qn + r 
  p, q, r are positive constants 

For all n ≥ 1,  
T(n) = pn2 + qn + r ≤ pn2 + qn2 + rn2 = (p+q+r) n2 
 T(n) ≤ cn2, where c = p+q+r 
 T(n) = O(n2) 
Also correct to say that T(n) = O(n3) 
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Example: Upper Bound 
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Review: Asymptotic Order of 
Growth: Lower Bounds 

Complementary to upper bound. 
T(n) is Ω(f(n)) 
if there exist constants ε > 0 and n0 ≥ 0 such that for 
all n ≥ n0  
  i.e., sufficiently large n, ε cannot depend on n 

we have T(n) ≥ ε · f(n) 
  i.e., T(n) is bounded below by a constant multiple of 

f(n) 

 T is asymptotically lowerbounded by f 
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T(n) = pn2 + qn + r 
  p, q, r are positive constants 

Idea: Need to deflate terms rather than inflate 
For all n ≥ 0,  
T(n) = pn2 + qn + r ≥ pn2 
 T(n) ≥ cn2, where ε = p 
 T(n) = Ω(n2) 
Also correct to say that T(n) = Ω(n) 
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Example: Lower Bound 
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Asymptotic Order of Growth 
Tight bounds.  T(n) is Θ(f(n)) if T(n) is both O(f(n)) 
and Ω(f(n)) 
  The “right” bound 
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Properties 
Transitivity 
  If f = O(g) and g = O(h) then f = O(h) 
  If f = Ω(g) and g = Ω(h) then f = Ω(h)  
  If f = Θ(g) and g = Θ(h) then f = Θ(h) 

Additivity 
  If f = O(h) and g = O(h) then f + g = O(h) 
  If f = Ω(h) and g = Ω(h) then f + g = Ω(h) 
  If f = Θ(h) and g = O(h) then f + g = Θ(h) 

Proofs in book 
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Transitivity 

If f = O(g) and g = O(h) then f = O(h) 
If f = Ω(g) and g = Ω(h) then f = Ω(h)  
If f = Θ(g) and g = Θ(h) then f = Θ(h) Proofs in book 
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If g asymptotically upperbounds f 
And h asymptotically upperbounds g 
Then h assymptotically upperbounds h 
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Additivity 
  If f = O(h) and g = O(h) then f + g = O(h) 
  If f = Ω(h) and g = Ω(h) then f + g = Ω(h) 
  If f = Θ(h) and g = O(h) then f + g = Θ(h) 

Sketch proof for O 
  f ≤ c · h   (by defn of O) 

  g ≤ d · h 
  f + g ≤ c · h + d · h = (c + d) h = c’ · h 

Proofs in book 
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ASYMPTOTIC BOUNDS FOR 
CLASSES OF ALGORITHMS 
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Asymptotic Bounds for Polynomials 
a0 + a1n + … + adnd  is Θ(nd) if ad > 0  
  Asymptotic runtime determined by higher-order term 

Other examples of polynomial times: 
  O(n1/2) 
  O(n1.58) 
  O(n log n) ≤ O(n2) 
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Asymptotic Bounds for Logarithms 
Logarithms.  logbn = x, where bx=n 
  x is number of digits to represent n in base-b 

representation 

What does this mean for the running time of an 
algorithm that is O(log n)? 
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Asymptotic Bounds for Logarithms 
Logarithms.  logbn = x, where bx=n 
  x is number of digits to represent n in base-b 

representation 
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Asymptotic Bounds for Logarithms 
Logarithms:  logbn = x, where bx=n 
  x is number of digits to represent n in base-b 

representation 
➔ Slowly growing functions 

O(log a n) = O(log b n) for any constants a, b > 0 
  Don’t need to specify the base 

For every x > 0,  log n = O(nx) 
  Log grows slower than every polynomial 

Jan 21, 2009 
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Asymptotic Bounds for Exponentials 
Exponentials: functions of the form f(n) = rn for 
constant base r 
  Faster growth rates as n increases 

For every r > 1 and every d > 0,  nd = O(rn) 
 Every exponential grows faster than every polynomial 
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In terms of growth rates …. 
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Summary of Asymptotic Bounds 
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In terms of growth rates …. 
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Summary of Asymptotic Bounds 
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Logarithms < Polynomials < Exponentials 

A SURVEY OF COMMON 
RUNNING TIMES 

22 

23 

Linear Time:  O(n) 
Running time is at most a constant factor times the 
size of the input 
  Example: process the input in one pass, doing 

constant amount of work 

  Online algorithms 
  Data stream algorithms 
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Linear Time:  O(n) 
Computing the maximum: Compute maximum of n 
numbers a1, …, an 

max = a1	
for i = 2 to n 	
   if (ai > max)	
      max = ai	

Constant work  
for each input 

(does not depend on n) 

Jan 21, 2009 
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Linear Time:  O(n) 
Example. Merge.  Combine two sorted lists               
A = a1,a2,…,an with B = b1,b2,…,bn  into sorted 
whole 
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Linear Time:  O(n) 
Example. Merge.  Combine two sorted lists A = 
a1,a2,…,an with B = b1,b2,…,bn  into sorted whole 

Claim.  Merging two lists of size n takes O(n) time 

i = 1, j = 1	
while (both lists are nonempty)	
   if (ai ≤ bj)	

	append ai to output list and increment i	
   else (ai > bj)	

	append bj to output list and increment j	

append remainder of nonempty list to output list	

Jan 21, 2009 
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Linear Time:  O(n) 
Example. Merge.  Combine two sorted lists A = 
a1,a2,…,an with B = b1,b2,…,bn  into sorted whole 
Claim.  Merging two lists of size n takes O(n) time 
Proof.  After each comparison, the length of output 
list increases by 1 

i = 1, j = 1	
while (both lists are nonempty)	
   if (ai ≤ bj)	

	append ai to output list and increment i	
   else (ai ≤ bj)	

	append bj to output list and increment j	

append remainder of nonempty list to output list	
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Also referred to as linearithmic time 
Arises in divide-and-conquer algorithms 
  Splitting input into equal pieces, solve recursively, 

combine solutions in linear time 
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O(n log n) Time 

What well-known set of algorithms has 
an O(n logn) running time? 

Jan 21, 2009 

Sorting.  Mergesort and heapsort are sorting 
algorithms that perform O(n log n) comparisons 
  Break input into equal-sized pieces 

– Running time of this step? 

  Sorts each half recursively 
  Merges sorted halves into a sorted list 

– Running time of this step? 
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O(n log n) Time Example 
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Largest empty interval.  Given n time-stamps          
x1, …, xn at which copies of a file arrive at a server, 
what is largest interval of time when no copies of the 
file arrive? 

O(n log n) solution 
  Sort time-stamps 
  Scan sorted list in order, identifying the maximum gap 

between successive time-stamps 

30 

O(n log n) Time Example 

Jan 21, 2009 
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Examples? 
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Quadratic Time:  O(n2) 
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Examples: 
  Enumerate all pairs of elements 
  Nested loops (n iterations) 
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Quadratic Time:  O(n2) 
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Closest pair of points.  Given a list of n points in the 
plane (x1, y1), …, (xn, yn), find the pair that is closest 

O(n2) solution.  Try all pairs of points 
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Quadratic Time:  O(n2) 

min = (x1 - x2)2 + (y1 - y2)2	
for i = 1 to n {	
   for j = i+1 to n {	
      d = (xi - xj)2 + (yi - yj)2	
      if (d < min)	
         min = d	
   }	
}	

don't need to 
take square roots 

Ω(n2) seems inevitable, but Chapter 5 has an O(n logn) solution 
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Cubic Time:  O(n3) 
Examples? 

Jan 21, 2009 
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Cubic Time:  O(n3) 
Enumerate all triples of elements 
Set disjointness.  Given n sets S1, …, Sn each of 
which is a subset of 1, 2, …, n, is there some pair of 
these which are disjoint? 
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Cubic Time:  O(n3) 
Enumerate all triples of elements 
Set disjointness.  Given n sets S1, …, Sn each of 
which is a subset of 1, 2, …, n, is there some pair of 
these which are disjoint? 
O(n3) solution.  For each pair of sets, determine if 
they are disjoint 

foreach set Si 	
   foreach other set Sj 	
      foreach element p of Si 	
         determine whether p also belongs to Sj	

      if (no element of Si belongs to Sj)	
         report that Si and Sj are disjoint  	

Jan 21, 2009 
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Polynomial Time:  O(nk) Time 
Independent set of size k.  Given a graph, are there 
k nodes such that no two are joined by an edge? 
  k is a constant 
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If to get all pairs, the algorithm is O(n2), what is an 
example of an O(nk) algorithm? 
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Polynomial Time:  O(nk) Time 
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If to get all pairs, the algorithm is O(n2), what is an 
example of an O(nk) algorithm? 
  All subsets of size k 
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Polynomial Time:  O(nk) Time 
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Polynomial Time:  O(nk) Time 
Independent set of size k.  Given a graph, are there 
k nodes such that no two are joined by an edge? 
  k is a constant 
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Polynomial Time:  O(nk) Time 
Independent set of size k.  Given a graph, are there 
k nodes such that no two are joined by an edge? 
  k is a constant 

O(nk) solution. 
  Enumerate all subsets of k nodes 
  Check whether S is an independent set = O(k2). 
  Number of k element subsets =  
  O(k2 nk / k!) = O(nk). 

foreach subset S of k nodes 	
   check whether S in an independent set	
   if (S is an independent set)	
      report S is an independent set  	
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n (n−1) (n− 2) (n− k +1)
k (k −1) (k − 2) (2) (1)

 ≤  n
k

k!

poly-time for k=17, 
but not practical Jan 21, 2009 42 

Exponential Time 
Independent set.  Given a graph, what is maximum 
size of an independent set? 
O(n2 2n) solution.  Enumerate all subsets 

S* = φ	
foreach subset S of nodes 	
   check whether S in an independent set	
   if (S is largest independent set seen so far)	

	S* = S	

Jan 21, 2009 
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Sublinear time 
Know any algorithms that take O(log n) time? 
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O(log n) Time  
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Example: Binary search 

Often requires some pre-processing or data structure 
that allows cheaper “querying” than n  time 
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O(log n) Time  
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