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Data structures 
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Objectives 
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What do we need to represent? 
How should we represent them? 
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Stable Matching Implementation 
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What do we need to represent? How should we 
represent them? 

What’s the difference between an array and a list? 
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Stable Matching Implementation 

Data How represented 
Preference lists Array of arrays 
Unmatched men List 
Who men proposed to Integer 
Engagements Array 
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Fixed number of elements 
What is the runtime of 
  The value of the ith item in the list? 
  Determining if a value e is in the list? 

  Determining if a value e is in the list if the list is sorted? 
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Arrays 
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What is the runtime of 
  The value of the ith item in the array? 

– O(1)  direct access 

  Determining if a value e is in the array? 
– O(n)  look through all the elements 

  Determining if a value e is in the list if the array is 
sorted? 
– O(log n)  binary search 
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Arrays 
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What is the runtime of 
  Adding an element to the array? 
  Deleting an element from the array?  
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Arrays 
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Dynamic set of elements 
  Linked list 
  Doubly linked list 

What is the running time to 
  Add an element to the list? 
  Delete an element from the list? 
  Find an element e in the list? 
  Find the ith element in the list? 
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Lists 
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What is the running time to 
  Add an element to the list? 

– O(1) 

  Delete an element from the list? 
– O(1) 

  Find an element e in the list? 
– O(n) 

  Find the ith element in the list? 
– O(i) 
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Lists 
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What is the running time of converting a list to an 
array? 
An array to a list? 
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Converting between Lists and 
Arrays (and Vice Versa) 
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What is the running time of converting a list to an 
array? 
An array to a list? 
  O(n) 
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Converting between Lists and 
Arrays (and Vice Versa) 
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MORE COMPLEX DATA 
STRUCTURES 
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After overcoming higher-level obstacles, lower-level 
implementation details can improve runtime 
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Improving Running Times 
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PRIORITY QUEUES 
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Elements have priority or key 
Each time select an element from the priority queue, 
want the one with highest priority 
More formally… 
  Maintains a set of elements S 

– Each element v ∈ S has a value key(v) for its priority 
•  Smaller keys represent higher priorities 

  Supported operations 
– Add, delete elements 
– Selection of element with smallest key 
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Priority Queues 

Jan 26, 2009 

Each process has priority or urgency 
Processes do not arrive in priority order 
Goal: run process with highest priority 
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Motivating Example: 
Scheduling Processes 
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How could we use a PQ to sort a list of numbers? 

16 

Priority Queues for Sorting 
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Add elements into PQ with the number’s value as its 
priority 
Then extract the smallest number until done 
  Come out in sorted order 

  Any sequence of PQ operations that results in 
sorting n numbers must take at least O(n logn) time 
 Goal running time for our operations? 
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Priority Queues for Sorting 
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Add elements into PQ with the number’s value as its 
priority 
Then extract the smallest number until done 
  Come out in sorted order 

  Any sequence of PQ operations that results in 
sorting n numbers must take at least O(n logn) time 
 Goal running time for our operations?  O(log n) 
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Priority Queues for Sorting 
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List? 
  Keep elements in an unordered list 
  Pointer to minimum 
  How difficult is 

– Adding new elements 

– Extraction 
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Implementing a Priority Queue 

Jan 26, 2009 

List? 
  Keep elements in an unordered list 
  Pointer to minimum 
  How difficult is 

– Adding new elements: easy 

– Extraction: difficult 
•  Need to find “new” minimum 
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Implementing a Priority Queue 
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Sorted List? 
  Min is at the beginning 
  Array or Linked list? 
  How difficult is 

– Adding new elements 

– Extraction 
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Implementing a Priority Queue 
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Sorted List? 
  Min is at the beginning 
  How difficult is 

– Adding new elements: more difficult (insertion) 

– Extraction: easy  
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Implementing a Priority Queue 
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All of “known” data structures has one operation that 
takes O(n) time 
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Summary 

Jan 26, 2009 

Combines benefits of sorted array and list 
Balanced binary tree 
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Data Structure: Heap 
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root 
•  Each node has at most 2 children 
• Node value is its key 

Heap order: each node’s key is at 
least as large as its parent’s 

Note: not a binary search tree 
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Option 1: Use pointers 
  Each node keeps 

– Element it stores, key 

– 3 pointers: 2 children, parent 

Option 2: No pointers 
  Requires knowing upper bound on n 

  For node at position i 
– left child is at 2i 

– right child is at 2i+1 
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Implementing a Heap 
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If know child’s position, what is the position of parent? 

Finding the minimal element? 
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Implementing a Heap: Operations 
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Finding the minimal element 
  First element 
  O(1) 
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Implementing a Heap: Operations 
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Adding an element? 
  Assume heap has less than N elements 

28 

Implementing a Heap: Operations 
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Adding an element? 
  Could add element to last position 

– What are possible scenarios? 

29 

Implementing a Heap: Operations 
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Adding an element? 
  Could add element to last position 

– What are possible scenarios? 
•  Heap is no longer balanced 

•  Something that is almost a heap but a little off 

•  Need a Heapify-up procedure to fix our heap 
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Implementing a Heap: Operations 
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31 

Heapify-Up	
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Heapify-up(H, i):	
	if i > 1 then	
	 	let j=parent(i)=floor(i/2)	
	 	if key[H[i]] < key[H[j]] then	
	 	 	swap array entries H[i] and H[j]	
	 	 	Heapify-up(H, j)	

Heap Position where node added 
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Practice: Heapify-Up  
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Add 3 

3 
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Practice: Heapify-Up  

Jan 26, 2009 

Swap with 11 

11 

3 
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Practice: Heapify-Up  
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Swap with 5 

11 

5 

3 

Claim.  Assuming array H is almost a heap with key 
of H[i] too small, Heapify-Up fixes the heap 
property in O(log i) time 
  Can insert a new element in a heap of n elements in 

O(log n) time 

35 

Heapify-Up  
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Claim.  Assuming array H is almost a heap with key 
of H[i] too small, Heapify-Up fixes the heap 
property in O(log i) time 
  Can insert a new element in a heap of n elements in 

O(log n) time 

Proof.  By induction 
  If i=1 … 
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Heapify-Up  
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Claim.  Assuming array H is almost a heap with key 
of H[i] too small, Heapify-Up fixes the heap 
property in O(log i) time 
  Can insert a new element in a heap of n elements in 

O(log n) time 

Proof.  By induction 
  If i=1, is already a heap 
  If i>1, … 
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Heapify-Up  
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Claim.  Assuming array H is almost a heap with key 
of H[i] too small, Heapify-Up fixes the heap 
property in O(log i) time 
  Can insert a new element in a heap of n elements in 

O(log n) time 

Proof.  By induction 
  If i=1, is already a heap 
  If i>1, 

– Swaps are O(1) 

– Swaps continue up to root (max)   
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Heapify-Up  
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Delete at position i 
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Deleting an Element 

Jan 26, 2009 

Delete at 
position 3 

Delete at position i 
Not only removes an element 
  Messes up heap order 
  Leaves a “hole” in the heap 

Not as straightforward as Heapify-Up	
  Need to fill-in element where hole was 

– Patch hole: move nth element into ith spot 

  Then adjust heap to be in order 
– At position i because moved nth item up to i 
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Deleting an Element 
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Deleting an Element 
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Moved 21 to where 
element was removed 

Two possibilities: element w is 
  Too big: violation is between it and parent  
Heapify-Up	

  Too small: with one or both children  Heapify-
Down 
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Heapify-Down 
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Heapify-down(H, i):	
	Let n = length(H)	
	if 2i > n then	
	 	Terminate with H unchanged	
	else if 2i < n then	
	 	let left=2i and right=2i+1	
	 	let j be index that minimizes	
	 	 	 	key[H[left]] and key[[H[right]]	
	else if 2i = n then	
	 	Let j=2i	

	if key[H[j]] < key[H[i]] then	
	 	swap array entries H[i] and H[j]	
	 	Heapify-down(H, j)	


