
3/30/09

1

Dynamic Programming
  Shortest paths
  Distance Vector Protocol

Network flow
  Maximum flow
  Minimum cuts

Objectives

1 Mar 30, 2009 CS211 1

SHORTEST PATHS

2

3

Shortest Paths
Given a directed graph G = (V, E), with edge weights

cvw, find shortest path from node s to node t

Allows modeling other phenomena

s

3

t

2

6

7

4
5

10

18
 -16

9

 6

15 -8

 30

 20

44

16

11

6

19

6

allow negative weights

Mar 30, 2009 CS211 4

Shortest Paths: Failed Attempts
Dijkstra. Can fail if negative edge costs

u

t

s v

2

 1

3

-6

Mar 30, 2009 CS211

5

Shortest Paths: Failed Attempts
Dijkstra. Can fail if negative edge costs

Re-weighting. Adding a constant to every edge
weight can fail

u

t

s v

2

 1

3

-6

s t

2

 3

2

-3

3

5 5

6 6

0

Mar 30, 2009 CS211

Why?

6

Shortest Paths: Negative Cost
Cycles

If some path from s to t contains a negative cost
cycle, there does not exist a shortest s-t path

Otherwise, there exists one that is simple (i.e., does
not repeat nodes)

  What does this mean about number of edges in path?

s t
W

c(W) < 0

 -6

 7

 -4

Mar 30, 2009 CS211

Why?

3/30/09

2

7

Shortest Paths: Negative Cost
Cycles

If some path from s to t contains a negative cost
cycle, there does not exist a shortest s-t path

Otherwise, there exists one that is simple (i.e., does
not repeat nodes)

  Path has at most n-1 edges, where n is # of nodes in
graph

Mar 30, 2009 CS211

s t
W

c(W) < 0

 -6

 7

 -4

OPT(i,v): minimum cost of a v-t path P using at most
i edges

  This formulation eases later discussion

Original problem is OPT(n-1, s)

Towards a Recurrence

8 Mar 30, 2009 CS211

v t

w

Path P

Break down into subproblems based on i and v

9

Shortest Paths: Dynamic
Programming

Def. OPT(i, v) = minimum cost of a v-t path P using
at most i edges

  Case 1: P uses at most i-1 edges
–  OPT(i, v) = OPT(i-1, v)

  Case 2: P uses exactly i edges
–  if (v, w) is first edge, then OPT uses (v, w), and then

selects best w-t path using at most i-1 edges
–  Cost: cost of chosen edge

€

OPT(i, v) =
 0 if i = 0

 min OPT(i −1, v) ,
(v, w)∈ E

min OPT(i −1, w)+ cvw{ }








otherwise






 

Mar 30, 2009 CS211 10

Shortest Paths: Implementation

Shortest path is M[n-1, s]

Shortest-Path(G, t) 	
 n = number of nodes in G	
 foreach node v ∈ V	
 M[0, v] = ∞ # infinite cost to reach all nodes	
 M[0, t] = 0 	 # no cost to reach destination from dest	

 for i = 1 to n-1	
 foreach node v ∈ V	
 M[i, v] = M[i-1, v] # at most cost of 1 less	
 foreach edge (v, w) ∈ E	
 M[i, v] = min(M[i, v], M[i-1, w] + cvw)	

Mar 30, 2009 CS211

Starting node

Analysis?

Cost of chosen
edge

11

Shortest Paths: Implementation

Shortest path is M[n-1, s]

Shortest-Path(G, t) 	
 n = number of nodes in G	
 foreach node v ∈ V	
 M[0, v] = ∞ # infinite cost to reach all nodes	
 M[0, t] = 0 	 # no cost to reach destination from dest	

 for i = 1 to n-1	
 foreach node v ∈ V	
 M[i, v] = M[i-1, v] # at most cost of 1 less	
 foreach edge (v, w) ∈ E	
 M[i, v] = min(M[i, v], M[i-1, w] + cvw)	

Mar 30, 2009 CS211

O(n3)

0 1 2 3 4 5
t 0 0 0 0 0 0
a ∞
b ∞
c ∞
d ∞
e ∞

Example

12 Mar 30, 2009 CS211

What edges do we need to look at for each node?

3/30/09

3

0 1 2 3 4 5
t 0 0 0 0 0 0
a ∞
b ∞
c ∞
d ∞
e ∞

Example

13 Mar 30, 2009 CS211

Edges
b , t

d, e
b, t

a, t
c, t

0 1 2 3 4 5
t 0 0 0 0 0 0
a ∞ -3
b ∞ ∞
c ∞ 3
d ∞ 4
e ∞ 2

Example

14 Mar 30, 2009 CS211

Edges
b , t

d, e
b, t

a, t
c, t

0 1 2 3 4 5
t 0 0 0 0 0 0
a ∞ -3 -3
b ∞ ∞ 0
c ∞ 3 3
d ∞ 4 3
e ∞ 2 0

Example

15 Mar 30, 2009 CS211

Edges
b , t

d, e
b, t

a, t
c, t

0 1 2 3 4 5
t 0 0 0 0 0 0
a ∞ -3 -3 -4
b ∞ ∞ 0 -2
c ∞ 3 3 3
d ∞ 4 3 3
e ∞ 2 0 0

Example

16 Mar 30, 2009 CS211

Edges
b , t

d, e
b, t

a, t
c, t

0 1 2 3 4 5
t 0 0 0 0 0 0
a ∞ -3 -3 -4 -6
b ∞ ∞ 0 -2 -2
c ∞ 3 3 3 3
d ∞ 4 3 3 2
e ∞ 2 0 0 0

Example

17 Mar 30, 2009 CS211

Edges
b , t

d, e
b, t

a, t
c, t

0 1 2 3 4 5
t 0 0 0 0 0 0
a ∞ -3 -3 -4 -6 -6
b ∞ ∞ 0 -2 -2 -2
c ∞ 3 3 3 3 3
d ∞ 4 3 3 2 0
e ∞ 2 0 0 0 0

Example

18 Mar 30, 2009 CS211

Edges
b , t

d, e
b, t

a, t
c, t

3/30/09

4

What could we do to improve the algorithm’s
runtime/space requirements?

Based on Example Experience

19 Mar 30, 2009 CS211

Practical improvements
  Maintain only one array M[v] = shortest v-t path that we have

found so far
  No need to check edges of the form (v, w) unless M[w] changed

in previous iteration

Theorem. Throughout algorithm, M[v] is length of some v-t
path, and after i rounds of updates, the value M[v] is no
larger than the length of shortest v-t path using ≤ i edges.

Overall impact
  Memory: O(m + n)
  Running time: O(mn) worst case but substantially faster in

practice

Shortest Paths: Practical
Improvements

20 Mar 30, 2009 CS211

21

Bellman-Ford: Efficient
Implementation

Push-Based-Shortest-Path(G, s, t) 	
 foreach node v ∈ V 	
 M[v] = ∞	
 successor[v] = φ 	

 M[t] = 0	
 for i = 1 to n-1 	
 foreach node w ∈ V 	
 if M[w] has been updated in previous iteration 	
 foreach node v such that (v, w) ∈ E 	
 if M[v] > M[w] + cvw	
 M[v] = M[w] + cvw 	
 successor[v] = w	

 If no M[w] value changed in iteration i, stop.	

Mar 30, 2009 CS211

DISTANCE VECTOR
PROTOCOL

22

Application of shortest-path problem: routers in
communication network find most efficient path to
destination

Model of communication network
  Nodes ≈ routers
  Edge ≈ direct communication link
  Cost of edge ≈ delay on link

Possible solution: Dijkstra’s algorithm

Problem Context

23 Mar 30, 2009 CS211

Naturally nonnegative

24

Distance Vector Protocol
Model of communication network
  Nodes ≈ routers; Edge ≈ direct communication link
  Cost of edge ≈ delay on link

Dijkstra's algorithm. Requires global information of
network

Bellman-Ford. Uses only local knowledge of
neighboring nodes

  Distribute algorithm: each node v maintains its
value M[v]
–  Updates its value after getting neighbor’s values:

•  minw∈V (cvw + M[w])

Naturally nonnegative but
Bellman-Ford used anyway!

Mar 30, 2009 CS211

3/30/09

5

25

Distance Vector Protocol
Each router maintains a vector of shortest path lengths to

every other node (distances) and the first hop on each
path (directions)

Algorithm: each router performs n separate
computations, one for each potential destination node

Synchronization. We don't expect routers to run in
lockstep. The order in which each foreach loop
executes in not important. Moreover, algorithm still
converges even if updates are asynchronous.

"Routing by rumor.”
Used in many routers, e.g. RIP, Xerox XNS RIP,

Novell's IPX RIP, …

Mar 30, 2009 CS211 26

Issues with Distance Vector Protocol
Original algorithm developed for one central

machine; costs known in advance, didn’t change
Edge costs may change during algorithm (or fail

completely)

t v 1 s 1

1

deleted

"counting to infinity"
2 1

Mar 30, 2009 CS211

27

Path Vector Protocols
Link state routing
  Each router stores the entire path

–  Not just the distance and the first hop
  Based on Dijkstra's algorithm
  Avoids "counting-to-infinity" problem and related

difficulties
  Requires significantly more storage

Ex. Border Gateway Protocol (BGP), Open Shortest
Path First (OSPF)

Mar 30, 2009 CS211

NETWORK FLOW

28 Mar 30, 2009 CS211

29

Soviet Rail Network, 1955

Reference: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

Mar 30, 2009 CS211

44 vertices
105 edges

30

Maximum Flow and Minimum Cut
Two very rich algorithmic problems

Cornerstone problems in combinatorial optimization

Beautiful mathematical duality

Nontrivial applications / reductions

  Data mining

  Open-pit mining

  Project selection

  Airline scheduling

  Bipartite matching

  Baseball elimination

  Image segmentation

  Network connectivity

  Network reliability

  Distributed computing

  Egalitarian stable matching

  Security of statistical data

  Network intrusion detection

  Multi-camera scene reconstruction

  Many many more . . .

3/30/09

6

31

Abstraction for material flowing through the edges
G = (V, E) = directed graph, no parallel edges
Two distinguished nodes: s = source, t = sink
c(e) = capacity of edge e, > 0

Flow Network

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4
capacity

source sink

Mar 30, 2009 CS211

What is special
about the source

and sink?

32

An s-t flow is a function that satisfies
  Capacity condition: For each e ∈ E: 0 ≤ f(e) ≤ c(e)
  Conservation condition: For each v ∈ V – {s, t}:
∑e into y f(e) = ∑e out of y f(e)

Flows

Mar 30, 2009 CS211

Flow can’t
exceed capacity

Flow in == Flow out

4

0

0

0

0 0

0 4 4

0
0

0

Value = 4 0

capacity
flow

0

4

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4

33

The value of a flow f is v(f) = ∑e out of s f(e)

Flows

Mar 30, 2009 CS211

4

0

0

0

0 0

0 4 4

0
0

0

Value = 4

0

capacity
flow

0

4

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4

Make network most efficient
  Use most of available capacity

Goal: Find s-t flow of maximum value

Maximum Flow Problem

34 Mar 30, 2009 CS211

10

9

9

14

4 10

4 8 9

1

0 0

0

14

capacity
flow

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0

Value = 28

Check satisfies
constraints

35

An s-t cut is a partition (A, B) of V with s ∈ A and
t ∈ B

The capacity of a cut (A, B) is

Cuts

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4

 Capacity = 10 + 5 + 15
 = 30

 A

€

cap(A, B) = c(e)
e out of A
∑

Mar 30, 2009 CS211 36

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4
 A

Cuts
An s-t cut is a partition (A, B) of V with s ∈ A and

t ∈ B
The capacity of a cut (A, B) is

€

cap(A, B) = c(e)
e out of A
∑

 Capacity = 9 + 15 + 8 + 30
 = 62

Mar 30, 2009 CS211

3/30/09

7

Find an s-t cut of minimum capacity
  Puts upperbound on maximum flow

Minimum Cut Problem

37 Mar 30, 2009 CS211

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 A

 Capacity = 10 + 8 + 10
 = 28

38

Let f be any flow, and let (A, B) be any s-t cut. Then,
the net flow sent across the cut is equal to the
amount leaving s.

Flow Value Lemma

10

6

6

11

1 10

3 8 8

0
0

0

11

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0

Value = 24

€

f (e)
e out of A
∑ − f (e)

e in to A
∑ = v(f)

4

A

Mar 30, 2009 CS211

39

Let f be any flow, and let (A, B) be any s-t cut. Then,
the net flow sent across the cut is equal to the
amount leaving s.

Flow Value Lemma

10

6

6

1 10

3 8 8

0
0

0

11

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0

€

f (e)
e out of A
∑ − f (e)

e in to A
∑ = v(f)

 Value = 6 + 0 + 8 - 1 + 11
 = 24

4

11

A

Mar 30, 2009 CS211 40

Let f be any flow, and let (A, B) be any s-t cut. Then,
the net flow sent across the cut is equal to the
amount leaving s.

Flow Value Lemma

10

6

6

11

1 10

3 8 8

0
0

0

11

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0

€

f (e)
e out of A
∑ − f (e)

e in to A
∑ = v(f)

 Value = 10 - 4 + 8 - 0 + 10
 = 24

4

A

Mar 30, 2009 CS211

41

Flow Value Lemma
Let f be any flow, and let (A, B) be any s-t cut.
Then

Pf.

€

f (e)
e out of A
∑ − f (e) = v(f)

e in to A
∑ .

€

v(f) = f (e)
e out of s
∑

=
v ∈A
∑ f (e)

e out of v
∑ − f (e)

e in to v
∑











= f (e)
e out of A
∑ − f (e).

e in to A
∑

by flow conservation, all
terms except v = s are 0

Mar 30, 2009 CS211

Chapters 7 & 8
Wednesday: Course evaluations
  Favorite and least favorite topics
  Research papers

–  Do you think that component should continue?
•  Was it worth it?

Friday: Problem set 6 due
Saturday: Take-home final available
  Due end of exam period: Friday at 5 p.m.

This Week

42 Mar 30, 2009 CS211

