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Greedy Algorithms 
  Shortest path 
  Minimum spanning tree 

Objectives 
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Shortest Path Problem 
Given 
  Directed graph G = (V, E) 
  Source s, destination t 
  Length e = length of edge e (non-negative) 

Shortest path problem:  find shortest directed path 
from s to t 

Cost of path s-2-3-5-t 
     =  9 + 23 + 2 + 16 
     = 48 
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cost of path = sum of edge 
costs in path 
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Dijkstra’s Algorithm 

Maintain a set of explored nodes S 
  Know the shortest path distance d(u) from s to u 

Initialize S={s}, d(s)=0 
Repeatedly choose unexplored node v which 

minimizes 
  add v to S and set d(v) = π(v) 
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shortest path to some u in 
explored part, followed by a 

single edge (u, v) 
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Dijkstra's Algorithm:  
Implementation 

For each unexplored node, explicitly maintain 

  Next node to explore = node with minimum π(v). 
  When exploring v, for each incident edge e = (v, w), 

update 

Efficient implementation.  Maintain a priority queue of 
unexplored nodes, prioritized by π(v) 
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π (v) = min
e = (u,v) : u∈ S

d (u) +  e  .

  

€ 

π (w) = min { π (w),  π (v)+  e }.
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How Greedy? 

We always form shortest new s-v path from a path in 
S followed by a single edge 

Proof of optimality: Stays ahead of all other solutions 
  Each time selects a path to a node v, that path is 

shorter than every other possible path to v 
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Invariant.  For each node u ∈ S, d(u) is the length of 
the shortest s-u path 

Pf.  (by induction on |S|) 
Base case:  For |S| = 1, S={s}; d(s) = 0 
Inductive hypothesis:  Assume true for |S| = k, k ≥  1 
  Grow |S| to k+1 
  Adding next node v  by u→ v 
  What do we know about s→ u? 
  What can we say about other s→ v paths? 
  Why didn’t we pick y as the next node? 

Dijkstra's Algorithm:  Proof of 
Correctness 
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Invariant.  For each node u ∈ S, d(u) is the length of the shortest s-u path 

Pf.  (by induction on |S|) 
Inductive hypothesis:  Assume true for |S| = k  ≥  1. 

  Let v be next node added to S, and let u-v be the chosen edge 
  The shortest s-u path plus (u, v) is an s-v path of length π(v) 

  Consider any s-v path P.  It's no shorter than π(v). 

  Let x-y be the first edge in P that leaves S, 
and let P' be the subpath to x. 

  P is already too long as soon as it leaves S. 

Dijkstra's Algorithm:  Proof of 
Correctness 
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  (P)  ≥  (P') +  (x,y)  =  d(x) +  (x, y)  ≥  π(y)  ≥  π(v) 

nonnegative 
weights 

inductive 
hypothesis 

defn of π(y) Dijkstra chose v 
instead of y 
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Why does the algorithm break down if we allow 
negative weights/costs on edges? 

Discussion: Dijstra’s Algorithm 
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MINIMUM SPANNING TREE 
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Laying Cable 
Comcast knows how to make money and how to save money 

They want to lay cable in a neighborhood 
  Reach all houses 

  Least cost Neighborhood Layout 

Cost of laying cable 
between houses depends on 
amt of cable, landscaping, 

obstacles, etc. 
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Minimum Spanning Tree 
Given a connected graph G = (V, E) with positive  edge 

weights ce, an MST is a subset of the edges T ⊆ E such 
that T is a spanning tree whose sum of edge weights is 
minimized 
  Spanning tree: spans all nodes in graph 
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G = (V, E) T,  Σe∈T ce = 50 
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Examples 
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Graph 
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Identify spanning trees and which is the minimal spanning tree. 
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Examples 

13 Feb 13, 2009 CS211 

Graph 

Identify spanning trees and which is the minimal spanning tree. 
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MST:  

Other Spanning Trees:  

14 

MST Applications 
Network design 

  telephone, electrical, hydraulic, TV cable, computer, road 

Approximation algorithms for NP-hard problems 

  traveling salesperson problem, Steiner tree 

Indirect applications 

  max bottleneck paths 

  image registration with Renyi entropy 

  learning salient features for real-time face verification 

  reducing data storage in sequencing amino acids in a protein 

  model locality of particle interactions in turbulent fluid flows 

Cluster analysis 
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Minimum Spanning Tree 
Given a connected graph G = (V, E) with positive  edge 

weights ce, an MST is a subset of the edges T ⊆ E such 
that T is a spanning tree whose sum of edge weights is 
minimized. 
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G = (V, E) T,  Σe∈T ce = 50 

Why must the solution be a tree? 
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Minimum Spanning Tree 
Assume have a minimal solution that is not a tree, i.e., it has a 

cycle 
What could we do? 

  What do we know about the edges? 
  How does that change the cost of the solution? 
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Proof by Contradiction. 
Assume have a minimal solution V that is not a tree, 

i.e., it has a cycle 
Contains edges to all nodes because solution must 

be connected (spanning) 
Remove an edge from the cycle 

Can still reach all nodes (could go “long way around”) 
But at lower cost 
Contradiction to our minimal solution 

Minimal Spanning Tree 
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Ideas for Solutions? 

Cayley's Theorem.  There are nn-2 spanning trees of 
Kn 

Where to start? 
Orders to add/remove edges? 
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G = (V, E) 
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can't solve by brute force 
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Greedy Algorithms 
All three algorithms produce a MST 

Kruskal's algorithm.  Start with T = φ. Consider edges in 
ascending order of cost. Insert edge e in T unless doing so 
would create a cycle. 

Reverse-Delete algorithm.  Start with T = E.  Consider edges 
in descending order of cost. Delete edge e from T unless 
doing so would disconnect T. 

Prim's algorithm.  Start with some root nodes and greedily 
grow a tree T from s outward.  At each step, add the 
cheapest edge e to T that has exactly one endpoint in T. 

  Similar to Dijkstra’s (but simpler) 
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What do these algorithms have/do/check in common? 

When is it safe to include an edge in the minimum 
spanning tree? 

When is it safe to eliminate an edge from the 
minimum spanning tree? 

What Do These Algorithms 
Have in Common? 
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Cut Property 

Cycle Property 
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Greedy Algorithms 
Simplifying assumption: All edge costs ce are distinct 
➡  MST is unique 

Cut property.  Let S be any subset of nodes, and let e be the 
min cost edge with exactly one endpoint in S.  Then the 
MST contains e. 

Cycle property.  Let C be any cycle, and let f be the max cost 
edge belonging to C.  Then the MST does not contain f. 

f  
C 

S 

e is in the MST 

e 

f is not in the MST 
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Cycles and Cuts 
Cycle.  Set of edges that form a-b, b-c, c-d, …, y-z, 

z-a  

Cutset.  A cut is a subset of nodes S.  The 
corresponding cutset D is the subset of edges with 
exactly one endpoint in S. 

Cycle C  =  1-2, 2-3, 3-4, 4-5, 
5-6, 6-1 
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Cut S       =  { 4, 5, 8 } 
Cutset  D =  5-6, 5-7, 3-4, 

3-5, 7-8 
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Cycle-Cut Intersection 
Claim.  A cycle and a cutset intersect in an even 

number of edges 

Pf.  (by picture) 
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Cycle  C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1 
Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8  
Intersection = 3-4, 5-6 
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(Cut) 

Edges link to not-Cut 

•  What are the 
possibilities for the 
cycle? 
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Cycle-Cut Intersection 
Claim.  A cycle and a cutset intersect in an even 

number of edges 

Pf.  (by picture) 
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Cycle  C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1 
Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8  
Intersection = 3-4, 5-6 
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(Cut) 

Edges link to not-Cut 

•  Cycle all in S or V-S 
•  Cycle has to go from 

SV-S and back 
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Cut Property: OK to Include Edge 
Simplifying assumption.  All edge costs ce are distinct 
Cut property.  Let S be any subset of nodes, and let e be the 

min cost edge with exactly one endpoint in S. Then the 
MST T* contains e. 

Pf. 

Feb 13, 2009 CS211 26 

Cut Property: OK to Include Edge 
Simplifying assumption.  All edge costs ce are distinct 
Cut property.  Let S be any subset of nodes, and let e be the 

min cost edge with exactly one endpoint in S. Then the 
MST T* contains e. 

Pf.  (exchange argument) 
  Suppose there is an MST T* that does not contain e 

– What do we know about T? 
– What do we know about the nodes e connects? 
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Cut Property: OK to Include Edge 
Simplifying assumption.  All edge costs ce are distinct 
Cut property.  Let S be any subset of nodes, and let e be the 

min cost edge with exactly one endpoint in S. Then the 
MST T* contains e 

Pf.  (exchange argument) 
  Suppose there is an MST T* that does not contain e 
  Adding e to T* creates a cycle C in T* 
  Edge e is in cycle C and in cutset corresponding to S   

⇒ there exists another edge, say f, that is in both C and S’s cutset 

AND ?!? 
f  

 T* 
e 

S 
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