
2/2/09

1

1 Feb 2, 2009 CS211

Data structures: Graphs

1

Objectives
It’s my own fault for using PowerPoint. PowerPoint

is boring. People learn in a lot of different ways.
 -- Dwight

From the Office

2 Feb 2, 2009 CS211

3 Feb 2, 2009 CS211 3

Review: Comparing BFS vs DFS
What do they do?
How are their outcomes different?
When would we want to use one over the other?

What do they do?
  Techniques for finding connected components

– Create a tree of connected components

  Other uses as well

How are their outcomes different?
  BFS: shortest path; bushy tree

  DFS: spindly tree

When would we want to use one over the other?
  DFS: what you’d do in a maze (can’t split)

Review: Comparing BFS vs DFS

4 Feb 2, 2009 CS211 4

5 Feb 2, 2009 CS211

Set of All Connected Components

How can we find set of all connected components of
graph?

R* = set of connected components	
While there is a node that does not belong to R*	

	select s not in R*	

	Add R to R*	

Running time?

6 Feb 2, 2009 CS211

Set of All Connected Components

How can we find set of all connected components of
graph?

R* = set of connected components	
While there is a node that does not belong to R*	

	select s not in R*	

	Add R to R*	

Running time:
O(m+n)

But the “inner” loop was O(m+n)!
How can this be?

2/2/09

2

7 Feb 2, 2009 CS211

Set of All Connected Components

How can we find set of all connected components of
graph?

R* = set of connected components	
While there is a node that does not belong to R*	

	select s not in R*	

	Add R to R*	

Imprecision in the running
time of inner loop:

O(m+n)

But that’s m and n of the
connected component,
let’s say mi and ni

So…
Σi O(mi+ ni) = O(m+n)

Where i is the subscript
of the connected

component 8

TESTING BIPARTITENESS

8

9 Feb 2, 2009 CS211 9

Bipartite Graphs
Def. An undirected graph G = (V, E) is bipartite if the
nodes can be colored red or blue such that every
edge has one red and one blue end
  Generally: vertices divided into sets X and Y

Applications:
  Stable marriage: men = red, women = blue
  Scheduling: machines = red, jobs = blue

a bipartite graph

10 Feb 2, 2009 CS211 10

Testing Bipartiteness
Given a graph G, is it bipartite?
  Many graph problems become:

– easier if underlying graph is bipartite (matching)

– tractable if underlying graph is bipartite (independent set)

  Before designing an algorithm, need to understand
structure of bipartite graphs

v1

v2 v3

v6 v5 v4

v7

v2

v4

v5

v7

v1

v3

v6

a bipartite graph G: another drawing of G

11 Feb 2, 2009 CS211 11

An Obstruction to Bipartiteness
Lemma. If a graph G is bipartite, it cannot contain an
odd length cycle.
Pf. Not possible to 2-color the odd cycle, let alone
G.

bipartite
(2-colorable)

not bipartite
(not 2-colorable)

If find an odd cycle, graph is NOT bipartite
12 Feb 2, 2009 CS211 12

How Can We Determine
Bipartite Graphs?

Given a connected graph
Color one node red

– Doesn’t matter which color (Why?)

What should we do next?

How will we know that we’re finished?
What does this process sound like?

Why connected?

2/2/09

3

13 Feb 2, 2009 CS211 13

How Can We Determine
Bipartite Graphs?

Given a connected graph
Color one node red

– Doesn’t matter which color (Why?)

What should we do next?

How will we know that we’re finished?
What does this process sound like?
BFS: alternating colors, layers

L1 L2 L3

14 Feb 2, 2009 CS211 14

Implementing Algorithm
Modify BFS to have a Color array
  When add v to list L[i+1]
  Color[v] = red if i+1 is even
  Color[v] = blue if i+1 is odd

L1 L2 L3

15 Feb 2, 2009 CS211 15

Bipartite Graphs
Lemma. Let G be a connected graph, and let L0, …,
Lk be the layers produced by BFS starting at node s.
Exactly one of the following holds:
(i) No edge of G joins two nodes of the same layer

– G is bipartite

(ii) An edge of G joins two nodes of the same layer
– G contains an odd-length cycle (and hence is not
bipartite)

Case (i)

L1 L2 L3

Case (ii)

L1 L2 L3

16 Feb 2, 2009 CS211 16

Bipartite Graphs
Lemma. Let G be a connected graph, and let L0, …, Lk be the
layers produced by BFS starting at node s. Exactly one of the
following holds:
(i) No edge of G joins two nodes of the same layer

– G is bipartite

Pf. (i)
  Suppose no edge joins two nodes in the same layer
  Implies all edges join nodes on adjacent level
  Bipartition: red = nodes on odd levels, blue = nodes on even

levels

Case (i)

L1 L2 L3

17 Feb 2, 2009 CS211 17

Bipartite Graphs
Lemma. Let G be a connected graph, and let L0, …, Lk
be the layers produced by BFS starting at node s.
Exactly one of the following holds:
(ii) An edge of G joins two nodes of the same layer, and G

contains an odd-length cycle (and hence is not bipartite)
Pf. (ii)
  Suppose (x, y) is an edge with x, y in same level Lj.
  Let z = lca(x, y) = lowest common ancestor
  Let Li be level containing z
  Consider cycle that takes edge from x to y,

then path from y to z, then path from z to x

z = lca(x, y)

18 Feb 2, 2009 CS211 18

Bipartite Graphs
Lemma. Let G be a connected graph, and let L0, …, Lk be the
layers produced by BFS starting at node s. Exactly one of the
following holds:
(ii) An edge of G joins two nodes of the same layer, and G contains an

odd-length cycle (and hence is not bipartite)

Pf. (ii)

  Suppose (x, y) is an edge with x, y in same level Lj

  Let z = lca(x, y) = lowest common ancestor

  Let Li be level containing z

  Consider cycle that takes edge from x to y,
then path from y to z, then path from z to x

  Its length is 1 + (j-i) + (j-i), which is odd

z = lca(x, y)

(x, y) path from
y to z

path from
z to x

2/2/09

4

19 Feb 2, 2009 CS211 19

Obstruction to Bipartiteness
Corollary. A graph G is bipartite iff it contains no odd
length cycle.

5-cycle C

bipartite
(2-colorable)

not bipartite
(not 2-colorable)

20

CONNECTIVITY IN DIRECTED
GRAPHS

20

21 Feb 2, 2009 CS211 21

Directed Graphs G = (V, E)
Edge (u, v) goes from node u to node v

Ex. Web graph - hyperlink points from one web
page to another
  Directedness of graph is crucial
  Modern web search engines exploit hyperlink structure

to rank web pages by importance

How does reachability change with directed graphs?

Example: Web crawler. Start from web page s. Find
all web pages linked from s, either directly or
indirectly.

Graph Search

22 Feb 2, 2009 CS211 22

1 2

54

7

3

6

1 2

54

7

3

6

For each node, keep track
  Out edges (where links go)
  In edges (from where links come in)

Could just keep out edges
  Get in edges with increased computation/time
  Useful to have both in and out edges

Representing Directed Graphs

23 Feb 2, 2009 CS211

Directed reachability. Given a node s, find all nodes
reachable from s.

Directed s-t shortest path problem. Given two nodes
s and t, what is the length of the shortest path
between s and t?

  Not necessarily the same as t-s shortest path

Graph search. BFS and DFS extend naturally to
directed graphs

  Trace through out edges

  Run in O(m+n) time

Graph Search

24 Feb 2, 2009 CS211 24

1 2

54

7

3

6

2/2/09

5

Rather than paths from s to other nodes, find all
nodes with paths to s

Problem

25 Feb 2, 2009 CS211

Problem. Rather than paths from s to other nodes,
find all nodes with paths to s

Solution. Run BFS on in edges instead of out edges

Problem/Solution

26 Feb 2, 2009 CS211

27 Feb 2, 2009 CS211 27

Strong Connectivity
Def. Node u and v are mutually reachable if there is
a path from u to v and also a path from v to u
Def. A graph is strongly connected if every pair of
nodes is mutually reachable
Lemma. Let s be any node. G is strongly connected
iff every node is reachable from s and s is reachable
from every node

s

v

u

If u and v are mutually reachable and v and w are
mutually reachable, then u and w are mutually
reachable

Strong Connectivity

28 Feb 2, 2009 CS211

If u and v are mutually reachable and v and w are
mutually reachable, then u and w are mutually
reachable.

Proof. We need to show that there is a path from u
to w and from w to u.

  By defn of mutually reachable, there is a path from u to
v, a path from v to u, a path from v to w, and a path
from w to v

  Take path uv and then from v  w
– Path from uw

  Similarly for wu

Strong Connectivity

29 Feb 2, 2009 CS211

Def. A graph is strongly connected if every pair of
nodes is mutually reachable

Lemma. Let s be any node. G is strongly
connected iff every node is reachable from s and
s is reachable from every node.

  1st prove ⇒
  2nd prove ⇐

– for any nodes u and v, is there a path uv and vu ?

Strong Connectivity

30 Feb 2, 2009 CS211 30

2/2/09

6

31 Feb 2, 2009 CS211 31

Strong Connectivity
Def. A graph is strongly connected if every pair of
nodes is mutually reachable
Lemma. Let s be any node. G is strongly connected
iff every node is reachable from s, and s is reachable
from every node.
Pf. ⇒ Follows from definition of strongly connected
Pf. ⇐ For any nodes u and v, make path uv and
vu
  uv : concatenating us with sv
  v u: concatenate vs with su

s

v

u

32 Feb 2, 2009 CS211 32

Strong Connectivity Problem
Determine if G is strongly connected in O(m + n)
time

strongly connected not strongly connected

Can we leverage any algorithms we know have O(m+n) time?

33 Feb 2, 2009 CS211 33

Strong Connectivity: Algorithm
Theorem. Can determine if G is strongly connected
in O(m + n) time.
Pf.
  Pick any node s
  Run BFS from s in G
  Run BFS from s in Grev
  Return true iff all nodes reached in both BFS

executions
  Correctness follows immediately from previous lemma

– All reachable from one node, s is reached by all

reverse orientation of every edge in G
Or, the BFS using the in edges

For any two nodes s and t in a directed graph, their
strong components are either identical or disjoint

Strong Components

34 Feb 2, 2009 CS211

Consider a node in common…

For any two nodes s and t in a directed graph, their
strong components are either identical or disjoint

Proof.
  Consider v in both strong components

– s v; v  s; vt; tv  ts, st (mutually reachable)

– As soon as there is one common node, then have
identical strong components

Strong Components

35 Feb 2, 2009 CS211 36

DAGS AND TOPOLOGICAL
ORDERING

36

2/2/09

7

37 Feb 2, 2009 CS211 37

Directed Acyclic Graphs
Def. A DAG is a directed graph that contains no
directed cycles.
Example. Precedence constraints: edge (vi, vj)
means vi must precede vj
  Course prerequisite graph: course vi must be taken

before vj
  Compilation: module vi must be compiled before vj
  Pipeline of computing jobs: output of job vi needed to

determine input of job vj

a DAG:

v2 v3

v6 v5 v4

v7 v1
38 Feb 2, 2009 CS211 38

Directed Acyclic Graphs
Given a set of tasks with dependencies, what is a

valid order in which the tasks could be performed?
v2 v3

v6 v5 v4

v7 v1

39 Feb 2, 2009 CS211 39

Directed Acyclic Graphs
Given a set of tasks with dependencies, what is a

valid order in which the tasks could be performed?
Def. A topological order of a directed graph G =
(V, E) is an ordering of its nodes as v1, v2, …, vn so
that for every edge (vi, vj) we have i < j.

a DAG
a topological ordering

All edges point “forward”

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7

40 Feb 2, 2009 CS211 40

Directed Acyclic Graphs
Lemma. If G has a topological order, then G is a DAG.

Proof: Try to show that G has a cycle

v1 vi vj vn

the supposed topological order: v1, …, vn

the directed cycle C

Why isn’t this valid?

41 Feb 2, 2009 CS211 41

Directed Acyclic Graphs
Lemma. If G has a topological order, then G is a DAG.
Pf. (by contradiction)
  Suppose that G has a topological order v1, …, vn and that G also

has a directed cycle C.
  Let vi be the lowest-indexed node in C, and let vj be the node on

C just before vi; thus (vj, vi) is an edge
  By our choice of i (lowest-indexed node), i < j
  On the other hand, since (vj, vi) is an edge and v1, …, vn is a

topological order, we must have j < i, a contradiction. ▪

v1 vi vj vn

the supposed topological order: v1, …, vn

the directed cycle C

Does every DAG have a topological ordering?
  If so, how do we compute one?

Directed Acyclic Graphs

42 Feb 2, 2009 CS211 42

2/2/09

8

Does every DAG have a topological ordering?
  If so, how do we compute one?

What would we need to be able to create a
topological ordering?

  What are some characteristics of this graph?

Directed Acyclic Graphs

43 Feb 2, 2009 CS211 43

v1 v2 v3 v4 v5 v6 v7

