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•  Dynamic Programming 
 Segmented Least Squares 

•  Polynomial number of subproblems 
•  Solution to original problem can be easily 

computed from solutions to subproblems 
•  Natural ordering of subproblems, easy to 

compute recurrence 

•  Foundational problem in statistic and 
numerical analysis 

•  Given n points in the plane: (x1, y1), (x2, 
y2) , . . . , (xn, yn) 

•  Find a line y = ax + b that minimizes the sum 
of the squared error 
 “line of best fit” 
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•  Foundational problem in statistic and numerical 
analysis 

•  Given n points in the plane: (x1, y1), (x2, y2) , . . . , (xn, yn) 
•  Find a line y = ax + b that minimizes the sum of the 

squared error 
  “line of best fit” 

•  Closed form solution.  Calculus  ⇒  min error is 
achieved when 
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• What happens to the error if we try to fit one 
line to these points? 

• What pattern does it seem like these points 
have? 
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• What happens to the error if we try to fit one 
line to these points? 
 Large error 

•  Pattern: More like 3 lines 
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y 

•  Points lie roughly on a sequence of line segments 
•  Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, 

yn) with x1 < x2 < ... < xn, find a sequence of lines that 
minimizes f(x) 
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If I want the best fit, how many lines should I use? 

•  Points lie roughly on a sequence of line segments 
•  Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) 

with x1 < x2 < ... < xn, find a sequence of lines that 
minimizes f(x) 
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goodness of fit number of lines 

What's a reasonable choice for f(x) to 
balance accuracy and parsimony? 

•  Points lie roughly on a sequence of several line segments. 
•  Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with 

x1 < x2 < ... < xn, find a sequence of lines that minimizes: 
  E: sum of the sums of the squared errors in each segment 
  L: the number of lines 

•  Tradeoff function:  E + c L, for some constant c > 0. 
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How should we define 
an optimal solution? 

… 

• What made it seem like the points were in 3 
lines?  What happened? 
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• What made it seem like the points were in 3 
lines?  What happened? 

•  Looking for change in linear approximation 
 Where to partition points into line segments 
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•  Polynomial number of subproblems 
•  Solution to original problem can be easily 

computed from solutions to subproblems 
•  Natural ordering of subproblems, easy to 

compute recurrence 

We need to: 
• Figure out how to break the problem into subproblems 
• Figure out how to compute solution from subproblems 
• Define the recurrence relation between the problems 

•  Consider just the first or last point 
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What do we know about those points?  
their segments?  cost of a segment? 

•  pn can only belong to one segment 
 Segment: pi, …, pn 

 Cost: c (cost for segment) + error of segment 
• What is the remaining problem? 
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•  pn can only belong to one segment 
 Segment: pi, …, pn 

 Cost: c (cost for segment) + error of segment 
• What is the remaining problem? 

 Solve for p1, …, pi-1 
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Goal:  Formulate as a recurrence 

•  Notation. 
 OPT(j) = minimum cost for points p1, pi+1 , … , pj. 
 e(i, j)  = minimum sum of squares for points      

pi, pi+1 , …, pj. 

•  How do we compute OPT(j)? 
 Last problem: binary decision (include job or not) 
 This time: multiway decision 

•  Which option do we choose? 

•  Notation. 
 OPT(j) = minimum cost for points p1, pi+1 , … , pj. 
 e(i, j)  = minimum sum of squares for points      

pi, pi+1 , …, pj. 
•  To compute OPT(j): 

 Last segment contains points pi, pi+1, … , pj for 
some i 

 Cost = e(i, j) + c + OPT(i-1). 
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OPT( j) =
0 if  j = 0

min
1≤ i ≤ j

e(i, j) + c + OPT(i −1){ } otherwise
⎧ 
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INPUT: n, p1,…,pN , c	

Segmented-Least-Squares()	
   M[0] = 0	
   e[0][0] = 0	
   for j = 1 to n	
      for i = 1 to j	
         e[i][j] = least square error for the	

	 	 	  segment pi, …, pj	

   for j = 1 to n	
      M[j] = min 1 ≤ i ≤ j (e[i][j] + c + M[i-1])	

   return M[n]	

Costs? •  Bottleneck: computing e(i, j) for O(n2) pairs, 
O(n) per pair using previous formula 

can be improved to O(n2) by pre-computing various statistics 

INPUT: n, p1,…,pN , c	

Segmented-Least-Squares()	
   M[0] = 0	
   e[0][0] = 0	
   for j = 1 to n	
      for i = 1 to j	
         e[i][j] = least square error for the  
         	 	segment pi,…, pj	

   for j = 1 to n	
      M[j] = min 1 ≤ i ≤ j (e[i][j] + c + M[i-1])	

   return M[n]	

O(n3) 

can be improved to O
(n2) by pre-computing 

various statistics 

O(n2) 

FindSegments(j):	
	if j = 0:	
	 	output nothing	
	else:	
	 	Find an i that minimizes ei,j + c + M[i-1]	
	 	Output the segment {pi, …, pj}	
	 	FindSegments(i-1)  	

Cost? O(n) 


