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Data structures: Graphs 
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Objectives 
It’s my own fault for using PowerPoint.  PowerPoint 

is boring.  People learn in a lot of different ways. 
       -- Dwight 

From the Office 
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Review: Comparing BFS vs DFS 
What do they do? 
How are their outcomes different? 
When would we want to use one over the other? 

What do they do? 
  Techniques for finding connected components 

– Create a tree of connected components 

  Other uses as well 

How are their outcomes different? 
  BFS: shortest path; bushy tree 

  DFS: spindly tree 

When would we want to use one over the other? 
  DFS: what you’d do in a maze (can’t split) 

Review: Comparing BFS vs DFS 
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Set of All Connected Components 

How can we find set of all connected components of 
graph?  

R* = set of connected components	
While there is a node that does not belong to R*	

	select s not in R*	

	Add R to R*	

Running time? 
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Set of All Connected Components 

How can we find set of all connected components of 
graph?  

R* = set of connected components	
While there is a node that does not belong to R*	

	select s not in R*	

	Add R to R*	

Running time:  
O(m+n) 

But the “inner” loop was O(m+n)! 
How can this be? 
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Set of All Connected Components 

How can we find set of all connected components of 
graph?  

R* = set of connected components	
While there is a node that does not belong to R*	

	select s not in R*	

	Add R to R*	

Imprecision in the running 
time of inner loop:  

O(m+n) 

But that’s m and n of the 
connected component, 
let’s say mi and ni 

So… 
Σi O(mi+ ni) = O(m+n) 

Where i is the subscript 
of the connected 

component 8 

TESTING BIPARTITENESS 
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Bipartite Graphs 
Def.  An undirected graph G = (V, E) is bipartite if the 
nodes can be colored red or blue such that every 
edge has one red and one blue end 
  Generally: vertices divided into sets X and Y 

Applications: 
  Stable marriage:  men = red, women = blue 
  Scheduling:  machines = red, jobs = blue 

a bipartite graph 
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Testing Bipartiteness 
Given a graph G, is it bipartite? 
  Many graph problems become: 

– easier if underlying graph is bipartite (matching) 

– tractable if underlying graph is bipartite (independent set) 

  Before designing an algorithm, need to understand 
structure of bipartite graphs 

v1 

v2 v3 

v6 v5 v4 

v7 

v2 

v4 

v5 

v7 

v1 

v3 

v6 

a bipartite graph G: another drawing of G 
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An Obstruction to Bipartiteness 
Lemma.  If a graph G is bipartite, it cannot contain an 
odd length cycle. 
Pf.  Not possible to 2-color the odd cycle, let alone 
G. 

bipartite 
(2-colorable) 

not bipartite 
(not 2-colorable) 

If find an odd cycle, graph is NOT bipartite 
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How Can We Determine  
Bipartite Graphs? 

Given a connected graph 
Color one node red 

– Doesn’t matter which color (Why?) 

What should we do next? 

How will we know that we’re finished? 
What does this process sound like? 

Why connected? 
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How Can We Determine  
Bipartite Graphs? 

Given a connected graph 
Color one node red 

– Doesn’t matter which color (Why?) 

What should we do next? 

How will we know that we’re finished? 
What does this process sound like? 
BFS: alternating colors, layers 

L1 L2 L3 
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Implementing Algorithm 
Modify BFS to have a Color array 
  When add v to list L[i+1] 
  Color[v] = red if i+1 is even 
  Color[v] = blue if i+1 is odd 

L1 L2 L3 
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Bipartite Graphs 
Lemma.  Let G be a connected graph, and let L0, …, 
Lk be the layers produced by BFS starting at node s.  
Exactly one of the following holds: 
(i) No edge of G joins two nodes of the same layer 

– G is bipartite 

(ii) An edge of G joins two nodes of the same layer 
– G contains an odd-length cycle (and hence is not 
bipartite) 

Case (i) 

L1 L2 L3 

Case (ii) 

L1 L2 L3 
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Bipartite Graphs 
Lemma.  Let G be a connected graph, and let L0, …, Lk be the 
layers produced by BFS starting at node s.  Exactly one of the 
following holds: 
(i)  No edge of G joins two nodes of the same layer 

– G is bipartite 

Pf.  (i) 
  Suppose no edge joins two nodes in the same layer 
  Implies all edges join nodes on adjacent level 
  Bipartition: red = nodes on odd levels, blue = nodes on even 

levels 

Case (i) 

L1 L2 L3 
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Bipartite Graphs 
Lemma.  Let G be a connected graph, and let L0, …, Lk 
be the layers produced by BFS starting at node s.  
Exactly one of the following holds: 
(ii)  An edge of G joins two nodes of the same layer, and G 

contains an odd-length cycle (and hence is not bipartite) 
Pf.  (ii) 
  Suppose (x, y) is an edge with x, y in same level Lj. 
  Let z = lca(x, y) = lowest common ancestor 
  Let Li be level containing z 
  Consider cycle that takes edge from x to y, 

then path from y to z, then path from z to x 

z = lca(x, y) 
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Bipartite Graphs 
Lemma.  Let G be a connected graph, and let L0, …, Lk be the 
layers produced by BFS starting at node s.  Exactly one of the 
following holds: 
(ii)  An edge of G joins two nodes of the same layer, and G contains an 

odd-length cycle (and hence is not bipartite) 

Pf.  (ii) 

  Suppose (x, y) is an edge with x, y in same level Lj 

  Let z = lca(x, y) = lowest common ancestor 

  Let Li be level containing z 

  Consider cycle that takes edge from x to y, 
then path from y to z, then path from z to x 

  Its length is  1  +   (j-i)  +  (j-i),  which is odd 

z = lca(x, y) 

(x, y) path from 
y to z 

path from 
z to x 



2/2/09 

4 

19 Feb 2, 2009 CS211 19 

Obstruction to Bipartiteness 
Corollary.  A graph G is bipartite iff it contains no odd 
length cycle. 

5-cycle C 

bipartite 
(2-colorable) 

not bipartite 
(not 2-colorable) 

20 

CONNECTIVITY IN DIRECTED 
GRAPHS 

20 
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Directed Graphs G = (V, E) 
Edge (u, v) goes from node u to node v 

Ex.  Web graph - hyperlink points from one web 
page to another 
  Directedness of graph is crucial 
  Modern web search engines exploit hyperlink structure 

to rank web pages by importance 

How does reachability change with directed graphs? 

Example: Web crawler.  Start from web page s.  Find 
all web pages linked from s, either directly or 
indirectly. 

Graph Search 
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For each node, keep track 
  Out edges (where links go) 
  In edges (from where links come in) 

Could just keep out edges 
  Get in edges with increased computation/time 
  Useful to have both in and out edges 

Representing Directed Graphs 
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Directed reachability.  Given a node s, find all nodes 
reachable from s. 

Directed s-t shortest path problem.  Given two nodes 
s and t, what is the length of the shortest path 
between s and t? 

  Not necessarily the same as t-s shortest path 

Graph search.  BFS and DFS extend naturally to 
directed graphs 

  Trace through out edges 

  Run in O(m+n) time 

Graph Search 

24 Feb 2, 2009 CS211 24 

1 2

54

7

3

6



2/2/09 

5 

Rather than paths from s to other nodes, find all 
nodes with paths to s 

Problem 
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Problem.  Rather than paths from s to other nodes, 
find all nodes with paths to s 

Solution.  Run BFS on in edges instead of out edges 

Problem/Solution 
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Strong Connectivity 
Def.  Node u and v are mutually reachable if there is 
a path from u to v and also a path from v to u 
Def.  A graph is strongly connected if every pair of 
nodes is mutually reachable 
Lemma.  Let s be any node.  G is strongly connected 
iff every node is reachable from s and s is reachable 
from every node 

s 

v 

u 

If u and v are mutually reachable and v and w are 
mutually reachable, then u and w are mutually 
reachable 

Strong Connectivity 
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If u and v are mutually reachable and v and w are 
mutually reachable, then u and w are mutually 
reachable. 

Proof.  We need to show that there is a path from u 
to w and from w to u. 

  By defn of mutually reachable, there is a path from u to 
v, a path from v to u, a path from v to w,  and a path 
from w to v 

  Take path uv and then from v  w 
– Path from uw 

  Similarly for wu 

Strong Connectivity 
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Def.  A graph is strongly connected if every pair of 
nodes is mutually reachable 

Lemma.  Let s be any node.  G is strongly 
connected iff every node is reachable from s and 
s is reachable from every node. 

  1st prove ⇒ 
  2nd prove ⇐ 

– for any nodes u and v, is there a path uv and vu ? 

Strong Connectivity 
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Strong Connectivity 
Def.  A graph is strongly connected if every pair of 
nodes is mutually reachable 
Lemma.  Let s be any node.  G is strongly connected 
iff every node is reachable from s, and s is reachable 
from every node. 
Pf.  ⇒ Follows from definition of strongly connected 
Pf.  ⇐ For any nodes u and v, make path uv and 
vu  
  uv : concatenating us with sv 
  v u: concatenate vs with su 

s 

v 

u 
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Strong Connectivity Problem 
Determine if G is strongly connected in O(m + n) 
time 

strongly connected not strongly connected 

Can we leverage any algorithms we know have O(m+n) time? 
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Strong Connectivity:  Algorithm 
Theorem.  Can determine if G is strongly connected 
in O(m + n) time. 
Pf. 
  Pick any node s 
  Run BFS from s in G 
  Run BFS from s in Grev 
  Return true iff all nodes reached in both BFS 

executions 
  Correctness follows immediately from previous lemma 

– All reachable from one node, s is reached by all 

reverse orientation of every edge in G 
Or, the BFS using the in edges 

For any two nodes s and t in a directed graph, their 
strong components are either identical or disjoint 

Strong Components 
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Consider a node in common… 

For any two nodes s and t in a directed graph, their 
strong components are either identical or disjoint 

Proof. 
  Consider v in both strong components 

– s v; v  s; vt; tv   ts, st (mutually reachable) 

– As soon as there is one common node, then have 
identical strong components 

Strong Components 
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DAGS AND TOPOLOGICAL 
ORDERING 

36 
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Directed Acyclic Graphs 
Def.  A DAG is a directed graph that contains no 
directed cycles. 
Example.  Precedence constraints: edge (vi, vj) 
means vi must precede vj 
  Course prerequisite graph:  course vi must be taken 

before vj 
  Compilation:  module vi must be compiled before vj 
  Pipeline of computing jobs:  output of job vi needed to 

determine input of job vj 

a DAG: 

v2 v3 

v6 v5 v4 

v7 v1 
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Directed Acyclic Graphs 
Given a set of tasks with dependencies, what is a 

valid order in which the tasks could be performed? 
v2 v3 

v6 v5 v4 

v7 v1 
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Directed Acyclic Graphs 
Given a set of tasks with dependencies, what is a 

valid order in which the tasks could be performed? 
Def.  A topological order of a directed graph G = 
(V, E) is an ordering of its nodes as v1, v2, …, vn so 
that for every edge (vi, vj) we have i < j. 

a DAG 
a topological ordering 

All edges point “forward” 

v2 v3 

v6 v5 v4 

v7 v1 

v1 v2 v3 v4 v5 v6 v7 
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Directed Acyclic Graphs 
Lemma.  If G has a topological order, then G is a DAG. 

Proof: Try to show that G has a cycle 

v1 vi vj vn 

the supposed topological order:  v1, …, vn 

the directed cycle C 

Why isn’t this valid? 
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Directed Acyclic Graphs 
Lemma.  If G has a topological order, then G is a DAG. 
Pf.  (by contradiction) 
  Suppose that G has a topological order v1, …, vn and that G also 

has a directed cycle C. 
  Let vi be the lowest-indexed node in C, and let vj be the node on 

C just before vi; thus (vj, vi) is an edge 
  By our choice of i (lowest-indexed node), i < j 
  On the other hand, since (vj, vi) is an edge and v1, …, vn is a 

topological order, we must have j < i, a contradiction.   ▪ 

v1 vi vj vn 

the supposed topological order:  v1, …, vn 

the directed cycle C 

Does every DAG have a topological ordering? 
  If so, how do we compute one? 

Directed Acyclic Graphs 
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Does every DAG have a topological ordering? 
  If so, how do we compute one? 

What would we need to be able to create a 
topological ordering? 

  What are some characteristics of this graph? 

Directed Acyclic Graphs 
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v1 v2 v3 v4 v5 v6 v7 


