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Dynamic Programming 
  Overview 
  Fibonacci 
  Weighted scheduling 

Objectives 
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Algorithmic Paradigms 
Greedy.  Build up a solution incrementally, 

myopically optimizing some local criterion 
Divide-and-conquer.  Break up a problem into sub-

problems, solve each sub-problem independently, 
and combine solution to sub-problems to form 
solution to original problem  

Dynamic programming.  Break up a problem into a 
series of overlapping sub-problems, and build up 
solutions to larger and larger sub-problems 
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Dynamic Programming History 
Richard Bellman pioneered systematic study of 

dynamic programming in 1950s 
Etymology 
  Dynamic programming = planning over time 

–  Not our typical use of programming 
  Secretary of Defense was hostile to mathematical 

research 
  Bellman sought an impressive name to avoid 

confrontation 
–  "it's impossible to use dynamic in a pejorative sense" 
–  "something not even a Congressman could object to" 

Reference:  Bellman, R. E. Eye of the Hurricane, An Autobiography. 
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WARMUP: FIBONACCI 
SEQUENCE 
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Input: the number of fibonacci numbers I want 
Output: display the list of fibonacci numbers 

Sequence: 
  F0=F1=1 
  Fn=Fn-1+ Fn-2 

How Would You Solve Fibonacci 
Sequence? 
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Typical Solution: 

Soln 1: Using a List 
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fibs = [] 	 	# create an empty list	
fibs.append(1) 	# append the first two Fib numbers	
fibs.append(1)	
print 1, 1,	
for x in xrange(2, N+1): 		

	newfib = fibs[x-1]+fibs[x-2]	
	print newfib,	
	fibs.append(newfib)	

print fibs 	 	# print out the list	

Do we need a whole list? 

Building up solution 

Running time?  Space cost? 
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Only need the solutions to the last two problems 
(F[k-1], F[k-2]) 

Soln 2: Using Three Variables 
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lastNum = 1	
twoAgo = 1	
print twoAgo, lastNum,	

for n in xrange (2, N+1):	

    nthNum = twoAgo + lastNum	
    print nthNum,	

    twoAgo = lastNum	
    lastNum = nthNum	

Write as a recurrence 

What is the running time of this algorithm? 

Soln 3: Recursion 
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def fibonacci(n):	
	return fibonacci(n-1) + fibonacci(n-2)	

Create a table with the possible inputs 
If the value is in the table, return it (without 

recomputing it); Otherwise, call function recursively 
  Add value to table for future reference 

Dynamic Programming Memoization 
Process 
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Memoization Example: Fibonacci 
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memoized_fibonacci(n):	
	for j = 1 to n:	
	 	results[i] = -1 # -1 means undefined	

	return memoized_fib_recurs(results, n)	

memoized_fib_recurs(results, n):	
	if results[n] != -1: # value is defined	
	 	return results[n]	
	if n == 1:	
	 	val = 1	
	elif n == 2:	
	 	val = 1	
	else:	
	 	val = memoized_fib_recurs(results, n-2)	
	 	val = val + memoized_fib_recurs(results, n-1)	
	results[n] = val	
	return val	

Runtime? 

Memoization Example: Fibonacci 
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memoized_fibonacci(n):	
	for j = 1 to n:	
	 	results[i] = -1 # -1 means undefined	
	results[1] = 1	
	results[2] = 1	

	return memoized_fib_recurs(results, n)	

memoized_fib_recurs(results, n):	
	if results[n] != -1: # value is defined	
	 	return results[n]	

	val = memoized_fib_recurs(results, n-2)	
	val = val + memoized_fib_recurs(results, n-1)	
	results[n] = val	
	return val	

WEIGHTED INTERVAL 
SCHEDULING 
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Weighted Interval Scheduling 
Job j starts at sj, finishes at fj, and has weight or value vj   
Two jobs are compatible if they don't overlap 
Goal:  find maximum weight subset of mutually 

compatible jobs 

Time 
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Unweighted Interval Scheduling 
Review 

Recall.  Greedy algorithm works if all weights are 1. 
  Consider jobs in ascending order of finish time 
  Add job to subset if it is compatible with previously 

chosen jobs 

What happens if we add weights to the problem? 
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Limitation of Greedy Algorithm 
Recall.  Greedy algorithm works if all weights are 1. 
  Consider jobs in ascending order of finish time 
  Add job to subset if it is compatible with previously 

chosen jobs 

Observation.  Greedy algorithm can fail spectacularly 
if arbitrary weights are allowed 

Time 
0 1 2 3 4 5 6 7 8 9 10 11 

b 

a 

weight = 999 

weight = 1 
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Weighted Interval Scheduling 
Notation. Label jobs by finishing time: f1  ≤  f2  ≤ . . . ≤ fn  

Def.  p(j) = largest index i < j such that job i is compatible 
with j 

Ex:  p(8) = 5, p(7) = 3, p(2) = 0 

Time 
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Assume we have an optimal solution 
Notation. OPT(j) = value of optimal solution to the 

problem consisting of job requests 1, 2, ..., j 
  What is something obvious we can we say about the 

optimal solution with respect to job j? 

Dynamic Programming 

17 Mar 18, 2009 CS211 18 

Dynamic Programming:  Binary 
Choice 

Notation. OPT(j) = value of optimal solution to the 
problem consisting of job requests 1, 2, ..., j 

  Case 1:  OPT selects job j 

  Case 2:  OPT does not select job j 

– Explore both of these cases… 
•  What jobs are in OPT?  Which are not? 

– Keep in mind our definition of p  
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Weighted Interval Scheduling 
Notation. Label jobs by finishing time: f1  ≤  f2  ≤ . . . ≤ fn  

Def.  p(j) = largest index i < j such that job i is compatible 
with j 

Ex:  p(8) = 5, p(7) = 3, p(2) = 0 

Time 
0 1 2 3 4 5 6 7 8 9 10 11 
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Dynamic Programming:  Binary 
Choice 

Notation. OPT(j) = value of optimal solution to the 
problem consisting of job requests 1, 2, ..., j 

  Case 1:  OPT selects job j 
–  can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 } 
–  must include optimal solution to problem consisting of 

remaining compatible jobs 1, 2, ...,  p(j) 
  Case 2:  OPT does not select job j 

–  must include optimal solution to problem consisting of 
remaining compatible jobs 1, 2, ...,  j-1 

optimal substructure 

Mar 18, 2009 CS211 

Formulate OPT(j) as a recurrence relation 
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Dynamic Programming:  Binary 
Choice 

Notation. OPT(j) = value of optimal solution to the 
problem consisting of job requests 1, 2, ..., j 

  Case 1:  OPT selects job j 
–  can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 } 
–  must include optimal solution to problem consisting of 

remaining compatible jobs 1, 2, ...,  p(j) 
  Case 2:  OPT does not select job j 

–  must include optimal solution to problem consisting of 
remaining compatible jobs 1, 2, ...,  j-1 

Formulate OPT(j) in terms 
of smaller subproblems 

Which should we choose? 
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Two options:  Opt(j) = vj + OPT(p(j)) 
    Opt(j) = Opt(j-1)  
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Dynamic Programming:  Binary 
Choice 

Notation. OPT = value of optimal solution to the 
problem consisting of job requests 1, 2, ..., j 

  Case 1:  OPT selects job j 
–  can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 } 
–  must include optimal solution to problem consisting of 

remaining compatible jobs 1, 2, ...,  p(j) 
  Case 2:  OPT does not select job j 

–  must include optimal solution to problem consisting of 
remaining compatible jobs 1, 2, ...,  j-1 

  

€ 

OPT( j) =
0 if  j = 0

max v j + OPT( p( j)), OPT( j −1){ } otherwise
 
 
 
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Choose the better of 
the two solutions 
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Input: n jobs (associated start time sj, finish time fj, 
and value vj)	

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn	

Compute p(1), p(2), …, p(n)	

Compute-Opt(j)	
   if j = 0	
      return 0	
   else	
      return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))	

Weighted Interval Scheduling: 
Recursive Algorithm 
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What is the run time? 
(Trace for n = 5) 3 

4 
5 

1 
2 
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Weighted Interval Scheduling:  Brute 
Force 

Observation.  Redundant sub-problems  ⇒  
exponential algorithms 

Ex.  Number of recursive calls for family of "layered" 
instances grows like Fibonacci sequence. 

3 
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5 

1 
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p(1) = 0, p(j) = j-2 
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1 0 
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Input: n jobs (associated start time sj, finish time fj, and 
value vj)	

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn	
Compute p(1), p(2), …, p(n)	

for j = 1 to n	
   M[j] = empty	
M[0] = 0	

M-Compute-Opt(j):	
   if M[j] is empty:	
      M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))	
   return M[j]	

global array 

Weighted Interval Scheduling:  
Memoization 

Memoization.  Store results of each sub-problem in a 
cache; lookup as needed. 
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Need to analyze runtime… 

Because we have jobs whose p(j) = 0 

Jobs labeled with name - weight/value 

Example 
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Time 
0 1 2 3 4 5 6 7 8 9 10 11 

F - 3 

G - 2 

H - 1 

D - 4 

C -3 

A - 1 

B - 2 

E - 5 

0 A B C D E F G H M 

Example 
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Time 
0 1 2 3 4 5 6 7 8 9 10 11 

F - 3 
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M 
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