Objectives

BFS & DFS Implementations, Analysis
Graph Applications: Bipartiteness
Directed Graphs

Jan 29, 2010 CSCI211 - Sprenkle

1/29/10

Notes on Assignments

Wiki: Any thoughts about using Dokuwiki for
your notes?

Jan 29, 2010 CSCI211 - Sprenkle 2

Implementing DFS

Keep nodes to be processed in a stack

DFS(s):
Initialize S to be a stack with one element s
Explored[v] = false, for all v
Parent[v] = 0, for all v
DFS tree T = {}
while S != {}
Take a node u from S
If Explored[u] = false
Explored[u] = true
Add edge (u, parent[u]) to T (if u = s)
For each edge (u, v) incident to u
Add v to the stack S
Parent[v] = u

Jan 29, 2010 CSCI211 - Sprenkle

Analyzing DFS
O(n+m)

DFS(s):
Initialize S to be a stack with one element s
Explored[v] = false, for all v
Parent[v] = @, for all v
DFS tree T = {}
while S != {}
Take a node u from S
If Explored[u] = false
Explored[u] = true
Add edge (u, parent[u]) to T (if u = s)
deg(u) For each edge (u, v) incident to u
Add v to the stack S
Parent[v] = u

Jan 29, 2010 CSCI211 - Sprenkle 4

Analysis of Set of All Connected
Components

R* = set of connected components
While there is a node that does not belong to R*

select s not in R*
R = {s}

While there is an edge (u,v) where ueR and véR
add v to R

Add R to R*

Running time: O(m+n)

But the “inner" loop was O(m+n)!
How can this be?

Jan 29, 2010 CSCI211 - Sprenkle

Analysis of Set of All Connected
Components

R* = set of connected components
While there is a node that does not belong to R*

select s not in R* Imprecisfon in the running
time pf inner loop:
R - {s} me of p
O(m+n)
While there is an edge (u,v) where u€R and véR
add v to R

That's|m and n of the
Add R to R* connegted component,

let's say m;and n;
So...
Z; O(m+ n) = O(m+n)
Where i is the subscript of/
the connected component

Jan 29, 2010 CSCI211 - Sprenkle 6




TESTING BIPARTITENESS

Jan 29, 2010 CSCI211 - Sprenkle 7

1/29/10

Bipartite Graphs

Def. An undirected graph G = (V, E) is
bipartite if the nodes can be colored red or
blue such that every edge has one red end
and one blue end
» Generally: vertices divided into sets X and Y
Applications:
» Stable marriage:
men = red, women = blue
» Scheduling:
machines = red, jobs = blue

a bipartite graph

Jan 29, 2010 CSCI211 - Sprenkle 8

Testing Bipartiteness

Given a graph G, is it bipartite?
Many graph problems become:
» Easier if underlying graph is bipartite (e.g., matching)
» Tractable if underlying graph is bipartite (e.g.,
independent set)

Before designing an algorithm, need to understand
structure of bipartite graphs

a bipartite ve Vs another
graph6: S \ drawing of 6:

Vo = Vs vy

NN/

Jan 29, 2010 CSCI211 - Sprenkle 9

An Obstruction to Bipartiteness

Lemma. If a graph G is bipartite, it cannot
contain an odd length cycle.

Pf. Not possible to 2-color the odd cycle, let
alone G.

If find an odd cycle,
graph is NOT bipartite

bipartite not bipartite
(2-colorable) (not 2-colorable)

Jan 29, 2010 CSCI211 - Sprenkle 10

How Can We Determine if a Graph is
Bipartite?

Given a connected graph
1. Color one node red
Doesn’t matter which color (Why?)
» What should we do next?

Why connected?

2y

/ \

Vg == Vs V4

S/

— L

» How will we know when
we're finished?

« What does this process
sound like?

Jan 29, 2010 CSCI211 - Sprenkle "

How Can We Determine if a Graph is
Bipartite?
Given a connected graph
» Color one node red
Doesn’'t matter which color (Why?)
» What should we do next?

How will we know that we’re finished?
What does this process sound like?

» BFS: alternating colors, layers @

L L. Ls

Jan 29, 2010 CSCI211 - Sprenkle 12




Implementing Algorithm
Modify BFS to have a Color array

When add v to list L[i+1] E E E

» Color[v] = red if i+1 is even
» Color[v] = blue if i+1 is odd
Ly L, Ls

What is the running time of this algorithm? O(n+m)

Jan 29, 2010 CSCI211 - Sprenkle 13

1/29/10

Analyzing Algorithm’s Correctness

Lemma. Let G be a connected graph, and let
Ly, ..., L, be the layers produced by BFS
ﬁtalating at node s. Exactly one of the following
olds:
~ (i) No edge of G joins two nodes of the same layer
G is bipartite
~ (ii) An edge of G joins two nodes of the same layer
G contains an odd-length cycle and hence is not

bipartite
- (i): @ - (ii): @
L L. Ls Ly L, Ly
Jan 29, 2010 CSCI211 - Sprenkle 14

Analyzing Algorithm’s Correctness

Lemma. Let G be a connected graph, and let L, ...,
L, be the layers produced by BFS starting at node s.
Exactly one of the following holds:

» (i) No edge of G joins two nodes of the same layer

G is bipartite

Pf. (i)

» Suppose no edge joins two nodes in the same layer

» Implies all edges join nodes on adjacent level

» Bipartition: red = nodes on odd levels, blue = nodes on

even levels
- (I) @

L L. Ls
Jan 29, 2010 CSCI211 - Sprenkle 15

Analyzing Algorithm’s Correctness

Lemma. Let G be a connected graph, and let L, ...,
L, be the layers produced by BFS starting at node s.
Exactly one of the following holds:
» (i) An edge of G joins two nodes of the same layer >
G contains an odd-length cycle and hence is not bipartite

Pf. (i)
» Suppose (X, y) is an edge with x, y in same
level L.
» Let z =Ica(x, y) = lowest common ancestor
> Let L, be level containing z

» Consider cycle that takes edge from xtoy, '@k O)
then path y -z, then path from z > x

Layer L;
Jan 29, 2010 CSCI211 - Sprenkle

° z = lca(x, y)

16

Analyzing Algorithm’s Correctness

Lemma. Let G be a connected graph, and let L, ...,
L, be the layers produced by BFS starting at node s.
Exactly one of the following holds:

» (i) An edge of G joins two nodes of the same layer >
G contains an odd-length cycle and hence is not bipartite

Pf. (i)
» Suppose (X, y) is an edge with x, y in same

level L.

» Let z = Ica(x, y)=lowest common ancestor
» Let L, be level containing z
Consider cycle that takes edge from x to y,
then path y = z, then path z > x
Its lengthis 1 + (j-i) + (j-i), which is odd

W

x.y) pa'rh from path from

yto

ztox
Jan 29, 2010 CSCI211 - Sprenkle

Y

A’

Obstruction to Bipartiteness

Corollary. A graph G is bipartite iff it contains
no odd length cycle.

<= 5-cycleC

bipartite not bipartite
(2-colorable) (not 2-colorable)

Jan 29, 2010 CSCI211 - Sprenkle 18




DIRECTED GRAPHS

Jan 29, 2010 CSCI211 - Sprenkle 19

1/29/10

Directed Graphs G = (V, E)

Edge (u, v) goes from node u to node v

Example: Web graph - hyperlink points from
one web page to another
» Directedness of graph is crucial

» Modern web search engines exploit hyperlink
structure to rank web pages by importance

Jan 29, 2010 CSCI211 - Sprenkle 20

Representing Directed Graphs

For each node, keep track of

» Out edges (where links go)

> In edges (from where links come in)

Could just keep out edges

» Get in edges with increased computation/time
» Useful to have both in and out edges

Jan 29, 2010 CSCI211 - Sprenkle 21

CONNECTIVITY IN DIRECTED
GRAPHS

Jan 29, 2010 CSCI211 - Sprenkle 22

Graph Search

How does reachability change with directed
graphs?

Example: Web crawler

1. Start from web page s.

2. Find all web pages linked from s, either directly
or indirectly.

Jan 29, 2010 CSCI211 - Sprenkle 23

Graph Search

Directed reachability. Given a node s, find all
nodes reachable from s.

Directed s-t shortest path problem. Given
two nodes s and t, what is the length of the
shortest path between s and t?

» Not necessarily the same as t-s shortest path
Graph search. BFS and DFS extend
naturally to directed graphs

» Trace through out edges

» Run in O(m+n) time
Jan 29, 2010 CSCI211 - Sprenkle




1/29/10

Problem

Rather than paths from s to other nodes, find
all nodes with paths to s

Jan 29, 2010 CSCI211 - Sprenkle 25

Problem/Solution

Problem. Rather than paths from s to other
nodes, find all nodes with paths to s

Solution. Run BFS on in edges instead of
out edges

Jan 29, 2010 CSCI211 - Sprenkle 26

Strong Connectivity

Def. Node v and v are mutually reachable
if there is a path from u - v and also a path
fromv->u

Def. A graph is strongly connected if every
pair of nodes is mutually reachable

Lemma. Let s be any node. G is strongly
connected iff every node is reachable from s
and s is reachable from every node

Jan 29, 2010 CSCI211 - Sprenkle E ;E 27

Strong Connectivity

If u and v are mutually reachable and v and
w are mutually reachable, then u and w are
mutually reachable

Jan 29, 2010 CSCI211 - Sprenkle 28

Strong Connectivity

If u and v are mutually reachable and v and
w are mutually reachable, then u and w are
mutually reachable.
Proof. We need to show that there is a path
from u > w and from w > u.
By defn of mutually reachable
thereisa pathu > v&apathv >y,
apathv-> w, andapathw > v
Take path u>v and then from v > w
Path from u>w
Similarly for w>u

Jan 29, 2010 CSCI211 - Sprenkle 29

Strong Connectivity

Def. A graph is strongly connected if every
pair of nodes is mutually reachable
Lemma. Let s be any node. G is strongly
connected iff every node is reachable from s
and s is reachable from every node.

1st prove

2n prove

for any nodes u and v, is there a path u>v and
vou?

Jan 29, 2010 CSCI211 - Sprenkle 30




Strong Connectivity

Def. A graph is strongly connected if every pair
of nodes is mutually reachable

Lemma. Lets be any node. G is strongly
connected iff every node is reachable from s,
and s is reachable from every node.

Pf. = Follows from definition of strongly
connected

Pf. < For any nodes u and v, make path u>v

and v>u
» u—>v:concatenating u=>s with s>v
» v —>u: concatenate v>s with s>u

Jan 29, 2010 CSCI211 - Sprenkle 31

Strong Connectivity: Algorithm

Theorem. Can determine if G is strongly
connected in O(m + n) time.
Pf.
» Pick any node s ) )
reverse orientation of every edge in 6
> Run BFS from sin G, 0r, the 8FS using the in edges
» Run BFS from s in Grev
» Return true iff all nodes reached in both BFS
executions
» Correctness follows immediately from previous
lemma
All reachable from one node, s is reached by all

Jan 29, 2010 CSCI211 - Sprenkle 33

Strong Connectivity Problem

Determine if G is strongly connected in
O(m + n) time

VAVANERVAVAN

strongly connected not strongly connected

Hint: Can we leverage any algorithms
we know have O(m+n) time?

Jan 29, 2010 CSCI211 - Sprenkle 32

PS1 Feedback

Problem 1: Looking for an induction proof but |
didn’t really get that
Problem 2: Straightforward adaptation of
definitions
» Trying to get you to review the definitions and get
more comfortable with them
Problems 3 & 4: Similar to one of the solved
exercises
» Take logs of functions to help see pattern
Problem 5: Your solutions weren’t quite right
» Often going backwards
» My drawing to try to trace through your algorithms
» Analyze the running times of your solutions
Jan 29, 2010 CSCI211 - Sprenkle 34

Assignments

Finish reading Chapter 3
» Wikis for Wednesday
For next Friday: Problem Set 3

Jan 29, 2010 CSCI211 - Sprenkle 35 35




