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Objectives 

•  Finish survey of common running times 
•  More on Data structures 

•  Checking in on journal 
 Alternative to quizzes 
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A SURVEY OF COMMON 
RUNNING TIMES 
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Review: O(n) Algorithms 

•  Constant work on each input element 
•  Examples: 

 Finding the max 
 Merging two sorted lists 
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O(n log n) Time 

•  Also referred to as linearithmic time 
•  Arises in divide-and-conquer algorithms 

 Splitting input into equal pieces, solve 
recursively, combine solutions in linear time 
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What well-known set of algorithms ���
has an O(n logn) running time?	



O(n log n) Time Example 

•  Sorting: Mergesort and heapsort are sorting 
algorithms that perform O(n log n) 
comparisons 

•  Mergesort 
1.  Break input into equal-sized pieces 
2.  Sorts each half recursively 
3.  Merges sorted halves into a sorted list 
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Talk about the bound on running 
time during D&C chapter…	



O(n log n) Time Example 

•  Largest empty interval.  Given n (not 
necessarily ordered) time-stamps x1, …, xn at 
which copies of a file arrive at a server, what 
is largest interval of time when no copies of 
the file arrive? 
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O(n log n) Time Example 

•  Largest empty interval.  Given n (not 
necessarily ordered) time-stamps x1, …, xn at 
which copies of a file arrive at a server, what 
is largest interval of time when no copies of 
the file arrive? 

•  O(n log n) solution 
1.  Sort time-stamps 
2.  Scan sorted list in order, identifying the 

maximum gap between successive time-
stamps 
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Quadratic Time: O(n2) 

•  Examples? 
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Quadratic Time: O(n2) 

•  Examples: 
 Enumerate all pairs of elements 
 Often involves nested loops (n iterations each) 
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Quadratic Time: O(n2) 

•  Closest pair of points.  Given a list of n points 
in the plane (x1, y1), …, (xn, yn), find the pair 
that is closest 

•  O(n2) solution.  Try all pairs of points 
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min = (x1 - x2)2 + (y1 - y2)2	
for i = 1 to n 	
   for j = i+1 to n 	
      d = (xi - xj)2 + (yi - yj)2	
      if (d < min)	
         min = d	

don't need to���
take square roots	



Ω(n2) seems inevitable, but Chapter 5 has an O(n logn) solution	



Cubic Time: O(n3) 

•  Examples? 
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Cubic Time: O(n3) 

•  Enumerate all triples of elements 
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Cubic Time: O(n3) 

•  Set disjointness.  Given n sets S1, …, Sn 
each of which is a subset of 1, 2, …, n, is 
there some pair of these which are disjoint? 

•  O(n3) solution.  For each pair of sets, 
determine if they are disjoint 
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foreach set Si 	
   foreach other set Sj 	
      foreach element p of Si 	
         determine whether p also belongs to Sj	
     	
      if (no element of Si belongs to Sj)	
         report that Si and Sj are disjoint  	

Polynomial Time: O(nk) Time 

•  To get all pairs, the algorithm is O(n2) 
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What is an example of an O(nk) algorithm?	



All subsets of size k	



Polynomial Time: O(nk) Time 

•  Independent set of size k.  Given a graph, 
are there k nodes such that no two are joined 
by an edge? 
 k is a constant 
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Polynomial Time: O(nk) Time 

•  Independent set of size k.  Given a graph, 
are there k nodes such that no two are joined 
by an edge? 
 k is a constant 

•  O(nk) solution 
1.  Enumerate all subsets of k nodes 

2.  Check whether S is an independent set = O(k2). 
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foreach subset S of k nodes 	
   check whether S in an independent set	
   if (S is an independent set)	
      report S is an independent set  	
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poly-time for k=17���
but not practical	



O(k2 nk / k!) = O(nk)	



Exponential Time 

•  Independent set.  Given a graph, what is the 
maximum size of an independent set? 

•  O(n2 2n) solution.  Enumerate all subsets 
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S* = φ	
foreach subset S of nodes 	
   check whether S in an independent set	
   if (S is largest independent set seen so far)	

	S* = S	

O(log n) Time  

•  Sublinear time 
•  Know any algorithms that take O(log n) time? 
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O(log n) Time  

•  Example: Binary search 

•  Often requires some pre-processing or data 
structure that allows cheaper “querying” than 
n  time 
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Summary of Running Times 
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Running Time Example 

O(log n) Generally dividing problem in half on 
each iteration 

O(n) Operate on each input value 
O(n log n) Divide and conquer 

O(n2) Operate on each pair of inputs 
O(n!) Operate on each permutation of inputs 

MORE COMPLEX DATA 
STRUCTURES 
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Improving Running Times 
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After overcoming higher-level obstacles,	


lower-level implementation details 

can improve runtime.	



PRIORITY QUEUES 
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Priority Queues 
•  Elements have a priority or key 
•  Each time select an element from the priority 

queue, want the one with highest priority 
•  More formally… 

 Maintains a set of elements S 
•  Each element v ∈ S has a key(v) for its priority 

  Smaller keys represent higher priorities 
 Supported operations 

•  Add, delete elements 
•  Select element with smallest key 
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Key 2 4 5 6 9 20 
Value 3542 5143 8712 1264 9123 5954 Process id	



Not implementation, just how to envision	



Priority	
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Motivating Example: 
Scheduling Processes 

•  Each process has a priority or urgency 
•  Processes do not arrive in priority order 
•  Goal: run process with highest priority 

Jan 19, 2011 25 Sprenkle - CSCI211 

Key 2 4 5 6 9 20 
Value 3542 5143 8712 1264 9123 5954 Process id	



Priority	



Using a Priority Queue 
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How could we use a PQ to sort a list of numbers?	



Priority Queues for Sorting 

1. Add elements into PQ with the number’s 
value as its priority 

2. Then extract the smallest number until done 
 Come out in sorted order 
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Sorting n numbers takes O(n logn) time	



What is the goal running time for our PQ’s 
operations?	



What is the goal running time for our PQ’s 
operations? O(logn)	



Already know our “loops” will be O(n) 	



Implementing a Priority Queue 

•  Consider an unordered list, where there is a 
pointer to minimum 

•  How difficult (i.e., expensive) is 
 Adding new elements? 
 Extraction? 
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min	



Implementing a Priority Queue 
•  Consider an unordered list, where there is a 

pointer to minimum 

•  How difficult (i.e., expensive) is 
 Adding new elements? easy 
 Extraction? difficult 

•  Need to find “new” minimum: O(n) 
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min	



What is the running time for sorting 
with the PQ in this case?	



O(n2)	



Implementing a Priority Queue 

•  Consider a sorted list where min is at the 
beginning 

•  Should you use an array or linked list? 
•  How difficult is 

 Adding new elements? 
 Extraction? 
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min	
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Implementing a Priority Queue 
•  Consider a sorted list where min is at the 

beginning 

•  Should you use an array or linked list? 
•  How difficult is 

 Adding new elements? more difficult (insertion) 
 Extraction? Easy 
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min	



What is the running time for sorting 
with the PQ in this case?	



O(n2)	



Reflection 

•  All of “known” data structures has one 
operation that takes O(n) time 

•  Cannot implement PQs with “known” data 
structures arrays and lists to meet desired  
O(n log n) runtime 

•  Motivates use of a new data structure (heap) 
to implement PQ 
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HEAPS 
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Heap Defined 

•  Combines benefits of sorted array and list 
•  Balanced binary tree 
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root	


• Each node has at most 2 children 
• Node value is its key 

Heap order: each node’s key is 
at least as large as its parent’s 

Note: not a binary search tree	
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Heaps 
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Implementing a Heap 

•  Option 1: Use pointers 
 Each node keeps 

•  Element it stores (key) 
•  3 pointers: 2 children, parent 

•  Option 2: No pointers 
 Requires knowing upper bound on n 
 For node at position i 

•  left child is at 2i 
•  right child is at 2i+1 
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If know child’s position, what is the position of parent?	
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Assignment 

•  Problem Set Due Friday 
•  Finish reading, summarizing Chapter 2 
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