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Objectives 

•  BFS & DFS Implementations, Analysis 
•  Graph Application: Bipartiteness 
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Soap Opera Proofs 

•  “It’s the only thing that makes sense.” 
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Problem Set #1 

•  √2n < n + 10 
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Review: Comparing BFS vs DFS 

• What do they do? 
•  How are their outcomes different? 
• When would we want to use one over the 

other? 
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Review: Finding Connected Components 

Jan 26, 2011 CSCI211 - Sprenkle 5 

R will consist of nodes to which s has a path	
R = {s}	
while there is an edge (u,v) where u∈R and v∉R	

	add v to R	

s	



u	

 v	



R	


it's safe to 

add v	



DFS and BFS say what order we look at the edges.	



Review: Comparing BFS vs DFS 
•  What do they do? 

 Techniques for finding connected components 
•  Create a tree of connected components 

 Other uses as well 
•  How are their outcomes different? 

 BFS: shortest path; bushy tree 
 DFS: spindly tree 

•  When would we want to use one over the other? 
 BFS: Shortest path 
 DFS: what you’d do in a maze (can’t split) 
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Analysis of Connected Components 

•  For any two nodes s and t in a graph, their 
connected components are either identical or 
disjoint 

•  Proof? 
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Analysis of Connected Components 

•  For any two nodes s and t in a graph, their 
connected components are either identical or 
disjoint 

•  Proof sketch: 
(i) There is a path between s and t  same set of 

connected components 
(ii) There is no path between s and t  disjoint set 

of connected components 
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Set of All Connected Components 

•  How can we find set of all connected 
components of a graph?  
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Set of All Connected Components 

•  How can we find set of all connected 
components of a graph?  
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R* = set of connected components (a set of sets)	
	
while there is a node that does not belong to R*	

		
	select s not in R*	

	
	R = {s}	

	
	while there is an edge (u,v) where u∈R and v∉R	
	 	add v to R	

	
	

	Add R to R*	
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IMPLEMENTATION & 
ANALYSIS 
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Queues and Stacks 

•  How are queues and stacks similar? 
•  How are queues and stacks different? 
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Queues and Stacks 

•  Both: doubly linked list 
 Always take first on list 
 Difference in where extracted 
 Have first and last pointers 
 Done in constant time 

•  Queue: FIFO 
 First in, first out 

•  Stack: LIFO 
 Last in, first out 
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Queue 
Removes	



Stack 
Removes	



Both add	

 Implementing BFS 
•  Graph: Adjacency list 
•  Discovered array 
•  Maintain layers in separate lists, L[i] 
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Implementing BFS 
•  Graph: Adjacency list 
•  Discovered array 
•  Maintain layers in separate lists, L[i] 

Jan 26, 2011 CSCI211 - Sprenkle 

BFS(s):	
	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	for each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] == false then	
	 	 	 	Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	

L[i] as a queue ���
or stack?	
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What does this 
stopping condition 

mean?	



Analysis 
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BFS(s):	
	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	For each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] == false then	
	 	 	 	Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	

•  L[i] as a queue or stack?���
- Doesn’t matter because algorithm can consider nodes in any order	



What is the running time?	



BFS(s):	
	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	For each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] == false then	
	 	 	 	Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	

Analysis 
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BFS(s):	
	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	For each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] == false then	
	 	 	 	Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	

Analysis: Tighter Bound 
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O(deg(u))	
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Σu∈V deg(u) = 2m	


	



 O(n+m)	
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Implementing DFS 
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Implementing DFS 

•  Keep nodes to be processed in a stack 
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DFS(s):	
	Initialize S to be a stack with one element s	
	Explored[v] = false, for all v	
	Parent[v] = 0, for all v	
	DFS tree T = {}	
	while S != {}	
	 	Take a node u from S	
	 	if Explored[u] = false	
	 	 	Explored[u] = true	
	 	 	Add edge (u, parent[u]) to T (if u ≠ s)	
	 	 	for each edge (u, v) incident to u	
	 	 	 	Add v to the stack S	
	 	 	 	Parent[v] = u	
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DFS(s):	
	Initialize S to be a stack with one element s	
	Explored[v] = false, for all v	
	Parent[v] = 0, for all v	
	DFS tree T = {}	
	while S != {}	
	 	Take a node u from S	
	 	if Explored[u] = false	
	 	 	Explored[u] = true	
	 	 	Add edge (u, parent[u]) to T (if u ≠ s)	
	 	 	for each edge (u, v) incident to u	
	 	 	 	Add v to the stack S	
	 	 	 	Parent[v] = u	

Analyzing DFS 
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deg(u)	



O(n+m)	
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Set of All Connected Components 

•  How can we find set of all connected 
components of graph?  
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Running time: O(m+n)	
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R* = set of connected components (a set of sets)	
	
while there is a node that does not belong to R*	

		
	select s not in R*	

	
	R = {s}	

	
	while there is an edge (u,v) where u∈R and v∉R	
	 	add v to R	

	
	

	Add R to R*	

But the inner loop was O(m+n)!	


How can this RT be possible?	



Set of All Connected Components 

•  How can we find set of all connected 
components of graph?  

Jan 26, 2011 CSCI211 - Sprenkle 23 

Where i is the subscript of the 
connected component	



R* = set of connected components (a set of sets)	
	
while there is a node that does not belong to R*	

		
	select s not in R*	

	
	R = {s}	

	
	while there is an edge (u,v) where u∈R and v∉R	
	 	add v to R	

	
	

	Add R to R*	

Imprecision in the running time 
of inner loop:  O(m+n)	



But that’s m and n of the 
connected component, ���
let’s say mi and ni .  Therefore,	



Σi O(mi+ ni) = O(m+n)	



BIPARTITE GRAPHS 
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Bipartite Graphs 

•  Def.  An undirected graph G = (V, E) is 
bipartite if the nodes can be colored red or 
blue such that every edge has one red and 
one blue end 
 Generally: vertices divided into sets X and Y 

•  Applications: 
 Stable marriage:  

•  men = red, women = blue 
 Scheduling:   

•  machines = red, jobs = blue 
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a bipartite graph	



Testing Bipartiteness 
•  Given a graph G, is it bipartite? 
•  Many graph problems become: 

 Easier if underlying graph is bipartite (e.g., matching) 
 Tractable if underlying graph is bipartite (e.g., 

independent set) 
•  Before designing an algorithm, need to understand 

structure of bipartite graphs 
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a bipartite 
graph G:	



another 
drawing of G:	



An Obstruction to Bipartiteness 

•  Lemma.  If a graph G is bipartite, it cannot 
contain an odd-length cycle. 

•  Pf.  Not possible to 2-color the odd cycle, let 
alone G. 
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bipartite ���
(2-colorable)	



not bipartite ���
(not 2-colorable)	



If find an odd cycle, 	


graph is NOT bipartite	



How Can We Determine if a Graph is 
Bipartite? 

•  Given a connected graph 
1.  Color one node red 

•  Doesn’t matter which color (Why?) 
 What should we do next? 
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Why connected?	
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•  How will we know when 
we’re finished?	



•  What does this process 
sound like?	



Reminders 

•  Friday: Problem Set 2 due 
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