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Data structures: Graphs 
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Objectives 
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Undirected Graphs G = (V, E) 
V = nodes (vertices) 
E = edges between pairs of nodes 
Captures pairwise relationship between objects 
Graph size parameters:  n = |V|, m = |E| 

V = { 1, 2, 3, 4, 5, 6, 7, 8 } 
E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 } 
n = 8 
m = 11 
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Node indexed array of lists 
  Two representations of each edge 
  Space = 2m + n = O(m + n) 
  Checking if (u, v) is an edge takes O(deg(u)) time 
  Identifying all edges takes Θ(m + n) time 
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Graph Representation:  
Adjacency List 

degree = number of 
neighbors of u 
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Paths and Connectivity 
Def.  A path in an undirected graph G = (V, E) is a 
sequence P of nodes v1, v2, …, vk-1, vk  
  each consecutive pair vi, vi+1 is joined by an edge in E 

Def.  A path is simple if all nodes are distinct 
Def.  An undirected graph is connected if ∀ pair of 
nodes u and v, there is a path between u and v 

• Short path 
• Distance 
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Cycles 
Def.  A cycle is a path v1, v2, …, vk-1, vk in which      
v1 = vk, k > 2, and the first k-1 nodes are all distinct 

cycle C = 1-2-4-5-3-1 
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Trees 
Def.  An undirected graph is a tree if it is connected 
and does not contain a cycle 
Simplest connected graph 
  Deleting any edge from a tree will disconnect it 
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Rooted Trees 
Given a tree T, choose a root node r and orient each 
edge away from r 
Models hierarchical structure 

a tree the same tree, rooted at 1 

v 

parent of v 

child of v 

root r Why n-1 edges? 
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GRAPH TRAVERSAL 
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s-t connectivity problem.  Given two node s and t, is 
there a path between s and t? 
s-t shortest path problem.  Given two node s and t, 
what is the length of the shortest path between s and 
t? 
Applications 
  Facebook 
  Maze traversal 
  Kevin Bacon number 
  Fewest number of hops in a communication network 
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Connectivity 
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Breadth First Search 
Intuition.  Explore outward from s in all possible 
directions, adding nodes one "layer" at a time 
Algorithm  
  L0 = { s } 
  L1 = all neighbors of L0 
  L2 = all nodes that do not belong to L0 or L1, and that have 

an edge to a node in L1 
  Li+1 = all nodes that do not belong to an earlier layer, and 

that have an edge to a node in Li 
Theorem.  For each i, Li consists of all nodes at distance 
exactly i from s.  There is a path from s to t iff t appears 
in some layer. 

s L1 L2 L n-1 
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Breadth First Search 
Theorem.  For each i, Li consists of all nodes at distance 
exactly i from s.  There is a path from s to t iff t appears 
in some layer. 
  Shortest path to t from s, is the i from Li 
  All nodes reachable from s are in L1, L2, …, Ln-1 

s L1 L2 L n-1 
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Breadth First Search 
Property.  Let T be a BFS tree of G = (V, E), and let 
(x, y) be an edge of G. Then the level of x and y 
differ by at most 1. 

L0 

L1 

L2 

L3 

G:  
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If x is in Li, then y must 
be in Li+1 or earlier 
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Implementation: Maintaining Sets  

Either a queue or a stack 
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Implementation: Maintaining Sets  
Either a queue or a stack 

Queue: FIFO 

  First in, first out 

Stack: LIFO 

  Last in, last out 

Both as a doubly linked list 

  Always take first on list 

  Difference in where inserted 
– Have first and last pointers 

– Done in constant time 
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Implementing BFS 
Graph: Adjacency list 
Discovered array 
Maintain layers in separate lists, L[i] 
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Implementing BFS 
Graph: Adjacency list 
Discovered array 
Maintain layers in separate lists, L[i] 

BFS(s):	
	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	For each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] = false then	
	 	 	 	Set Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	
	 	 		

L[i] as a queue or stack? 
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Analysis 
BFS(s):	

	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	For each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] = false then	
	 	 	 	Set Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	
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Analysis 
BFS(s):	

	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	For each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] = false then	
	 	 	 	Set Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	
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Analysis 
BFS(s):	

	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	For each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] = false then	
	 	 	 	Set Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	
	 	 		

O(deg(u)) 
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Σu∈V deg(u) = 2m 
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Connected Component 
Find all nodes reachable from s 
  BFS is one approach 

Connected component containing node 1 = { 1, 2, 3, 
4, 5, 6, 7, 8 } 
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Application: Flood Fill 
Given lime green pixel in an image, change color of 
entire blob of neighboring lime pixels to blue 
  Node:  pixel 
  Edge:  two neighboring lime pixels 

  Blob:  connected component of lime pixels 

recolor lime 
green blob 

to blue 
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Application: Flood Fill 
Given lime green pixel in an image, change color of 
entire blob of neighboring lime pixels to blue 
  Node:  pixel 
  Edge:  two neighboring lime pixels 

  Blob:  connected component of lime pixels 

recolor lime 
green blob 

to blue 
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Connected Component 
Find all nodes reachable from s 

Theorem.  Upon termination, R is the connected component 
containing s 
  BFS = explore in order of distance from s 
  DFS = explore in a different way 

s 

u v 

R 

it's safe to add v 
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In general…. 
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Depth First Search 

How does DFS work on this graph? 
  Starting from node 1 
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Depth First Search 

Need to keep track of where you’ve been 
When reach a “dead-end” (already 

explored all neighbors), backtrack to 
node with unexplored neighbor 

Algorithm: 

DFS(u):	
	Mark u as “Explored” and add u to R	
	For each edge (u, v) incident to u	
	 	If v is not marked “Explored” then	
	 	 	DFS(v)	
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DFS vs BFS 

Resulting trees? 
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Implementing DFS 
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Implementing DFS 

Keep nodes to be processed in a stack 
DFS(s):	

	Initialize S to be a stack with one element s	
	Explored[v] = false, for all v	
	Parent[v] = 0, for all v	
	DFS tree T = {}	
	while S != {}	
	 	Take a node u from S	
	 	If Explored[u] = false	
	 	 	Explored[u] = true	
	 	 	Add edge (u, parent[u]) to T (if u ≠ s)	
	 	 	For each edge (u, v) incident to u	
	 	 	 	Add v to the stack S	
	 	 	 	Parent[v] = u	
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Analyzing DFS 

DFS(s):	
	Initialize S to be a stack with one element s	
	Explored[v] = false, for all v	
	Parent[v] = 0, for all v	
	DFS tree T = {}	
	while S != {}	
	 	Take a node u from S	
	 	If Explored[u] = false	
	 	 	Explored[u] = true	
	 	 	Add edge (u, parent[u]) to T (if u ≠ s)	
	 	 	For each edge (u, v) incident to u	
	 	 	 	Add v to the stack S	
	 	 	 	Parent[v] = u	
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Analyzing DFS 

DFS(s):	
	Initialize S to be a stack with one element s	
	Explored[v] = false, for all v	
	Parent[v] = 0, for all v	
	DFS tree T = {}	
	while S != {}	
	 	Take a node u from S	
	 	If Explored[u] = false	
	 	 	Explored[u] = true	
	 	 	Add edge (u, parent[u]) to T (if u ≠ s)	
	 	 	For each edge (u, v) incident to u	
	 	 	 	Add v to the stack S (if not explored?)	
	 	 	 	Parent[v] = u	
	 	 	 		

deg(u) 

O(n+m) 
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Set of All Connected Components 

For any two nodes s and t in a graph, their 
connected components are either identical or 
disjoint 

Proof? 
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Set of All Connected Components 

For any two nodes s and t in a graph, their 
connected components are either identical or 
disjoint 

Proof sketch: 
(i) There is a path between s and t  same set of 

connected components 
(ii) There is no path between s and t  disjoint set of 

connected components 
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Set of All Connected Components 

How can we find all connected components of 
graph?  
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Set of All Connected Components 

How can we find set of all connected components of 
graph?  

R* = set of connected components	
While there is a node that does not belong to R*	

	select s not in R*	

	Add R to R*	

Running time? 
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Set of All Connected Components 

How can we find set of all connected components of 
graph?  

R* = set of connected components	
While there is a node that does not belong to R*	

	select s not in R*	

	Add R to R*	

Running time: O(m+n) 
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TESTING BIPARTITENESS 
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Bipartite Graphs 
Def.  An undirected graph G = (V, E) is bipartite if the 
nodes can be colored red or blue such that every 
edge has one red and one blue end 
  Generally: vertices divided into sets X and Y 

Applications: 
  Stable marriage:  men = red, women = blue 
  Scheduling:  machines = red, jobs = blue 

a bipartite graph 
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Testing Bipartiteness 
Given a graph G, is it bipartite? 
  Many graph problems become: 

– easier if underlying graph is bipartite (matching) 

– tractable if underlying graph is bipartite (independent set) 

  Before designing an algorithm, need to understand 
structure of bipartite graphs 

v1 

v2 v3 

v6 v5 v4 

v7 

v2 

v4 

v5 

v7 

v1 

v3 

v6 

a bipartite graph G: another drawing of G 
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An Obstruction to Bipartiteness 
Lemma.  If a graph G is bipartite, it cannot contain an 
odd length cycle. 
Proof Intuition.  Consider a cycle of 3, then a larger 
odd cycle  
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An Obstruction to Bipartiteness 
Lemma.  If a graph G is bipartite, it cannot contain an 
odd length cycle. 
Proof Intuition.  Consider a cycle of 3, then a larger 
odd cycle  

Not bipartite 
(2-colorable) 

not bipartite 
(not 2-colorable) 
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An Obstruction to Bipartiteness 
Lemma.  If a graph G is bipartite, it cannot contain an 
odd length cycle. 
Pf.  Not possible to 2-color the odd cycle, let alone 
G. 

bipartite 
(2-colorable) 

not bipartite 
(not 2-colorable) 

Jan 30, 2009 
If find an odd cycle, graph is NOT bipartite 
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How Can We Determine  
Bipartite Graphs? 

Given a connected graph 
Color one node red 

– Doesn’t matter which color (Why?) 

What should we do next? 

How will we know that we’re finished? 
What does this process sound like? 

Jan 30, 2009 

Why connected? 
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How Can We Determine  
Bipartite Graphs? 

Given a connected graph 
Color one node red 

– Doesn’t matter which color (Why?) 

What should we do next? 

How will we know that we’re finished? 
What does this process sound like? 
BFS: alternating colors, layers 
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