
1/22/10

1

•  Data structures: Heaps, Graphs 1. Add elements into PQ with the number’s
value as its priority

2. Then extract the smallest number until done
 Come out in sorted order

Sorting n numbers takes at
least O(n logn) time

What is the goal running time for our
PQ’s operations?

What is the goal running time for our
PQ’s operations? O(logn)

Already know our “loops” will be O(n)

•  Combines benefits of sorted array and list
•  Balanced binary tree

root
• Each node has at most 2 children
• Node value is its key

Heap order: each node’s key is
at least as large as its parent’s

Note: not a binary search tree

•  Option 1: Use pointers
 Each node keeps

•  Element it stores, key
•  3 pointers: 2 children, parent

•  Option 2: No pointers
 Requires knowing upper bound on n
 For node at position i

•  left child is at 2i
•  right child is at 2i+1

•  Claim. Assuming array H is almost a heap
with key of H[i] too small, Heapify-Up
fixes the heap property in O(log i) time
 Can insert a new element in a heap of n

elements in O(log n) time
•  Proof. By induction

 If i=1, is already a heap  O(1)
 If i>1,

•  Swaps are O(1)
•  Swaps continue up to root (max)  log i

•  Delete at position i

Delete at
position 3

1/22/10

2

•  Delete at position i
•  Removing an element:

 Messes up heap order
 Leaves a “hole” in the heap

•  Not as straightforward as Heapify-Up	
•  Algorithm

1.  Fill in element where hole was
•  Patch hole: move nth element into ith spot

2.  Adjust heap to be in order
•  At position i because moved nth item up to i

• What are the possibilities when we move nth
element (w) into spot where element was
removed?
 Give an example for each possibility

Delete at
position 3

w

•  Two possibilities: element w is
 Too small: violation is between it and parent 
Heapify-Up (example: w = 0)

 Too big: with one or both children  Heapify-
Down (example: w = 12)

Delete at
position 3

w

•  Delete 9
•  Replace with 5

Example where new key is too small

3

4 7

5

6

2

9 10

•  Delete 9
•  Replace with 5
•  But 5 < 6, so need to Heapify-Up	

Example where new key is too small

3

4 7 5

6

2

10

Heapify-down(H, i):	
	n = length(H)	
	if 2i > n then	
	 	Terminate with H unchanged	
	else if 2i < n then	
	 	left=2i and right=2i+1	
	 	j be index that minimizes	
	 	 	key[H[left]] and key[[H[right]]	
	else if 2i = n then	
	 	j=2i	

	if key[H[j]] < key[H[i]] then	
	 	swap array entries H[i] and H[j]	
	 	Heapify-down(H, j)	

Why can we stop?

1/22/10

3

Heapify-down(H, i):	
	n = length(H)	
	if 2i > n then	
	 	Terminate with H unchanged	
	else if 2i < n then	
	 	left=2i and right=2i+1	
	 	j be index that minimizes	
	 	 	key[H[left]] and key[[H[right]]	
	else if 2i = n then	
	 	j=2i	

	if key[H[j]] < key[H[i]] then	
	 	swap array entries H[i] and H[j]	
	 	Heapify-down(H, j)	

i is a leaf – nowhere to go

Moved 21 to where
element was removed

21

21

21

7

21

7

8

7

21

Heapify-down(H, i):	
	n = length(H)	
	if 2i > n then	
	 	Terminate with H unchanged	
	else if 2i < n then	
	 	left=2i and right=2i+1	
	 	j be index that minimizes	
	 	 	key[H[left]] and key[[H[right]]	
	else if 2i = n then	
	 	j=2i	

	if key[H[j]] < key[H[i]] then	
	 	swap array entries H[i] and H[j]	
	 	Heapify-down(H, j)	

O(1)

O(1)

Num swaps: O(log n)

Operation Description Run Time

StartHeap(N) Creates an empty heap that
can hold N elements

Insert(v) Inserts item v into heap

FindMin() Identifies minimum element in
heap but does not remove it

Delete(i) Deletes element in heap at
position i

ExtractMin()
Identifies and deletes an
element with minimum key from
heap

1/22/10

4

Operation Description Run Time

StartHeap(N) Creates an empty heap that
can hold N elements O(N)

Insert(v) Inserts item v into heap O(log n)

FindMin() Identifies minimum element in
heap but does not remove it O(1)

Delete(i) Deletes element in heap at
position i O(log n)

ExtractMin()
Identifies and deletes an
element with minimum key from
heap

O(log n)

Operation Heap Unsorted
List

Sorted
List

StartHeap(N)
Insert(v)
FindMin()
Delete(i)
ExtractMin()

Operation Heap Unsorted
List

Sorted
List

StartHeap(N) O(N)
Insert(v) O(log n)
FindMin() O(1)
Delete(i) O(log n)
ExtractMin() O(log n)

Operation Heap Unsorted
List

Sorted
List

StartHeap(N) O(N) O(1) O(1)
Insert(v) O(log n) O(1) O(n)
FindMin() O(1) O(n) O(1)
Delete(i) O(log n) O(n) O(n)
ExtractMin() O(log n) O(n) O(1)

•  Access given element of PQ
 Maintain additional array Position that stores

current position of each element in heap

•  Operations:
 Delete(Position[v])

•  Does not increase overall running time
 ChangeKey(v, α)

•  Changes key of element v to key(v) = α
•  Identify position of element v in array (Position

array)
•  Change key, heapify

1/22/10

5

•  V = nodes (vertices)
•  E = edges between pairs of nodes
•  Captures pairwise relationship between

objects
•  Graph size parameters: n = |V|, m = |E|

V = { 1, 2, 3, 4, 5, 6, 7, 8 }
E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 }
n = 8
m = 11

• Web graph
 Node: web page
 Edge: hyperlink from one page to another

cnn.com

people.com sportsillustrated.cnn.com netscape.com time.com

hbo.com

flightoftheconchords.com

Directed Graph:

•  Node: people; Edge: relationship between 2
people

•  Everything Bad Is Good for You: How Today's
Popular Culture Is Actually Making Us Smarter
•  Television shows

have complex
plots, complex
social networks

Social network of
24's Jack Bauer

http://www.cs.duke.edu/csed/harambeenet/
modules.html

•  Food web graph
 Node = species
 Edge = from prey to

predator

Reference:
http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff

Directed Graph:

transportation

Graph
street intersections

Nodes Edges
highways

communication computers fiber optic cables

World Wide Web web pages hyperlinks

social people relationships

food web species predator-prey

software systems functions function calls

scheduling tasks precedence constraints

circuits gates wires

•  n×n matrix with Auv = 1 if (u, v) is an edge
 Two representations of each edge (symmetric

matrix)
 Space?

 Checking if (u, v) is an edge?
 Identifying all edges?

 1 2 3 4 5 6 7 8
1 0 1 1 0 0 0 0 0
2 1 0 1 1 1 0 0 0
3 1 1 0 0 1 0 1 1
4 0 1 0 1 1 0 0 0
5 0 1 1 1 0 1 0 0
6 0 0 0 0 1 0 0 0
7 0 0 1 0 0 0 0 1
8 0 0 1 0 0 0 1 0

1/22/10

6

•  n×n matrix with Auv = 1 if (u, v) is an edge
 Two representations of each edge (symmetric

matrix)
 Space: Θ(n2)

 Checking if (u, v) is an edge: Θ(1) time
 Identifying all edges: Θ(n2) time

 1 2 3 4 5 6 7 8
1 0 1 1 0 0 0 0 0
2 1 0 1 1 1 0 0 0
3 1 1 0 0 1 0 1 1
4 0 1 0 1 1 0 0 0
5 0 1 1 1 0 1 0 0
6 0 0 0 0 1 0 0 0
7 0 0 1 0 0 0 0 1
8 0 0 1 0 0 0 1 0

•  Node indexed array of lists
 Two representations of each edge
 Space?
 Checking if (u, v) is an edge?
 Identifying all edges?

1 2 3

2

3

4 2 5

5

6

7 3 8

8

1 3 4 5

1 2 5 8 7

2 3 4 6

5

3 7

no
de

edges

What are the
extremes?

•  Node indexed array of lists
 Two representations of each edge
 Space = 2m + n = O(m + n)
 Checking if (u, v) is an edge takes O(deg(u))

time
 Identifying all edges takes Θ(m + n) time

degree = number of
neighbors of u

no
de

edges 1 2 3

2

3

4 2 5

5

6

7 3 8

8

1 3 4 5

1 2 5 8 7

2 3 4 6

5

3 7

•  Def. A path in an undirected graph G = (V, E) is
a sequence P of nodes v1, v2, …, vk-1, vk
 each consecutive pair vi, vi+1 is joined by an edge in

E
•  Def. A path is simple if all nodes are distinct
•  Def. An undirected graph is connected if ∀

pair of nodes u and v, there is a path between u
and v

• Short path
• Distance

•  Def. A cycle is a path v1, v2, …, vk-1, vk in
which v1 = vk, k > 2, and the first k-1 nodes
are all distinct

cycle C = 1-2-4-5-3-1

•  Reading: Starting Chapter 3
• Wednesday: notes about readings are due
•  Friday: Problem Set 2

 Start thinking about problems early

