
3/16/09

1

Algorithm Approach: Divide and Conquer
  Recurrence Review
  Integer Multiplication
  Matrix Multiplication

Objectives

1 Mar 16, 2009 CS211 1 2

Review: Counting Inversions
Recurrence Relation:

 T(n) ≤ T(n/2) + T(n/2) + O(n)
 T(n) ∈ O(n log n)
Sort-and-Count(L)	
 if list L has one element	
 return 0 and the list L	

 Divide the list into two halves A and B	
 (rA, A) ← Sort-and-Count(A)	
 (rB, B) ← Sort-and-Count(B)	
 (rB, L) ← Merge-and-Count(A, B)	

 return r = rA + rB + r and the sorted list L	

Mar 16, 2009 CS211

T(n/2)
T(n/2)
O(n)

3

Review: Closest Pair Algorithm
Closest-Pair(p1, …, pn) 	
 Compute separation line L such that half the points 
 are on one side and half on the other side.	

 δ1 = Closest-Pair(left half)	
 δ2 = Closest-Pair(right half)	
 δ = min(δ1, δ2)	

 Delete all points further than δ from separation
line L	

 Sort remaining points by y-coordinate.	

 Scan points in y-order and compare distance between 
 each point and next 7 neighbors. If any of these 
 distances is less than δ, update δ.	

 return δ	

O(n log n)

2T(n / 2)

O(n)

O(n log n)

O(n)

Mar 16, 2009 CS211

T(n) = 2 T(n/2) + O(n log n)

Recurrence Algorithm Running Time
T(n) = T(n/2) + O(1)
T(n) = T(n-1) + O(1)
T(n) = 2 T(n/2) + O(1)
T(n) = T(n-1) + O(n)
T(n) = 2 T(n/2) + O(n) Merge Sort O(n log n)

Know Your Recurrence Relations

4 Mar 16, 2009 CS211

What algorithm has this recurrence relation?
What is that algorithm’s running time?

Recurrence Algorithm Running Time
T(n) = T(n/2) + O(1) Binary Search O(log n)

T(n) = T(n-1) + O(1) Sequential/
Linear Search O(n)

T(n) = 2 T(n/2) + O(1) Binary Tree
Traversal O(n)

T(n) = T(n-1) + O(n) Selection Sort O(n2)
T(n) = 2 T(n/2) + O(n) Merge Sort O(n log n)

Know Your Recurrence Relations

5 Mar 16, 2009 CS211

What algorithm has this recurrence relation?
What is that algorithm’s running time?

INTEGER MULTIPLICATION

6

3/16/09

2

7

Integer Arithmetic
Add. Given two n-digit integers a and b, compute a

+ b.
  Algorithm?
  Runtime?

1

0 1 1 1

1 1 0 1 +
0 1 0 1

1 1 1
0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1 1

Mar 16, 2009 CS211

O(n) operations

8

Integer Arithmetic
Multiply. Given two n-digit integers a and b, compute

a × b
 Algorithm?
 Runtime?

1

1

0

0

1

1

0

1

1

1

0

1

1

1

1

0 *

Mar 16, 2009 CS211

9

Integer Arithmetic
Multiply. Given two n-digit integers a and b, compute

a × b.
  Brute force solution: Θ(n2) bit operations

1

1

0

0

0

1

1

1

0

0

1

1

1

1

0

0

1

1

1

1

0

1

0

1

0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1

1

0

1

1

1

1

1

0

0

*

Mar 16, 2009 CS211

Goal: Faster algorithm

10

To multiply two n-digit integers:
  Multiply four ½ n-digit integers
  Add two ½ n-digit integers and shift to obtain result

Divide-and-Conquer Multiplication:
Warmup

€

x = 2n / 2 ⋅ x1 + x0

y = 2n / 2 ⋅ y1 + y0

xy = 2n / 2 ⋅ x1 + x0() 2n / 2 ⋅ y1 + y0() = 2n ⋅ x1y1 + 2n / 2 ⋅ x1y0 + x0 y1() + x0 y0

Mar 16, 2009 CS211

Higher order bits Lower order bits

What is the recurrence relation?
•  How many subproblems?
•  What is merge cost?
•  What is its runtime?

Shift

A B C D

11

To multiply two n-digit integers:
  Multiply four ½ n-digit integers
  Add two ½ n-digit integers and shift to obtain result

Divide-and-Conquer Multiplication:
Warmup

€

T(n) = 4T n /2()
recursive calls
    

 + Θ(n)
add, shift
  

 ⇒ T(n) =Θ(n2)

€

x = 2n / 2 ⋅ x1 + x0

y = 2n / 2 ⋅ y1 + y0

xy = 2n / 2 ⋅ x1 + x0() 2n / 2 ⋅ y1 + y0() = 2n ⋅ x1y1 + 2n / 2 ⋅ x1y0 + x0 y1() + x0 y0

assumes n is a power of 2

Mar 16, 2009 CS211

Higher order bits Lower order bits
Shift

Not an improvement
over brute force

A B C D

12

To multiply two n-digit integers:
  Add two ½n digit integers
  Multiply 3 ½n-digit integers
  Add, subtract, and shift ½n-digit integers to obtain

result

Karatsuba Multiplication

€

x = 2n / 2 ⋅ x1 + x0

y = 2n / 2 ⋅ y1 + y0

xy = 2n ⋅ x1y1 + 2n / 2 ⋅ x1y0 + x0 y1() + x0 y0

= 2n ⋅ x1y1 + 2n / 2 ⋅ (x1 + x0) (y1 + y0) − x1y1 − x0 y0() + x0 y0
A B C A C

Mar 16, 2009 CS211

What is the recurrence relation? Runtime?

3/16/09

3

13

Theorem. [Karatsuba-Ofman, 1962] Can multiply
two n-digit integers in O(n1.585) bit operations

Karatsuba Multiplication

€

x = 2n / 2 ⋅ x1 + x0

y = 2n / 2 ⋅ y1 + y0

xy = 2n ⋅ x1y1 + 2n / 2 ⋅ x1y0 + x0 y1() + x0 y0

= 2n ⋅ x1y1 + 2n / 2 ⋅ (x1 + x0) (y1 + y0) − x1y1 − x0 y0() + x0 y0

€

T(n) ≤ T n /2 () + T n /2 () + T 1+ n /2 ()
recursive calls

                
+ Θ(n)

add, subtract, shift
    

⇒ T(n) = O(n log 2 3) = O(n1.585)

A B C A C

Mar 16, 2009 CS211

MATRIX MULTIPLICATION

14

Given two n-by-n matrices A and B, compute C = AB

  Example: c12 = a11 b12 + a12 b22 + a13 b32 + … + a1n bn2

Brute force. Θ(n3) arithmetic operations
Fundamental question: Can we improve upon brute

force?

Matrix Multiplication

15 Mar 16, 2009 CS211

€

cij = aik bkj
k=1

n

∑

€

c11 c12  c1n

c21 c22  c2n

   

cn1 cn2  cnn



















=

a11 a12  a1n

a21 a22  a2n

   

an1 an2  ann



















×

b11 b12  b1n

b21 b22  b2n

   

bn1 bn2  bnn



















16

Matrix Multiplication: Warmup
Divide: partition A and B into ½n-by-½n blocks
Conquer: multiply 8 ½n-by-½n recursively
Combine: add appropriate products using 4 matrix

additions

€

C11 = A11 × B11() + A12 × B21()
C12 = A11 × B12() + A12 × B22()
C21 = A21 × B11() + A22 × B21()
C22 = A21 × B12() + A22 × B22()

€

C11 C12

C21 C22









 =

A11 A12

A21 A22









 ×

B11 B12

B21 B22











Mar 16, 2009 CS211

Recurrence relation? Runtime?

17

Matrix Multiplication: Warmup
Divide: partition A and B into ½n-by-½n blocks
Conquer: multiply 8 ½n-by-½n recursively
Combine: add appropriate products using 4 matrix

additions

€

C11 = A11 × B11() + A12 × B21()
C12 = A11 × B12() + A12 × B22()
C21 = A21 × B11() + A22 × B21()
C22 = A21 × B12() + A22 × B22()

€

C11 C12

C21 C22









 =

A11 A12

A21 A22









 ×

B11 B12

B21 B22











€

T(n) = 8T n /2()
recursive calls
    

 + Θ(n2)
add, form submatrices
      

⇒ T(n) =Θ(n3)

Mar 16, 2009 CS211 18

Matrix Multiplication: Key Idea
Multiply 2-by-2 block matrices with only 7

multiplications and 15 additions
  Trading expensive multiplication for less expensive

addition/subtraction

€

P1 = A11 × (B12 − B22)
P2 = (A11 + A12) × B22
P3 = (A21 + A22) × B11
P4 = A22 × (B21 − B11)
P5 = (A11 + A22) × (B11 + B22)
P6 = (A12 − A22) × (B21 + B22)
P7 = (A11 − A21) × (B11 + B12)

€

C11 = P5 + P4 − P2 + P6
C12 = P1 + P2
C21 = P3 + P4
C22 = P5 + P1 − P3 − P7

€

C11 C12

C21 C22









 =

A11 A12

A21 A22









 ×

B11 B12

B21 B22











Mar 16, 2009 CS211

3/16/09

4

19

Fast Matrix Multiplication [Strassen,
1969]

Divide: partition A and B into ½n-by-½n blocks
Compute: 14 ½n-by-½n matrices via 10 matrix

additions
Conquer: multiply 7 ½n-by-½n matrices recursively
Combine: 7 products into 4 terms using 8 matrix

additions
Analysis.
  Assume n is a power of 2.
  T(n) = # arithmetic operations.

€

T(n) = 7T n /2()
recursive calls
    

+ Θ(n2)
add, subtract
    

⇒ T(n) =Θ(n log2 7) = O(n2.81)

Mar 16, 2009 CS211 20

Fast Matrix Multiplication in Practice
Implementation issues.
  Sparsity
  Caching effects
  Numerical stability

–  theoretically correct but possible problems with round off errors, etc
  Odd matrix dimensions
  Crossover to classical algorithm around n = 128

Common misperception: "Strassen is only a theoretical
curiosity."

  Advanced Computation Group at Apple Computer reports 8x
speedup on G4 Velocity Engine when n ~ 2,500

  Range of instances where it's useful is a subject of controversy
Remark. Can "Strassenize" Ax=b, determinant, eigenvalues,

and other matrix ops

Mar 16, 2009 CS211

21

Fast Matrix Multiplication in Theory
Q. Multiply two 2-by-2 matrices with only 7 scalar multiplications?
A. Yes! [Strassen, 1969]
Q. Multiply two 2-by-2 matrices with only 6 scalar multiplications?
A. Impossible [Hopcroft and Kerr, 1971]
Q. Two 3-by-3 matrices with only 21 scalar multiplications?
A. Also impossible
Q. Two 70-by-70 matrices with only 143,640 scalar multiplications?
A. Yes! [Pan, 1980]

Decimal wars.
  December, 1979: O(n2.521813)
  January, 1980: O(n2.521801)

€

Θ (n log3 21) = O(n 2.77)

€

Θ (n log70 143640) = O(n 2.80)

€

Θ(n log2 6) = O(n 2.59)

€

Θ(n log2 7) = O(n 2.81)

Mar 16, 2009 CS211 22

Fast Matrix Multiplication in Theory
Best known. O(n2.376) [Coppersmith-Winograd,

1987.]
  But really large constant

Conjecture. O(n2+ε) for any ε > 0.

Caveat. Theoretical improvements to Strassen are
progressively less practical.

Mar 16, 2009 CS211

MIDTERM FEEDBACK

23 Mar 16, 2009 CS211

O is an upperbound
  Defn: Bounded by a constant

“at least” an upperbound doesn’t make sense

Problem 1

24 Mar 16, 2009 CS211

3/16/09

5

F6= log n
F7 = n1/2
F4 = n log n
F5 = n3
F1 = 2n = 2 * 2 * … * 2

F3 = n! = n * n-1 * n-2 * … * 1

F2= 22^n = 2n+(2^n-1) = 2 * 2 * … * 2

Problem 2

25 Mar 16, 2009 CS211

2n times

n times

Creating the graph: O(n2)
  Adjacency matrix
  For each node, keep count of number of red edges, blue

edges
– Saves time later

Removing invalid nodes (nodes w/ less than 5 red or
blue edges): O(n2)

  When removing node, remove its edges O(n)
– Decrease the connected node’s red or blue count

  A node will never become valid after invalid nodes are
removed

Remaining graph’s nodes represent people to invite
O(n2): Efficient algorithm because polynomial time

Problem 3

26 Mar 16, 2009 CS211

Need representation/
implementation, costs,
runtimes

Algorithm: Shortest Job First O(n log n)
  Sort jobs in order of increasing wait time
  Wait on customers in this order

Prove that algorithm is optimal
  Similar to minimizing lateness problem
  What happens if two customers are inverted?

– All previous k customers have same wait time (W)
– Inversion: Customer k+1 and k+2 have service times
tk+1 < tk+2 but k+2 is served first

– SJF: W + tk+1 ; Other: W + tk+2  SJF < Other
– Inversions  increase wait time

Problem 4

27 Mar 16, 2009 CS211

Chapter 6: Dynamic programming
  More powerful technique

Friday: Problem set due

Plan for the Week

28 Mar 16, 2009 CS211

