
3/2/09

1

Greedy Algorithms Wrapup
  Data Compression: Huffman Codes
  Clustering

Objectives

1 Mar 2, 2009 CS211 1

Computers use bits: 0s and 1s
Need to represent what we (humans) know as 0s

and 1s
  Map symbol to unique sequence of 0s and 1s
  Process is called encoding

Fundamental problem for data compression:
represent data as compactly as possible

Goal. Optimal encoding that takes advantage of
nonuniformity of letter frequencies

Problem: Encoding Symbols

2 Mar 2, 2009 CS211

Problem: Encoding of one character is a prefix of
encoding of another

Solution: Prefix Codes: map letters to bit strings
such that no encoding is a prefix of any other

  Won’t need artificial devices like spaces to separate
characters

Prefix Codes

3 Mar 2, 2009 CS211

Goal: minimize Average number of Bits per Letter
(ABL):

Σx∈Sfrequency of x * length of encoding of x

fx: frequency that letter x occurs
γ(x): encoding of x
  |γ(x)|: length of encoding of x

Minimize ABL = Σx∈Sfx |γ(x)|

Optimal Prefix Codes

4 Mar 2, 2009 CS211

For all characters in our alphabet

Given an alphabet and a set of frequencies for the
letters, produce optimal (most efficient) prefix code

  Minimizes average number of bits per letter

Problem Statement

5 Mar 2, 2009 CS211

Exposes structure better than list of mappings
  Each leaf node is a letter
  Follow path to the letter

– Going left: 0
– Going right: 1

Binary Trees to Represent Prefix Codes

6 Mar 2, 2009 CS211

3/2/09

2

The binary tree corresponding to the optimal prefix
code is full, i.e., each internal node has two
children

We want to label the leaf nodes of the binary tree
corresponding to the optimal prefix code such that
nodes with greatest depth have least frequency
➜  Bottom of the tree:

Combining Our Conclusions

7 Mar 2, 2009 CS211

fn-1 fn
2 letters with

least frequency:

Could be flipped

Two letters with least frequency are definitely going
to be siblings

  Tie them together
  Their parent is a “meta-letter”

– Frequency is sum of fn + fn-1

How Can We Use This?

8 Mar 2, 2009 CS211

fn + fn-1

fn-1 fn
2 letters with

least frequency:

Could be flipped

Meta-letter:

Constructing an Optimal Prefix Code

9 Mar 2, 2009 CS211

Huffman’s Algorithm:

Replace lowest-freq
letters with meta

letter

Re
du

ce

Bu
ild

 u
p

Create a leaf node for each symbol, labeled by its
frequency, and add to a queue

While there is more than one node in the queue
  Remove the two nodes of lowest frequency
  Create a new internal node with these two nodes as

children and with frequency equal to the sum of the
two nodes' probabilities

  Add the new node to the queue

The remaining node is the tree’s root node

Alternative Description

10 Mar 2, 2009 CS211

Creating the Optimal Prefix Code

11 Mar 2, 2009 CS211

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

Creating the Optimal Prefix Code

12 Mar 2, 2009 CS211

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

e d c a b

de=
.23

Lowest frequencies
Merge

3/2/09

3

Creating the Optimal Prefix Code

13 Mar 2, 2009 CS211

fa = .32
fb = .25
fc = .20
fde = .23

e d

c

a b

de=
.23

Lowest frequencies
Merge cde=

.43

Creating the Optimal Prefix Code

14 Mar 2, 2009 CS211

fa = .32
fb = .25
fcde = .43

e d

c a b
de=
.23

Lowest frequencies
Merge

cde=
.43

ab=
.57

Creating the Optimal Prefix Code

15 Mar 2, 2009 CS211

fab = .57
fcde = .43

e d

c a b
de=
.23

Lowest frequencies
Merge

cde=
.43

ab=
.57

abc
de=1

What are the resulting encodings?
What is the ABL?

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

Creating the Optimal Prefix Code

16 Mar 2, 2009 CS211

e d

c a b
de=
.23

cde=
.43

ab=
.57

abc
de=1 0

0 0

0

1

1 1

1

a: 00	
b: 01	
c: 10	
d: 110	
e: 111	

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

ABL=.32*2 + .25*2 + .20*2 + .18*3 + .05*3
 = .64 + .5 + .4 + .54 + .15
 = 2.23

We built tree bottom up
May have thought top down would work better
  See book for discussion

Building to Solution

17 Mar 2, 2009 CS211

What are the data structures we need?
  Binary tree for the prefix codes
  Priority queue for choosing the node with lowest

frequency

Where are the costs?

Implementation

18 Mar 2, 2009 CS211

3/2/09

4

Costs
  Inserting and extracting node into PQ: O(log n)
  Number of insertions and extractions: O(n)
➔  O(n log n)

Running Time

19 Mar 2, 2009 CS211

2 page proof in book

Analysis of Algorithm’s Optimality

20 Mar 2, 2009 CS211

Text can be compressed well because of known
frequencies

  Algorithms can be optimized to languages
  More than just “z doesn’t happen very often”

– “z doesn’t happen after q”

Real-life Compression

21 Mar 2, 2009 CS211

CLUSTERING

Outbreak of cholera deaths in London in 1850s.
Reference: Nina Mishra, HP Labs

Intersections
with polluted

wells

22

Given a set U of n objects labeled p1, …, pn, classify
into coherent groups

  Example objects: photos, documents, micro-organisms

Distance function. Numeric value specifying
"closeness" of two objects

  Assume it satisfies several natural properties:
– d(pi, pj) = 0 iff pi = pj (identity of indiscernibles)
– d(pi, pj) ≥ 0 (nonnegativity)
– d(pi, pj) = d(pj, pi) (symmetry)

Review: Clustering

23 Mar 2, 2009 CS211 24

Problem: Clustering of Maximum
Spacing

k-clustering. Divide objects into k non-empty groups
Spacing. Min distance between any pair of points in

different clusters
Clustering of maximum spacing. Given an integer k,

find a k-clustering of maximum spacing

spacing k = 4

Mar 2, 2009 CS211

3/2/09

5

Start with each node in its own cluster
Sort edges by their distance, ascending
For each edge, combine its nodes’ clusters into one

cluster until we have k clusters

Our Proposed Solution

25 Mar 2, 2009 CS211

Single-link k-clustering algorithm
  Form a graph on the vertex set U, corresponding to n

clusters
  Find the closest pair of objects such that each object is

in a different cluster, and add an edge between them
  Repeat n-k times until there are exactly k clusters

Greedy Clustering Algorithm

26 Mar 2, 2009 CS211

How relates to our algorithm?

How is this related to the MST?

Key observation. Same as Kruskal's algorithm
  Except we stop when there are k connected

components

Remark. Equivalent to finding an MST and deleting
the k-1 most expensive edges

Greedy Clustering Algorithm

27 Mar 2, 2009 CS211

 5

 6

 4

9

7

11
 8

 5

 6

 4

7
 8

K=3 MST
28

Greedy Clustering Algorithm: Analysis
Theorem. Let C denote the clustering C1, …, Ck formed

by deleting the k-1 most expensive edges of a MST. C
is a k-clustering of max spacing.

Pf Idea.
  What can we say about C’s spacing?

– Within clusters and between clusters
  What if C isn’t optimal?

– What does that mean about C’s clusters vs (optimal) C*’s
clusters?

Mar 2, 2009 CS211

 5

 6

 4

9

7

11
 8

 5

 6

 4

7
 8

K=3 MST

29

Greedy Clustering Algorithm: Analysis
Theorem. Let C denote the clustering C1, …, Ck formed by

deleting the k-1 most expensive edges of a MST. C is a k-
clustering of max spacing.

Pf Sketch. Let C* denote some other clustering C*1, …, C*k
  The spacing of C is length d of (k-1)st most expensive edge
  Let pi, pj be in the same cluster in C (say Cr) but different

clusters in C*, say C*s and C*t
  Some edge (p, q) on pi-pj path in Cr spans two different clusters

in C*
  What do we know about (p, q)?

p q pi pj

C*s C*t

Cr

Mar 2, 2009 CS211 30

Greedy Clustering Algorithm: Analysis
Theorem. Let C denote the clustering C1, …, Ck formed by

deleting the k-1 most expensive edges of a MST. C is a k-
clustering of max spacing.

Pf. Let C* denote some other clustering C*1, …, C*k
  The spacing of C is length d of (k-1)st most expensive edge
  Let pi, pj be in the same cluster in C (say Cr) but different

clusters in C*, say C*s and C*t
  Some edge (p, q) on pi-pj path in Cr spans two different clusters

in C*
  All edges on pi-pj path have length ≤ d

since Kruskal chose them
  Spacing of C is ≤ d since p and q

are in different clusters p q pi pj

C*s C*t

Cr

Mar 2, 2009 CS211

3/2/09

6

Tue-Fri: Open-book midterm
  I’ll be at a conference Tuesday through Saturday

– Available by email

Next Monday
  Helping the registrar assign students to courses

The Plan

31 Mar 2, 2009 CS211

Much better!
Common problems
  Not showing sufficient amount of work

– E.g., Make sure you’re applying Prim’s algorithm rather than
Kruskal’s

  Explain what you’re trying to prove
– Introduces your variables/notation

  Say what proof technique you’re going to use
– E.g., proof by induction
– Give reader a head’s up of approach

  Notation confusion
– If I misunderstood what you were saying because of your

notation, come talk to me. Possibility to get partial credit

Problem Set 3

32 Mar 2, 2009 CS211

Covers chapters 1—4 of book
Similar to problem set
Turned into my mailbox in CS office by Friday or under

my office door
For each problem
  Clear description of solution

– Reference similar problems/solving technique
– Use algorithms terminology

  State and explain running time
  State proof technique
  State intuition, show work when appropriate

Midterm Expectations

33 Mar 2, 2009 CS211

