
3/22/10

1

•  Dynamic Programming
 Shortest Path

•  Problem: Given a directed graph G = (V, E),
with edge weights cvw, find shortest path from
node s to node t

•  Allows modeling other phenomena

s

3

t

2

6

7

4
5

10

18
 -16

9

 6

15 -8

 30

 20

44

16

11

6

19

6

allow negative weights

•  Dijkstra. Can fail if negative edge costs
u

t

s v
2

 1

3

-6

Shortest path from s t?

•  Dijkstra. Can fail if negative edge costs

•  Re-weighting. Adding a constant to every
edge weight can fail

s t

2

 3

2

-3

3

5 5

6 6

0

Why?

u

t

s v
2

 1

3

-6

•  If some path from s to t contains a negative
cost cycle, there does not exist a shortest s-t
path

•  Otherwise, there exists one that is simple
(i.e., does not repeat nodes)

s t
W

c(W) < 0

 -6

 7

 -4

Why?

What does this mean about number of edges in path?

•  If some path from s to t contains a negative
cost cycle, there does not exist a shortest s-t
path

•  Otherwise, there exists one that is simple
(i.e., does not repeat nodes)
 Path has at most n-1 edges, where n is # of

nodes in graph

s t
W

c(W) < 0

 -6

 7

 -4

3/22/10

2

•  OPT(i,v): minimum cost of a v-t path P using
at most i edges
 This formulation eases later discussion

•  Original problem is OPT(n-1, s)

v t

w

Path P

Break down into subproblems based on i and v

•  Def. OPT(i, v) = minimum cost of a v-t path
P using at most i edges
 Case 1: P uses at most i-1 edges

•  OPT(i, v) = OPT(i-1, v)
 Case 2: P uses exactly i edges

•  if (v, w) is first edge, then OPT uses (v, w), and
then selects best w-t path using at most i-1 edges

•  Cost: cost of chosen edge

€

OPT(i, v) =
 0 if i = 0

 min OPT(i −1, v) ,
(v, w)∈ E

min OPT(i −1, w)+ cvw{ }
⎧
⎨
⎩

⎫
⎬
⎭

otherwise

⎧

⎨
⎪

⎩ ⎪

•  Shortest path is M[n-1, s]

Shortest-Path(G, t) 	
 n = number of nodes in G	
 foreach node v ∈ V	
 M[0, v] = ∞ # infinite cost to reach all nodes	
 M[0, t] = 0 # no cost to reach destination from dest	

 for i = 1 to n-1	
 foreach node v ∈ V	
 M[i, v] = M[i-1, v] # at most cost of 1 less	
 foreach edge (v, w) ∈ E	
 M[i, v] = min(M[i, v], M[i-1, w] + cvw)	

Starting node

Analysis?

Cost of
chosen edge

0 1 2 3 4 5
t 0 0 0 0 0 0
a ∞
b ∞
c ∞
d ∞
e ∞

What edges do we need to look at for each node?

Number of edges in path

0 1 2 3 4 5
t 0 0 0 0 0 0
a ∞
b ∞
c ∞
d ∞
e ∞

Edges
b , t

d, e
b, t

a, t
c, t

0 1 2 3 4 5
t 0 0 0 0 0 0
a ∞ -3
b ∞ ∞
c ∞ 3
d ∞ 4
e ∞ 2

Edges
b , t

d, e
b, t

a, t
c, t

3/22/10

3

0 1 2 3 4 5
t 0 0 0 0 0 0
a ∞ -3 -3
b ∞ ∞ 0
c ∞ 3 3
d ∞ 4 3
e ∞ 2 0

Edges
b , t

d, e
b, t

a, t
c, t

0 1 2 3 4 5
t 0 0 0 0 0 0
a ∞ -3 -3 -4
b ∞ ∞ 0 -2
c ∞ 3 3 3
d ∞ 4 3 2
e ∞ 2 0 0

Edges
b , t

d, e
b, t

a, t
c, t

0 1 2 3 4 5
t 0 0 0 0 0 0
a ∞ -3 -3 -4 -6
b ∞ ∞ 0 -2 -2
c ∞ 3 3 3 3
d ∞ 4 3 2 0
e ∞ 2 0 0 0

Edges
b , t

d, e
b, t

a, t
c, t

0 1 2 3 4 5
t 0 0 0 0 0 0
a ∞ -3 -3 -4 -6 -6
b ∞ ∞ 0 -2 -2 -2
c ∞ 3 3 3 3 3
d ∞ 4 3 2 0 0
e ∞ 2 0 0 0 0

Edges
b , t

d, e
b, t

a, t
c, t

•  Shortest path is M[n-1, s]

Shortest-Path(G, t) 	
 n = number of nodes in G	
 foreach node v ∈ V	
 M[0, v] = ∞ # infinite cost to reach all nodes	
 M[0, t] = 0 # no cost to reach destination from dest	

 for i = 1 to n-1	
 foreach node v ∈ V	
 M[i, v] = M[i-1, v] # at most cost of 1 less	
 foreach edge (v, w) ∈ E	
 M[i, v] = min(M[i, v], M[i-1, w] + cvw)	

O(n3)

• What could we do to improve the algorithm’s
runtime/space requirements?

3/22/10

4

•  Practical improvements
 Maintain only one array M[v] = shortest v-t path that we

have found so far
 No need to check edges of the form (v, w) unless M[w]

changed in previous iteration
•  Theorem. Throughout algorithm, M[v] is length of

some v-t path, and after i rounds of updates, the
value M[v] is no larger than the length of shortest v-
t path using ≤ i edges.

•  Overall impact
 Memory: O(m + n)
 Running time: O(mn) worst case but substantially faster

in practice

Push-Based-Shortest-Path(G, s, t) 	
 foreach node v ∈ V 	
 M[v] = ∞	
 successor[v] = φ 	

 M[t] = 0	
 for i = 1 to n-1 	
 foreach node w ∈ V 	
 if M[w] has been updated in previous iteration 	
 foreach node v such that (v, w) ∈ E 	
 if M[v] > M[w] + cvw	
 M[v] = M[w] + cvw 	
 successor[v] = w	

 If no M[w] value changed in iteration i, stop.	

•  Application of shortest-path problem: routers
in communication network find most efficient
path to destination

•  Model of communication network
 Nodes ≈ routers
 Edge ≈ direct communication link
 Cost of edge ≈ delay on link

•  Possible solution: Dijkstra’s algorithm

Naturally nonnegative

•  Model of communication network
 Nodes ≈ routers
 Edge ≈ direct communication link
 Cost of edge ≈ delay on link

•  Dijkstra's algorithm. Requires global
information of network

•  Bellman-Ford. Uses only local knowledge of
neighboring nodes
 Distribute algorithm: each node v maintains its

value M[v]
•  Updates its value after getting neighbor’s values:

 minw∈V (cvw + M[w])

Naturally nonnegative but
Bellman-Ford used anyway!

•  Each router maintains a vector of shortest path
lengths to every other node (distances) and the first
hop on each path (directions)

•  Algorithm: each router performs n separate
computations, one for each potential destination
node

•  Synchronization. We don't expect routers to run in
lockstep. The order in which each foreach loop
executes in not important. Moreover, algorithm still
converges even if updates are asynchronous.

•  "Routing by rumor.”
•  Used in many routers, e.g. RIP, Xerox XNS RIP,

Novell's IPX RIP, …

3/22/10

5

•  Original algorithm developed for one central
machine; costs known in advance, didn’t
change

•  Edge costs may change during algorithm (or
fail completely)

t v 1 s 1

1

deleted

"counting to infinity"

2 1

•  Link state routing
 Each router stores the entire path

•  Not just the distance and the first hop
 Based on Dijkstra's algorithm
 Avoids "counting-to-infinity" problem and related

difficulties
 Requires significantly more storage

•  Ex. Border Gateway Protocol (BGP), Open
Shortest Path First (OSPF)

•  Keep reading Chapter 6
•  Exam 2 due Friday

 Wednesday: work day
 No “outside resources”
 OK: Your notes, my slides, book

