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Objectives 

•  Greedy Algorithms 
 Interval Scheduling 
 Interval Partitioning 
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Review: Greedy Algorithms 

•  Need a proof to show that the algorithm finds 
an optimal solution 

•  A counter example shows that a greedy 
algorithm does not provide an optimal 
solution 
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At each step, take as much as you can get 
  “local” optimizations 

INTERVAL SCHEDULING 
Greedy algorithm stays ahead 
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Interval Scheduling 
•  Job j starts at sj and finishes at fj 
•  Two jobs are compatible if they don't overlap 
•  Goal: find maximum subset of mutually 

compatible jobs 
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•  Every job is worth equal 
money.	



•  To earn the most money  
schedule the most jobs	



Greedy Algorithm Template 

•  Consider jobs (or whatever) in some order 
 Decision: What order is best? 

•  Take each job provided it's compatible with 
the ones already taken 
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What are options for orders?	



What is our goal?	


What are we trying to 

minimize/maximize?	



What is the worst case?	



Greedy Algorithm Pseudo-Code 
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Set Greedy (Set candidate){	
	solution = new Set( );	
	while candidate.isNotEmpty()	
	 	next = candidate.select() //use selection criteria,	
	 	//remove from candidate and return value	
	 	if solution.isFeasible(next) //constraints satisfied	
	 	 	solution.union(next)	
	 	if solution.solves()	
	 	 	return solution	
		
	//No more candidates and no solution	
	return null	

}	

In some specified order	
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Interval Scheduling 
•  Earliest start time.  Consider jobs in ascending 

order of start time sj 
 Utilize CPU as soon as possible 

•  Earliest finish time.  Consider jobs in ascending 
order of finish time fj 
 Resource becomes free ASAP 
 Maximize time left for other requests 

•  Shortest interval.  Consider jobs in ascending order 
of interval length  fj – sj 

•  Fewest conflicts.  For each job, count the number of 
conflicting jobs cj. Schedule in ascending order of 
conflicts cj 
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Can we “break” any of these?	


i.e., prove they’re not optimal?	



Counterexamples to Optimality of  
Various Job Orders 
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breaks earliest start time	



breaks shortest length	



breaks fewest conflicts	



Not optimal when …	



Interval Scheduling: Greedy Algorithm 

•  Consider jobs in increasing order of finish time. 
Take each job provided it's compatible with the 
ones already taken. 
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Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn	
	
G = {}	
for j = 1 to n 	
   if job j compatible with G	
      G = G ∪ {j}	
return G  	

jobs 
selected 	



Interval Scheduling 
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Interval Scheduling 
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Interval Scheduling 
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Interval Scheduling 

0	

 1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	



B	

 A	



Time	


0	



A 	



C	



F	



B	



D	



G	



E	



1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	



H	



Feb 2, 2011 13 CSCI211 - Sprenkle 

Interval Scheduling 
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Interval Scheduling 
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Interval Scheduling 
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Interval Scheduling 
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Interval Scheduling 
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Interval Scheduling: Greedy Algorithm 

•  Consider jobs in increasing order of finish time. 
Take each job provided it's compatible with the 
ones already taken. 

•  Runtime of algorithm? 
 Where/what are the costs? 
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Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn	
	
G = {}	
for j = 1 to n 	
   if job j compatible with G	
      G = G ∪ {j}	
return G 	

jobs 
selected 	



Interval Scheduling: Greedy Algorithm 

•  Consider jobs in increasing order of finish time. 
Take each job provided it's compatible with the 
ones already taken. 

•  Implementation.  O(n log n) 
 Remember job j* that was added last to A 
 Job j is compatible with A if sj ≥ fj* 
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Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn	
	
G = {}	
for j = 1 to n 	
   if job j compatible with G	
      G = G ∪ {j}	
return G  	

jobs 
selected 	



O(1)	

 O(n)	



O(n logn)	



Interval Scheduling: Analysis 

•  Know that the intervals are compatible 
 Handled by the if statement 

•  But is it optimal? 
 What does it mean to be optimal? 
 Recall our goal for maximization 
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Greedy Stays Ahead Proofs 
1.  Define your solutions 

  Describe the form of your greedy solution and of some other solution 
(possibly the optimal solution) 

•  Example: Let A be the solution constructed by the greedy algorithm and O 
be an solution. 

2.  Find a measure 
  Find a measure by which greedy stays ahead of the optimal solution 

•  Ex: Let a1, . . . , ak be the first k measures of greedy algorithm and 
o1 , . . . , om be the first m measures of other solution (sometimes m = k ) 

3.  Prove greedy stays ahead 
  Show that the partial solutions constructed by greedy are always just 

as good as the initial segments of the optimal solution, based on the 
measure  

•  Ex: for all indices r ≤ min(k,m), prove by induction that ar ≥ or or ar ≤ or 
  Use the greedy algorithm to help you argue the inductive step 

4.  Prove optimality 
  Prove that since greedy stays ahead of the other solution with respect 

to the measure, then the greedy solution is optimal. 
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Interval Scheduling: Analysis 
•  Theorem.  Greedy algorithm is optimal. 
•  Pf.  (by contradiction) 

  Assume greedy is not optimal, and let's see what happens 
  Let i1, i2, ..., ik denote set of jobs selected by greedy (k jobs) 
  Let j1, j2, ..., jm  denote set of jobs in the optimal solution (m 

jobs) 
  Same ordering, by finish times because compatible jobs 
 Want to show that k = m 
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What can we say about i1 and j1? 	

 f(i1) ≤ f(j1)	



Interval Scheduling: Analysis 
•  Theorem.  Greedy algorithm is optimal. 
•  Pf.  (by contradiction) 

  Since we picked the first job to have the first finishing time, we 
know that f(i1) <= f(j1)	



 Want to show that Greedy “stays ahead” 
 Each interval finishes at least as soon as Optimal’s 
  Induction hypothesis: for all indices r <= k, f(ir) <= f(jr)	
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OPT:	



Prove for r+1	
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Interval Scheduling: Analysis 
•  Theorem.  Greedy algorithm is optimal. 
•  Pf.  (by contradiction) 

  Since we picked the first job to have the first finishing time, we 
know that f(i1) <= f(j1)	



 Want to show that Greedy “stays ahead” 
 Each interval finishes at least as soon as Optimal’s 
  Induction hypothesis: for all indices r <= k, f(ir) <= f(jr)	
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. . .	



Greedy:	



OPT:	

 jr+1	



why not replace job ir+1 with job jr+1?	



job ir+1 finishes after jr+1	



How Greedy stays ahead	
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Interval Scheduling: Analysis 
•  Theorem.  Greedy algorithm is optimal. 
•  Pf.  (by contradiction) 

  Assume Greedy is not optimal (i.e., m > k) 
  We already showed that for all indices r ≤ k, f(ir) ≤ f(jr) 
  Since m > k, there is a request jk+1 in Optimal 
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jk+1	

jk	



Why wouldn't 
Greedy have jk+1?	
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OPT:	



27 

Interval Scheduling: Analysis 
•  Theorem.  Greedy algorithm is optimal. 
•  Pf.  (by contradiction) 

  Assume Greedy is not optimal (i.e., m > k) 
  We already showed that for all indices r ≤ k, f(ir) ≤ f(jr) 
  Since m > k, there is a request jk+1 in Optimal 

•  Starts after jk ends  after ik ends 
 So, Greedy could also add jk 

•  Contradiction because now Greedy has another job 
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Why wouldn't 
Greedy have jk+1?	
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Greedy Algorithm Pseudo-Code 
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Set Greedy (Set candidate){	
	solution = new Set( );	
	while candidate.isNotEmpty()	
	 	next = candidate.select() //use selection criteria,	
	 	//remove from candidate and return value	
	 	if solution.isFeasible(next) //constraints satisfied	
	 	 	solution.union(next)	
	 	if solution.solves()	
	 	 	return solution	
		
	//No more candidates and no solution	
	return null	

}	

In some specified order	



Problem Assumptions 

•  All requests were known to scheduling 
algorithm 
 Online algorithms: make decisions without 

knowledge of future input 
•  Each job was worth the same amount 

 What if jobs had different values? 
•  E.g., scaled with size 

•  Single resource requested 
 Rejected requests that didn’t fit 
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INTERVAL PARTITIONING 
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Interval Partitioning 

•  Lecture j starts at sj and finishes at fj 
•  Goal: find minimum number of classrooms to 

schedule all lectures so that no two occur at 
the same time in the same room. 

•  Ex: 10 lectures in 4 classrooms 
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What are our constraints?	

Can we use fewer rooms?	



Interval Partitioning 

•  Lecture j starts at sj and finishes at fj 
•  Goal:  find minimum number of classrooms 

to schedule all lectures so that no two occur 
at the same time in the same room. 

•  Alternative schedule uses only 3 classrooms 
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a, b, c all contain 9:30	



Interval Partitioning: 
Lower Bound on Optimal Solution 
•  Def.  The depth of a set of open intervals is the 

maximum number that contain any given time. 
•  Key observation.  # of classrooms needed  ≥  

depth. 
•  Ex:  Depth of schedule below = 3  ⇒  schedule 

below is optimal. 
 

Feb 2, 2011 33 CSCI211 - Sprenkle 

Does there always exist a schedule equal 
to depth of intervals?	



Interval Partitioning Discussion 

•  Does there always exist a schedule equal to 
depth of intervals? 

•  Can we make decisions locally to get a 
global optimum? 
 Or are there long-range obstacles that require 

more resources?  
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Interval Partitioning: Greedy Algorithm 

•  Consider lectures in increasing order of start 
time: assign lecture to any compatible 
classroom 
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Sort intervals by starting time so that s1 ≤ s2 ≤ ... ≤ sn	
d = 0	
for j = 1 to n 	
   if lecture j is compatible with some classroom k	
      schedule lecture j in classroom k	
   else	
      allocate a new classroom d + 1	
      schedule lecture j in classroom d + 1	
      d = d + 1 	

number of allocated classrooms	



Sort intervals by starting time so that s1 ≤ s2 ≤ ... ≤ sn	
d = 0	
for j = 1 to n 	
   if (lecture j is compatible with some classroom k)	
      schedule lecture j in classroom k	
   else	
      allocate a new classroom d + 1	
      schedule lecture j in classroom d + 1	
      d = d + 1 	

Interval Partitioning: Greedy Algorithm 

•  Consider lectures in increasing order of start time: 
assign lecture to any compatible classroom 

•  Implementation: O(n log n) 
 For each classroom k, maintain the finish time of the last 

job added. 
 Keep the classrooms in a priority queue. 
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number of allocated classrooms	
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Assignments 

•  Read Chapter 4 
•  Friday: Problem Set 3 
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