
2/15/10

1

•  Minimum Spanning Tree • What are greedy algorithms?

• What was the greedy algorithm to find the
shortest path in a weighted directed graph?

•  Comcast knows how to make money and how to save
money

•  They want to lay cable in a neighborhood
  Reach all houses
  Least cost

Neighborhood Layout Cost of laying cable btw
houses depends on amount

of cable, landscaping,
obstacles, etc.

8

12

2

1

15

3

7

4

13
8 15

9

What type of graph?

•  Given a connected graph G = (V, E) with
positive edge weights ce, an MST is a subset of
the edges T ⊆ E such that T is a spanning tree
whose sum of edge weights is minimized
 Spanning tree: spans all nodes in graph

 5

23

10
21

 14

24

 16

 6

 4

18
9

7

11
 8

 5

 6

 4

9

7

11
 8

G = (V, E)
T, Σe∈T ce = 50

Graph

5 2

3

1

Identify spanning trees and which is the minimal spanning tree.

Graph

5 2

3

1
2

3

1

5

3

1

5 2

1

MST:

Other Spanning Trees:

Identify spanning trees and which is the minimal spanning tree.

2/15/10

2

•  Network design
  telephone, electrical, hydraulic, TV cable, computer, road

•  Approximation algorithms for NP-hard problems
  traveling salesperson problem, Steiner tree

•  Indirect applications
 max bottleneck paths
  image registration with Renyi entropy
  learning salient features for real-time face verification
  reducing data storage in sequencing amino acids in a

protein
 model locality of particle interactions in turbulent fluid

flows
•  Cluster analysis http://www.ics.uci.edu/	

	~eppstein/gina/mst.html	

•  Given a connected graph G = (V, E) with
positive edge weights ce, an MST is a subset of
the edges T ⊆ E such that T is a spanning tree
whose sum of edge weights is minimized

 5

23

10
21

 14

24

 16

 6

 4

18
9

7

11
 8

 5

 6

 4

9

7

11
 8

G = (V, E) T, Σe∈T ce = 50

Why must the solution be a tree?

•  Assume have a minimal solution that is not a
tree, i.e., it has a cycle

• What could we do?
 What do we know about the edges?
 How does that change the cost of the solution?

•  Proof by Contradiction.
•  Assume have a minimal solution V that is not

a tree, i.e., it has a cycle
•  Contains edges to all nodes because

solution must be connected (spanning)
•  Remove an edge from the cycle

 Can still reach all nodes (could go “long way
around”)

 But at lower cost
 Contradiction to our minimal solution

•  Cayley's Theorem. There are nn-2 spanning
trees of Kn

•  Towards a solution…
 Where to start?
 Recall: Greedy algorithms chapter…

 5

23

10
21

 14

24

 16

 6

 4

18
9

7

11
 8

can't solve by
brute force

•  Prim's algorithm. Start with some root nodes and greedily
grow a tree T from s outward. At each step, add the
cheapest edge e to T that has exactly one endpoint in T.
  Similar to Dijkstra’s (but simpler)

•  Kruskal's algorithm. Start with T = φ. Consider edges in
ascending order of cost. Insert edge e in T unless doing so
would create a cycle.

•  Reverse-Delete algorithm. Start with T = E. Consider
edges in descending order of cost. Delete edge e from T
unless doing so would disconnect T.

What do these algorithms have/do/check in common?

All three algorithms produce a MST

2/15/10

3

• When is it safe to include an edge in the
minimum spanning tree?

• When is it safe to eliminate an edge from the
minimum spanning tree?

Cut Property

Cycle Property

•  Simplifying assumption: All edge costs ce are distinct
➜  MST is unique

•  Cut property. Let S be any subset of nodes, and let e
be the min cost edge with exactly one endpoint in S.
Then MST contains e.

•  Cycle property. Let C be any cycle, and let f be the
max cost edge belonging to C. Then MST does not
contain f.

f
C

S

Cut Property: e is in MST

e

Cycle Property: f is not in MST
Let’s try to prove these …

•  Cycle. Set of edges in the form a-b, b-c, c-d,
…, y-z, z-a

Cycle C = 1-2, 2-3, 3-4,
 4-5, 5-6, 6-1

1
3

8

2

6

7

4

5

•  Cycle. Set of edges in the form a-b, b-c, c-d, …,
y-z, z-a

Cycle C = 1-2, 2-3, 3-4,
 4-5, 5-6, 6-1

1
3

8

2

6

7

4

5

Cut S = { 4, 5, 8 }
Cutset D = 5-6, 5-7, 3-4,

 3-5, 7-8

1
3

8

2

6

7

4

5

•  Cutset. A cut is a subset of nodes S. The
corresponding cutset D is the subset of edges with
exactly one endpoint in S.

•  Claim. A cycle and a cutset intersect in an
even number of edges

•  Pf. (by picture)

1
3

8

2

6

7

4

5

S

V - S

C

Cycle C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1
Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8
Intersection = 3-4, 5-6

(Cut) Edges link to not-Cut

What are the possibilities
for the cycle?

•  Claim. A cycle and a cutset intersect in an
even number of edges

•  Pf. (by picture)

1
3

8

2

6

7

4

5

S

C

Cycle C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1
Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8
Intersection = 3-4, 5-6

(Cut) Edges link to not-Cut

1.  Cycle all in S or V-S
2.  Cycle has to go from

SV-S and back

V - S

2/15/10

4

•  Simplifying assumption. All edge costs ce
are distinct.

•  Cut property. Let S be any subset of nodes,
and let e be the min cost edge with exactly
one endpoint in S. Then the MST T* contains
e.

•  Pf.

•  Simplifying assumption. All edge costs ce
are distinct.

•  Cut property. Let S be any subset of nodes,
and let e be the min cost edge with exactly
one endpoint in S. Then the MST T* contains
e.

•  Pf. (exchange argument)
 Suppose there is an MST T* that does not

contain e
•  What do we know about T (by defn)?
•  What do we know about the nodes e connects?

•  Simplifying assumption. All edge costs ce are
distinct.

•  Cut property. Let S be any subset of nodes, and let e
be the min cost edge with exactly one endpoint in S.
Then the MST T* contains e.

•  Pf. (exchange argument)
 Suppose there is an MST T* that does not contain e
 Adding e to T* creates a cycle C in T*
 Edge e is in cycle C and in cutset corresponding to

S
⇒ there exists another edge, say f, that is in both C and S’s

cutset

Which means???
f

e

S

•  Simplifying assumption. All edge costs ce are distinct.
•  Cut property. Let S be any subset of nodes, and let e be

the min cost edge with exactly one endpoint in S. Then
the MST T* contains e.

•  Pf. (exchange argument)
  Suppose there is an MST T* that does not contain e
  Adding e to T* creates a cycle C in T*
  Edge e is in cycle C and in cutset corresponding to S

⇒ there exists another edge, say f, that is in both C and S’s cutset
 T' = T* ∪ { e } - { f } is also a spanning tree
 Since ce < cf, cost(T') < cost(T*)
 This is a contradiction. ▪ f

e

S

•  Simplifying assumption. All edge costs ce
are distinct

•  Cycle property. Let C be any cycle in G, and
let f be the max cost edge belonging to C.
Then the MST T* does not contain f.

Ideas about approach?

•  Simplifying assumption. All edge costs ce are distinct

•  Cycle property. Let C be any cycle in G, and let f be the max cost
edge belonging to C. Then the MST T* does not contain f.

•  Pf. (exchange argument)
  Suppose f belongs to T*
  Deleting f from T* creates a cut S in T*
  Edge f is both in the cycle C and in the cutset S

⇒ there exists another edge, say e, that is in both C and S
  T' = T* ∪ { e } - { f } is also a spanning tree
  Since ce < cf, cost(T') < cost(T*)
  This is a contradiction. ▪

f

e

S

2/15/10

5

•  Simplifying assumption: All edge costs ce are distinct
➜  MST is unique

•  Cut property. Let S be any subset of nodes, and let e
be the min cost edge with exactly one endpoint in S.
Then MST contains e.

•  Cycle property. Let C be any cycle, and let f be the
max cost edge belonging to C. Then MST does not
contain f.

f
C

S

Cut Property: e is in MST

e

Cycle Property: f is not in MST

•  Start with some root node s and greedily
grow a tree T from s outward.

•  At each step, add the cheapest edge e to T
that has exactly one endpoint in T.

How can we prove its correctness?

[Jarník 1930, Dijkstra 1957, Prim 1959]

•  Initialize S to be any node
•  Apply cut property to S

 Add min cost edge in cutset corresponding to S
to T, and add one new explored node u to S

S

•  Maintain set of explored nodes S
•  For each unexplored node v, maintain

attachment cost a[v]  cost of cheapest edge v
to a node in S
 O(m log n) with a heap

foreach (v ∈ V) a[v] = ∞	
Initialize an empty priority queue Q	
foreach (v ∈ V) insert v onto Q	
Initialize set of explored nodes S = φ	
while (Q is not empty) 	
 u = delete min element from Q	
 S = S ∪ { u }	
 foreach (edge e = (u, v) incident to u)	
 if ((v ∉ S) and (ce < a[v]))	
 decrease priority a[v] to ce	

Similar to Dijkstra’s algorithm

•  Read Chapter 4
 Wiki due Wednesday
 4.1-4.2
 4.4-4.5

•  Friday: PS4 Due

