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Objectives 

•  Data structure: Heaps 
•  Implementing a Priority Queue 
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Review: Priority Queues for Sorting 

1. Add elements into PQ with the number’s 
value as its priority 

2. Then extract the smallest number until done 
 Come out in sorted order 
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Sorting n numbers takes O(n logn) time, 
which is our goal running time.	



However, “known” data structures won’t 
give us that running time.	



Already know our “loops” will be O(n) 	



Heap Defined 

•  Combines benefits of sorted array and list 
•  Balanced binary tree 
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root	


• Each node has at most 2 children 
• Node value is its key 

Heap order: each node’s key is 
at least as large as its parent’s 

Note: not a binary search tree	
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Review: Implementing a Heap 

•  Option 1: Use pointers 
 Each node keeps 

•  Element it stores, key 
•  3 pointers: 2 children, parent 

•  Option 2: No pointers 
 Requires knowing upper bound on n 
 For node at position i 

•  left child is at 2i 
•  right child is at 2i+1 
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Implementing a Heap: Operations 

•  Finding the minimal element? 
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Implementing a Heap: Operations 

•  Finding the minimal element 
 First element 
 O(1) 
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Implementing a Heap: Operations 

•  Adding an element? 
 Assume heap has less than N elements 
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Implementing a Heap: Operations 

•  Adding an element? 
 Could add element to last position 

•  What are possible scenarios? 
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Implementing a Heap: Operations 

•  Adding an element? 
 Could add element to last position 

•  What are possible scenarios? 
 Heap is no longer balanced 
 Something that is almost a heap but a little off 
 Need Heapify-up procedure to fix our heap 
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Heapify-Up	
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Heapify-up(H, i):	
	if i > 1 then	
	 	j=parent(i)=floor(i/2)	
	 	if key[H[i]] < key[H[j]] then	
	 	 	swap array entries H[i] and H[j]	
	 	 	Heapify-up(H, j)	

Heap	

 Position where node added	



Practice: Heapify-Up  

Jan 19, 2011 Sprenkle - CSCI211 11 

Add 3	
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Practice: Heapify-Up  
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Swap with 11	
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Practice: Heapify-Up  
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Swap with 5	



11	



5	



3	



Sprenkle - CSCI211 

Heapify-Up  

•  Claim.  Assuming array H is almost a heap 
with key of H[i] too small, Heapify-Up 
fixes the heap property in O(log i) time 
 Can insert a new element in a heap of n 

elements in O(log n) time 
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Heapify-Up  

•  Claim.  Assuming array H is almost a heap 
with key of H[i] too small, Heapify-Up 
fixes the heap property in O(log i) time 
 Can insert a new element in a heap of n 

elements in O(log n) time 
•  Proof.  By induction 

 If i=1 … 
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Heapify-Up  

•  Claim.  Assuming array H is almost a heap 
with key of H[i] too small, Heapify-Up 
fixes the heap property in O(log i) time 
 Can insert a new element in a heap of n 

elements in O(log n) time 
•  Proof.  By induction 

 If i=1, is already a heap  O(1) 
 If i>1, … 
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Heapify-Up  

•  Claim.  Assuming array H is almost a heap 
with key of H[i] too small, Heapify-Up 
fixes the heap property in O(log i) time 
 Can insert a new element in a heap of n 

elements in O(log n) time 
•  Proof.  By induction 

 If i=1, is already a heap  O(1) 
 If i>1, 

•  Swaps are O(1) 
•  Swaps continue up to root (max)   log i 

Jan 19, 2011 17 Sprenkle - CSCI211 

Deleting an Element 
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Delete at 
position 3	
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Deleting an Element 
•  Delete at position i 
•  Removing an element: 

 Messes up heap order 
 Leaves a “hole” in the heap 

•  Not as straightforward as Heapify-Up	
•  Algorithm 

1.  Fill in element where hole was 
•  Patch hole: move nth element into ith spot 

2.  Adjust heap to be in order 
•  At position i because moved nth item up to i 
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Deleting an Element 

• What are the possibilities when we move nth 
element (w) into spot where element was 
removed? 
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Delete at 
position 3	



w

Deleting an Element 

•  Two possibilities: element w is 
 Too small: violation is between it and parent  
Heapify-Up 	

 Too big: with one or both children  Heapify-
Down (example: w = 12) 
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Delete at 
position 3	
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Deleting an Element 

•  Delete 9 
•  Replace with 5 
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Example where new key is too small	
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Deleting an Element 

•  Delete 9 
•  Replace with 5 
•  But 5 < 6, so need to Heapify-Up	
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Example where new key is too small	
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Heapify-Down 
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Heapify-down(H, i):	
	n = length(H)	
	if 2i > n then	
	 	Terminate with H unchanged	
	else if 2i < n then	
	 	left=2i and right=2i+1	
	 	j be index that minimizes	
	 	 	key[H[left]] and key[[H[right]]	
	else if 2i = n then	
	 	j=2i	

	
	if key[H[j]] < key[H[i]] then	
	 	swap array entries H[i] and H[j]	
	 	Heapify-down(H, j)	
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Heapify-Down 
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Heapify-down(H, i):	
	n = length(H)	
	if 2i > n then	
	 	Terminate with H unchanged	
	else if 2i < n then	
	 	left=2i and right=2i+1	
	 	j be index that minimizes	
	 	 	key[H[left]] and key[[H[right]]	
	else if 2i = n then	
	 	j=2i	

	
	if key[H[j]] < key[H[i]] then	
	 	swap array entries H[i] and H[j]	
	 	Heapify-down(H, j)	
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i  is a leaf – nowhere to go	



Practice: Heapify-Down 
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Moved 21 to where 
element was removed 

21	
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Practice: Heapify-Down 
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Practice: Heapify-Down 
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Runtime of Heapify-Down? 
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Heapify-down(H, i):	
	n = length(H)	
	if 2i > n then	
	 	Terminate with H unchanged	
	else if 2i < n then	
	 	left=2i and right=2i+1	
	 	j be index that minimizes	
	 	 	key[H[left]] and key[[H[right]]	
	else if 2i = n then	
	 	j=2i	

	
	if key[H[j]] < key[H[i]] then	
	 	swap array entries H[i] and H[j]	
	 	Heapify-down(H, j)	
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O(1) 

O(1) 

Num swaps: O(log n)	



Implementing Priority Queues 
with Heaps 

Jan 19, 2011 30 

Operation Description Run Time 

StartHeap(N) Creates an empty heap that 
can hold N elements 

Insert(v) Inserts item v into heap 

FindMin() Identifies minimum element in 
heap but does not remove it 

Delete(i) Deletes element in heap at 
position i 

ExtractMin() 
Identifies and deletes an 
element with minimum key from 
heap 

Sprenkle - CSCI211 
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Implementing Priority Queues 
with Heaps 
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Operation Description Run Time 

StartHeap(N) Creates an empty heap that 
can hold N elements O(N) 

Insert(v) Inserts item v into heap O(log n) 

FindMin() Identifies minimum element in 
heap but does not remove it O(1) 

Delete(i) Deletes element in heap at 
position i O(log n) 

ExtractMin() 
Identifies and deletes an 
element with minimum key from 
heap 

O(log n) 
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Comparing Data Structures 
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Operation Heap Unsorted 
List 

Sorted 
List 

StartHeap(N) 
Insert(v) 
FindMin() 
Delete(i) 
ExtractMin() 

Comparing Data Structures 
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Operation Heap Unsorted 
List 

Sorted 
List 

StartHeap(N) O(N) 
Insert(v) O(log n) 
FindMin() O(1) 
Delete(i) O(log n) 
ExtractMin() O(log n) 
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Comparing Data Structures 
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Operation Heap Unsorted 
List 

Sorted 
List 

StartHeap(N) O(N) O(1) O(1) 
Insert(v) O(log n) O(1) O(n) 
FindMin() O(1) O(1) O(1) 
Delete(i) O(log n) O(n) O(1) 
ExtractMin() O(log n) O(n) O(1) 
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Additional Heap Operations 
•  Access elements in PQ by name 

 Maintain additional array Position that stores 
current position of each element in heap 

•  Operations: 
 Delete(Position[v]) 

•  Does not increase overall running time 
 ChangeKey(v, α) 

•  Changes key of element v to key(v) = α 
•  Identify position of element v in array (Position 

array) 
•  Change key, heapify 
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Assignments 

•  Journals: Finish Chapter 2 for Wednesday 
•  Problem Set  2 due Friday 

Jan 21, 2011 CSCI211 - Sprenkle 36 


