2/10/10

Objectives Scheduling to Minimizing Lateness

Single resource processes one job at a time

Job j requires t; units of processing time and is due at
time d;(its deadline)

If j starts at time s, it finishes at time f,=s; + t,
Lateness: ¢,=max {0, f-d}

Goal: schedule all jobs to minimize maximum
lateness L = max /

Wrap up minimizing max lateness

[]2]s]a]o]c]
I EBREE
O 16190 K| lateness =2 lateness = 0 max lateness = 6
v \ ¥
d;=9 d,=8 dg=15 d=6 dy = 14 dy=9

o 1 2 3 4 5 6 7 8 9 10 1 2 13 14 15

Feb 10,20 Note: not a sum total |1- Sprenkie

Minimizing Lateness: Greedy Algorithm Minimizing Lateness: Inversions
Earliest deadline first. Def. An inversion in schedule S is a pair of

jobs i and j such that:
d; < d; but j scheduled before i

Sort n jobs by deadline so that d; < d; < . s d,

fo; j=1ton
Assign job j to interval [t, t + tj]

fs-': : : s inversion
out;m:: gntert'?/als [s;, fil before swep I
max lateness = 1
V
e N I e e e Greedy's schedule has no inversions!
3 Feb 10, 2010 CSCI211 - Sprenkle Feb 10, 2010 CSCI211 - Sprenkle 4
Minimizing Lateness: Inversions Minimizing Lateness: Inversions
Claim. Swapping two adjacent, inverted jobs Claim. Swapping two adjacent, inverted jobs
reduces the number of inversions by one and reduces the number of inversions by one and
does not increase the max lateness does not increase the max lateness.

> How do we know inversions are adjacent? 4\:

Pf Setup. Let ¢ be the lateness before the Pf. Let ¢ be the lateness before the swap,

) . 1 H . "
swap, and let ¢ be it afterwards and let /' be it afterwards s
» What can we say about how i’s, j's, and other jobs’ U = forallk =i, j before swap [NN
?
lateness changes? @ . > Know: d,< d, erer v R
.
! 1 f é ‘< !
before swap — g gfl__ 4‘_ . . £, = fi-d; (definition)
after swap T ~Ifjobjislate: ™ _ 74" pushes attimer)
. . 5 = fi-4; <))
By def of inversion, d;< d; < 0 (:ieﬁjnilion)
5 CSCI211 - Sprenkle Feb 10, 2010 6 CSCI211 - Sprenkle Feb 10, 2010

2/10/10

Minimizing Lateness:

Analysis of Greedy Algorithm
Theorem. Greedy schedule S is optimal
Pfidea. Convert Opt to Greedy

» Does opt schedule have idle time?
» What if opt schedule has no inversions?
» What if opt schedule has inversions?

7 Feb 10,2010 CSCI211 - Sprenkle

Minimizing Lateness:
Analysis of Greedy Algorithm
Theorem. Greedy schedule S is optimal
Pf. Define S* to be an optimal schedule that
has the fewest number of inversions, and let's
see what happens
» Can assume S* has no idle time
~ If S* has no inversions, then S = S*
~ If S* has an inversion, let i-j be an adjacent inversion

Swapping i and j does not increase the maximum
lateness and strictly decreases the number of
inversions

This contradicts definition of S* =

8 Feb 10,2010 CSCI211 - Sprenkle

Analyzing Running Time

Earliest deadline first.
Sort n jobs by deadline so that d; < d; < . s d,
fo; j=1ton

Assign job j to interval [t, t + tj]
S: =

5 =
fi=t+ty O(n logn)
t=t+ty

output intervals [s;, f;]

max lateness = 1
d=6 d,=8 ds=9 =9 dy= 14 dg=15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

What is the runtime of this algorithm?

9 Feb 10,2010 CSCI211 - Sprenkle

Greedy Exchange Proofs

Label your algorithm’s solution and a general solution.

» For example, let A = {a,, a,, ..., a,} be the solution generated by your
algorithm, and let O = {04, 0,, ..., 0,,} be an arbitrary (or optimal) feasible
solution.

Compare greedy with other solution.

~ Assume that your arbitrary/optimal solution is not the same as your greedy
solution (since otherwise, you are done).

» Typically, you can isolate a simple example of this difference, such as one
of the following:

There is an element of O that is not in A and an element of A that is notin O
There are 2 consecutive elements in O in a different order than they are in A (i.e.,
there is an inversion).

Exchange.

> SwaF1 the elements in question in O (either swap one element out and
another in for the first case, or swap the order of the elements in the second
case), and argue that you have a solution that is no worse than before.

~ Then argue that if you continue swapping, you eliminate all differences
between O and A in a finite # of steps without worsening the solution’s
quality.

» Thus, the greedy solution produced is just as good as any optimal solution,
and hence is optimal itself.

Feb 10,2010 CSCI211 - Sprenkle 10

Greedy Analysis Strategies

Greedy algorithm stays ahead. Show that
after each step of the greedy algorithm, its
solution is at least as good as any other
algorithm's.

Exchange argument. Gradually transform
any solution to the one found by the greedy
algorithm without hurting its quality.
Structural. Discover a simple "structural"
bound asserting that every possible solution
must have a certain value. Then show that
your algorithm always achieves this bound.

1 Feb 10,2010 CSCI211 - Sprenkle

Assignments

Read Chapter 4
» Wiki due next Wednesday

Friday: Exam 1 Due

Feb 10,2010 CSCI211 - Sprenkle 12

