
1/28/09

1

Data structures: Heaps & Graphs

1

Objectives

Jan 28, 2009

Can use priority queues to sort
Sort runtime should be O(n log n)
However, cannot implement PQs with “known” data
structures arrays and lists to meet desired runtime
→ Motivates use of Heap to implement PQ
→ Goal: show results in O(n log n) time

2

Review: Priority Queues

Jan 28, 2009

3

Implementing Priority Queues

Jan 28, 2009

Operation Unsorted
List

Sorted
List

Sorted
Array

StartHeap(N)
Insert(H, v)
FindMin(H)
Delete(H, i)
ExtractMin(H)

4

Implementing Priority Queues

Jan 28, 2009

Operation Unsorted
List

Sorted
List

Sorted
Array

StartHeap(N) O(1) O(1) O(N)
Insert(H, v) O(1) O(n) O(n)
FindMin(H) O(n) O(1) O(1)
Delete(H, i) O(n) O(n) O(n)
ExtractMin(H) O(n) O(1) O(n)

Combines benefits of sorted array and list
Balanced binary tree

5

Review: Heap

Jan 28, 2009

root
•  Each node has at most 2 children
• Node value is its key

Heap order: each node’s key is at
least as large as its parent’s

Note: not a binary search tree

Option 1: Use pointers
  Each node keeps

– Element it stores, key

– 3 pointers: 2 children, parent

Option 2: No pointers
  Requires knowing upper bound on n

  For node at position i
– left child is at 2i

– right child is at 2i+1

6

Implementing a Heap

Jan 28, 2009
If know child’s position, what is the position of parent?

1/28/09

2

Adding an element?
  Could add element to last position

– What are possible scenarios?
•  Heap is no longer balanced

•  Something that is almost a heap but a little off

•  Need a Heapify-up procedure to fix our heap

7

Implementing a Heap: Operations

Jan 28, 2009

Can insert a new element in a heap of n elements in
O(log n) time

8

Heapify-Up	

Jan 28, 2009

Heapify-up(H, i):	
	if i > 1 then	
	 	let j=parent(i)=floor(i/2)	
	 	if key[H[i]] < key[H[j]] then	
	 	 	swap array entries H[i] and H[j]	
	 	 	Heapify-up(H, j)	

Heap Position where node added

Delete at position i
Not only removes an element
  Messes up heap order
  Leaves a “hole” in the heap

Not as straightforward as Heapify-Up	
  Need to fill-in element where hole was

– Patch hole: move nth element into ith spot

  Then adjust heap to be in order
– At position i because moved nth item up to i

9

Deleting an Element

Jan 28, 2009 10

Deleting an Element

Jan 28, 2009

Moved 21 to where
element was removed

Two possibilities: element w is
  Too small: violation is between it and parent 
Heapify-Up	

  Too big: with one or both children  Heapify-Down

11

Deleting an Element

Jan 28, 2009

Delete 9
Replace with 5

Example where new key is to small

3

4 7

5

6

2

9 10

12

Deleting an Element

Jan 28, 2009

Delete 9
Replace with 5
But 5 < 6, so need to Heapify-Up	

Example where new key is to small

3

4 7 5

6

2

10

1/28/09

3

13

Heapify-Down

Jan 28, 2009

Heapify-down(H, i):	
	Let n = length(H)	
	if 2i > n then	
	 	Terminate with H unchanged	
	else if 2i < n then	
	 	let left=2i and right=2i+1	
	 	let j be index that minimizes	
	 	 	 	key[H[left]] and key[[H[right]]	
	else if 2i = n then	
	 	Let j=2i	

	if key[H[j]] < key[H[i]] then	
	 	swap array entries H[i] and H[j]	
	 	Heapify-down(H, j)	

14

Practice: Heapify-Down

Jan 28, 2009

Moved 21 to where
element was removed

21

15

Practice: Heapify-Down

Jan 28, 2009

21

21

7

16

Practice: Heapify-Down

Jan 28, 2009

21

7

8

7

21

17

Runtime of Heapify-Down?

Jan 28, 2009

Heapify-down(H, i):	
	Let n = length(H)	
	if 2i > n then	
	 	Terminate with H unchanged	
	else if 2i < n then	
	 	let left=2i and right=2i+1	
	 	let j be index that minimizes	
	 	 	 	key[H[left]] and key[[H[right]]	
	else if 2i = n then	
	 	Let j=2i	

	if key[H[j]] < key[H[i]] then	
	 	swap array entries H[i] and H[j]	
	 	Heapify-down(H, j)	

Computation of j: O(1)
Swap: O(1)
How many swaps: O(log n)

18

Runtime of Heapify-Down: O(log n)

Jan 28, 2009

1/28/09

4

19

Implementing Priority Queues
with Heaps

Jan 28, 2009

Operation Description Run Time

StartHeap(N) Creates an empty heap that can
hold N elements

Insert(H, v) Inserts item v into heap H

FindMin(H) Identifies minimum element in
heap H but does not remove it

Delete(H, i) Deletes element in heap position i

ExtractMin(H) Identifies and deletes an element
with minimum key from heap

20

Implementing Priority Queues
with Heaps

Jan 28, 2009

Operation Description Run Time

StartHeap(N) Creates an empty heap that
can hold N elements O(N)

Insert(H, v) Inserts item v into heap H O(log n)

FindMin(H)
Identifies minimum element
in heap H but does not
remove it

O(1)

Delete(H, i) Deletes element in heap
position i O(log n)

ExtractMin(H)
Identifies and deletes an
element with minimum key
from heap

O(log n)

21

Implementing Priority Queues

Jan 28, 2009

Operation Heap Unsorted
List

Sorted
List

StartHeap(N) O(N)
Insert(H, v) O(log n)
FindMin(H) O(1)
Delete(H, i) O(log n)
ExtractMin(H) O(log n)

22

Implementing Priority Queues

Jan 28, 2009

Operation Heap Unsorted
List

Sorted
List

StartHeap(N) O(N) O(1) O(1)
Insert(H, v) O(log n) O(1) O(n)
FindMin(H) O(1) O(n) O(1)
Delete(H, i) O(log n) O(n) O(n)
ExtractMin(H) O(log n) O(n) O(1)

Access given element of PQ
  Maintain additional array Position that stores

current position of each element in heap

Operations:
  Delete(H, Position[v])

– Does not increase overall running time

  ChangeKey(H, v, a)
– Changes key value of element v to key(v) = a

– Identify position of element v in array (Position array)

– Change key, heapify
23

Additional Heap Operations

Jan 28, 2009

GRAPHS

24 Jan 28, 2009

1/28/09

5

25

Undirected Graphs G = (V, E)
V = nodes (vertices)
E = edges between pairs of nodes
Captures pairwise relationship between objects
Graph size parameters: n = |V|, m = |E|

V = { 1, 2, 3, 4, 5, 6, 7, 8 }
E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 }
n = 8
m = 11

26

World Wide Web
Web graph
  Node: web page
  Edge: hyperlink from one page to another

cnn.com

people.com sportsillustrated.cnn.com netscape.com time.com

hbo.com

sorpranos.com

Directed Graph

Node: people; Edge: relationship between 2 people
Everything Bad Is Good for You: How Today's
Popular Culture Is Actually Making Us Smarter

27

Social Networks

•  Television shows
have complex
plots, complex
social networks

Social network of
24's Jack Bauer

http://www.cs.duke.edu/csed/harambeenet/
modules.html

Food web graph
  Node = species
  Edge = from prey to predator

28

Ecological Food Web

Reference: http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff

Directed Graph

29

Graph Applications

transportation

Graph
street intersections

Nodes Edges
highways

communication computers fiber optic cables

World Wide Web web pages hyperlinks

social people relationships

food web species predator-prey

software systems functions function calls

scheduling tasks precedence constraints

circuits gates wires

n×n matrix with Auv = 1 if (u, v) is an edge
  Two representations of each edge (symmetric matrix)
  Space?

  Checking if (u, v) is an edge?
  Identifying all edges?

30

Graph Representation:
Adjacency Matrix

 1 2 3 4 5 6 7 8
1 0 1 1 0 0 0 0 0
2 1 0 1 1 1 0 0 0
3 1 1 0 0 1 0 1 1
4 0 1 0 1 1 0 0 0
5 0 1 1 1 0 1 0 0
6 0 0 0 0 1 0 0 0
7 0 0 1 0 0 0 0 1
8 0 0 1 0 0 0 1 0

1/28/09

6

n×n matrix with Auv = 1 if (u, v) is an edge
  Two representations of each edge (symmetric matrix)
  Space proportional to n2

  Checking if (u, v) is an edge takes Θ(1) time
  Identifying all edges takes Θ(n2) time

31

Graph Representation:
Adjacency Matrix

 1 2 3 4 5 6 7 8
1 0 1 1 0 0 0 0 0
2 1 0 1 1 1 0 0 0
3 1 1 0 0 1 0 1 1
4 0 1 0 1 1 0 0 0
5 0 1 1 1 0 1 0 0
6 0 0 0 0 1 0 0 0
7 0 0 1 0 0 0 0 1
8 0 0 1 0 0 0 1 0

Node indexed array of lists
  Two representations of each edge
  Space?
  Checking if (u, v) is an edge?
  Identifying all edges?

32

Graph Representation:
Adjacency List

1 2 3

2

3

4 2 5

5

6

7 3 8

8

1 3 4 5

1 2 5 8 7

2 3 4 6

5

3 7

no
de

edges

Node indexed array of lists
  Two representations of each edge
  Space = 2m + n = O(m + n)
  Checking if (u, v) is an edge takes O(deg(u)) time
  Identifying all edges takes Θ(m + n) time

33

Graph Representation:
Adjacency List

degree = number of
neighbors of u

1 2 3

2

3

4 2 5

5

6

7 3 8

8

1 3 4 5

1 2 5 8 7

2 3 4 6

5

3 7

no
de

edges

34

Paths and Connectivity
Def. A path in an undirected graph G = (V, E) is a
sequence P of nodes v1, v2, …, vk-1, vk
  each consecutive pair vi, vi+1 is joined by an edge in E

Def. A path is simple if all nodes are distinct
Def. An undirected graph is connected if ∀ pair of
nodes u and v, there is a path between u and v

• Short path
• Distance

35

Cycles
Def. A cycle is a path v1, v2, …, vk-1, vk in which
v1 = vk, k > 2, and the first k-1 nodes are all distinct

cycle C = 1-2-4-5-3-1

36

Trees
Def. An undirected graph is a tree if it is connected
and does not contain a cycle
Simplest connected graph
  Deleting any edge from a tree will disconnect it

1/28/09

7

37

Trees
Theorem. Let G be an undirected graph on n nodes.
Any two of the following statements imply the third.
  G is connected
  G does not contain a cycle

  G has n-1 edges

38

Rooted Trees
Given a tree T, choose a root node r and orient each
edge away from r
Models hierarchical structure

a tree the same tree, rooted at 1

v

parent of v

child of v

root r Why n-1 edges?

39

Rooted Trees
Why n-1 edges?
  Each node except for root has an edge to its parent

a tree the same tree, rooted at 1

v

parent of v

child of v

root r

40

Phylogeny Trees
Describe evolutionary history of
species
  ancestral species to mammals

and birds
– not to other species shown

  mammals and birds share a
common ancestor that they do
not share with other species

  all animals are descended from
an ancestor not shared with
mushrooms, trees, and bacteria

anim
als

41

GUI Containment Hierarchy

Reference: http://java.sun.com/docs/books/tutorial/uiswing/overview/anatomy.html

Describe organization of GUI widgets

GRAPH TRAVERSAL

1/28/09

8

s-t connectivity problem. Given two node s and t, is
there a path between s and t?
s-t shortest path problem. Given two node s and t,
what is the length of the shortest path between s and
t?
Applications
  Facebook
  Maze traversal
  Kevin Bacon number
  Fewest number of hops in a communication network

43

Connectivity

44

Breadth First Search
Intuition. Explore outward from s in all possible
directions, adding nodes one "layer" at a time
Algorithm
  L0 = { s }
  L1 = all neighbors of L0
  L2 = all nodes that do not belong to L0 or L1, and that have

an edge to a node in L1
  Li+1 = all nodes that do not belong to an earlier layer, and

that have an edge to a node in Li
Theorem. For each i, Li consists of all nodes at distance
exactly i from s. There is a path from s to t iff t appears
in some layer.

s L1 L2 L n-1

45

Breadth First Search
Property. Let T be a BFS tree of G = (V, E), and let
(x, y) be an edge of G. Then the level of x and y
differ by at most 1.

L0

L1

L2

L3

G:

46

Breadth First Search: Analysis
Theorem. The BFS implementation runs in O(m + n)
time if graph is given by its adjacency representation
Pf.
  Easy to prove O(n2) running time:

– at most n lists L[i]

– each node occurs on at most one list; for loop runs ≤ n
times

– when we consider node u, there are ≤ n incident edges
(u, v), and we spend O(1) processing each edge

47

Breadth First Search: Analysis
Theorem. The BFS implementation runs in O(m + n)
time if graph is given by its adjacency representation
Pf.
  Actually runs in O(m + n) time:

– when we consider node u, there are deg(u) incident
edges (u, v)

– total time processing edges is Σu∈V deg(u) = 2m ▪

each edge (u, v) is counted exactly twice
in sum: once in deg(u) and once in deg(v)

