
1/29/10

1

•  BFS & DFS Implementations, Analysis
•  Graph Applications: Bipartiteness
•  Directed Graphs

• Wiki: Any thoughts about using Dokuwiki for
your notes?

•  Keep nodes to be processed in a stack
DFS(s):	

	Initialize S to be a stack with one element s	
	Explored[v] = false, for all v	
	Parent[v] = 0, for all v	
	DFS tree T = {}	
	while S != {}	
	 	Take a node u from S	
	 	If Explored[u] = false	
	 	 	Explored[u] = true	
	 	 	Add edge (u, parent[u]) to T (if u ≠ s)	
	 	 	For each edge (u, v) incident to u	
	 	 	 	Add v to the stack S	
	 	 	 	Parent[v] = u	

DFS(s):	
	Initialize S to be a stack with one element s	
	Explored[v] = false, for all v	
	Parent[v] = 0, for all v	
	DFS tree T = {}	
	while S != {}	
	 	Take a node u from S	
	 	If Explored[u] = false	
	 	 	Explored[u] = true	
	 	 	Add edge (u, parent[u]) to T (if u ≠ s)	
	 	 	For each edge (u, v) incident to u	
	 	 	 	Add v to the stack S	
	 	 	 	Parent[v] = u	

deg(u)

O(n+m)

Running time: O(m+n)

R* = set of connected components	
While there is a node that does not belong to R*	

	select s not in R*	

	R = {s}	

	While there is an edge (u,v) where u∈R and v∉R	
	 	add v to R	

	Add R to R*	

But the “inner” loop was O(m+n)!
How can this be? Where i is the subscript of

the connected component

R* = set of connected components	
While there is a node that does not belong to R*	

	select s not in R*	

	R = {s}	

	While there is an edge (u,v) where u∈R and v∉R	
	 	add v to R	

	Add R to R*	

Imprecision in the running
time of inner loop:

O(m+n)

That’s m and n of the
connected component,
let’s say mi and ni
So…
Σi O(mi+ ni) = O(m+n)

1/29/10

2

•  Def. An undirected graph G = (V, E) is
bipartite if the nodes can be colored red or
blue such that every edge has one red end
and one blue end
 Generally: vertices divided into sets X and Y

•  Applications:
 Stable marriage:

•  men = red, women = blue
 Scheduling:

•  machines = red, jobs = blue

a bipartite graph

•  Given a graph G, is it bipartite?
•  Many graph problems become:

 Easier if underlying graph is bipartite (e.g., matching)
 Tractable if underlying graph is bipartite (e.g.,

independent set)
•  Before designing an algorithm, need to understand

structure of bipartite graphs

v1

v2 v3

v6 v5 v4

v7

v2

v4

v5

v7

v1

v3

v6

a bipartite
graph G:

another
drawing of G:

•  Lemma. If a graph G is bipartite, it cannot
contain an odd length cycle.

•  Pf. Not possible to 2-color the odd cycle, let
alone G.

bipartite
(2-colorable)

not bipartite
(not 2-colorable)

If find an odd cycle,
graph is NOT bipartite

•  Given a connected graph
1.  Color one node red

•  Doesn’t matter which color (Why?)
 What should we do next?

Why connected?

v1

v2 v3

v6 v5 v4

v7

•  How will we know when
we’re finished?

•  What does this process
sound like?

•  Given a connected graph
 Color one node red

•  Doesn’t matter which color (Why?)
 What should we do next?

•  How will we know that we’re finished?
• What does this process sound like?

 BFS: alternating colors, layers

L1 L2 L3

1/29/10

3

•  Modify BFS to have a Color array
• When add v to list L[i+1]

 Color[v] = red if i+1 is even
 Color[v] = blue if i+1 is odd

L1 L2 L3

What is the running time of this algorithm? What is the running time of this algorithm? O(n+m)

•  Lemma. Let G be a connected graph, and let
L0, …, Lk be the layers produced by BFS
starting at node s. Exactly one of the following
holds:
 (i) No edge of G joins two nodes of the same layer

•  G is bipartite
 (ii) An edge of G joins two nodes of the same layer

•  G contains an odd-length cycle and hence is not
bipartite

Case (i):

L1 L2 L3

Case (ii):

L1 L2 L3

•  Lemma. Let G be a connected graph, and let L0, …,
Lk be the layers produced by BFS starting at node s.
Exactly one of the following holds:
  (i) No edge of G joins two nodes of the same layer

•  G is bipartite
•  Pf. (i)

 Suppose no edge joins two nodes in the same layer
  Implies all edges join nodes on adjacent level
 Bipartition: red = nodes on odd levels, blue = nodes on

even levels

L1 L2 L3

Case (i)

•  Lemma. Let G be a connected graph, and let L0, …,
Lk be the layers produced by BFS starting at node s.
Exactly one of the following holds:
  (ii) An edge of G joins two nodes of the same layer 

G contains an odd-length cycle and hence is not bipartite

16

z = lca(x, y)

•  Pf. (ii)
 Suppose (x, y) is an edge with x, y in same

level Lj.
  Let z = lca(x, y) = lowest common ancestor
  Let Li be level containing z
 Consider cycle that takes edge from x to y,

then path y z, then path from z  x

•  Lemma. Let G be a connected graph, and let L0, …,
Lk be the layers produced by BFS starting at node s.
Exactly one of the following holds:
  (ii) An edge of G joins two nodes of the same layer 

G contains an odd-length cycle and hence is not bipartite

•  Pf. (ii)
  Suppose (x, y) is an edge with x, y in same

level Lj.
  Let z = lca(x, y)=lowest common ancestor
  Let Li be level containing z
  Consider cycle that takes edge from x to y,

then path y  z, then path z  x
  Its length is 1 + (j-i) + (j-i), which is odd

(x, y) path from
y to z

path from
z to x

z = lca(x, y)

•  Corollary. A graph G is bipartite iff it contains
no odd length cycle.

5-cycle C

bipartite
(2-colorable)

not bipartite
(not 2-colorable)

1/29/10

4

•  Edge (u, v) goes from node u to node v

•  Example: Web graph - hyperlink points from
one web page to another
 Directedness of graph is crucial
 Modern web search engines exploit hyperlink

structure to rank web pages by importance

•  For each node, keep track of
 Out edges (where links go)
 In edges (from where links come in)

•  Could just keep out edges
 Get in edges with increased computation/time
 Useful to have both in and out edges

•  How does reachability change with directed
graphs?

•  Example: Web crawler
1.  Start from web page s.
2.  Find all web pages linked from s, either directly

or indirectly.

1 2

54

7

3

6

1 2

54

7

3

6

•  Directed reachability. Given a node s, find all
nodes reachable from s.

•  Directed s-t shortest path problem. Given
two nodes s and t, what is the length of the
shortest path between s and t?
 Not necessarily the same as t-s shortest path

•  Graph search. BFS and DFS extend
naturally to directed graphs
 Trace through out edges
 Run in O(m+n) time

1 2

54

7

3

6

1/29/10

5

•  Rather than paths from s to other nodes, find
all nodes with paths to s

•  Problem. Rather than paths from s to other
nodes, find all nodes with paths to s

•  Solution. Run BFS on in edges instead of
out edges

•  Def. Node u and v are mutually reachable
if there is a path from u  v and also a path
from v  u

•  Def. A graph is strongly connected if every
pair of nodes is mutually reachable

•  Lemma. Let s be any node. G is strongly
connected iff every node is reachable from s
and s is reachable from every node

s

v

u

•  If u and v are mutually reachable and v and
w are mutually reachable, then u and w are
mutually reachable

•  If u and v are mutually reachable and v and
w are mutually reachable, then u and w are
mutually reachable.

•  Proof. We need to show that there is a path
from u  w and from w  u.
 By defn of mutually reachable

•  there is a path u  v & a path v  u,
•  a path v  w, and a path w  v

 Take path uv and then from v  w
•  Path from uw

 Similarly for wu

•  Def. A graph is strongly connected if every
pair of nodes is mutually reachable

•  Lemma. Let s be any node. G is strongly
connected iff every node is reachable from s
and s is reachable from every node.
 1st prove ⇒
 2nd prove ⇐

•  for any nodes u and v, is there a path uv and
vu ?

1/29/10

6

•  Def. A graph is strongly connected if every pair
of nodes is mutually reachable

•  Lemma. Let s be any node. G is strongly
connected iff every node is reachable from s,
and s is reachable from every node.

•  Pf. ⇒ Follows from definition of strongly
connected

•  Pf. ⇐ For any nodes u and v, make path uv
and vu
  uv : concatenating us with sv
  v u: concatenate vs with su

s

v

u

•  Determine if G is strongly connected in
O(m + n) time

strongly connected not strongly connected

Hint: Can we leverage any algorithms
we know have O(m+n) time?

•  Theorem. Can determine if G is strongly
connected in O(m + n) time.

•  Pf.
 Pick any node s
 Run BFS from s in G
 Run BFS from s in Grev
 Return true iff all nodes reached in both BFS

executions
 Correctness follows immediately from previous

lemma
•  All reachable from one node, s is reached by all

reverse orientation of every edge in G
Or, the BFS using the in edges

•  Problem 1: Looking for an induction proof but I
didn’t really get that

•  Problem 2: Straightforward adaptation of
definitions
 Trying to get you to review the definitions and get

more comfortable with them
•  Problems 3 & 4: Similar to one of the solved

exercises
 Take logs of functions to help see pattern

•  Problem 5: Your solutions weren’t quite right
 Often going backwards
 My drawing to try to trace through your algorithms
 Analyze the running times of your solutions

•  Finish reading Chapter 3
 Wikis for Wednesday

•  For next Friday: Problem Set 3

35

