
4/3/09

1

Oh, the places you’ve been!

Oh, the places you’ll go!

Objectives

1 Apr 3, 2009 CS211 1

 Now, everything comes down to expert knowledge of
algorithms and data structures. If you don't speak fluent O-
notation, you may have trouble getting your next job at the

technology companies in the forefront.
 -- Larry Freeman

2

Algorithm Design Patterns
What are some approaches to solving problems?
How do they compare in terms of difficulty?

Apr 3, 2009 CS211

3

Algorithm Design Patterns
  Greedy
  Divide-and-conquer
  Dynamic programming

Apr 3, 2009 CS211

Course Objectives: Given a problem…
You’ll recognize when to try an approach

 - AND, when to bail out and try something different
Know the steps to solve the problem using the approach

 - e.g., breaking it into subproblems, sorting
possibilities in some order

Know how to analyze the run time of the solution
 - e.g., solving recurrence relation

4

Algorithm Design Patterns
  Greedy
  Divide-and-conquer
  Dynamic programming

  Duality – Chapter 7
  Reductions – Chapter 8
  Local search – Chapter 12
  Randomization – Chapter 13

Apr 3, 2009 CS211

What Was Our Goal In Finding a
Solution?

5 Apr 3, 2009 CS211

Polynomial Time  Efficient

POLYNOMIAL-TIME
REDUCTIONS

6

4/3/09

2

7

Classify Problems According to
Computational Requirements

Q. Which problems will we be able to solve in
practice?

A. Working definition. [Cobham 1964, Edmonds
1965, Rabin 1966] Those with polynomial-time
algorithms.

Yes Probably no

Shortest path Longest path

Min cut Max cut

2-SAT 3-SAT

Matching 3D-matching

Primality testing Factoring

Planar 4-color Planar 3-color

Bipartite vertex cover Vertex cover

Apr 3, 2009 CS211 8

Classify Problems
Classify problems according to those that can be

solved in polynomial-time and those that cannot.

Apr 3, 2009 CS211

Polynomial Exponential

Examples:
•  Given a Turing machine, does

it halt in at most k steps?
•  Given a board position in an n-

by-n generalization of chess,
can black guarantee a win?

?

Frustrating news: Many problems
have defied classification.
Chapter 8. Show that problems are
"computationally equivalent" and
appear to be manifestations of one
really hard problem.

9

Polynomial-Time Reduction
Suppose we could solve Y in polynomial-time. What else

could we solve in polynomial time?
Reduction. Problem X polynomial reduces to problem Y if

arbitrary instances of problem X can be solved using:

  Polynomial number of standard computational steps, plus

  Polynomial number of calls to oracle that solves problem Y
–  Assume have a black box that can solve Y

Notation. X ≤P Y

“X is polynomial-time reducible to Y”

Conclusion. If X can be solved in polynomial time and
Y ≤P X , then Y can be solved in polynomial time.

Apr 3, 2009 CS211

Problems from many different domains whose complexity
is unknown

NP-completeness and proof that all problems are
equivalent is POWERFUL!

  All open complexity questions are really ONE open
question

What does this mean?
  “Computationally hard for practical purposes but we can’t

prove it”
  If you find an NP-Complete problem, you can stop looking

for an efficient solution
–  Or figure out efficient solution for ALL NP-complete problems

NP Complete Problems

10 Apr 3, 2009 CS211

11

Polynomial-Time Reduction
Purpose. Classify problems according to relative

difficulty.
Design algorithms. If X ≤P Y and Y can be solved in

polynomial-time, then X can also be solved in
polynomial time.

Establish intractability. If X ≤P Y and Y cannot be
solved in polynomial-time, then X cannot be solved
in polynomial time.

Establish equivalence. If X ≤P Y and Y ≤P X, we use
notation X ≡P Y.

Apr 3, 2009 CS211

Reduction by simple equivalence
Reduction from special case to general case
Reduction by encoding with gadgets

Basic Reduction Strategies

Apr 3, 2009 12 CS211

4/3/09

3

13

Independent Set
Given a graph G = (V, E) and an integer k, is there a

subset of vertices S ⊆ V such that |S| ≥ k, and for
each edge at most one of its endpoints is in S?

3

10

6

9

1

5

8

2

4 7

Apr 3, 2009 CS211

Ex. Is there an independent
set of size ≥ 6?

Ex. Is there an independent
set of size ≥ 7?

14

Independent Set
Given a graph G = (V, E) and an integer k, is there a

subset of vertices S ⊆ V such that |S| ≥ k, and for
each edge at most one of its endpoints is in S?

3

10

6

9

1

5

8

2

4 7 independent set

Apr 3, 2009 CS211

Ex. Is there an independent
set of size ≥ 6? Yes

Ex. Is there an independent
set of size ≥ 7? No

15

Vertex Cover
Given a graph G = (V, E) and an integer k, is there a

subset of vertices S ⊆ V such that |S| ≤ k, and for
each edge, at least one of its endpoints is in S?

3

10

6

9

1

5

8

2

4 7

Apr 3, 2009 CS211

Ex. Is there a vertex cover
of size ≤ 4?

Ex. Is there a vertex cover
of size ≤ 3?

Application: place guards within an
art gallery so that all corridors
are visible at any time

16

Vertex Cover
Given a graph G = (V, E) and an integer k, is there a

subset of vertices S ⊆ V such that |S| ≤ k, and for
each edge, at least one of its endpoints is in S?

3

10

6

9

1

5

8

2

4 7

vertex cover

Apr 3, 2009 CS211

Ex. Is there a vertex cover
of size ≤ 4? Yes

Ex. Is there a vertex cover
of size ≤ 3? No

Not known if either Independent Set or Vertex Cover
can be solved in polynomial time

BUT, what can we say about their relative difficulty?

Problem

17 Apr 3, 2009 CS211 18

Vertex Cover and Independent Set
Claim. VERTEX-COVER ≡P INDEPENDENT-SET
Pf. We show S is an independent set iff V - S is a

vertex cover

vertex cover

independent set

Apr 3, 2009 CS211

4/3/09

4

19

Vertex Cover and Independent Set
Claim. VERTEX-COVER ≡P INDEPENDENT-SET
Pf. We show S is an independent set iff V - S is a

vertex cover
⇒
  Let S be any independent set
  Consider an arbitrary edge (u, v)
  Since S is an independent set ⇒ u ∉ S or v ∉ S ⇒

u ∈ V - S or v ∈ V - S
  Thus, V - S covers (u, v)

–  Every edge has one end in V-S
➙ V-S is a vertex Cover

Apr 3, 2009 CS211 20

Vertex Cover and Independent Set
Claim. VERTEX-COVER ≡P INDEPENDENT-SET

Pf. We show S is an independent set iff V - S is a
vertex cover

⇐
  Let V - S be any vertex cover
  Consider two nodes u ∈ S and v ∈ S
  Observe that (u, v) ∉ E since V - S is a vertex

cover

  Thus, no two nodes in S are joined by an edge ⇒
S independent set

Apr 3, 2009 CS211

 Reduction by simple equivalence.
 Reduction from special case to general case.
 Reduction by encoding with gadgets.

Reduction from Special Case to
General Case

REVIEWING SOLUTIONS/
EXPECTATIONS

22 Apr 3, 2009 CS211

Find the median of two sorted lists

Median: half the elements are bigger and half the
elements are smaller

If median falls at position k in A, it’s at n-k in B

Finding Median of Two Sorted Lists

23 Apr 3, 2009 CS211

1 4 5 7 8 9 11 12

-2 -1 0 2 3 6 10 13

A

B

Compare medians of lists
  k = n/2

If A[k] < B[k], B[k] > the first k elements of A
  B[k] is 2kth element; can ignore 2nd half of B

Finding Median of Two Sorted Lists

24 Apr 3, 2009 CS211

1 4 5 7 8 9 11 12

-2 -1 0 2 3 6 10 13

A

B

4/3/09

5

Compare medians of remaining lists

If A[k] < B[j], B[j] > the first k elements of A
  B[k] is k+jth element; can ignore 2nd half of B

Finding Median of Two Sorted Lists

25 Apr 3, 2009 CS211

1 4 5 7 8 9 11 12

-2 -1 0 2 3 6 10 13

A

B

Compare medians of remaining lists

If A[k] < B[j], B[j] > the first k elements of A
  B[k] is 2kth element; can ignore 2nd half of B

Finding Median of Two Sorted Lists

26 Apr 3, 2009 CS211

1 4 5 7 8 9 11 12

-2 -1 0 2 3 6 10 13

A

B

Compare medians of remaining lists

When down to 1 element in each list, median is
average of 2

Finding Median of Two Sorted Lists

27 Apr 3, 2009 CS211

1 4 5 7 8 9 11 12

-2 -1 0 2 3 6 10 13

A

B

Recurrence Relation: T(n) = T(n/2) + O(1)
  Reduce problem to one of half the size
  Comparison takes constant time

T(n) = O(log n)

Analyzing Algorithm

28 Apr 3, 2009 CS211

Goal: Maximize value of independent set
  Keep track in M

Break problem into subproblems
  For node j, either pick the node

–  Which means can’t pick next node
–  Opt(j) = wj + Opt(j-2)

  Or don’t pick node j
–  Get the best solution for the remaining nodes
–  Opt(j) = Opt(j-1)

Independent Sets

29 Apr 3, 2009 CS211

Find max value:
  M[0]=0
  For each node j =1 to n

–  M[j] = max(w[j]+M[j-2], M[j-1])
Find independent set: Trace backwards through M
  FindSolution(j):

–  If j == 0: return
–  If M[j] == w[j] + M[j-2]

•  add j to independent set

•  FindSolution(j-2)
–  Else:

•  FindSolution(j-1)

Independent Sets

30 Apr 3, 2009 CS211

4/3/09

6

Available Saturday at 2 p.m.
Due Friday at 5 p.m.
Open lecture notes, your notes, book
Unlimited time (until next Friday at 5 p.m.)

Final

31 Apr 3, 2009 CS211

