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•  Oh, the places you’ve been! 

•  Oh, the places you’ll go! 
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 Now, everything comes down to expert knowledge 
of algorithms and data structures.  If you don't 
speak fluent O-notation, you may have trouble 

getting your next job at the technology companies 
in the forefront. 

    -- Larry Freeman 

• What are some approaches to solving 
problems? 

•  How do they compare in terms of difficulty?  

•  Greedy   
•  Divide-and-conquer 
•  Dynamic programming 
•  Duality/network flow 
Course Objectives: Given a problem… 
You’ll recognize when to try an approach 

- AND, when to bail out and try something different 
Know the steps to solve the problem using the approach 

- e.g., breaking it into subproblems, sorting 
possibilities in some order 

Know how to analyze the run time of the solution 
 - e.g., solving recurrence relation 

•  Greedy  
•  Divide-and-conquer 
•  Dynamic programming 
•  Duality/network flow 
•  Reductions – Chapter 8 
•  Local search – Chapter 12 
•  Randomization – Chapter 13 

Polynomial Time  Efficient 
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Fundamental Question:  
Which problems will we be able 

to solve in practice? 

•  Working definition. [Cobham 1964, Edmonds 1965, 
Rabin 1966]  Those with polynomial-time algorithms. 

Yes Probably no 
Shortest path Longest path 

Min cut Max cut 

2-SAT 3-SAT 

Matching 3D-matching 

Primality testing Factoring 

Planar 4-color Planar 3-color 

Bipartite vertex cover Vertex cover 

Which problems will we be able 
to solve in practice? 

Polynomial Exponential 

Examples: 
•  Given a Turing machine, does it 

halt in at most k steps? 
•  Given a board position in an n-by-

n generalization of chess, can 
black guarantee a win? 

? 

Frustrating news:  Many problems have 
defied classification. 
Chapter 8.  Show that problems are 
"computationally equivalent" and appear 
to be manifestations of one really hard 
problem. 

Classify problems according to those that can be 
solved in polynomial-time and those that cannot. 

Suppose we could solve Y in polynomial-time. 
What else could we solve in polynomial time? 

•  Reduction. Problem X polynomial reduces to problem Y 
if arbitrary instances of problem X can be solved using: 
  Polynomial number of standard computational steps, plus 
  Polynomial number of calls to oracle that solves problem Y 

•  Assume have a black box that can solve Y 
•  Notation: X ≤P Y 

  “X is polynomial-time reducible to Y” 
•  Conclusion: If X can be solved in polynomial time and 

Y ≤P X , then Y can be solved in polynomial time. 

Suppose we could solve Y in polynomial-time. 
What else could we solve in polynomial time? 

•  Problems from many different domains whose 
complexity is unknown 

•  NP-completeness and proof that all problems are 
equivalent is POWERFUL! 
 All open complexity questions  ONE open question! 

•  What does this mean? 
  “Computationally hard for practical purposes but we can’t 

prove it” 
  If you find an NP-Complete problem, you can stop 

looking for an efficient solution 
•  Or figure out efficient solution for ALL NP-complete 

problems 
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•  Purpose.  Classify problems according to 
relative difficulty. 

•  Design algorithms.  If X ≤P Y and Y can be 
solved in polynomial-time, then X can also be 
solved in polynomial time. 

•  Establish intractability.  If X ≤P Y and X 
cannot be solved in polynomial-time, then Y 
cannot be solved in polynomial time. 

•  Establish equivalence.  If X ≤P Y and Y ≤P X, 
we use notation X ≡P Y. 

Discuss 

•  Reduction by simple equivalence 
•  Reduction from special case to general case 
•  Reduction by encoding with gadgets 

•  Given a graph G = (V, E) and an integer k, is there a 
subset of vertices S ⊆ V such that |S| ≥ k and for 
each edge at most one of its endpoints is in S? 

3 
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4 7 

Ex.  Is there an independent 
set of size ≥ 6? 

Ex.  Is there an independent 
set of size ≥ 7?  

•  Given a graph G = (V, E) and an integer k, is there a 
subset of vertices S ⊆ V such that |S| ≥ k and for 
each edge at most one of its endpoints is in S? 
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4 7 independent set 

Ex.  Is there an independent 
set of size ≥ 6? Yes 

Ex.  Is there an independent 
set of size ≥ 7? No  

•  Given a graph G = (V, E) and an integer k, is there a 
subset of vertices S ⊆ V such that |S| ≤ k and for 
each edge, at least one of its endpoints is in S? 
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Ex.  Is there a vertex cover 

of size ≤ 4? 
Ex.  Is there a vertex cover 

of size ≤ 3? 

A vertex covers an edge. 

Application: place guards within 
an art gallery so that all 
corridors are visible at any time  

•  Given a graph G = (V, E) and an integer k, is there a 
subset of vertices S ⊆ V such that |S| ≤ k and for 
each edge, at least one of its endpoints is in S? 
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vertex cover 

Ex.  Is there a vertex cover 
of size ≤ 4? Yes 

Ex.  Is there a vertex cover 
of size ≤ 3? No 
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•  Not known if either Independent Set or 
Vertex Cover can be solved in polynomial 
time 

•  BUT, what can we say about their relative 
difficulty?  

•  Claim. VERTEX-COVER ≡P INDEPENDENT-SET 
•  Pf.  We show S is an independent set iff  

V - S is a vertex cover 

vertex cover 

independent set 

•  Claim. VERTEX-COVER ≡P INDEPENDENT-
SET 

•  Pf.  We show S is an independent set iff  
V - S is a vertex cover 

•  ⇒ 
 Let S be any independent set 
 Consider an arbitrary edge (u, v) 
 Since S is an independent set ⇒ u ∉ S or v ∉ S  ⇒  

u ∈ V - S or v ∈ V - S 
 Thus, V - S covers (u, v) 

•  Every edge has one end in V-S 
 V-S is a vertex Cover 

•  Claim. VERTEX-COVER ≡P INDEPENDENT-
SET 

•  Pf.  We show S is an independent set iff  
V - S is a vertex cover 

• ⇐  
 Let V - S be any vertex cover 
 Consider two nodes u ∈ S and v ∈ S 
 Observe that (u, v) ∉ E since V - S is a vertex 

cover 
 Thus, no two nodes in S are joined by an edge  
⇒ S independent set 

•  Reduction by simple equivalence 
•  Reduction from special case to general case 
•  Reduction by encoding with gadgets 

•  SET COVER:  Given a set U of elements, a collection S1, 
S2, . . . , Sm of subsets of U, and an integer k, does there 
exist a collection of ≤ k of these sets whose union is equal 
to U? 

•  Sample application 
  m available pieces of software 
  Set U of n capabilities that we would like our system to have 
  The ith piece of software provides the set Si ⊆ U of capabilities 
  Goal: achieve all n capabilities using fewest pieces of 

software 
•  Ex: 

U = { 1, 2, 3, 4, 5, 6, 7 } 
k = 2 
S1 = {3, 7}   S4 = {2, 4} 
S2 = {3, 4, 5, 6}  S5 = {5} 
S3 = {1}   S6 =  {1, 2, 6, 7} 

Choose S2 and S6 
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•  Claim. VERTEX-COVER ≤ P SET-COVER 
•  Pf.  Given a VERTEX-COVER instance G = (V, 

E), k, we construct a set cover instance whose 
size equals the size of the vertex cover 
instance. 
 … 

SET COVER 

U = { 1, 2, 3, 4, 5, 6, 7 } 
k = 2 
Sa = {3, 7}  Sb = {2, 4} 
Sc = {3, 4, 5, 6}  Sd = {5} 
Se = {1}   Sf= {1, 2, 6, 7} 

a 

d 

b 

e 

f c 

VERTEX 
COVER 

k = 2 
e1  

e2  e3  

e5  

e4  

e6  

e7  

•  Claim. VERTEX-COVER ≤ P SET-COVER 
•  Pf.  Given a VERTEX-COVER instance G = (V, E), k, we 

construct a set cover instance whose size equals the size 
of the vertex cover instance. 

•  Construction.   
  Create SET-COVER instance: 

•  k = k,  U = E,  Sv = {e ∈ E : e incident to v } 
  Set-cover of size ≤ k iff vertex cover of size ≤ k.  ▪ 

SET COVER 

U = { 1, 2, 3, 4, 5, 6, 7 } 
k = 2 
Sa = {3, 7}  Sb = {2, 4} 
Sc = {3, 4, 5, 6}  Sd = {5} 
Se = {1}   Sf= {1, 2, 6, 7} 

a 

d 

b 

e 

f c 

VERTEX 
COVER 

k = 2 
e1  

e2  e3  

e5  

e4  

e6  

e7  

•  Problem set 
•  Post on Sakai: 

 Brief overview statement (what is the article 
about) 

 3 most important points 
 Questions: either for discussion or for 

understanding 


