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Registrar Review 
Algorithm Approach: Divide and Conquer 
  Recurrence Relations 
  Algorithm development 

Objectives 
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Divide-and-Conquer 

Divide-and-conquer process 
  Break up problem into several parts 
  Solve each part recursively 
  Combine solutions to sub-problems into overall solution 

Most common usage 
  Break up problem of size n into two equal parts of size ½n 
  Solve two parts recursively 
  Combine two solutions into overall solution 

Divide et impera. 
Veni, vidi, vici. 
        - Julius Caesar 
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What is a well-known divide and conquer algorithm? 

Discussion 

3 Mar 11, 2009 CS211 

MERGE SORT 

How does Merge Sort work? 

When do we stop? 

Merge Sort 
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Merge Sort 
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Divide list into 
two lists 

Until only 2 
elements 

Sort elements 

Combine 
sorted lists 
(how?) 

Costs?  
Running 
Time? 

RECURRENCE RELATIONS 
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Def.  T(n)  = number of comparisons to mergesort an 
input of size n 

Want to say a bit more about what T(n) is 
  Break it down more… 
  What can we say about the running time w.r.t. to the 

different parts of the above template? 

Analyzing Merge Sort 

7 

General Template 
•  Break up problem of size n into two equal 

parts of size ½n 
•  Solve two parts recursively 
•  Combine two solutions into overall solution 

Def.  T(n)  = number of comparisons to mergesort an 
input of size n 

Want to say a bit more about what T(n) is 
  Break it down more… 
  What can we say about the running time w.r.t. to the 

different parts of the above template? 

Analyzing Merge Sort 
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General Template 
•  Break up problem of size n into two equal 

parts of size ½n 
•  Solve two parts recursively 
•  Combine two solutions into overall solution O(n) 

T(n/2) + T(n/2) 

Put an upperbound on T(n): 

For some constant c, 
 T(n) ≤ 2 T(n/2) + cn  when n > 2,  
 T(2) ≤ c. 

Merge Sort’s Recurrence Relation 
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O(n) 

Solve T(n) to come up with explicit bound 

1.  Unroll recursion 
  Look for patterns in runtime at each level 
  Sum up running times over all levels 

2.  Substitute guess solution into recurrence 
  Check that it works 
  Induction on n 

Approaches to Solving Recurrences 
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Unrolling Recurrence 
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First level: 2 T(n/2) + cn 

Unrolling Recurrence 
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cn 

T(n/2) T(n/2) 

How does the next level break down? 
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Next level:  
Each one is 2 T(n/4) + c(n/2) 

Unrolling Recurrence 
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cn 

c n/2 c n/2 

T(n/4) T(n/4) T(n/4) T(n/4) 

Next level? 

Next level:  
Each one is 2 T(n/8) + c(n/4) 

Unrolling Recurrence 
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cn 

c n/2 c n/2 

c n/4 c n/4 c n/4 c n/4 

And so on… 

T(n/8) T(n/8) 
… T(n/8) T(n/8) 

How much does each level 
cost, in terms of the level? 

How many levels are there 
(assuming n is a power of 2)? 

What is the total run time? 

Unrolling Recurrence 
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cn 

c n/2 c n/2 

c n/4 c n/4 c n/4 c n/4 

c c c c c c c c 

T(n / 2k) 

T(n) 

T(2) 

0 

1 

2 

Unrolling Recurrence 
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cn 

c n/2 c n/2 

c n/4 c n/4 c n/4 c n/4 

c c c c c c c c 

T(n / 2k) 

T(n) 

T(2) 

2k problems 
Size: n/2k 

0 

1 

2 

Each level takes 2k * c * (n/2k) = cn   

Number of levels: 
log2n 

O(n log n) 

How much does each level 
cost, in terms of the level? 

How many levels are there 
(assuming n is a power of 2)? 

What is the total run time? 
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Alternative: Proof by Induction 
Claim.  If T(n) satisfies this recurrence, then T(n) = n 

log2 n. 

Pf.  (by induction on n) 
  Base case:  n = 1 
  Inductive hypothesis:  T(n) =  n log2 n 

  Goal:  show that T(2n) =  2n log2 (2n) 

    

€ 

T(n) =
0 if  n =1
2T(n /2)

sorting both halves
     

+ n
merging


otherwise
 

 
 

  
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Why doubling n? 
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Proof by Induction 
Claim.  If T(n) satisfies this recurrence, then T(n) = n 

log2 n. 

Pf.  (by induction on n) 
  Inductive hypothesis:  T(n) =  n log2 n 

  

€ 

T(2n) = 2T(n)  +  2n
= 2n log2 n  +  2n
= 2n log2(2n)−1( )  +  2n
= 2n log2(2n)

    

€ 

T(n) =
0 if  n =1
2T(n /2)

sorting both halves
     

+ n
merging


otherwise
 

 
 

  
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Instead of recursively solving 2 problems, solve q 
problems 

  Size of problems is still n/2 

Combining solutions is still O(n) 

Another Example 
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Instead of recursively solving 2 problems, solve q 
problems 

  Size of problems is still n/2 

Combining solutions is still O(n) 
Recurrence relation: 
  For some constant c, 

T(n) ≤ q T(n/2) + cn when n > 2 
T(2) ≤ c 

Another Example 
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Intuition about running time? 

Unrolling Recurrence, q > 2 
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First level: q T(n/2) + cn 

Unrolling Recurrence, q > 2 
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cn 

T(n/2) T(n/2) … q  

Next level: q T(n/4) + c(n/2) 

Unrolling Recurrence, q > 2 
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cn 

c n/2 c n/2 … q  

T(n/4) T(n/4) T(n/4) T(n/4) … q  … q  …

Unrolling Recurrence, q > 2 
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cn 

c n/2 c n/2 … q  

T(n/4) T(n/4) T(n/4) T(n/4) … q  … q  

qk problems at level k 
Size: n/2k 

Each level takes qk * c * (n/2k) = (q/2)j cn 
 Total work per level is increasing  as level increases   

Number of levels: log2n 

How much does each level 
cost, in terms of the level? 

Number of levels? 
What is the total run time? 

0 

1 
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Unrolling Recurrence, q > 2 
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cn 

c n/2 c n/2 … q  

T(n/4) T(n/4) T(n/4) T(n/4) … q  … q  

T(n) ≤ Σj=0,logn (q/2)j cn 

Geometric series:   O(n log2 q) 

How much does each level 
cost, in terms of the level? 

Number of levels? 
What is the total run time? 

0 

1 

Use recurrences to analyze the run time of divide 
and conquer algorithms 

  Number of sub problems 
  Size of sub problems 

  Number of times divided (number of levels) 
  Cost of merging problems 

Summary 

26 Mar 11, 2009 CS211 

COUNTING INVERSIONS 
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Movie site tries to match your song preferences with 
others 

  You rank n movies 
  Movie site consults database to find people with 

similar tastes 
– Collaborative filtering 

Meta-search tools 
  Do same query on several search engines 
  Synthesize results by looking for similarities and 

differences in search engines’ results rankings 

Problem Context 
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To determine similarity of rankings, need a metric 
Similarity metric:  number of inversions between two 

rankings 
  My rank:  1, 2, …, n 
  Your rank:  a1, a2, …, an 
  Movies i and j inverted if i < j, but ai > aj 

You 
Me 

1 4 3 2 5 
1 3 2 4 5 
A B C D E 

Movies 

Comparing Rankings 

What are the 
inversions? 
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To determine similarity of rankings, need a metric 
Similarity metric:  number of inversions between two 

rankings 
  My rank:  1, 2, …, n 
  Your rank:  a1, a2, …, an 
  Movies i and j inverted if i < j, but ai > aj 

You 
Me 

1 4 3 2 5 
1 3 2 4 5 
A B C D E 

Movies 

Comparing Rankings 

Inversions: 
3-2, 4-2 
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Naïve/Brute force 
solution? 
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Look at every pair (i,j) and determine if they are an 
inversion 

Requires Θ(n2) time 

Brute Force Solution 
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Applications 
Voting theory 
Collaborative filtering 
Measuring the "sortedness" of an array 
Sensitivity analysis of Google's ranking function 
Rank aggregation for meta-searching on the Web 
Nonparametric statistics  (e.g., Kendall's Tau 

distance) 
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Better than brute force Θ(n2)  
  Can’t look at each inversion individually 

Continued on Friday … 

Forming a Better Solution 
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