
2/13/09

1

Greedy Algorithms
  Shortest path
  Minimum spanning tree

Objectives

1 Feb 13, 2009 CS211 1

Shortest Path Problem
Given
  Directed graph G = (V, E)
  Source s, destination t
  Length e = length of edge e (non-negative)

Shortest path problem: find shortest directed path
from s to t

Cost of path s-2-3-5-t
 = 9 + 23 + 2 + 16
 = 48

s

3

t

2

6

7

4
5

 23

 18
 2

 9

 14

 15 5

 30

 20

 44

 16

 11

 6

 19

 6

cost of path = sum of edge
costs in path

Feb 13, 2009 2 CS211

www.wlu.edu

www.cnn.com

Dijkstra’s Algorithm

Maintain a set of explored nodes S
  Know the shortest path distance d(u) from s to u

Initialize S={s}, d(s)=0
Repeatedly choose unexplored node v which

minimizes
  add v to S and set d(v) = π(v)

,)(min)(
:),(eSuvue

udv +=
∈=

π

s

v

u
d(u)

S

e

shortest path to some u in
explored part, followed by a

single edge (u, v)

Feb 13, 2009 3 CS211

Dijkstra's Algorithm:
Implementation

For each unexplored node, explicitly maintain

  Next node to explore = node with minimum π(v).
  When exploring v, for each incident edge e = (v, w),

update

Efficient implementation. Maintain a priority queue of
unexplored nodes, prioritized by π(v)

Priority Queue PQ Operation

Insert

ExtractMin

ChangeKey

Binary heap

log n
log n
log n

IsEmpty 1
Total m log n

Dijkstra

n
n
m
n

€

π (v) = min
e = (u,v) : u∈ S

d (u) +  e .

€

π (w) = min { π (w), π (v)+  e }.

Feb 11, 2009 4 CS211 Feb 13, 2009 4 CS211

How Greedy?

We always form shortest new s-v path from a path in
S followed by a single edge

Proof of optimality: Stays ahead of all other solutions
  Each time selects a path to a node v, that path is

shorter than every other possible path to v

Feb 13, 2009 5 CS211

Invariant. For each node u ∈ S, d(u) is the length of
the shortest s-u path

Pf. (by induction on |S|)
Base case: For |S| = 1, S={s}; d(s) = 0
Inductive hypothesis: Assume true for |S| = k, k ≥ 1
  Grow |S| to k+1
  Adding next node v by u→ v
  What do we know about s→ u?
  What can we say about other s→ v paths?
  Why didn’t we pick y as the next node?

Dijkstra's Algorithm: Proof of
Correctness

6 Feb 13, 2009 CS211

S

s

y

v

x

P

u

P'

2/13/09

2

Invariant. For each node u ∈ S, d(u) is the length of the shortest s-u path

Pf. (by induction on |S|)
Inductive hypothesis: Assume true for |S| = k ≥ 1.

  Let v be next node added to S, and let u-v be the chosen edge
  The shortest s-u path plus (u, v) is an s-v path of length π(v)

  Consider any s-v path P. It's no shorter than π(v).

  Let x-y be the first edge in P that leaves S,
and let P' be the subpath to x.

  P is already too long as soon as it leaves S.

Dijkstra's Algorithm: Proof of
Correctness

7 Feb 11, 2009 CS211

  (P) ≥  (P') +  (x,y) = d(x) +  (x, y) ≥ π(y) ≥ π(v)

nonnegative
weights

inductive
hypothesis

defn of π(y) Dijkstra chose v
instead of y

S

s

y

v

x

P

u

P'

Feb 13, 2009 7 CS211

Why does the algorithm break down if we allow
negative weights/costs on edges?

Discussion: Dijstra’s Algorithm

8 Feb 13, 2009 CS211

s

3

t

2

6

7

4
5

 22

 18
 2

 9

 14

 15 5

 30

 20

 44

 16

 11

 6

 19

 6

MINIMUM SPANNING TREE

9

Laying Cable
Comcast knows how to make money and how to save money

They want to lay cable in a neighborhood
  Reach all houses

  Least cost Neighborhood Layout

Cost of laying cable
between houses depends on
amt of cable, landscaping,

obstacles, etc.

8

12

2

1

15

3

7

4

13
8 15

9

10

11

Minimum Spanning Tree
Given a connected graph G = (V, E) with positive edge

weights ce, an MST is a subset of the edges T ⊆ E such
that T is a spanning tree whose sum of edge weights is
minimized
  Spanning tree: spans all nodes in graph

 5

23

10
21

 14

24

 16

 6

 4

18
9

7

11
 8

 5

 6

 4

9

7

11
 8

G = (V, E) T, Σe∈T ce = 50

Feb 13, 2009 CS211

Examples

12 Feb 13, 2009 CS211

Graph

5 2

3

1

Identify spanning trees and which is the minimal spanning tree.

2/13/09

3

Examples

13 Feb 13, 2009 CS211

Graph

Identify spanning trees and which is the minimal spanning tree.

5 2

3

1 2

3

1

5

3

1

5 2

1

MST:

Other Spanning Trees:

14

MST Applications
Network design

  telephone, electrical, hydraulic, TV cable, computer, road

Approximation algorithms for NP-hard problems

  traveling salesperson problem, Steiner tree

Indirect applications

  max bottleneck paths

  image registration with Renyi entropy

  learning salient features for real-time face verification

  reducing data storage in sequencing amino acids in a protein

  model locality of particle interactions in turbulent fluid flows

Cluster analysis

Feb 13, 2009 CS211

15

Minimum Spanning Tree
Given a connected graph G = (V, E) with positive edge

weights ce, an MST is a subset of the edges T ⊆ E such
that T is a spanning tree whose sum of edge weights is
minimized.

 5

23

10
21

 14

24

 16

 6

 4

18
9

7

11
 8

 5

 6

 4

9

7

11
 8

G = (V, E) T, Σe∈T ce = 50

Why must the solution be a tree?

Feb 13, 2009 CS211 16

Minimum Spanning Tree
Assume have a minimal solution that is not a tree, i.e., it has a

cycle
What could we do?

  What do we know about the edges?
  How does that change the cost of the solution?

Feb 13, 2009 16 CS211

Proof by Contradiction.
Assume have a minimal solution V that is not a tree,

i.e., it has a cycle
Contains edges to all nodes because solution must

be connected (spanning)
Remove an edge from the cycle

Can still reach all nodes (could go “long way around”)
But at lower cost
Contradiction to our minimal solution

Minimal Spanning Tree

17 Feb 13, 2009 CS211

Ideas for Solutions?

Cayley's Theorem. There are nn-2 spanning trees of
Kn

Where to start?
Orders to add/remove edges?

 5

23

10
21

 14

24

 16

 6

 4

18
9

7

11
 8

G = (V, E)
Feb 13, 2009 18 CS211

can't solve by brute force

2/13/09

4

19

Greedy Algorithms
All three algorithms produce a MST

Kruskal's algorithm. Start with T = φ. Consider edges in
ascending order of cost. Insert edge e in T unless doing so
would create a cycle.

Reverse-Delete algorithm. Start with T = E. Consider edges
in descending order of cost. Delete edge e from T unless
doing so would disconnect T.

Prim's algorithm. Start with some root nodes and greedily
grow a tree T from s outward. At each step, add the
cheapest edge e to T that has exactly one endpoint in T.

  Similar to Dijkstra’s (but simpler)

Feb 13, 2009 CS211

What do these algorithms have/do/check in common?

When is it safe to include an edge in the minimum
spanning tree?

When is it safe to eliminate an edge from the
minimum spanning tree?

What Do These Algorithms
Have in Common?

20 Feb 13, 2009 CS211

Cut Property

Cycle Property

21

Greedy Algorithms
Simplifying assumption: All edge costs ce are distinct
➡  MST is unique

Cut property. Let S be any subset of nodes, and let e be the
min cost edge with exactly one endpoint in S. Then the
MST contains e.

Cycle property. Let C be any cycle, and let f be the max cost
edge belonging to C. Then the MST does not contain f.

f
C

S

e is in the MST

e

f is not in the MST
Feb 13, 2009 CS211 22

Cycles and Cuts
Cycle. Set of edges that form a-b, b-c, c-d, …, y-z,

z-a

Cutset. A cut is a subset of nodes S. The
corresponding cutset D is the subset of edges with
exactly one endpoint in S.

Cycle C = 1-2, 2-3, 3-4, 4-5,
5-6, 6-1

1
3

8

2

6

7

4

5

Cut S = { 4, 5, 8 }
Cutset D = 5-6, 5-7, 3-4,

3-5, 7-8

1
3

8

2

6

7

4

5

Feb 13, 2009 CS211

23

Cycle-Cut Intersection
Claim. A cycle and a cutset intersect in an even

number of edges

Pf. (by picture)

1
3

8

2

6

7

4

5

S

V - S

C

Cycle C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1
Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8
Intersection = 3-4, 5-6

Feb 13, 2009 CS211

(Cut)

Edges link to not-Cut

•  What are the
possibilities for the
cycle?

24

Cycle-Cut Intersection
Claim. A cycle and a cutset intersect in an even

number of edges

Pf. (by picture)

1
3

8

2

6

7

4

5

S

V - S

C

Cycle C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1
Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8
Intersection = 3-4, 5-6

Feb 13, 2009 CS211

(Cut)

Edges link to not-Cut

•  Cycle all in S or V-S
•  Cycle has to go from

SV-S and back

2/13/09

5

25

Cut Property: OK to Include Edge
Simplifying assumption. All edge costs ce are distinct
Cut property. Let S be any subset of nodes, and let e be the

min cost edge with exactly one endpoint in S. Then the
MST T* contains e.

Pf.

Feb 13, 2009 CS211 26

Cut Property: OK to Include Edge
Simplifying assumption. All edge costs ce are distinct
Cut property. Let S be any subset of nodes, and let e be the

min cost edge with exactly one endpoint in S. Then the
MST T* contains e.

Pf. (exchange argument)
  Suppose there is an MST T* that does not contain e

– What do we know about T?
– What do we know about the nodes e connects?

Feb 13, 2009 CS211

27

Cut Property: OK to Include Edge
Simplifying assumption. All edge costs ce are distinct
Cut property. Let S be any subset of nodes, and let e be the

min cost edge with exactly one endpoint in S. Then the
MST T* contains e

Pf. (exchange argument)
  Suppose there is an MST T* that does not contain e
  Adding e to T* creates a cycle C in T*
  Edge e is in cycle C and in cutset corresponding to S

⇒ there exists another edge, say f, that is in both C and S’s cutset

AND ?!?
f

 T*
e

S

Feb 13, 2009 CS211

