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• Wrap up minimizing max lateness •  Single resource processes one job at a time 
•  Job j requires tj units of processing time and is due at 

time dj (its deadline) 
•  If j starts at time sj, it finishes at time fj = sj + tj 
•  Lateness:  j = max { 0,  fj - dj } 
•  Goal:  schedule all jobs to minimize maximum 

lateness L = max j 
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Note: not a sum total 

•  Earliest deadline first. 
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Sort n jobs by deadline so that d1 ≤ d2 ≤ … ≤ dn	
t = 0	
for j = 1 to n	
   Assign job j to interval [t, t + tj]	
   sj = t	
   fj = t + tj	
   t = t + tj	
output intervals [sj, fj]	

•  Def. An inversion in schedule S is a pair of 
jobs i and j such that: 
di < dj but j scheduled before i 

i j before swap 

inversion 

Greedy’s schedule has no inversions!  

•  Claim.  Swapping two adjacent, inverted jobs 
reduces the number of inversions by one and 
does not increase the max lateness 
 How do we know inversions are adjacent? 

•  Pf Setup.  Let   be the lateness before the 
swap, and let ’ be it afterwards 
 What can we say about how i’s, j’s, and other jobs’ 

lateness changes? 

i j 

i j 

before swap 

after swap 
f'j 

fi 
inversion 

By def of inversion, di < dj  

•  Claim.  Swapping two adjacent, inverted jobs 
reduces the number of inversions by one and 
does not increase the max lateness. 

•  Pf.  Let   be the lateness before the swap, 
and let ' be it afterwards 
 'k = k for all k ≠ i, j 
 Know: di < dj  
 'i ≤ i   
 If job j is late: 

  

€ 

ʹ′  j = ʹ′ f j − d j (definition)
= fi − d j ( j finishes at time f i)
≤ fi − di (i < j)
≤  i (definition)
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inversion 
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•  Theorem.  Greedy schedule S is optimal 
•  Pf idea.  Convert Opt to Greedy 

 Does opt schedule have idle time? 
 What if opt schedule has no inversions? 
 What if opt schedule has inversions? 

•  Theorem.  Greedy schedule S is optimal 
•  Pf.  Define S* to be an optimal schedule that 

has the fewest number of inversions, and let's 
see what happens 
 Can assume S* has no idle time 
  If S* has no inversions, then S = S* 
  If S* has an inversion, let i-j be an adjacent inversion 

•  Swapping i and j does not increase the maximum 
lateness and strictly decreases the number of 
inversions 

•  This contradicts definition of S*  ▪ 

•  Earliest deadline first. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

d5 = 14 d2 = 8 d6 = 15 d1 = 6 d4 = 9 d3 = 9 

Sort n jobs by deadline so that d1 ≤ d2 ≤ … ≤ dn	
t = 0	
for j = 1 to n	
   Assign job j to interval [t, t + tj]	
   sj = t	
   fj = t + tj	
   t = t + tj	
output intervals [sj, fj]	

What is the runtime of this algorithm? 

O(n logn) 

1.  Label your algorithm’s solution and a general solution. 
  For example, let A = {a1, a2, ..., ak} be the solution generated by your 

algorithm, and let O = {o1, o2, ..., om} be an arbitrary (or optimal) feasible 
solution. 

2.  Compare greedy with other solution.  
  Assume that your arbitrary/optimal solution is not the same as your greedy 

solution (since otherwise, you are done). 
  Typically, you can isolate a simple example of this difference, such as one 

of the following: 
•  There is an element of O that is not in A and an element of A that is not in O 
•  There are 2 consecutive elements in O in a different order than they are in A (i.e., 

there is an inversion). 
3.  Exchange.  

  Swap the elements in question in O (either swap one element out and 
another in for the first case, or swap the order of the elements in the second 
case), and argue that you have a solution that is no worse than before.  

  Then argue that if you continue swapping, you eliminate all differences 
between O and A in a finite # of steps without worsening the solution’s 
quality. 

  Thus, the greedy solution produced is just as good as any optimal solution, 
and hence is optimal itself. 

•  Greedy algorithm stays ahead.  Show that 
after each step of the greedy algorithm, its 
solution is at least as good as any other 
algorithm's.  

•  Exchange argument.  Gradually transform 
any solution to the one found by the greedy 
algorithm without hurting its quality. 

•  Structural.  Discover a simple "structural" 
bound asserting that every possible solution 
must have a certain value. Then show that 
your algorithm always achieves this bound. 

•  Read Chapter 4 
 Wiki due next Wednesday 

•  Friday: Exam 1 Due 


