
1/28/11	

1	

Objectives

•  Graph Application: Bipartite Graphs
•  Directed Graphs

Jan 28, 2011 1 CSCI211 - Sprenkle

Review: Bipartite Graphs

•  Def. An undirected graph G = (V, E) is
bipartite if the nodes can be colored red or
blue such that every edge has one red and
one blue end
 Generally: vertices divided into sets X and Y

•  Applications:
 Stable marriage:

•  men = red, women = blue
 Scheduling:

•  machines = red, jobs = blue
Jan 28, 2011 CSCI211 - Sprenkle 2

a bipartite graph	

Where we left off: How Can We
Determine if a Graph is Bipartite?

•  Given a connected graph
1.  Color one node red

•  Doesn’t matter which color (Why?)
 What should we do next?

Jan 28, 2011 CSCI211 - Sprenkle 3

Why connected?	

v1	

v2	

 v3	

v6	

 v5	

 v4	

v7	

•  How will we know when
we’re finished?	

•  What does this process
sound like?	

How Can We Determine if a Graph is
Bipartite?
•  Given a connected graph

 Color one node red
•  Doesn’t matter which color (Why?)

 What should we do next?
•  How will we know that we’re finished?
• What does this process sound like?

 BFS: alternating colors, layers

Jan 28, 2011 CSCI211 - Sprenkle 4

L1	

 L2	

 L3	

How can we implement the algorithm?	

Implementing Algorithm

•  Modify BFS to have a Color array
• When add v to list L[i+1]

 Color[v] = red if i+1 is even
 Color[v] = blue if i+1 is odd

Jan 28, 2011 CSCI211 - Sprenkle 5

L1	

 L2	

 L3	

What is the running time of this algorithm?	

What is the running time of this algorithm? O(n+m)	

Marks a change in how we think about algorithms	

Starting to apply known algorithms to solve new problems.	

Analyzing Algorithm’s Correctness
•  Lemma. Let G be a connected graph, and let

L0, …, Lk be the layers produced by BFS
starting at node s. Exactly one of the following
holds:
 (i) No edge of G joins two nodes of the same layer

•  G is bipartite
 (ii) An edge of G joins two nodes of the same layer

•  G contains an odd-length cycle and hence is not
bipartite

Jan 28, 2011 CSCI211 - Sprenkle 6

Case (i):	

L1	

 L2	

 L3	

Case (ii):	

L1	

 L2	

 L3	

1/28/11	

2	

Analyzing Algorithm’s Correctness
•  Lemma. Let G be a connected graph, and let L0, …,

Lk be the layers produced by BFS starting at node s.
Exactly one of the following holds:
  (i) No edge of G joins two nodes of the same layer

•  G is bipartite
•  Pf. (i)

 Suppose no edge joins two nodes in the same layer
  Implies all edges join nodes on adjacent level
 Bipartition: red = nodes on odd levels, blue = nodes on

even levels

Jan 28, 2011 CSCI211 - Sprenkle 7
L1	

 L2	

 L3	

Case (i)	

Analyzing Algorithm’s Correctness
•  Lemma. Let G be a connected graph, and let L0, …,

Lk be the layers produced by BFS starting at node s.
Exactly one of the following holds:
  (ii) An edge of G joins two nodes of the same layer 

G contains an odd-length cycle and hence is not bipartite

Jan 28, 2011 CSCI211 - Sprenkle 8 8	

z = lca(x, y)	

•  Pf. (ii)
 Suppose (x, y) is an edge with x, y in same

level Lj.
  Let z = lca(x, y) = lowest common ancestor
  Let Li be level containing z
 Consider cycle that takes edge from x to y,

then path y z, then path from z  x

Analyzing Algorithm’s Correctness
•  Lemma. Let G be a connected graph, and let L0, …,

Lk be the layers produced by BFS starting at node s.
Exactly one of the following holds:
  (ii) An edge of G joins two nodes of the same layer 

G contains an odd-length cycle and hence is not bipartite

Jan 28, 2011 CSCI211 - Sprenkle 9

•  Pf. (ii)
  Suppose (x, y) is an edge with x, y in same

level Lj.
  Let z = lca(x, y)=lowest common ancestor
  Let Li be level containing z
  Consider cycle that takes edge from x to y,

then path y  z, then path z  x
  Its length is 1 + (j-i) + (j-i), which is odd

(x, y)	

 path from���
y to z	

path from���
z to x	

z = lca(x, y)	

Obstruction to Bipartiteness

•  Corollary. A graph G is bipartite iff it contains
no odd length cycle.

Jan 28, 2011 CSCI211 - Sprenkle 10

5-cycle C	

bipartite ���
(2-colorable)	

not bipartite ���
(not 2-colorable)	

DIRECTED GRAPHS

11 Jan 28, 2011 CSCI211 - Sprenkle

Directed Graphs G = (V, E)

•  Edge (u, v) goes from node u to node v

•  Example: Web graph - hyperlink points from
one web page to another
 Directedness of graph is crucial
 Modern web search engines exploit hyperlink

structure to rank web pages by importance
Jan 28, 2011 CSCI211 - Sprenkle 12

1/28/11	

3	

Representing Directed Graphs

•  For each node, keep track of
 Out edges (where links go)
 In edges (from where links come in)

•  Could only store out edges
 Figure out in edges with increased computation/

time
 Useful to have both in and out edges

Jan 28, 2011 CSCI211 - Sprenkle 13

CONNECTIVITY IN DIRECTED
GRAPHS

14 Jan 28, 2011 CSCI211 - Sprenkle

Graph Search

•  How does reachability change with directed
graphs?

•  Example: Web crawler

1.  Start from web page s.
2.  Find all web pages linked from s, either directly

or indirectly.
Jan 28, 2011 CSCI211 - Sprenkle 15

1	

 2	

5	

4	

7	

3	

6	

1	

 2	

5	

4	

7	

3	

6	

Graph Search

•  Directed reachability. Given a node s, find all
nodes reachable from s.

•  Directed s-t shortest path problem. Given
two nodes s and t, what is the length of the
shortest path between s and t?
 Not necessarily the same as ts shortest path

•  Graph search. BFS and DFS extend
naturally to directed graphs
 Trace through out edges
 Run in O(m+n) time

Jan 28, 2011 CSCI211 - Sprenkle 16

1	

 2	

5	

4	

7	

3	

6	

Problem

•  Rather than paths from s to other nodes, find
all nodes with paths to s

Jan 28, 2011 CSCI211 - Sprenkle 17

Problem/Solution

•  Problem. Rather than paths from s to other
nodes, find all nodes with paths to s

•  Solution. Run BFS on in edges instead of
out edges

Jan 28, 2011 CSCI211 - Sprenkle 18

1/28/11	

4	

Strong Connectivity

•  Def. Node u and v are mutually reachable
if there is a path from u  v and also a path
from v  u

•  Def. A graph is strongly connected if every
pair of nodes is mutually reachable

•  Lemma. Let s be any node. G is strongly
connected iff every node is reachable from s
and s is reachable from every node

Jan 28, 2011 CSCI211 - Sprenkle 19

s	

v	

u	

(not necessarily a direct edge)	

Strong Connectivity

•  If u and v are mutually reachable and v and
w are mutually reachable, then u and w are
mutually reachable

Jan 28, 2011 CSCI211 - Sprenkle 20

Strong Connectivity
•  If u and v are mutually reachable and v and

w are mutually reachable, then u and w are
mutually reachable.

•  Proof. We need to show that there is a path
from u  w and from w  u.
 By defn of mutually reachable

•  there is a path u  v & a path v  u,
•  a path v  w, and a path w  v

 Take path uv and then from v  w
•  Path from uw

 Similarly for wu
Jan 28, 2011 CSCI211 - Sprenkle 21

Strong Connectivity

•  Def. A graph is strongly connected if every
pair of nodes is mutually reachable

•  Lemma. Let s be any node. G is strongly
connected iff every node is reachable from s
and s is reachable from every node.
 1st prove ⇒
 2nd prove ⇐

•  for any nodes u and v, is there a path uv and
vu ?

Jan 28, 2011 CSCI211 - Sprenkle 22

Strong Connectivity
•  Def. A graph is strongly connected if every pair

of nodes is mutually reachable
•  Lemma. Let s be any node. G is strongly

connected iff every node is reachable from s,
and s is reachable from every node.

•  Pf. ⇒ Follows from definition of strongly
connected

•  Pf. ⇐ For any nodes u and v, make path uv
and vu
  uv : concatenating us with sv
  v u: concatenate vs with su

Jan 28, 2011 CSCI211 - Sprenkle 23

s	

v	

u	

Strong Connectivity Problem

•  Determine if G is strongly connected in
O(m + n) time

Jan 28, 2011 CSCI211 - Sprenkle 24

strongly connected	

 not strongly connected	

Hint: Can we leverage any algorithms we
know have O(m+n) time?	

1/28/11	

5	

Strong Connectivity: Algorithm
•  Theorem. Can determine if G is strongly

connected in O(m + n) time.
•  Pf.

 Pick any node s
 Run BFS from s in G
 Run BFS from s in Grev
 Return true iff all nodes reached in both BFS

executions
 Correctness follows immediately from previous

lemma
•  All reachable from one node, s is reached by all

Jan 28, 2011 CSCI211 - Sprenkle 25

reverse orientation of every edge in G	

Or, the BFS using the in edges	

Strong Components

•  For any two nodes s and t in a directed
graph, their strong components are either
identical or disjoint

Jan 28, 2011 CSCI211 - Sprenkle 26

Hint: Consider a node in common…	

Strong Components
•  For any two nodes s and t in a directed graph,

their strong components are either identical or
disjoint

•  Proof.
 Consider v in both strong components

•  s v; v  s; vt; tv  ts, st (mutually
reachable)

•  As soon as there is one common node, then have
identical strong components

 On the other hand, consider s and t are not mutually
reachable
•  No node v that is in the strong component of each

  What would it mean if there were?

Jan 28, 2011 CSCI211 - Sprenkle 27

DAGS AND TOPOLOGICAL
ORDERING

28 Jan 28, 2011 CSCI211 - Sprenkle

Directed Acyclic Graphs
•  Def. A DAG is a directed graph that contains no

directed cycles.
•  Example. Precedence constraints: edge (vi, vj)

means vi must precede vj
 Course prerequisite graph: course vi must be taken

before vj

 Compilation: module vi must be compiled before vj

 Pipeline of computing jobs: output of job vi needed to
determine input of job vj

Jan 28, 2011 CSCI211 - Sprenkle 29

v2 v3

v6 v5 v4

v7 v1

a DAG:	

Problem: Valid Ordering

•  Given a set of tasks with dependencies, what
is a valid order in which the tasks could be
performed?

Jan 28, 2011 CSCI211 - Sprenkle 30

v2 v3

v6 v5 v4

v7 v1

1/28/11	

6	

Topological Ordering
•  Problem: Given a set of tasks with

dependencies, what is a valid order in which the
tasks could be performed?

•  Def. A topological order of a directed graph
G = (V, E) is an ordering of its nodes as v1, v2,
…, vn so that for every edge (vi, vj) we have i < j.

Jan 28, 2011 CSCI211 - Sprenkle 31

a DAG	

a topological ordering	

All edges point “forward”	

v2	

 v3

v6	

 v5	

 v4	

v7	

 v1	

v1	

 v2	

 v3 v4	

 v5	

 v6	

 v7	

Directed Acyclic Graphs

•  Lemma. If G has a topological order, then G
is a DAG.

•  Proof plan: Try to show that G has a cycle

Jan 28, 2011 CSCI211 - Sprenkle 32

v1	

 vi	

 vj	

 vn	

the supposed topological order: v1, …, vn	

the directed cycle C	

Why isn’t this valid?	

DAGs & Topological Orderings
•  Lemma. If G has a topological order, then G is a DAG.
•  Pf. (by contradiction)

  Suppose that G has a topological order v1, …, vn and that G
also has a directed cycle C.

  Let vi be the lowest-indexed node in C, and let vj be the node
on C just before vi; thus (vj, vi) is an edge

  By our choice of i (lowest-indexed node), i < j
  Since (vj, vi) is an edge and v1, …, vn is a topological order,

we must have j < i, a contradiction. ▪

Jan 28, 2011 CSCI211 - Sprenkle 33

v1	

 vi	

 vj	

 vn	

the directed cycle C	

the supposed topological order: v1, …, vn	

Directed Acyclic Graphs

•  Does every DAG have a topological
ordering?
 If so, how do we compute one?

Jan 28, 2011 CSCI211 - Sprenkle 34

Directed Acyclic Graphs

•  Does every DAG have a topological
ordering?
 If so, how do we compute one?

• What would we need to be able to create a
topological ordering?
 What are some characteristics of this graph?

Jan 28, 2011 CSCI211 - Sprenkle 35

v1 v2 v3 v4 v5 v6 v7

Directed Acyclic Graphs

•  Does every DAG have a topological
ordering?
 If so, how do we compute one?

• What would we need to be able to create a
topological ordering?
 What are some characteristics of this graph?

Jan 28, 2011 CSCI211 - Sprenkle 36

v1 v2 v3 v4 v5 v6 v7

Need someplace to start:	

a node with no incoming edges

(no dependencies)	

Note that both v1 and v2 have no

incoming edges	

1/28/11	

7	

Directed Acyclic Graphs

•  Lemma. If G is a DAG, then G has a node
with no incoming edges
 This is our starting point of the topological

ordering

•  How to prove?

Jan 28, 2011 CSCI211 - Sprenkle 37

Directed Acyclic Graphs

•  Lemma. If G is a DAG, then G has a node
with no incoming edges

•  Proof idea: consider if there is no node
without incoming edges
 What do we want to show?

Jan 28, 2011 CSCI211 - Sprenkle 38

To be continued …

PS1 Feedback
•  Problem 1: Looking for an induction proof
•  Problem 2

  don’t need the Gale-Shapley algorithm to prove, just
base on problem defn/description

•  Problem 3
 Algorithm adaptation: need to break/handle ties in G-S

•  Since still using G-S, no strong instabilities
 Example of weak instability

•  Problem 4: Straightforward adaptation of definitions
 Trying to get you to review the definitions and get more

comfortable with them
•  Problems 5: Similar to one of the solved exercises

Jan 28, 2011 CSCI211 - Sprenkle 39

Assignments

•  Reading Chapter 3.1-3.5
 Wikis for Wednesday

•  For next Friday: Problem Set 3

Jan 28, 2011 CSCI211 - Sprenkle 40 40	

