Objectives

Greedy Algorithms
» Interval partitioning
» Minimizing Lateness

Greedy stays ahead
Exchange argument

Feb 4, 2011 CSCI211 - Sprenkle 1

Review: Greedy Algorithm Template

Consider jobs (or whatever) in some order
~ Decision: What order is best?

Take each job provided it's compatible with

the ones already taken

Feb 4, 2011 CSCI211 - Sprenkle 2

Greedy Algorithms

At each step, take as much as you can get
~ Feasible — satisfy problem’s constraints

» Locally optimal — best local choice among
available feasible choices

» Irrevocable — after decided, no going back

Feb 4, 2011 CSCI211 - Sprenkle 3

Interval Partitioning:

Lower Bound on Optimal Solution
Def. The depth of a set of open intervals is the
maximum number that contain any given time.
Key observation. # of classrooms needed =
depth a, b, c all contain 9:30

Ex: Depth of schedule below?3 = schedule
below is optimal.

Does there always exist a schedule equal
to depth of intervals?

3 d f i
b 2

a e h

9 930 10 1030 11 1130 12 1230 | 130 2 230 3 330 4 430

Feb 4, 2011 CSCI211 - Sprenkle

Time

Interval Partitioning:
Greedy Algorithm

Consider lectures in increasing order of start time: assign
lecture to any compatible classroom

Sort intervals by starting time so that s; = s, =< ... = 5,
d= <—— number of allocated classrooms
for j =1ton
if (lecture j is compatible with some classroom k)
schedule lecture j in classroom k
else
allocate a new classroom d + 1
schedule lecture j in classroom d + 1
d=d+1

Implementation: O(n log n)

» For each classroom k, maintain the finish time of the last job
added.

~ Keep the classrooms in a priority queue by last job finish time.

Feb 4, 2011 CSCI211 - Sprenkle 5

Interval Partitioning: Greedy Analysis

Observation. Greedy algorithm never schedules two
incompatible lectures in the same classroom

Theorem. Greedy algorithm is optimal
Pf Intuition

» When do we add more classrooms?

» When would we add the d+1 classroom?

Feb 4, 2011 CSCI211 - Sprenkle 6

2/4/11

Interval Partitioning: Greedy Analysis

Observation. Greedy algorithm never schedules two
incompatible lectures in the same classroom
Theorem. Greedy algorithm is optimal
Pf.
» Let d = number of classrooms that greedy algorithm allocates

~ Classroom d is opened because we needed to schedule a job,
say j, that is incompatible with all d-1 other classrooms

~ Since we sorted by start time, all these incompatibilities are
caused by lectures that start no later than s;

» Thus, we have d lectures overlapping at time s; + ¢

d is the depth of the set of lectures

\!

c d f i
b g

a e h

Feb 4, 20717 TSCIZTT - Sprenkle 7

Proving Greedy Algorithms Work

Specifically, produce an optimal solution

Approaches:
» Greedy algorithm stays ahead
Does better than any other algorithm at each step
» Exchange argument
Transform any solution Fnto a greedy solution

» Structural Argument (e

Figure out some structural bound that all solutions
must meet

Feb 4, 2011 CSCI211 - Sprenkle 8

Exchange argument

SCHEDULING TO MINIMIZE
LATENESS

Feb 4, 2011 CSCI211 - Sprenkle 9

Scheduling to Minimizing Lateness

Single resource processes one job at a time

Job j requires t, units of processing time and is due at
time d;(its deadline)

If j starts at time s;, it finishes at time f = s, + t,
Lateness: 4 =max{0, f-d}

Goal: schedule all jobs to minimize maximum
lateness L = max /

[213]4]s]e]
(3 3 2 1 4 3 2
Bl 0 s lateness =2 lateness = 0 max lateness = 6
d=9 d,=8 dg=15 d =6 ds= 14 d=9
o 1 2 3 4 5 6 7 8 9 10 1" 2 13 14 15
Feb 4, 2011 csci211 - sp Note: not a sum total 10

Developing Greedy Algorithms

What do we want to optimize?
What order?
» Intuition of order?
» Counter examples for order being optimal?

Feb 4, 2011 CSCI211 - Sprenkle "

Minimizing Lateness: Possible Orderings

Shortest processing time first. Consider jobs
in ascending order of processing time t;.

[]]
Counter example n 1 10

100 10

Smallest slack. Consider jobs in ascending
order of slack d - t;.

Counter example i

Feb 4, 2011 CSCI211 - Sprenkle 12

Minimizing Lateness: Greedy Algorithm

Earliest deadline first.
Sort n jobs by deadline so that d; = d; = .. = d,
=0

for j=1ton
Assign job j to interval [t, t + t]

s;=t
fi=t+t
t=t+ty
output intervals [s;, f;]
max lateness = |
d=6 d,=8 dy=9 d,=9 5= 14 =15
0 I 2 3 4 5 6 7 8 9 10 " 2 3 14 15
What can we say about this algorithm/its results? ‘
Feb 4, 2011 CSCI211 - Sprenkle 13

Minimizing Lateness: No Idle Time

Observation. There exists an optimal
schedule with no idle time

d=4 d=6 d=12

0 I 2 3 4 5 6 7 8 9 0 "
d=4 d=6 d=12

0 | 2 3 4 5 6 7 8 9 10 "

Observation. The greedy schedule has no
idle time

Feb 4, 2011 CSCI211 - Sprenkle 14

Proving Optimality

Goal: Prove greedy algorithm produces
optimal solution
Approach: Exchange argument

» Start with an optimal schedule Opt

» Gradually modify Opt

Preserving its optimality
» Transform into a schedule identical to greedy’s
schedule

Feb 4, 2011 CSCI211 - Sprenkle 15

Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of
jobs i and j such that:
d; < d; but j scheduled before i

inversion

Can Greedy’s solution have any inversions? ‘

Feb 4, 2011 CSCI211 - Sprenkle 16

Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of
jobs i and j such that:
d; < d, but j scheduled before i

inversion

Greedy’s schedule has no inversions!

Feb 4, 2011 CSCI211 - Sprenkle 17

Minimizing Lateness: Inversions

Claim. Swapping two adjacent jobs with the
same deadline does not increase the max
lateness

Pf Sketch. Let ¢ be the lateness before the
swap, and let ¢’ be it afterwards

~ Lateness of other jobs?

» Lateness of i? j?

fi
before swap]
after swap I
f‘l
Feb 4, 2011 CSCI211 - Sprenkle 18

2/4/11

Minimizing Lateness: Inversions

Claim. Swapping two adjacent jobs with the
same deadline does not increase the max
lateness
Pf. Let ¢ be the lateness before the swap, and
let ¢’ be it afterwards
» Lateness remains the same for all other jobs:
=t forallk=i,j
» Lateness of i before is f-d; = t+t-d,
» Lateness of j after is f;-d; = t;+t-d|
Butd=d, .
after swap I

Feb 4, 2011 CSCI211 - Sprenkle f'J 19

Minimizing Lateness: Inversions

Claim. Swapping two adjacent, inverted jobs
reduces the number of inversions by one and
does not increase the max lateness

» How do we know inversions are adjacent?

Pf Setup. Let 7/ be the lateness before the
swap, and let ¢’ be it afterwards

» What can we say about how i’s, j's, and other jobs’
lateness changes?

inversion

"
r\

By def of inversion, d; < d,
Feb 4, 2011 CSCI211 - Sprenkle 20

Minimizing Lateness: Inversions

Claim. Swapping two adjacent, inverted jobs
reduces the number of inversions by one and
does not increase the max lateness.

Pf. Let ¢ be the lateness before the swap,
and let 7' be it afterwards

U =(forallk =i,]

Vg fl‘ = [‘

~Ifjobjislate: ¢, = fi-4, (efinition)
= fi-d, (jfinishes attimef)
= fi-4, @< j)
s o (definition)

Feb 4, 2011 CSCI211 - Sprenkle 21

Greedy Analysis Strategies

Greedy algorithm stays ahead. Show that
after each step of the greedy algorithm, its
solution is at least as good as any other
algorithm's.

Exchange argument. Gradually transform
any solution to the one found by the greedy
algorithm without hurting its quality.
Structural. Discover a simple "structural”
bound asserting that every possible solution
must have a certain value. Then show that
your algorithm always achieves this bound.

Feb 4, 2011 CSCI211 - Sprenkle 22

PS2

Make clear the input to an algorithm

» Don't want me guessing as to what you're doing
because | might be wrong

Always analyze the running time of your
algorithms
~» Whether stated in problem or not

Comparison of runtimes

Feb 4, 2011 CSCI211 - Sprenkle 23

Assignments

Exam 1
» Open book, open notes, open lecture notes
> NO OTHER RESOURCES

» | mention explicitly to analyze your algorithms’
running times. | will not do that in the future.

Feb 4, 2011 CSCI211 - Sprenkle 24

2/4/11

Minimizing Lateness:

Analysis of Greedy Algorithm
Theorem. Greedy schedule S is optimal
Pf idea. Convert Opt to Greedy

» Does opt schedule have idle time?
» What if opt schedule has no inversions?
» What if opt schedule has inversions?

Feb 4, 2011 CSCI211 - Sprenkle 25

Minimizing Lateness:
Analysis of Greedy Algorithm
Theorem. Greedy schedule S is optimal
Pf. Define S* to be an optimal schedule that
has the fewest number of inversions, and let's
see what happens
» Can assume S* has no idle time
» If S* has no inversions, then S = S*
~ If S* has an inversion, let i-j be an adjacent inversion

Swapping i and j does not increase the maximum
lateness and strictly decreases the number of
inversions

This contradicts definition of S* =

Feb 4, 2011 CSCI211 - Sprenkle 26

Analyzing Running Time
Earliest deadline first.

Sort n jobs by deadline so that d; < d; < . s d,
=0

for j=1ton
Assign job j to interval [t, t + t;]

s;=1t
fi=t+t O(n logn)
t=t+t
output intervals [s;, f;]
max lateness = |
1
d=6 dp=8 dy=9 d,=9 dy= 14 dg=15

What is the runtime of this algorithm?

Feb 4, 2011 CSCI211 - Sprenkle 27

Greedy Exchange Proofs

Label your algorithm’s solution and a general solution.
» Example: let A = {a,, a,, ..., a,} be the solution generated by your algorithm, and
let O = {0, 0,, ..., 0.} be an arbitrary (or optimal) feasible solution.
Compare greedy with other solution.
» Assume that your arbitrary/optimal solution is not the same as your greedy
solution (since otherwise, you are done).
» Typically, can isolate a simple example of this difference, such as:
There is an element e € O that ¢ A and an element f € Athat¢ O
2 consecutive elements in O are in a different order than in A (i.e., there is an
inversion).
Exchange.
» Swap the elements in question in O (either =~ swap one element out and
anotherinor swap the order of the elements) and argue that solution is no
worse than before.
Argue that if you continue swapping, you eliminate all differences between O
and A in a finite # of steps without worsening the solution’s quality.

Thus, the greedy solution produced is just as good as any optimal solution, and
hence is optimal itself.

Y

v

Feb 4, 2011 CSCI211 - Sprenkle 28

2/4/11

