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ALGORITHM ANALYSIS 

4 Jan 19, 2009 

Computational Tractability 

"For me, great algorithms are the poetry of 
computation. Just like verse, they can be 
terse, allusive, dense, and even mysterious. 
But once unlocked, they cast a brilliant new 
light on some aspect of computing."         

     -- Francis Sullivan 
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Computational Tractability 

Charles Babbage (1864) 

As soon as an Analytic Engine exists, it will necessarily guide 
the future course of the science.  Whenever any result is 
sought by its aid, the question will arise - By what course of 
calculation can these results be arrived at by the machine in 
the shortest time?   -- Charles Babbage 

Analytic Engine (schematic) 
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Define Algorithm Efficiency 
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Polynomial-Time 
Brute force.  For many non-trivial problems, there is 
a natural brute force search algorithm that checks 
every possible solution 
  Typically takes 2N time or worse for inputs of size N 
  Unacceptable in practice 

How many possible solutions are there in the 
stable matching problem? 

(In other words, how many possible perfect 
matchings are there?  We’re not worried about 

stability right now.) 
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Polynomial-Time 
Brute force.  For many non-trivial problems, there is 
a natural brute force search algorithm that checks 
every possible solution 
  Typically takes 2N time or worse for inputs of size N 
  Unacceptable in practice 
  Example: Stable matching: n! with n men and n 

women 
– If n increases by 1, what happens to the running time? 

“Exponential” 
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Polynomial-Time 

Desirable scaling property:  When input size 
doubles, algorithm should only slow down by some 
constant factor C 

Def.  An algorithm is poly-time if the above scaling 
property holds. 

There exists constants c > 0 and d > 0 such that on every 
input of size N, its running time is bounded by c Nd steps. 

choose C = 2d  
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Worst-Case Analysis 
Worst case running time.  Obtain bound on largest 
possible running time of algorithm on input of a given 
size N 
  Generally captures efficiency in practice 
  Draconian view, but hard to find effective alternative 

What are alternatives to worst-case analysis? 
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Average Case Running Time 
Obtain bound on running time of algorithm on 
random input as a function of input size N 
  Hard (or impossible) to accurately model real 

instances by random distributions 

  Algorithm tuned for a certain distribution may perform 
poorly on other inputs 
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Worst-Case Polynomial-Time 
Def.  An algorithm is efficient if its running time is polynomial 
Justification:  It really works in practice! 
  In practice, poly-time algorithms that people develop almost 

always have low constants and low exponents 
  Although 6.02 × 1023 × N20 is technically poly-time, it would be 

useless in practice 
  Breaking through the exponential barrier of brute force typically 

exposes some crucial structure of the problem 

Exceptions. 
  Some poly-time algorithms do have high constants and/or 

exponents, and are useless in practice 
  Some exponential-time (or worse) algorithms are widely used 

because the worst-case instances seem to be rare 

14 

Why It Matters 

Input Size 

Polynomial  
15 

More Running Times 

Jan 19, 2009 

•  Huge difference from polynomial to not polynomial 
•  Differences in runtime matter more as input size increases 

Polynomial 
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More Running Times 

Jan 19, 2009 

As input size increases, n3 dominates large constant * n2 

 Care about running time as input size approaches infinity 
 Only care about highest-order term 
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T(n) is the worst case running time of an algorithm 
We say that T(n) is O(f(n)) 
  “order f(n)” 

if there exist constants c > 0 and n0 ≥ 0 such that for 
all n ≥ n0  
  i.e., sufficiently large n, c cannot depend on n 

we have T(n) ≤ c · f(n) 
  i.e., T(n) is bounded above by a constant multiple of 

f(n) 

 T is asymptotically upperbounded by f 
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Asymptotic Order of Growth: 
Upper Bounds 

T(n) = pn2 + qn + r 
  p, q, r are positive constants 

For all n ≥ 1,  
T(n) = pn2 + qn + r ≤ pn2 + qn2 + rn2 = (p+q+r) n2 
 T(n) ≤ cn2, where c = p+q+r 
 T(n) = O(n2) 
Also correct to say that T(n) = O(n3) 
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Example: Upper Bound 
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Asymptotic Order of Growth: 
Lower Bounds 

Complementary to upper bound. 
T(n) is Ω(f(n)) 
if there exist constants ε > 0 and n0 ≥ 0 such that for 
all n ≥ n0  
  i.e., sufficiently large n, ε cannot depend on n 

we have T(n) ≥ ε · f(n) 
  i.e., T(n) is bounded below by a constant multiple of 

f(n) 

 T is asymptotically lowerbounded by f 

T(n) = pn2 + qn + r 
  p, q, r are positive constants 

Idea: Need to deflate the terms rather than inflate 
For all n ≥ 0,  
T(n) = pn2 + qn + r ≥ pn2 
 T(n) ≥ cn2, where ε = p 
 T(n) = Ω(n2) 
Also correct to say that T(n) = Ω(n) 
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Example: Lower Bound 
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Asymptotic Order of Growth 
Tight bounds.  T(n) is Θ(f(n)) if T(n) is both O(f(n)) 
and Ω(f(n)) 
  The “right” bound 
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Practice:  
Asymptotic Order of Growth 

T(n) = 32n2 + 17n + 32. 
  What are the upper bound, lower bound, and tight 

bound on T(n)? 

23 

Practice: 
Asymptotic Order of Growth 

T(n) = 32n2 + 17n + 32. 
  T(n) is O(n2), O(n3), Ω(n2), Ω(n), and Θ(n2)  
  T(n) is not O(n), Ω(n3), Θ(n), or Θ(n3) 

Slight abuse of notation.  T(n) = O(f(n)) 
  Asymmetric: 

– f(n) = 5n3;  g(n) = 3n2 

– f(n) = O(n3) = g(n) 

– but f(n) ≠ g(n). 

  Better notation:  T(n) ∈ O(f(n)) 

Meaningless statement.  Any comparison-based 
sorting algorithm requires at least O(n log n) 
comparisons 
  Use Ω for lower bounds 
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Notation 
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Properties 
Transitivity 
  If f = O(g) and g = O(h) then f = O(h) 
  If f = Ω(g) and g = Ω(h) then f = Ω(h)  
  If f = Θ(g) and g = Θ(h) then f = Θ(h) Proofs in book 
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Properties 
Transitivity 
  If f = O(g) and g = O(h) then f = O(h) 
  If f = Ω(g) and g = Ω(h) then f = Ω(h)  
  If f = Θ(g) and g = Θ(h) then f = Θ(h) Proofs in book 
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Properties 
Additivity 
  If f = O(h) and g = O(h) then f + g = O(h) 
  If f = Ω(h) and g = Ω(h) then f + g = Ω(h) 
  If f = Θ(h) and g = O(h) then f + g = Θ(h) 

Proofs in book 
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Properties 
Additivity 
  If f = O(h) and g = O(h) then f + g = O(h) 
  If f = Ω(h) and g = Ω(h) then f + g = Ω(h) 
  If f = Θ(h) and g = O(h) then f + g = Θ(h) 

Sketch proof for O 
  f ≤ c · h 
  g ≤ d · h 
  f + g ≤ c · h + d · h = (c + d) h = c’ · h 

Proofs in book 


