
3/23/09

1

Dynamic Programming
  Segmented Least Squares
  Subset Sums/Knapsack

Objectives

1 Mar 23, 2009 CS211 1 2

Least Squares
Foundational problem in statistic and numerical analysis
Given n points in the plane: (x1, y1), (x2, y2) , . . . , (xn, yn)
Find a line y = ax + b that minimizes the sum of the

squared error
  “line of best fit”

Closed form solution. Calculus ⇒ min error is achieved
when

€

SSE = (yi − axi −b)2
i=1

n
∑

€

a =
n xi yi − (xi)i∑ (yi)i∑i∑

n xi
2 − (xi)

2
i∑i∑

, b =
yi − a xii∑i∑

n

x

y

Mar 23, 2009 CS211

Sum of
squared
error

What happens to the error if we try to fit one line to
these points?

  Large error

Pattern: More like 3 lines

Least Squares

3 Mar 23, 2009 CS211

x

y

4

Segmented Least Squares
Points lie roughly on a sequence of line segments
Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn)

with x1 < x2 < ... < xn, find a sequence of lines that
minimizes f(x)

Q. What's a reasonable choice for f(x) to balance
accuracy and parsimony?

x

y

goodness of fit number of lines

Mar 23, 2009 CS211

5

Segmented Least Squares
Points lie roughly on a sequence of several line segments.
Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with x1

< x2 < ... < xn, find a sequence of lines that minimizes:
  the sum of the sums of the squared errors E in each segment
  the number of lines L

Tradeoff function: E + c L, for some constant c > 0.

x

y

Mar 23, 2009 CS211

How should we define
an optimal solution?

What made it seem like the points were in 3 lines?
What happened?

Looking for change in linear approximation
  Where to partition points into line segments

Segmented Least Squares

6 Mar 23, 2009 CS211

x

y

3/23/09

2

Polynomial number of subproblems
Solution to original problem can be easily computed

from solutions to subproblems
Natural ordering of subproblems, easy to compute

recurrence

Recall:
Properties of Problems for DP

7 Mar 23, 2009 CS211

We need to:
•  Figure out how to break the problem into subproblems
•  Figure out how to compute solution from subproblems
•  Define the recurrence relation between the problems

Consider just the first or last point
  What do we know about those points/their segments/

cost of segments?

Toward a Solution

8 Mar 23, 2009 CS211

x

y

pn can only belong to one segment
  Segment: pi, …, pn

  Cost: c (cost for segment) + error of segment

What is the remaining problem?

Toward a Solution

9 Mar 23, 2009 CS211

x

y

pn can only belong to one segment
  Segment: pi, …, pn

  Cost: c (cost for segment) + error of segment

What is the remaining problem?
  Solve for p1, …, pi-1

Goal:
  Formulate as a recurrence

Toward a Solution

10 Mar 23, 2009 CS211

x

y

11

Dynamic Programming: Multiway
Choice

Notation.
  OPT(j) = minimum cost for points p1, pi+1 , . . . , pj.
  e(i, j) = minimum sum of squares for points pi,

pi+1 , . . . , pj.

How do we compute OPT(j)?
  Last problem: binary decision (include job or not)
  This time: multiway decision

–  Which option do we choose?

Mar 23, 2009 CS211 12

Dynamic Programming: Multiway
Choice

Notation.
  OPT(j) = minimum cost for points p1, pi+1 , . . . , pj.
  e(i, j) = minimum sum of squares for points pi, pi+1,
 . . . , pj.

To compute OPT(j):
  Last segment contains points pi, pi+1 , . . . , pj for some i
  Cost = e(i, j) + c + OPT(i-1).

€

OPT(j) =
0 if j = 0

min
1≤ i ≤ j

e(i, j) + c + OPT(i −1){ } otherwise




 

Mar 23, 2009 CS211

3/23/09

3

13

Segmented Least Squares:
Algorithm

INPUT: n, p1,…,pN , c	

Segmented-Least-Squares()	
 M[0] = 0	
 e[0][0] = 0	
 for j = 1 to n	
 for i = 1 to j	
 e[i][j] = least square error for the	

	 	 	 segment pi, …, pj	

 for j = 1 to n	
 M[j] = min 1 ≤ i ≤ j (e[i][j] + c + M[i-1])	

 return M[n]	

Mar 23, 2009 CS211

Costs?

14

Segmented Least Squares:
Algorithm Analysis

Bottleneck: computing e(i, j) for O(n2) pairs, O(n) per
pair using previous formula

can be improved to O(n2) by pre-computing various statistics

Mar 23, 2009 CS211

INPUT: n, p1,…,pN , c	

Segmented-Least-Squares()	
 M[0] = 0	
 e[0][0] = 0	
 for j = 1 to n	
 for i = 1 to j	
 e[i][j] = least square error for the 
 	 	segment pi,…, pj	

 for j = 1 to n	
 M[j] = min 1 ≤ i ≤ j (e[i][j] + c + M[i-1])	

 return M[n]	

O(n3)

can be improved to
O(n2) by pre-computing

various statistics

O(n2)

KNAPSACK PROBLEM

15

Goal: Spend as much money as possible without
going over $100

  CD $18
  Jeans $40

  DVD $35
  Dinner $15
  Book $8
  Ice cream $5
  Shoes $61

  Pizza $7

The Price is Right

16

Or, shopping with someone else’s money

Mar 23, 2009 CS211

Possible solutions?

17

Knapsack Problem
Given n objects and a "knapsack"
Item i weighs wi > 0 kilograms and has value vi > 0
  Could be jobs that require wi time

Knapsack has capacity of W kilograms
  W is time interval that resource is available

Goal: fill knapsack so as to maximize total value

1

Value

18

22

28

1
Weight

5

6

6 2

7

Item
1

3

4

5

2
W = 11

Mar 23, 2009 CS211

What do we know about the knapsack with respect
to item i?

Towards a Recurrence…

18 Mar 23, 2009 CS211

3/23/09

4

What do we know about the knapsack with respect
to item i?

  Either select item i or not
  If don’t select

–  Pick optimum solution of remaining items
  Otherwise

–  What happens?
–  How does problem change?

Towards a Recurrence…

19 Mar 23, 2009 CS211

Def. OPT(i) = max profit subset of items 1, …, i
  Case 1: OPT does not select item i

–  OPT selects best of { 1, 2, …, i-1 }
  Case 2: OPT selects item i

–  Accepting item i does not immediately imply that we will
have to reject other items
•  No known conflicts

–  Without knowing what other items were selected before i,
we don't even know if we have enough room for i

Dynamic Programming: False Start

20 Mar 23, 2009 CS211

➡ Need more sub-problems!

Def. OPT(i, w) = max profit subset of items 1, …, i
with weight limit w

  Case 1: OPT does not select item i
–  OPT selects best of { 1, 2, …, i-1 } using weight limit w

  Case 2: OPT selects item i
–  new weight limit = w – wi

–  OPT selects best of { 1, 2, …, i–1 } using new weight limit

Dynamic Programming: Adding a
New Variable

21 Mar 23, 2009 CS211

€

OPT(i, w) =

0 if i = 0
OPT(i −1, w) if wi > w
max OPT(i −1, w), vi + OPT(i −1, w−wi){ } otherwise









Fill up an n-by-W array

22

Input: N, w1,…,wN, v1,…,vN	

for w = 0 to W	
 M[0, w] = 0	

for i = 1 to N # for all items 	
 for w = 1 to W # for possible weights	
 if wi > w # item’s weight is more than available	
 M[i, w] = M[i-1, w]	
 else	
 M[i, w] = max{ M[i-1, w], vi + M[i-1, w-wi] }	

return M[n, W]	

Knapsack Problem: Bottom-Up

Mar 23, 2009 CS211

23

Knapsack Algorithm

n + 1

1
Value

18

22

28

1
Weight

5

6

6 2

7

Item
1

3

4

5

2

φ

{ 1, 2 }
{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0
0

0

0

0

0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

10
0

11
0

W + 1

W = 11

OPT:
Value=

Mar 23, 2009 CS211 24

Knapsack Algorithm

n + 1

1
Value

18

22

28

1
Weight

5

6

6 2

7

Item
1

3

4

5

2

φ

{ 1, 2 }
{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0
0

0

0

0

0

0

1
0

1

2
0

1

3
0

1

4
0

1

5
0

1

6
0

1

7
0

1

8
0

1

9
0

1

10
0

1

11
0

1

W + 1

W = 11

OPT:
Value=

Mar 23, 2009 CS211

N = 1

3/23/09

5

25

Knapsack Algorithm

n + 1

1
Value

18

22

28

1
Weight

5

6

6 2

7

Item
1

3

4

5

2

φ

{ 1, 2 }
{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0
0

0

0

0

0

0

1
0

1
1

2
0

6
1

3
0

7
1

4
0

7
1

5
0

7
1

6
0

7
1

7
0

7
1

8
0

7
1

9
0

7
1

10
0

7
1

11
0

7
1

W + 1

W = 11

OPT:
Value=

Mar 23, 2009 CS211

N=2

26

Knapsack Algorithm

n + 1

1
Value

18

22

28

1
Weight

5

6

6 2

7

Item
1

3

4

5

2

φ

{ 1, 2 }
{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0
0

0

0

0

0

0

1
0

1
1

1

2
0

6
6

1

3
0

7
7

1

4
0

7
7

1

5
0

7
18

1

6
0

7
19

1

7
0

7
24

1

8
0

7
25

1

9
0

7
25

1

10
0

7
25

1

11
0

7
25

1

W + 1

W = 11

OPT:
Value=

Mar 23, 2009 CS211

N=3

27

Knapsack Algorithm

n + 1

1
Value

18

22

28

1
Weight

5

6

6 2

7

Item
1

3

4

5

2

φ

{ 1, 2 }
{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0
0

0

0

0

0

0

1
0

1
1
1

1

2
0

6
6
6

1

3
0

7
7

7

1

4
0

7
7

7

1

5
0

7
18
18

1

6
0

7
19
22

1

7
0

7
24
24

1

8
0

7
25
28

1

9
0

7
25
29

1

10
0

7
25
29

1

11
0

7
25
40

1

W + 1

W = 11

OPT:
Value=

Mar 23, 2009 CS211

N=4

28

Knapsack Algorithm

n + 1

1
Value

18

22

28

1
Weight

5

6

6 2

7

Item
1

3

4

5

2

φ

{ 1, 2 }
{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0
0

0

0

0

0

0

1
0

1
1
1

1

1

2
0

6
6
6

1

6

3
0

7
7

7

1

7

4
0

7
7

7

1

7

5
0

7
18
18

1

18

6
0

7
19
22

1

22

7
0

7
24
24

1

28

8
0

7
25
28

1

29

9
0

7
25
29

1

34

10
0

7
25
29

1

35

11
0

7
25
40

1

40

W + 1

W = 11

OPT:
Value=

Mar 23, 2009 CS211

N=5

29

Knapsack Algorithm

n + 1

1
Value

18

22

28

1
Weight

5

6

6 2

7

Item
1

3

4

5

2

φ

{ 1, 2 }
{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0
0

0

0

0

0

0

1
0

1

1

1

1

1

2
0

6

6

6

1

6

3
0

7

7

7

1

7

4
0

7

7

7

1

7

5
0

7

18

18

1

18

6
0

7

19

22

1

22

7
0

7

24

24

1

28

8
0

7

25

28

1

29

9
0

7

25

29

1

34

10
0

7

25

29

1

35

11
0

7

25

40

1

40

W + 1

W = 11

OPT: { 4, 3 }
Value = 22 + 18 = 40

Mar 23, 2009 CS211

Costs?

30

Input: N, w1,…,wN, v1,…,vN	

for w = 0 to W	
 M[0, w] = 0	

for i = 1 to N # for all items 	
 for w = 1 to W # for possible weights	
 if wi > w # item’s weight is more than available	
 M[i, w] = M[i-1, w]	
 else	
 M[i, w] = max{ M[i-1, w], vi + M[i-1, w-wi] }	

return M[n, W]	

Analyzing Solution

Mar 23, 2009 CS211

3/23/09

6

Costs?

31

Input: N, w1,…,wN, v1,…,vN	

for w = 0 to W	
 M[0, w] = 0	

for i = 1 to N # for all items 	
 for w = 1 to W # for possible weights	
 if wi > w # item’s weight is more than available	
 M[i, w] = M[i-1, w]	
 else	
 M[i, w] = max{ M[i-1, w], vi + M[i-1, w-wi] }	

return M[n, W]	

Analyzing Solution

Mar 23, 2009 CS211

O(W)

O(N W)

32

Knapsack Problem: Running Time
Running time. Θ(n W)
  Not polynomial in input size!
  "Pseudo-polynomial”

–  Reasonably efficient when W is reasonably small
  Decision version of Knapsack is NP-complete

[Chapter 8]

Knapsack approximation algorithm. There exists a
polynomial algorithm that produces a feasible
solution that has value within 0.01% of optimum.
[Section 11.8]

Mar 23, 2009 CS211

