Objectives

Analyzing algorithms
Asymptotic running times

1/18/10

Jan 18,2010 Sprenkle - CSCI211 1

Discussion: Quizzes vs Journals

Results: some preference to journals
» Check out Wiki on Sakai

» Due dates?

Jan 18, 2010 Sprenkle - CSCI211 2

Review: Our Process
Understand/identify problem

» Simplify as appropriate
Design a solution

Analyze @

» Correctness, efficiency
» May need to go back to step 2 and try again

Implement
» Within bounds shown in analysis

Jan 18,2010 Sprenkle - CSCI211 3

Efficient Algorithms: Polynomial-Time

There exists constantsc>0and d >0
such that on every input of size N, its
running time is bounded by ¢ N9 steps.

Desirable scaling property: When input size
doubles, algorithm should only slow down by
some constant factor C +——_ j0se ¢ = 2¢
Def. An algorithm is polynomial time (or
polytime) if the above scaling property holds.

Jan 18, 2010 Sprenkle - CSCI211 4

Asymptotic Order of Growth:
Upper Bounds
T(n) is the worst case running time of an

algorithm

We say that T(n) is O(f(n)) if there exist

c cannot depend on n

constants ¢ > 0 and n, = 0 such that for all
T(n) is bounded above by a

sufficiently large n
constant multiple of f(n)

n = n, we have T(n) < c - f(n

T is asymptotically upperbounded by f

Jan 18,2010 Sprenkle - CSCI211 5

Asymptotic Order of Growth:
Lower Bounds
Complementary to upper bound

T(n) is Q(f(n)) if there exist constants € > 0

sufficiently large n

and ny = 0 such that for all n = ny , we have
T(n) is bounded below by a
T(n) > f(n) constant multiple of f(n)

T is asymptotically lowerbounded by f

Jan 18, 2010 Sprenkle - CSCI211 6

1/18/10

Tight bounds
T(n) is ©(f(n)) if T(n) is both
O(f(n)) and Q(f(n))

» The “right” bound

Jan 18,2010 Sprenkle - CSCI211 7

Practice:
Asymptotic Order of Growth

What are the upper bounds, lower
bounds, and tight bound on T(n)?

T(n) =32n2+17n + 32

Jan 18, 2010 Sprenkle - CSCI211 8

Practice:
Asymptotic Order of Growth

T(n)=32n2+17n + 32
> T(n) is O(n2), O(n3), Q(n2), 2(n), and B(n2)
» T(n) is not O(n), Q(n3), B(n), or O(n3)

Jan 18,2010 Sprenkle - CSCI211 9

ASYMPTOTIC BOUNDS FOR
CLASSES OF ALGORITHMS

Jan 18, 2010 Sprenkle - CSCI211 10

Asymptotic Bounds for Polynomials
a;ta;n+..+and is6(nd)ifay>0
- Runtime determined by higher-order term

Polynomial time. Running time is O(nd) for
some constant d that is independent of the
input size n
Other examples of polynomial times:
»0(n'72)
> O(n'58)
» O(n log n) < O(n?)

Jan 18,2010 Sprenkle - CSCI211 "

Asymptotic Bounds for Logarithms

Logarithms. logyn = x, where b*=n
»~ Approximate: To represent n in base-b, need

x+1 digits
100 10
1000 10
100 2
1000 2

Jan 18, 2010 Sprenkle - CSCI211 12

1/18/10

Asymptotic Bounds for Logarithms

Logarithms. logyn = x, where b*=n
~ Approximate: To represent n in base-b, need

x+1 digits
100 10 2
1000 10 3
100 2 6.64
1000 2 9.92

Describe the running time of an O(log n)
algorithm as the input size grows.
Compare with polynomials.

Jan 18,2010 Sprenkle - CSCI211 13

Asymptotic Bounds for Logarithms

Logarithms. logyh = X, where b*=n

a0
log, n
2

—log2n

logs n

Running Time

—log10n

logio n

10 100 1000 10000 1000000 10000000 100000000

Input Size

Jan 18, 2010 Sprenkle - CSCI211 14

Asymptotic Bounds for Logarithms
Logarithms. logyn = x, where b*=n

-> Slowly growing functions

Identity: ’logan = Iogbn/logba‘
» Means that

’logan = 1/logya * logyh ‘

Constant!
O(log ,n) = O(log , n) for any constants
a,b>0

Jan 18,2010 Sprenkle - CSCI211 15

Asymptotic Bounds for Logarithms
Logarithms. logyh = X, where b*=n

-> Slowly growing functions

O(log ,n) = O(log , n) for any constants
a,b>0

= Don’t need to specify the base
For every x > 0, log n = O(nX)
-> Log grows slower than every polynomial

Jan 18, 2010 Sprenkle - CSCI211 16

Asymptotic Bounds for Exponentials

Exponentials: functions of the form f(n) = "
for constant base r
» Faster growth rates as n increases

For every r> 1 and every d >0, nd = O(r")

-> Every exponential grows faster than
every polynomial

Jan 18,2010 Sprenkle - CSCI211 17

Summary of Asymptotic Bounds

In terms of growth rates

Logarithms < Polynomials < Exponentials

Jan 18, 2010 Sprenkle - CSCI211 18

1/18/10

A SURVEY OF COMMON
RUNNING TIMES

Jan 18, 2010 Sprenkle - CSCI211

Linear Time: O(n)

Running time is at most a constant factor
times the size of the input

Example. Computing the maximum:
Compute maximum of n numbers a,, ..., a,

max = d,

for i =2 ton Constant work for

if Ca; > max) each input
max = a; (does not depend
onn)
Jan 18, 2010 Sprenkle - CSCI211 20

Example Linear Time: O(n)

Merge: Combine two sorted lists A = a,,a,,
..,d, with B = by,b,,..,b, into sorted whole

n

Merged result

Jan 18,2010 Sprenkle - CSCI211 21

Example Linear Time: O(n)

Merge: Combine two sorted lists A = a,,aq,,
..,d, with B = by,b,,..,b, into sorted whole

n

Claim. Merging two lists of size n takes O(n)

time

i=1,j=1

while (both lists are nonempty)
if Co; = b;)

append a; to output list and increment i
else (a; = by)
append E),- to output list and increment j

append remainder of nonempty list to output list

Jan 18, 2010 Sprenkle - CSCI211

22

Example Linear Time: O(n)

Merge: Combine two sorted lists A = q;,a,,
..,a, with B = by,b,,..,b, into sorted whole

Claim. Merging two lists of size n takes O(n)

time
Proof. After each comparison, the length of
output list increases by 1

Merged result

i=1,j=1
while (both lists are nonempty)
if (a; = by)
append a; to output list and increment i
else (a; = b.
append Ew,- to output list and increment j

O(n log n) Time

Also referred to as linearithmic time
Arises in divide-and-conquer algorithms

» Splitting input into equal pieces, solve
recursively, combine solutions in linear time

What well-known set of algorithms has
an O(n logn) running time?

append remainder of nonempty list to output list 23

Jan 18, 2010 Sprenkle - CSCI211

24

1/18/10

O(n log n) Time Example

Sorting: Mergesort and heapsort are sorting
algorithms that perform O(n log n)
comparisons

Mergesort

1. Break input into equal-sized pieces

2. Sorts each half recursively

3. Merges sorted halves into a sorted list

Talk about the bound on
running time later...

Jan 18,2010 Sprenkle - CSCI211 25

O(n log n) Time Example

Largest empty interval. Given n (not
necessarily ordered) time-stamps x;, ..., X, at
which copies of a file arrive at a server, what
is largest interval of time when no copies of
the file arrive?

O(n log n) solution

1. Sort time-stamps

2. Scan sorted list in order, identifying the

maximum gap between successive time-
stamps

Jan 18, 2010 Sprenkle - CSCI211 26

Quadratic Time: O(n2)

Examples?

Jan 18,2010 Sprenkle - CSCI211 27

Quadratic Time: O(n?)

Examples:
» Enumerate all pairs of elements
» Two nested loops, each O(n) iterations

Jan 18, 2010 Sprenkle - CSCI211 28

Quadratic Time: O(n?)

Closest pair of points. Given a list of n points
in the plane (x4, y4), ..., (X,, ¥,), find the pair
that is closest

O(n?) solution. Try all pairs of points

min = (x; - x0% + O - ¥2)?
fori=1ton
for j = i+l to n
d = O -)% + Qyy - y9)? =
if (d < min)
min = d

don't need to
take square roots

‘Q(nz) seems inevitable, but Chapter 5 has an O(n logn) solution

Jan 18,2010 Sprenkle - CSCI211 29

Cubic Time: O(n3)

Examples?

Jan 18, 2010 Sprenkle - CSCI211 30

1/18/10

Cubic Time: O(n3)

Enumerate all triples of elements

Set disjointness. Givennsets Sy, ..., S,
each of which is a subsetof 1, 2, ..., n, is
there some pair of these which are disjoint?

Jan 18,2010 Sprenkle - CSCI211 31

Cubic Time: O(n3)

Enumerate all triples of elements

Set disjointness. Givennsets S, ..., S,
each of which is a subsetof 1, 2, ..., n, is
there some pair of these which are disjoint?
O(n?®) solution. For each pair of sets,
determine if they are disjoint

foreach set S;
foreach other set S;
foreach element p of S;
determine whether p also belongs to S;

if (no element of S; belongs to S;)
Jan 18] report that S; and S; are disjoint 32

