
2/23/09

1

Greedy Algorithms
  Minimum spanning tree
  Union-Find Data Structure
  Clustering
  Data Compression

Objectives

1 Feb 23, 2009 CS211 1

Laying Cable
Comcast knows how to make money and how to save money

They want to lay cable in a neighborhood
  Reach all houses

  Least cost Neighborhood Layout

Cost of laying cable
between houses depends on
amt of cable, landscaping,

obstacles, etc.

8

12

2

1

15

3

7

4

13
8 15

9

2

3

Minimum Spanning Tree
Given a connected graph G = (V, E) with positive edge

weights ce, an MST is a subset of the edges T ⊆ E such
that T is a spanning tree whose sum of edge weights is
minimized
  Spanning tree: spans all nodes in graph

 5

23

10
21

 14

24

 16

 6

 4

18
9

7

11
 8

 5

 6

 4

9

7

11
 8

G = (V, E) T, Σe∈T ce = 50

Feb 23, 2009 CS211

Proof by Contradiction.
Assume have a minimal solution V that is not a tree,

i.e., it has a cycle
Contains edges to all nodes because solution must

be connected (spanning)
Remove an edge from the cycle

Can still reach all nodes (could go “long way around”)
But at lower cost
Contradiction to our minimal solution

Minimal Spanning Tree: Why a Tree?

4 Feb 23, 2009 CS211

5

Greedy Algorithms
All three algorithms produce a MST

Kruskal's algorithm. Start with T = φ. Consider edges in
ascending order of cost. Insert edge e in T unless doing so
would create a cycle.

Reverse-Delete algorithm. Start with T = E. Consider edges
in descending order of cost. Delete edge e from T unless
doing so would disconnect T.

Prim's algorithm. Start with some root nodes and greedily
grow a tree T from s outward. At each step, add the
cheapest edge e to T that has exactly one endpoint in T.

  Similar to Dijkstra’s (but simpler)

Feb 23, 2009 CS211

What do these algorithms have/do/check in common?

When is it safe to include an edge in the minimum
spanning tree?

When is it safe to eliminate an edge from the
minimum spanning tree?

What Do These Algorithms
Have in Common?

6 Feb 23, 2009 CS211

Cut Property

Cycle Property

2/23/09

2

7

Cut and Cycle Properties
Simplifying assumption: All edge costs ce are distinct
➡  MST is unique

Cut property. Let S be any subset of nodes, and let e be the
min cost edge with exactly one endpoint in S. Then the
MST contains e.

Cycle property. Let C be any cycle, and let f be the max cost
edge belonging to C. Then the MST does not contain f.

f
C

S

e is in the MST

e

f is not in the MST
Feb 23, 2009 CS211 8

Cycles and Cuts
Cycle. Set of edges that form a-b, b-c, c-d, …, y-z,

z-a

Cutset. A cut is a subset of nodes S. The
corresponding cutset D is the subset of edges with
exactly one endpoint in S.

Cycle C = 1-2, 2-3, 3-4, 4-5,
5-6, 6-1

1
3

8

2

6

7

4

5

Cut S = { 4, 5, 8 }
Cutset D = 5-6, 5-7, 3-4,

3-5, 7-8

1
3

8

2

6

7

4

5

Feb 23, 2009 CS211

9

Cycle-Cut Intersection
Claim. A cycle and a cutset intersect in an even

number of edges

Pf. (by picture)

1
3

8

2

6

7

4

5

S

V - S

C

Cycle C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1
Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8
Intersection = 3-4, 5-6

Feb 23, 2009 CS211

(Cut)

Edges link to not-Cut

•  Cycle all in S or V-S
•  Cycle has to go from

SV-S and back

10

Cut Property: OK to Include Edge
Simplifying assumption. All edge costs ce are distinct
Cut property. Let S be any subset of nodes, and let e be the

min cost edge with exactly one endpoint in S. Then the
MST T* contains e.

Pf.

Feb 23, 2009 CS211

11

Cut Property: OK to Include Edge
Simplifying assumption. All edge costs ce are distinct
Cut property. Let S be any subset of nodes, and let e be the

min cost edge with exactly one endpoint in S. Then the
MST T* contains e.

Pf. (exchange argument)
  Suppose there is an MST T* that does not contain e

– What do we know about T?
– What do we know about the nodes e connects?

Feb 23, 2009 CS211 12

Cut Property: OK to Include Edge
Simplifying assumption. All edge costs ce are distinct
Cut property. Let S be any subset of nodes, and let e be the

min cost edge with exactly one endpoint in S. Then the
MST T* contains e

Pf. (exchange argument)
  Suppose there is an MST T* that does not contain e
  Adding e to T* creates a cycle C in T*
  Edge e is in cycle C and in cutset corresponding to S

⇒  There exists another edge, say f, that is in both C and S’s cutset

AND ?!?
f

 T*
e

S

Feb 23, 2009 CS211

2/23/09

3

13

Cut Property: OK to Include Edge
Simplifying assumption. All edge costs ce are distinct
Cut property. Let S be any subset of nodes, and let e be the

min cost edge with exactly one endpoint in S. Then the
MST T* contains e

Pf. (exchange argument)
  Suppose there is an MST T* that does not contain e
  Adding e to T* creates a cycle C in T*
  Edge e is in cycle C and in cutset corresponding to S

⇒ there exists another edge, say f, that is in both C and S’s cutset
  T' = T* ∪ { e } - { f } is also a spanning tree
  Since ce < cf, cost(T') < cost(T*)
  This is a contradiction. ▪

f

 T*
e

S

Feb 23, 2009 CS211 14

Cut Property: OK to Include Edge
Simplifying assumption. All edge costs ce are distinct
Cut property. Let S be any subset of nodes, and let e be the

min cost edge with exactly one endpoint in S. Then the
MST T* contains e

Implication: Can always include an edge (meeting
criteria) with minimum cost

  Many different configurations of S

f

 T*
e

S

Feb 23, 2009 CS211

15

Cycle Property: OK to Remove Edge
Simplifying assumption. All edge costs ce are distinct
Cycle property. Let C be any cycle in G, and let f be

the max cost edge belonging to C. Then the MST
T* does not contain f.

Ideas about approach?

Feb 23, 2009 CS211 16

Cycle Property: OK to Remove Edge
Simplifying assumption. All edge costs ce are distinct
Cycle property. Let C be any cycle in G, and let f be the max

cost edge belonging to C. Then the MST T* does not
contain f.

Pf. (exchange argument)
  Suppose f belongs to T*, and let's see what happens.

– What happens if we deleted f from T*?

f

 T*
e

S

Feb 23, 2009 CS211

17

Cycle Property: OK to Remove Edge
Simplifying assumption. All edge costs ce are distinct
Cycle property. Let C be any cycle in G, and let f be the max

cost edge belonging to C. Then the MST T* does not
contain f.

Pf. (exchange argument)
  Suppose f belongs to T*, and let's see what happens.
  Deleting f from T* creates a cut S in T*.
  Edge f is both in the cycle C and in the cutset S

⇒ There exists another edge, say e, that is in both C and S
  T' = T* ∪ { e } - { f } is also a spanning tree.
  Since ce < cf, cost(T') < cost(T*).
  This is a contradiction. ▪

f

 T*
e

S

Feb 23, 2009 CS211

[Jarník 1930, Dijkstra 1957, Prim 1959]

Start with some root node s
Greedily grow a tree T from s outward
At each step, add the cheapest edge e to T that has

exactly one endpoint in T.

Prim’s Algorithm

18 Feb 23, 2009 CS211

How can we prove its correctness?

2/23/09

4

19

Prim's Algorithm: Proof of
Correctness

Initialize S = any node
Apply cut property to S
  Add min cost edge in S’s cutset to T
  Add one new explored node u to S

S

Feb 23, 2009 CS211 Feb 23, 2009 20

Implementation: Prim's Algorithm
Similar to Dijkstra’s algorithm

Maintain set of explored nodes S
For each unexplored node v, maintain attachment

cost a[v] = cost of cheapest edge v to a node in S
  O(m log n) with a heap

CS211

foreach (v ∈ V) a[v] = ∞	
Initialize an empty priority queue Q	
foreach (v ∈ V) insert v onto Q	
Initialize set of explored nodes S = φ	
while (Q is not empty) 	
 u = delete min element from Q	
 S = S ∪ { u }	
 foreach (edge e = (u, v) incident to u)	
 if ((v ∉ S) and (ce < a[v]))	
 decrease priority a[v] to ce	

Update
attachment

cost

Start with T = φ
Consider edges in ascending order of cost
Insert edge e in T unless doing so would create a

cycle

Kruskal’s Algorithm [1956]

21 Feb 23, 2009 CS211

How can we prove its correctness?

22

Kruskal's Algorithm: Proof of
Correctness

Consider edges in ascending order of weight
Case 1: If adding e to T creates a cycle, discard e

according to cycle property
Case 2: Otherwise, insert e = (u, v) into T according to

cut property where S = set of nodes in u's connected
component

Case 1

v

u

Case 2

e

e
S

Feb 23, 2009 CS211

What is tricky about implementing Kruskal’s
algorithm?

Implementing Kruskal’s Algorithm

23 Feb 23, 2009 CS211

What is tricky about implementing Kruskal’s
algorithm?

  How do we know when adding an edge will create a
cycle?
– What are the properties of an undirected /its nodes when
adding an edge will create a cycle?

Implementing Kruskal’s Algorithm

24 Feb 23, 2009 CS211

2/23/09

5

Keeps track of a graph as edges are added
  Cannot handle when edges are deleted

Maintains disjoint sets
  E.g., graph’s connected components

Operations:
  Find(u): returns name of set containing u

– How utilized to see if two nodes are in the same set?
– Goal implementation: O(log n)

  Union(A, B) : merge sets A and B into one set
– Goal implementation: O(log n)

Union-Find Data Structure

25 Feb 23, 2009 CS211 Best darn U-F Data Structure 26

Implementing Kruskal's Algorithm
Using the union-find data structure
  Build set T of edges in the MST
  Maintain set for each connected component

Feb 23, 2009 CS211

Sort edges weights so that c1 ≤ c2 ≤ ... ≤ cm	
T = {}	
foreach (u ∈ V) make a set containing singleton u	

for i = 1 to m	
 (u,v) = ei	
 if (u and v are in different sets)	
 T = T ∪ {ei}	
 merge the sets containing u and v	
return T	

are u and v in different connected components?

merge two components

Costs?

27

Implementing Kruskal's Algorithm
Using best implementation of union-find
  Sorting: O(m log n)
  Union-find: O(m α (m, n))
⇒ O(m log n)

Feb 23, 2009 CS211

Sort edges weights so that c1 ≤ c2 ≤ ... ≤ cm	
T = {}	
foreach (u ∈ V) make a set containing singleton u	

for i = 1 to m	
 (u,v) = ei	
 if (u and v are in different sets)	
 T = T ∪ {ei}	
 merge the sets containing u and v	
return T	

are u and v in different connected components?

merge two components

m ≤ n2 ⇒ log m is O(log n)

essentially a constant

Motivating Example: Comcast laying cable

Limitations to Applying MST?

28 Feb 23, 2009 CS211

Neighborhood Layout

8

12

2

1

15

3

7

4

13
8 15

9

CLUSTERING

Outbreak of cholera deaths in London in 1850s.
Reference: Nina Mishra, HP Labs

Intersections
with polluted

wells Given a set U of n objects labeled p1, …, pn, classify
into coherent groups

  Example objects: photos, documents, micro-organisms

Distance function. Numeric value specifying
"closeness" of two objects

Clustering

30 Feb 23, 2009 CS211

2/23/09

6

Given a set U of n objects labeled p1, …, pn, classify into
coherent groups

  Example objects: photos, documents, micro-organisms
Distance function. Numeric value specifying "closeness" of

two objects
Fundamental problem. Divide into clusters so that points in

different clusters are far apart
  Routing in mobile ad hoc networks
  Identify patterns in gene expression
  Identifying patterns in web application use cases

– Sets of URLs
  Similarity searching in medical image databases
  Skycat: cluster 109 sky objects into stars, quasars, galaxies

Clustering

31 Feb 23, 2009 CS211 32

Clustering
k-clustering. Divide objects into k non-empty groups
Distance function. Assume it satisfies several

natural properties
  d(pi, pj) = 0 iff pi = pj (identity of indiscernibles)
  d(pi, pj) ≥ 0 (nonnegativity)
  d(pi, pj) = d(pj, pi) (symmetry)

Feb 23, 2009 CS211

33

Clustering of Maximum Spacing
k-clustering. Divide objects into k non-empty groups
Spacing. Min distance between any pair of points in

different clusters
Clustering of maximum spacing. Given an integer k,

find a k-clustering of maximum spacing

spacing k = 4

Feb 23, 2009 CS211

Greedy algorithm?
How relates to the minimum spanning tree?

Ideas about Solving?

34 Feb 23, 2009 CS211

Single-link k-clustering algorithm
  Form a graph on the vertex set U, corresponding to n

clusters
  Find the closest pair of objects such that each object is

in a different cluster, and add an edge between them
  Repeat n-k times until there are exactly k clusters

Key observation. Same as Kruskal's algorithm
  Except we stop when there are k connected

components
Remark. Equivalent to finding an MST and deleting

the k-1 most expensive edges

Greedy Clustering Algorithm

35 Feb 23, 2009 CS211

Solutions not online
See me to discuss your solution/write up or best solution
Common mistakes
  Not stating and/or discussing algorithm’s runtime
  Not backing up claims

– Ex: why has to have only one node in a layer
  Not using “algorithm terms”, e.g., topological ordering,

DAG, etc.
– Not clear if following material, know how to apply solutions

  Not explaining intuition or model
– Ex: what nodes and edges represent in last problem

Problem Set 2

36 Feb 23, 2009 CS211

2/23/09

7

Describe how modeling information:
  Let G be a directed graph with two nodes for each

person
– One representing person’s birth, person’s death

  A directed edge between nodes i and j means “i
happened before j”

  How can use this model for data collected…
Data is consistent if G is a DAG
  Topological ordering is relative birth and death dates
  If cycle, inconsistent

– Explain how can find a cycle

Problem 3: Good Solution Sketch

37 Feb 23, 2009 CS211

Wednesday: Finish up Chapter 4: Huffman Codes
Friday:
  Problem Set 3 due
  SSA – Extra credit opportunities

– Added to homework grade
Monday: Divide and conquer algorithms (Chap 5)
Tue-Fri: Open-book midterm
  Turned into my mailbox in CS office by Friday
  I’ll be at a conference Tuesday through Saturday

– Available by email

Our Plan

38 Feb 23, 2009 CS211

