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Greedy Algorithms 
  Optimal caching 
  Shortest path 

Objectives 
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Optimal Offline Caching: 
Farthest-In-Future 

Evict item in cache that is not requested until farthest 
in the future 

Theorem.  [Bellady, 1960s]  FF is optimal eviction 
schedule 

Pf.  Algorithm and theorem are intuitive; proof is 
subtle 

  Better than least frequently used? 

a	 b	

g a b c e d a b b a c d e a f a d e f g h ... 	

current cache: c	 d	 e	 f	

future queries: 

cache miss eject this one 
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Reduced Eviction Schedules 

Def.  A reduced schedule is a schedule that only 
inserts an item into the cache when that item is 
requested 

  No bringing in an item ahead of time; minimal amt 
of work per step 
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Bringing in 
items before 

requested Cache miss 

Reduced Eviction Schedules 
Claim.  Given any unreduced schedule S, can transform it into 

a reduced schedule S' with no more cache misses 
Pf.  (by induction on number of unreduced items) 
  Case 1:  d evicted at time t', before next request for d 
  Case 2:  d requested at time t' before d is evicted 
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evicted evicted 

unreduced reduced unreduced reduced 

Theorem.  FF is optimal eviction algorithm 
Pf Sketch 
  Let SFF be schedule by Farthest-in-Future 
  Let S* be optimal schedule 

– Fewest possible cache misses 
  Transform S* into SFF  

– One eviction decision at a time 
– Not increasing number of cache misses 

Farthest-In-Future: Analysis 
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Farthest-In-Future: Analysis 

Let S be reduced schedule that satisfies invariant through j 
requests. We produce reduced schedule S' that satisfies 
invariant after j+1 requests 

  Consider (j+1)st request d = dj+1 

  Since S and SFF have agreed up until now, they have same 
cache contents before request j+1 

  What are the possibilities for what happens on (j+1)st request? 

Invariant:  There exists an optimal reduced schedule S that makes 
the same eviction schedule as SFF through the first j+1 requests. 
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Farthest-In-Future: Analysis 

Let S be reduced schedule that satisfies invariant through j 
requests. We produce S' that satisfies invariant after j+1 
requests. 

  Consider (j+1)st request d = dj+1 
  Since S and SFF have agreed up until now, they have the same 

cache contents before request j+1 
  Case 1: d is already in the cache.  S' = S satisfies invariant 
  Case 2: d is not in the cache and S and SFF evict the same 

element. 
S' = S satisfies invariant. 

Invariant:  There exists an optimal reduced schedule S that makes 
the same eviction schedule as SFF through the first j requests. 
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Farthest-In-Future: Analysis 
Pf.  (continued) 
  Case 3:  d is not in the cache; SFF evicts e; S evicts f ≠ e 

– begin construction of S' from S by evicting e instead of f 

– now S' agrees with SFF on first j requests; we show that having 
element f in cache is no worse than having element e 
•  Need to get schedules’ caches back in sync again 

•  All decisions will be the same until decision involves e or f 

 j  same f same f e e 

S S' 

 j  same d same f d e 

S S' 
j+1 
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Farthest-In-Future: Analysis 
Let j' be the first time after j+1 that S and S' take a different 

action, and let g be item requested at time j'. 

  What are the possibilities for g? 
– Is g in the cache for S?  For S’? 
– What does their caches look like afterwards? 

same e same f 

S S' 

j' 

must involve e or f (or both) 
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Farthest-In-Future: Analysis 
Let j' be the first time after j+1 that S and S' take a different 

action, and let g be item requested at time j'. 

  Case 3a:  g = e 
– Can't happen with Farthest-In-Future since there must be 
a request for f before e 

same e same f 

S S' 

j' 
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Let j' be the first time after j+1 that S and S' take a 
different action, and let g be item requested at time j’ 

  Case 3b:  g ≠ e, f 
– g is not in either cache 
– S must evict e 

•  otherwise S' would take the same action 

– Make S' evict f; now S and S' have the same cache: 

Farthest-In-Future: Analysis 
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same g same g 

S S' 

j' 

same e same f 

S S' 

j' 

Let j' be the first time after j+1 that S and S' take a 
different action, and let g be item requested at time j'. 

  Case 3c:  g = f 
– Element f can't be in cache of S, so let e' be the element 
that S evicts 
•  If e' = e, now S and S' have same cache   
•  If e' ≠ e, S' evicts e' and brings e into the cache; now S and S' 

have the same cache 

Farthest-In-Future: Analysis 
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same e same f 

S S' 

j' 

Note:  S' is no longer reduced, but can be transformed into 
a reduced schedule that agrees with SFF through step j+1 
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Let j' be the first time after j+1 that S and S' take a 
different action, and let g be item requested at time j'. 

For both cases (3b, 3c), have reduced schedule S’ 
that agrees with SFF for first j+1 items 

Farthest-In-Future: Analysis 
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same e same f 

S S' 

j' 

Theorem.  FF is optimal eviction algorithm 
Pf.  (by induction on number of requests j) 
Let S* be an optimal schedule 
Construct an optimal schedule S1 that agrees with SFF  

through the first step 
Apply previous proof inductively for j = 1, 2, 3, …, m, 

producing schedules Sj that agree with SFF through 
first j steps 

Each schedule Sj incurs no more misses than the 
corresponding SFF one 

Sm= SFF because agrees through whole sequence 

Farthest-in-Future: Analysis 
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Caching Perspective 
Online vs. offline algorithms 
  Offline:  full sequence of requests is known a priori 
  Online (reality):  requests are not known in advance 
  Caching is among most fundamental online problems in CS 

LIFO.  Evict page brought in most recently 
LRU.  Evict page whose most recent access was earliest 
Theorem.  FF is optimal offline eviction algorithm 
  Provides basis for understanding and analyzing online 

algorithms. 
  LRU is k-competitive.  [Section 13.8] 
  LIFO is arbitrarily bad 

FF with 
direction of 

time reversed! 
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SHORTEST PATHS IN A 
GRAPH 
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Shortest Path Problem 
Given 
  Directed graph G = (V, E) 
  Source s, destination t 
  Length e = length of edge e (non-negative) 

Shortest path problem:  find shortest directed path 
from s to t 

Cost of path s-2-3-5-t 
     =  9 + 23 + 2 + 16 
     = 48 
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cost of path = sum of edge 
costs in path 
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Shortest Path Problem 
Shortest path problem:  find shortest directed path 

from s to t 
Towards algorithm ideas: 
  What is shortest path from s to 2?  To 6? 
  What is the shortest path to 3? 5? 7? 

Cost of path s-2-3-5-t 
     =  9 + 23 + 2 + 16 
     = 48 
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cost of path = sum of edge 
costs in path 
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Dijkstra’s Algorithm 

Maintain a set of explored nodes S 
  Know the shortest path distance d(u) from s to u 

Initialize S={s}, d(s)=0 
Repeatedly choose unexplored node v which 

minimizes 
  add v to S and set d(v) = π(v) 

,)(min)(
:),( eSuvue

udv +=
∈=

π

s 

v 

u 
d(u) 

S 

e 

shortest path to some u in 
explored part, followed by a 

single edge (u, v) 

Dijkstra's Algorithm 

s 

v 
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d(u) 

S 

e 
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Dijkstra's Shortest Path Algorithm 
Find shortest path from s to t. 
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Dijkstra's Shortest Path Algorithm 
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S = {  } 
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Initialize distances to all nodes to infinity 
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Dijkstra's Shortest Path Algorithm 
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delmin 
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Dijkstra's Shortest Path Algorithm 
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Update distances to nodes it points to 
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Dijkstra's Shortest Path Algorithm 
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Dijkstra's Shortest Path Algorithm 
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Dijkstra's Shortest Path Algorithm 
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Dijkstra's Shortest Path Algorithm 
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Dijkstra's Shortest Path Algorithm 
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Dijkstra's Shortest Path Algorithm 
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Dijkstra's Shortest Path Algorithm 
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Dijkstra's Shortest Path Algorithm 
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Dijkstra's Shortest Path Algorithm 
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Dijkstra's Shortest Path Algorithm 
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Dijkstra's Shortest Path Algorithm 
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Dijkstra's Shortest Path Algorithm 
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Dijkstra's Shortest Path Algorithm 
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Dijkstra's Shortest Path Algorithm 
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Dijkstra's Shortest Path Algorithm 
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Dijkstra’s Algorithm 

Maintain a set of explored nodes S 
  Know the shortest path distance d(u) from s to u 

Initialize S={s}, d(s)=0 
Repeatedly choose unexplored node v which 

minimizes 
  add v to S and set d(v) = π(v) 

,)(min)(
:),( eSuvue

udv +=
∈=

π

s 

v 

u 
d(u) 

S 

e 

shortest path to some u in 
explored part, followed by a 

single edge (u, v) 

Running time? 
Implementation? 
Data structures? 

Dijkstra’s Algorithm 

Maintain a set of explored nodes S 
  Know the shortest path distance d(u) from s to u 

Initialize S={s}, d(s)=0 
Repeatedly choose unexplored node v which 

minimizes 
  add v to S and set d(v) = π(v) 

,)(min)(
:),( eSuvue

udv +=
∈=

π shortest path to some u in 
explored part, followed by a 

single edge (u, v) 

Using a priority queue, how many 
 Inserts? 
 Finding minimum? 
 Deletions? 
 Updating the key? 
 Determining if empty?  

How long does each 
operation take? 
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Dijkstra's Algorithm:  
Implementation 

For each unexplored node, explicitly maintain 

  Next node to explore = node with minimum π(v). 
  When exploring v, for each incident edge e = (v, w), 

update 

Efficient implementation.  Maintain a priority queue of 
unexplored nodes, prioritized by π(v) 

Priority Queue PQ Operation 

Insert 

ExtractMin 

ChangeKey 

Binary heap 

log n 
log n 
log n 

IsEmpty 1 
Total m log n 

Dijkstra 

n 
n 
m 
n 

    

€ 

π (v) = min
e = (u,v) : u∈ S

d (u) +  e  .

  

€ 

π (w) = min { π (w),  π (v)+  e }.

Feb 11, 2009 43 CS211 

How Greedy? 

How Greedy? 

We always form shortest new s-v path from a path in 
S followed by a single edge 

Proof of optimality: Stays ahead of all other solutions 
  Each time selects a path to a node v, that path is 

shorter than every other possible path to v 

Invariant.  For each node u ∈ S, d(u) is the length of 
the shortest s-u path 

Pf.  (by induction on |S|) 
Base case:  |S|=1 … 
Inductive hypothesis? 
Next step? 

Dijkstra's Algorithm:  Proof of 
Correctness 
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Invariant.  For each node u ∈ S, d(u) is the length of 
the shortest s-u path 

Pf.  (by induction on |S|) 
Base case:  For |S| = 1, S={s}; d(s) = 0 
Inductive hypothesis:  Assume true for |S| = k, k ≥  1 
  Grow |S| to k+1 
  Adding next node v  by u→ v 
  What do we know about s→ u? 
  What can we say about other s→ v paths? 
  Why didn’t we pick y as the next node? 

Dijkstra's Algorithm:  Proof of 
Correctness 
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