
1/26/11	

1	

Objectives

•  BFS & DFS Implementations, Analysis
•  Graph Application: Bipartiteness

Jan 26, 2011 1 CSCI211 - Sprenkle

Soap Opera Proofs

•  “It’s the only thing that makes sense.”

Jan 26, 2011 CSCI211 - Sprenkle 2

Problem Set #1

•  √2n < n + 10

Jan 26, 2011 CSCI211 - Sprenkle 3

Review: Comparing BFS vs DFS

• What do they do?
•  How are their outcomes different?
• When would we want to use one over the

other?

Jan 26, 2011 CSCI211 - Sprenkle 4

Review: Finding Connected Components

Jan 26, 2011 CSCI211 - Sprenkle 5

R will consist of nodes to which s has a path	
R = {s}	
while there is an edge (u,v) where u∈R and v∉R	

	add v to R	

s	

u	

 v	

R	

it's safe to

add v	

DFS and BFS say what order we look at the edges.	

Review: Comparing BFS vs DFS
•  What do they do?

 Techniques for finding connected components
•  Create a tree of connected components

 Other uses as well
•  How are their outcomes different?

 BFS: shortest path; bushy tree
 DFS: spindly tree

•  When would we want to use one over the other?
 BFS: Shortest path
 DFS: what you’d do in a maze (can’t split)

Jan 26, 2011 CSCI211 - Sprenkle 6

1/26/11	

2	

Analysis of Connected Components

•  For any two nodes s and t in a graph, their
connected components are either identical or
disjoint

•  Proof?

Jan 26, 2011 CSCI211 - Sprenkle 7

Analysis of Connected Components

•  For any two nodes s and t in a graph, their
connected components are either identical or
disjoint

•  Proof sketch:
(i) There is a path between s and t  same set of

connected components
(ii) There is no path between s and t  disjoint set

of connected components

Jan 26, 2011 CSCI211 - Sprenkle 8

Set of All Connected Components

•  How can we find set of all connected
components of a graph?

Jan 26, 2011 CSCI211 - Sprenkle 9

Set of All Connected Components

•  How can we find set of all connected
components of a graph?

Jan 26, 2011 CSCI211 - Sprenkle

R* = set of connected components (a set of sets)	
	
while there is a node that does not belong to R*	

		
	select s not in R*	

	
	R = {s}	

	
	while there is an edge (u,v) where u∈R and v∉R	
	 	add v to R	

	
	

	Add R to R*	

10

IMPLEMENTATION &
ANALYSIS

Jan 26, 2011 CSCI211 - Sprenkle 11

Queues and Stacks

•  How are queues and stacks similar?
•  How are queues and stacks different?

Jan 26, 2011 CSCI211 - Sprenkle 12

1/26/11	

3	

Queues and Stacks

•  Both: doubly linked list
 Always take first on list
 Difference in where extracted
 Have first and last pointers
 Done in constant time

•  Queue: FIFO
 First in, first out

•  Stack: LIFO
 Last in, first out

Jan 26, 2011 CSCI211 - Sprenkle 13

Queue
Removes	

Stack
Removes	

Both add	

 Implementing BFS
•  Graph: Adjacency list
•  Discovered array
•  Maintain layers in separate lists, L[i]

Jan 26, 2011 CSCI211 - Sprenkle 14

Implementing BFS
•  Graph: Adjacency list
•  Discovered array
•  Maintain layers in separate lists, L[i]

Jan 26, 2011 CSCI211 - Sprenkle

BFS(s):	
	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	for each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] == false then	
	 	 	 	Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	

L[i] as a queue ���
or stack?	

15

What does this
stopping condition

mean?	

Analysis

Jan 26, 2011 CSCI211 - Sprenkle 16

BFS(s):	
	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	For each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] == false then	
	 	 	 	Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	

•  L[i] as a queue or stack?���
- Doesn’t matter because algorithm can consider nodes in any order	

What is the running time?	

BFS(s):	
	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	For each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] == false then	
	 	 	 	Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	

Analysis

Jan 26, 2011 CSCI211 - Sprenkle

A
t

m
os

t
n	

A
t

m
os

t
n-

1	

O(n2)	

n	

17

BFS(s):	
	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	For each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] == false then	
	 	 	 	Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	

Analysis: Tighter Bound

Jan 26, 2011 CSCI211 - Sprenkle

O(deg(u))	

A
t

m
os

t
n	

n	

Σu∈V deg(u) = 2m	

	

 O(n+m)	

18

1/26/11	

4	

Implementing DFS

Jan 26, 2011 CSCI211 - Sprenkle 19

Implementing DFS

•  Keep nodes to be processed in a stack

Jan 26, 2011 CSCI211 - Sprenkle

DFS(s):	
	Initialize S to be a stack with one element s	
	Explored[v] = false, for all v	
	Parent[v] = 0, for all v	
	DFS tree T = {}	
	while S != {}	
	 	Take a node u from S	
	 	if Explored[u] = false	
	 	 	Explored[u] = true	
	 	 	Add edge (u, parent[u]) to T (if u ≠ s)	
	 	 	for each edge (u, v) incident to u	
	 	 	 	Add v to the stack S	
	 	 	 	Parent[v] = u	

20

DFS(s):	
	Initialize S to be a stack with one element s	
	Explored[v] = false, for all v	
	Parent[v] = 0, for all v	
	DFS tree T = {}	
	while S != {}	
	 	Take a node u from S	
	 	if Explored[u] = false	
	 	 	Explored[u] = true	
	 	 	Add edge (u, parent[u]) to T (if u ≠ s)	
	 	 	for each edge (u, v) incident to u	
	 	 	 	Add v to the stack S	
	 	 	 	Parent[v] = u	

Analyzing DFS

Jan 26, 2011 CSCI211 - Sprenkle

deg(u)	

O(n+m)	

21

Set of All Connected Components

•  How can we find set of all connected
components of graph?

Jan 26, 2011 CSCI211 - Sprenkle

Running time: O(m+n)	

22

R* = set of connected components (a set of sets)	
	
while there is a node that does not belong to R*	

		
	select s not in R*	

	
	R = {s}	

	
	while there is an edge (u,v) where u∈R and v∉R	
	 	add v to R	

	
	

	Add R to R*	

But the inner loop was O(m+n)!	

How can this RT be possible?	

Set of All Connected Components

•  How can we find set of all connected
components of graph?

Jan 26, 2011 CSCI211 - Sprenkle 23

Where i is the subscript of the
connected component	

R* = set of connected components (a set of sets)	
	
while there is a node that does not belong to R*	

		
	select s not in R*	

	
	R = {s}	

	
	while there is an edge (u,v) where u∈R and v∉R	
	 	add v to R	

	
	

	Add R to R*	

Imprecision in the running time
of inner loop: O(m+n)	

But that’s m and n of the
connected component, ���
let’s say mi and ni . Therefore,	

Σi O(mi+ ni) = O(m+n)	

BIPARTITE GRAPHS

24 Jan 26, 2011 CSCI211 - Sprenkle

1/26/11	

5	

Bipartite Graphs

•  Def. An undirected graph G = (V, E) is
bipartite if the nodes can be colored red or
blue such that every edge has one red and
one blue end
 Generally: vertices divided into sets X and Y

•  Applications:
 Stable marriage:

•  men = red, women = blue
 Scheduling:

•  machines = red, jobs = blue
Jan 26, 2011 CSCI211 - Sprenkle 25

a bipartite graph	

Testing Bipartiteness
•  Given a graph G, is it bipartite?
•  Many graph problems become:

 Easier if underlying graph is bipartite (e.g., matching)
 Tractable if underlying graph is bipartite (e.g.,

independent set)
•  Before designing an algorithm, need to understand

structure of bipartite graphs

Jan 26, 2011 CSCI211 - Sprenkle 26

v1	

v2	

 v3	

v6	

 v5	

 v4	

v7	

v2	

v4	

v5	

v7	

v1	

v3	

v6	

a bipartite
graph G:	

another
drawing of G:	

An Obstruction to Bipartiteness

•  Lemma. If a graph G is bipartite, it cannot
contain an odd-length cycle.

•  Pf. Not possible to 2-color the odd cycle, let
alone G.

Jan 26, 2011 CSCI211 - Sprenkle 27

bipartite ���
(2-colorable)	

not bipartite ���
(not 2-colorable)	

If find an odd cycle, 	

graph is NOT bipartite	

How Can We Determine if a Graph is
Bipartite?

•  Given a connected graph
1.  Color one node red

•  Doesn’t matter which color (Why?)
 What should we do next?

Jan 26, 2011 CSCI211 - Sprenkle 28

Why connected?	

v1	

v2	

 v3	

v6	

 v5	

 v4	

v7	

•  How will we know when
we’re finished?	

•  What does this process
sound like?	

Reminders

•  Friday: Problem Set 2 due

Jan 26, 2011 CSCI211 - Sprenkle 29

