
3/28/09

1

Dynamic Programming: Computational Biology
Applications

  RNA Secondary Structure
  Sequence Alignment

Objectives

1 Mar 25, 2009 CS211 1

What is the key idea?

What is our approach to solve a problem using
dynamic programming?

Review: Dynamic Programming

2 Mar 25, 2009 CS211

What is the key idea?
  Memoization: remember the answer for subproblems

–  Improves running time
–  Tradeoff in space

What is our approach to solve a problem using
dynamic programming?

  Figure out what we’re optimizing
  Figure out how to break the problem into subproblems
  Figure out how to compute solution from subproblems
  Define the recurrence relation between the problems

Review: Dynamic Programming

3 Mar 25, 2009 CS211

Weighted interval scheduling

Segmented least squares

Knapsack

What was the Key to Solving each of
these Problems?

4 Mar 25, 2009 CS211

Weighted interval scheduling
  Binary decision: job was in or wasn’t
  Know conflicts reduce problem

Segmented least squares
  Knew last point was definitely in one segment

–  Could reduce
  Multiway decision many possibilities for segment

starting point
Knapsack
  If select an item, reduce available size by item’s size

–  Find opt solution for smaller weight, remaining items

What was the Key to Solving each of
these Problems?

5 Mar 25, 2009 CS211

RNA SECONDARY
STRUCTURE

Applications of Dynamic Programming to Computational Biology

6

3/28/09

2

7

RNA Secondary Structure
RNA. String B = b1b2…bn over alphabet { A, C, G, U }
Secondary structure. RNA is single-stranded so it tends

to loop back and form base pairs with itself. This
structure is essential for understanding behavior of
molecule.

G

U

C

A

G A

A

G

C G

A

U
G

A

U

U

A

G

A

C A

A

C

U

G

A

G

U

C

A

U

C

G

G

G

C

C

G

Ex: GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA

complementary base pairs: A-U, C-G
Mar 25, 2009 CS211 8

RNA Secondary Structure: Which
Pairs Can We Combine?

A set of pairs S = { (bi, bj) } that satisfy:
  [Watson-Crick] S is a matching and each pair in S

is a Watson-Crick complement: A-U, U-A, C-G, or
G-C

  [No sharp turns] The ends of each pair are
separated by at least 4 intervening bases. If (bi, bj)
∈ S, then i < j - 4

  [Non-crossing] If (bi, bj) and (bk, bl) are two pairs
in S, then we cannot have i < k < j < l

Mar 25, 2009 CS211

9

RNA Secondary Structure
A set of pairs S = { (bi, bj) } that satisfy:
  [Watson-Crick] S is a matching and each pair in S is a

Watson-Crick complement: A-U, U-A, C-G, or G-C
  [No sharp turns] The ends of each pair are separated by at

least 4 intervening bases. If (bi, bj) ∈ S, then i < j - 4
  [Non-crossing] If (bi, bj) and (bk, bl) are two pairs in S, then

we cannot have i < k < j < l
Free energy. Usual hypothesis is that an RNA molecule

will form the secondary structure with the optimum
total free energy.

Goal. Given an RNA molecule B = b1b2…bn, find a
secondary structure S that maximizes the number of
base pairs

approximate by number of base pairs

Mar 25, 2009 CS211 10

Examples of RNA Secondary
Structure

C

G G

C

A

G

U

U

U A

A U G U G G C C A U

ok

G G

C

A

G

U

U A

A U G G G C A U

sharp turn

G

G
≤4

C

G G

C

A

U

G

U

U A

A G U U G G C C A U

crossing

base pair

Mar 25, 2009 CS211

11

Toward a Solution
First attempt. OPT(j) = maximum number of base

pairs in a secondary structure of the substring
b1b2…bj

Towards a recurrence relation…
  What are the possibilities?

–  What does bj match with?
  What are the subproblems?

1 j

Mar 25, 2009 CS211 12

Toward a Solution
First attempt. OPT(j) = maximum number of base

pairs in a secondary structure of the substring
b1b2…bj

Relation:
  If j isn’t involved in a pair: Opt(j-1)
  If j is involved, results in two sub-problems

–  Finding secondary structure in: b1b2…bt-1
–  Finding secondary structure in: bt+1bt+2…bj-1

1 t j

match bt and bj

OPT(t-1)

need more subproblems

Mar 25, 2009 CS211

Doesn’t match our subproblem (doesn’t start at 1)
Need to start anywhere

3/28/09

3

Notation. OPT(i, j) = maximum number of base pairs
in a secondary structure of the substring bibi+1…bj

  What are the different cases?
  How does it affect the recurrence relation?

–  For example, when will we know that there isn’t a pair?

Dynamic Programming Over
Intervals

13 Mar 25, 2009 CS211

Notation. OPT(i, j) = maximum number of base pairs
in a secondary structure of the substring bibi+1…bj

  Case 1. If i ≥ j - 4
–  OPT(i, j) = 0 by no-sharp turns condition

  Case 2. Base bj is not involved in a pair
–  OPT(i, j) = OPT(i, j-1)

  Case 3. Base bj pairs with bt for some i ≤ t < j - 4
–  non-crossing constraint decouples resulting sub-

problems
–  OPT(i, j) = 1 + maxt { OPT(i, t-1) + OPT(t+1, j-1) }

Dynamic Programming Over
Intervals

14 Mar 25, 2009 CS211

take max over t such that i ≤ t < j-4 and
bt and bj are Watson-Crick complements

Putting it all together…

  Opt(i,j) = max(Opt(i,j-1), 	
	 	 maxt(1+Opt(i,t-1)+Opt(t+1,j-1)))

Recurrence Relation

15 Mar 25, 2009 CS211

j not in a base pair in optimal solution

j in a base pair in optimal solution
Adds 1 pair
Look at remaining letters

16

RNA Algorithm
Q. What order to solve the sub-problems?
A. Do shortest intervals first

Costs?

Initialize M[i,j] = 0 for i >= j-4	

RNA(b1,…,bn):	
 for k = 5, 6, …, n-1	
 for i = 1, 2, …, n-k	
 j = i + k	

	 M[i, j] = max(M[i,j-1], 	
	 	 maxt(1+M[i,t-1]+M[t+1,j-1]))	

 return M[1, n]	

0 0 0
0 0
0 2

3
4

1

i

6 7 8 9
j

Mar 25, 2009 CS211

Left endpoint

Right endpoint

5
6
7
8

D
is

ta
nc

e

(distances)
(start)

(end)

17

RNA Algorithm
Q. What order to solve the sub-problems?
A. Do shortest intervals first

Running time: O(n3)

Initialize M[i,j] = 0 for i >= j-4	

RNA(b1,…,bn):	
 for k = 5, 6, …, n-1	
 for i = 1, 2, …, n-k	
 j = i + k	

	 M[i, j] = max(M[i,j-1], 	
	 	 maxt(1+M[i,t-1]+M[t+1,j-1]))	

 return M[1, n]	

Mar 25, 2009 CS211

0 0 0
0 0
0 2

3
4

1

i

6 7 8 9
j

Left endpoint

Right endpoint

5
6
7
8

D
is

ta
nc

e

(distances)
(start)

(end)

18

Dynamic Programming Summary
Recipe
  Characterize structure of problem
  Recursively define value of optimal solution
  Compute value of optimal solution
  Construct optimal solution from computed information

Dynamic programming techniques
  Binary choice: weighted interval scheduling
  Multi-way choice: segmented least squares
  Adding a new variable: knapsack
  Dynamic programming over intervals: RNA secondary structure

Top-down vs. bottom-up: different people have different
intuitions

Mar 25, 2009 CS211

3/28/09

4

SEQUENCE ALIGNMENT

19

Problem

20

How does Google know what I really meant?

How similar are two strings?
  ocurrance
  occurrence

We intuitively can tell that these two are similar
  Systematic measurement?

String Similarity

21 Mar 25, 2009 CS211

How similar are two strings?
  ocurrance
  occurrence

Measurements
  Gap (-): add a letter
  Mismatch

String Similarity

22 Mar 25, 2009 CS211

o c u r r a n c e

c c u r r e n c e o

-

6 mismatches, 1 gap

o c u r r a n c e

c c u r r e n c e o

-

1 mismatch, 1 gap

o c u r r n c e

c c u r r n c e o

- - a

e -
0 mismatches, 3 gaps

Which is the best measurement?

23

Basis for Unix diff	
  Longest common subsequence

Spam filters
  Similarity to known spam message

Computational biology
  Ex: Figuring out how similar two genomes (sequences

of A, C, G, T) are

Alignment with non English/natural language strings
are less obvious how to align

Applications of String Similarity

Mar 25, 2009 CS211

Covered in CS297 this spring

24

[Levenshtein 1966, Needleman-Wunsch 1970]

  Gap penalty: δ
  Mismatch penalty: αpq

–  If p and q are the same, then mismatch penalty is 0
  Cost = sum of gap and mismatch penalties

2δ + αCA

C G A C C T A C C T

C T G A C T A C A T

T G A C C T A C C T

C T G A C T A C A T

- T

C

C

C
αTC + αGT + αAG+ 2αCA

-

Edit Distance

Mar 25, 2009 CS211

Parameters allow
us to tweak cost

3/28/09

5

25

Goal: Given two strings X = x1 x2 . . . xm and
Y = y1 y2 . . . yn find alignment of minimum cost

An alignment M is a set of ordered pairs xi-yj such
that each item occurs in at most one pair and no
crossings

The pair xi-yj and xi'-yj' cross if i < i', but j > j’.

Sequence Alignment

Mar 25, 2009 CS211

o c u r e r n c e

c c u r r e n c e o

c

crossing

o c u r e r n c e

c c u r r e n c e o

c

2 mismatches

26

X = CTACCG
Y = TACTG
Solution: M = x2-y1 , x3-y2, x4-y3, x5-y4 , x6-y6

Sequence Alignment Example

C T A C C -

T A C A T -

G

G
y1 y2 y3 y4 y5 y6

x2 x3 x4 x5 x1 x6

Mar 25, 2009 CS211

€

cost(M) = αxi y j
(xi, y j)∈ M
∑

mismatch
    

+ δ
i : xi unmatched

∑ + δ
j : y j unmatched

∑

gap
            

What is the cost of M?

Recall: mismatch penalty is 0 if xi and yj are the same

Consider the last character of the strings X and Y:
xM and yN

What are the possibilities for xM and yN in terms of the
alignment?

Sequence Alignment Case Analysis

27 Mar 25, 2009 CS211

Consider last character of strings X and Y: xM and yN

  Case 1: xM and yN are aligned
  Case 2: xM is not matched
  Case 3: yN is not matched

Sequence Alignment Case Analysis

28 Mar 25, 2009 CS211

Consider last character of strings X and Y: xM and yN

  Case 1: xM and yN are aligned
  Case 2: xM is not matched
  Case 3: yN is not matched

OPT(i, j) = min cost of aligning strings x1 x2 . . . xi and
y1 y2 . . . yj

Sequence Alignment Case Analysis

29 Mar 25, 2009 CS211

What are the costs for these cases?

Consider last character of strings X and Y: xM and yN

  Case 1: xM and yN are aligned
–  Pay mismatch for xM-yN + min cost of aligning rest of

strings
–  OPT(M, N) = αXmYn + OPT(M-1, N-1)

  Case 2: xM is not matched
–  Pay gap for xM + min cost of aligning rest of strings
–  OPT(M, N) = δ + OPT(M-1, N)

  Case 3: yN is not matched
–  Pay gap for yN + min cost of aligning rest of strings
–  OPT(M, N) = δ + OPT(M, N-1)

Sequence Alignment Cost Analysis

30 Mar 25, 2009 CS211

3/28/09

6

Base costs?  i or j is 0

  What happens when we run out of letters in one string
before the other?

Sequence Alignment Cost Analysis

31 Mar 25, 2009 CS211

X = CTACCG
Y = TACTG
X = CTACCG
Y = TACTG

Sequence Alignment: Problem
Structure

32 Mar 25, 2009 CS211

€

OPT(i, j) =






 







jδ if i = 0

min

αxi y j
+ OPT(i −1, j −1)

δ + OPT(i −1, j)
δ + OPT(i, j −1)









otherwise

iδ if j = 0

Gaps for remainder of X

Gaps for remainder of Y

33

Sequence Alignment: Algorithm

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, δ, α) 	
 for i = 0 to m	
 M[0, i] = iδ	
 for j = 0 to n	
 M[j, 0] = jδ	

 for i = 1 to m	
 for j = 1 to n	
 M[i, j] = min(α[xi, yj] + M[i-1, j-1],	
 δ + M[i-1, j],	
 δ + M[i, j-1])	
 return M[m, n]	

Mar 25, 2009 CS211

Costs?

Cost parameters

34

Sequence Alignment: Analysis

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, δ, α) 	
 for i = 0 to m	
 M[0, i] = iδ	
 for j = 0 to n	
 M[j, 0] = jδ	

 for i = 1 to m	
 for j = 1 to n	
 M[i, j] = min(α[xi, yj] + M[i-1, j-1],	
 δ + M[i-1, j],	
 δ + M[i, j-1])	
 return M[m, n]	

Mar 25, 2009 CS211

O(mn)

35

Example

Mar 25, 2009 CS211

α = 1, for vowel mismatch
α = 2, for other mismatches
δ = 2

b a i t
0 2 4 6 8

b 2
o 4
o 6
t 8

i

j

X = bait Y = boot

36

Example

Mar 25, 2009 CS211

X = bait Y = boot
α = 1, for vowel mismatch
α = 2, for other mismatches
δ = 2

b a i t
0 2 4 6 8

b 2 0 2 4 6
o 4
o 6
t 8

i=1

j

3/28/09

7

37

Example

Mar 25, 2009 CS211

X = bait Y = boot
α = 1, for vowel mismatch
α = 2, for other mismatches
δ = 2

b a i t
0 2 4 6 8

b 2 0 2 4 6
o 4 2 1 3 5
o 6
t 8

i=2

j

38

Example

Mar 25, 2009 CS211

X = bait Y = boot
α = 1, for vowel mismatch
α = 2, for other mismatches
δ = 2

b a i t
0 2 4 6 8

b 2 0 2 4 6
o 4 2 1 3 5
o 6 4 3 2 4
t 8

i=3

j

39

Example

Mar 25, 2009 CS211

X = bait Y = boot
α = 1, for vowel mismatch
α = 2, for other mismatches
δ = 2

b a i t
0 2 4 6 8

b 2 0 2 4 6
o 4 2 1 3 5
o 6 4 3 2 4
t 8 6 5 4 2

i=4

j

40

Example

Mar 25, 2009 CS211

X = bait Y = boot
α = 1, for vowel mismatch
α = 2, for other mismatches
δ = 2

b a i t
0 2 4 6 8

b 2 0 2 4 6
o 4 2 1 3 5
o 6 4 3 2 4
t 8 6 5 4 2

i=4

j

41

Sequence Alignment: Algorithm

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, δ, α) 	
 for i = 0 to m	
 M[0, i] = iδ	
 for j = 0 to n	
 M[j, 0] = jδ	

 for i = 1 to m	
 for j = 1 to n	
 M[i, j] = min(α[xi, yj] + M[i-1, j-1],	
 δ + M[i-1, j],	
 δ + M[i, j-1])	
 return M[m, n]	

Mar 25, 2009 CS211

What are the space costs?

When computing M[i,j], which entries in M are used?

Problem Set 5 due Friday
Keep reading Chapter 6

This Week

42 Mar 25, 2009 CS211

