Objectives

Data structures: Heaps, Graphs

Jan 22,2010 CSCI211 - Sprenkle 1

Review: Priority Queues for Sorting
Add elements into PQ with the number’s
value as its priority

Then extract the smallest number until done
» Come out in sorted order

Sorting n numbers takes at
least O(h logn) time

What is the goal running time for our
PQ's operations? O(logn)

Jan 22,2010 Already know our “loops” will be O(n) 2

Heap Defined

Combines benefits of sorted array and list
Balanced binary tree

« Each node has at most 2 children
* Node value is its key

root —— ()
D) Heap order: each node’s key is

J ?\ é at least as large as its parent’s
AHHOOO

Note: not a binary search tree

Jan 22, 2010 CSCI211 - Sprenkle 3

Review: Implementing a Heap

Option 1: Use pointers /\

» Each node keeps q/

Element it stores, key

~

&(7
3 pointers: 2 children, parent /" \ /\) \?\
®O®O O

Option 2: No pointers
» Requires knowing upper bound on n
» For node at position i

left child is at 2/
right child is at 2i+1

Kk I lel [[ssi7[z0] s [1s]s is[x]

Jan 22, 2010 CSCI211 - Sprenkle 4

Heapify-Up

Claim. Assuming array H is almost a heap
with key of H[1] too small, Heapify-Up
fixes the heap property in O(log i) time
» Can insert a new element in a heap of n
elements in O(log n) time
Proof. By induction
~ Ifi=1, is already a heap = O(1)
»Ifi>1,
Swaps are O(1)
Swaps continue up to root (max) - log i

Jan 22,2010 CSCI211 - Sprenkle 5

Deleting an Element
Delete at position i

Delete at
position 3

\vn
\

OO 5*“ ®

Jan 22,2010 CSCI211 - Sprenkle 6

Deleting an Element

Delete at position i
Removing an element:
> Messes up heap order
» Leaves a “hole” in the heap
Not as straightforward as Heapify-Up
Algorithm
1. Fillin element where hole was
Patch hole: move nth element into it spot
2. Adjust heap to be in order
At position i because moved nth item up to i

Jan 22,2010 CSCI211 - Sprenkle 7

1/22/10

Deleting an Element

Delete at
g/

position 3
(& 45 d
clofolololo

What are the possibilities when we move nth
element (w) into spot where element was
removed?

» Give an example for each possibility

Jan 22, 2010 CSCI211 - Sprenkle 8

Deleting an Element

Delete at
position 3

Two possibilities: element w is
» Too small: violation is between it and parent >
Heapify-Up (example: w = 0)
> Too big: with one or both children - Heapify-
Down (example: w = 12)

Jan 22, 2010 CSCI211 - Sprenkle 9

Deleting an Element

Example where new key is too small

Delete 9
Replace with 5

Jan 22, 2010 CSCI211 - Sprenkle 10

Deleting an Element

Example where new key is too small

Delete 9
Replace with 5
But 5 < 6, so need to Heapify-Up

Jan 22,2010 CSCI211 - Sprenkle "

Heapify-Down

Heapify-down(H, i):
n = length(H)
if 2i > n then Why can we stop?
Terminate with H unchanged
else if 21 < n then
left=2i and right=2i+1
j be index that minimizes
key[H[left]] and key[[H[right]]
else if 2i = n then
j=21i

if key[H[3J1] < key[H[i]] then
swap array entries H[i] and H[j]
Heapify-down(H, j)

Jan 22,2010 CSCI211 - Sprenkle 12

Heapify-Down

1/22/10

Heapify-down(H, i):
n = length(H) -
if 2i > n then i is a leaf - nowhere to go
Terminate with H unchanged
else if 21 < n then
left=21i and right=2i+1
j be index that minimizes
key[H[left]] and key[[H[right]]
else if 21 = n then
j=21i

if key[H[J1] < key[H[i]] then
swap array entries H[i] and H[j]
Heapify-down(H, j)

Jan 22,2010 CSCI211 - Sprenkle

Practice: Heapify-Down

Moved 21 to where
element was removed

Jan 22, 2010 CSCI211 - Sprenkle 14

Practice: Heapify-Down

Practice: Heapify-Down

Jan 22, 2010 CSCI211 - Sprenkle

Jan 22, 2010 CSCI211 - Sprenkle 16

Runtime of Heapify-Down?

Heapify-down(H, i):
n = length(H)
if 21 > n then
Terminate with H unchanged
else if 21 < n then
left=21i and right=2i+1
j be index that minimizes
key[H[left]] and key[[H[right]]
else if 2i = n then
j=21i

if key[H[3j]] < key[H[i]] then
swap array entries H[i] and H[j]
Heapify-down(H, j)

Num swaps: O(log n)

Jan 22,2010 CSCI211 - Sprenkle

Implementing Priority Queues
with Heaps

Creates an empty heap that

StartHeap(N) can hold N elements
Insert(v) Inserts item v into heap
. . Identifies minimum element in

FmdM'n() heap but does not remove it

q Deletes element in heap at
Delete(i) position i

Identifies and deletes an

ExtractMin() element with minimum key from

heap

Jan 22,2010 CSCI211 - Sprenkle 18

Implementing Priority Queues
with Heaps

[Operation | Description ____Run Time___|

1/22/10

Creates an empty heap that

StartHeap(N) can hold N elements O(N)
Insert(v) Inserts item v into heap O(log n)
5 A Identifies minimum element in
Fmde() heap but does not remove it 0(1)
. Deletes element in heap at
Delete(i) bosition P O(log n)

Identifies and deletes an
element with minimum key from O(log n)
heap

ExtractMin()

Jan 22,2010 CSCI211 - Sprenkle 19

Comparing Data Structures

o en | i |
List List

StartHeap(N)

Insert(v)

FindMin()

Delete(i)

ExtractMin()

Jan 22,2010 CSCI211 - Sprenkle 20

Comparing Data Structures

Operation Unsorted Sorted
List List

StartHeap(N)
Insert(v)
FindMin()
Delete(i)
ExtractMin()

Jan 22,2010

O(N)
O(log n)
o(1)
O(log n)
O(log n)

CSCI211 - Sprenkle

21

Comparing Data Structures

Operation Unsorted Sorted
List List

StartHeap(N) O(N) o(1) O(1)
Insert(v) O(log n) o(1) o(n)
FindMin() Oo(1) O(n) O(1)
Delete(i) O(log n) O(n) O(n)
ExtractMin() O(log n) O(n) o(1)

Additional Heap Operations

Access given element of PQ

Maintain additional array Position that stores
current position of each element in heap

Operations:
Delete(Position[v])
Does not increase overall running time
ChangeKey(v, a)
Changes key of element v to key(v) = a

Identify position of element v in array (Position
array)

Change key, heapify

Jan 22,2010 CSCI211 - Sprenkle 23

GRAPHS

Jan 22,2010 CSCI211 - Sprenkle 24

1/22/10

Undirected Graphs G = (V, E) World Wide Web
V = nodes (vertices) . Web graph
E = edges between pairs of nodes > Node: web page
Captures pairwise relationship between > Edge: hyperlink from one page to another

objects Directed Graph: ey
Graph size parameters: n = |V|, m = |E|

netscape.com sportsillustrated.cnn.com people.com time.com
AR R vpsasers ‘\
E={1-2,1-3,2-3,2-4,2-5,3-5,3-7,3-8,4-5,5-6 }
a'e‘ n=8 hbo.com
G W men | J
© =
Jan 22, 2010 CSCI211 - Sprenkle 25 Jan 22,2010 CSCI211 - Sprenkle 26
Social Networks Ecological Food Web
lr;lggr(;,l:epeople; Edge: relationship between 2 Food web graph Directed Graph:
Everything Bad Is Good for You: How Today's » Node = species
Popular Culture Is Actually Making Us Smarter » Edge = from prey to
. redator
+ Television shows Social network of B D\\/D\ P
have complex 24's Jack Bauer \w‘:oj\
plots, complex 2!

social networks

http://www.cs.duke.edu/csed/harambeenet/

modules.html Reference:

http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/ SalGraphics/salfoodweb.giff|

Jan 22, 2010 Jan 22, 2010 CSCI211 - Sprenkle 28

Graph Representation:
Adjacency Matrix
nxn matrix with A, = 1 if (u, v) is an edge

~ Two representations of each edge (symmetric

Graph Applications

fransportation street intersections highways m atrix)
communication computers fiber optic cables
; i » Space?
World Wide Web web pages hyperlinks
sacial peaple relationships » Checking if (u, v) is an edge?
food web species redator-pre; o
i P prey > Identifying all edges?
software systems functions function calls
scheduling tasks precedence constraints
circuits gates wires
Jan 22,2010 CSCI211 - Sprenkle 29 Jan 22,2010 CSCI211 - Sprenkle 30

1/22/10

Graph Representation:
Adjacency Matrix
nxn matrix with A, = 1if (u, v) is an edge
» Two representations of each edge (symmetric
matrix)
> Space: ©(n?)
» Checking if (u, v) is an edge: ©(1) time
> Identifying all edges: ©(n?) time

Jan 22,2010 CSCI211 - Sprenkle

31

Graph Representation:
Adjacency List

Node indexed array of lists

» Two representations of each edge

» Space?
» Checking if (u, v) is an‘edg} W:::r‘;fe;?e
» |dentifying all edges? edges
NOCSHn
ONNO ¢ [F-EEEE
N MnCcEaCEOCRLOROD
2 ¥ O30k
5 L[]
O—E © o [
o gacann
s G317

Jan 22, 2010 CSCI211 - Sprenkle 32

Graph Representation:
Adjacency List
Node indexed array of lists
» Two representations of each edge
» Space =2m +n=0(m + n)
» Checking if (u, v) is an edge takes O(deg(u))

degree = number of
neighbors of u

Paths and Connectivity

Def. A path in an undirected graph G = (V, E) is
a sequence P of nodes v, vy, ..., Vi, Vi
» each consecutive pair v, v;,4 is joined by an edge in
E

Def. A path is simple if all nodes are distinct

Def. An undirected graph is connected if ¥
pair of nodes u and v, there is a path between u

and v oNNO) @
‘ *Short path
a'e‘ *Distance
O—& © ()
Jan 22, 2010 ° @ 34

time
» ldentifying all edges takes ©®(m + n) time
1 edges
ONNO) ¢ G- EHEE]
N o » (e[l
'9 ¥ O9-Gl
5 [elo}{ {23 -{e]e]
O—© © o [0+
© 7 Bz
gacenn
Jan 22,2010 CSCI211 - Sprenkle 33
Cycles

Def. A cycleis apath vy, v,, ..., Vi_q, Vi in
which v, = v,, k> 2, and the first k-1 nodes
are all distinct

cycle C = 1-2-4-5-3-1

Jan 22,2010 CSCI211 - Sprenkle

35

Looking Ahead

Reading: Starting Chapter 3

Wednesday: notes about readings are due
Friday: Problem Set 2

» Start thinking about problems early

Jan 22,2010 CSCI211 - Sprenkle 36

