Objectives
Dynamic Programming

« Finish weighted scheduling
« Segmented least squares

Dynamic Programming: Key Idea?

WEIGHTED INTERVAL
SCHEDULING
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Quote of the NCAA Tourney

This is the guy who has to get it done for
Binghamton. He’s their CPU if this is a

processing unit, the one that makes everything
happen.

-- Clark Kellogg on Emanuel Mayben

compulter.... He’s the operating system.... He’s the

Dynamic Programming: Key Idea

Memoization. Keep the previous results to reduce
running time

« Tradeoff of space for time

Limitation of Greedy Algorithm

Recall. Greedy algorithm works if all weights are 1.
« Consider jobs in ascending order of finish time

« Add job to subset if it is compatible with previously
chosen jobs

Observation. Greedy algorithm can fail spectacularly
if arbitrary weights are allowed

weight =999 |

weight = 1
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Dynamic Programming: Binary Weighted Interval Scheduling:
hoice Memoization
Notation. OPT = value of optimal solution to the Memoization. Store results of each sub-problem in a
problem consisting of job requests 1, 2, ..., j cache; lookup as needed.
« Case 1: OPT selects job j Input: n jobs (associated start time s;, finish time f;, and
value v;)

- can't use incompatible jobs { p() + 1, p() + 2, ...,j- 1}

. . . - Sort jobs by finish times so that f; < f, < ... = f,
- must include optimal solution to problem consisting of Compute p(1), pC2), -, p(n)
remaining compatible jobs 1, 2, ..., p())
. . for j=1ton
« Case 2: OPT does not select job j M[3] = empty <«—giobal array
- must include optimal solution to problem consisting of MLo] - o Because we have jobs whose p(j) =0
remaining compatible jobs 1, 2, ..., j-1 M-Compute-0pt(j):
if M[j] is empty:
p— 0 if j=0 M[7] =_max(vj + M-Compute-Opt(p(3j)), M-Compute-Opt(j-1))
PT(j)= max { v; + OPT(p(})), OPT(j-1)} otherwise Choose the better of return M[j]

the two solutions ‘ Need to analyze runtime... !
csa11

csait 7

Example Example
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Weighted Interval Scheduling:
emoization Analysis

Costs?

Input: n jobs (associated start time s;, finish time f, and
value v;)

Sort jobs by finish times so that f; < f, < ... = f,
Compute p(1), p(2), -, p(n)

for j =1ton
M1 = empty
M[o] =

M-Compute-0pt(j):
if M[j] is empty:
M[3]1 = max(v; + M-Compute-Opt(p(3)), M-Compute-Opt(j-1))
return M[j]
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Weigllolted Interval Scheduling:
emoization Analysis

Costs?

Input: n jobs (associated start time s;, finish time f;, and
value v;)

Sort jobs by finish times so that f; < f, = ... s f,  O(nlogn)
Compute p(1), p(2), .., p(n) O(n)

for j=1ton
MLj] = empty
M[@] = 0

O(n)

M-Compute-0pt(3): o(n)
if M[j] is empty:
M[3] = maxCv; + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[j]

Weighted Interval Scheduling:
Running Time
Claim. Memoized version of algorithm takes O(n log n) time
« Sort by finish time: O(n log n)
« Computing p(-): O(n) after sorting by start time
« M-Compute-0pt(j): each invocation takes O(1) time and
either
- (i) returns an existing value M[j]
— (ii) fills in one new entry M[j] and makes two recursive calls
« Progress measure ® = # nonempty entries of M[]
— (i) initially @ = 0, throughout ® <n
- (i) increases ® by 1 = at most 2n recursive calls
« Overall running time of M-Compute-0pt(n) is O(n). =

Remark. O(n) if jobs are pre-sorted by start and finish times




Weighted Interval Scheduling:
Finding a Solution

Q. Dynamic programming algorithms compute
optimal value. What if we want the solution itself?

A. Do some post-processing

« Looking at M, how do we know which set of intervals
were chosen?

M 0 A B C D E F G H
0 1 2 3 5 5 5 5 6
L L L L LR LR LR L
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Weighted Interval Scheduling:
Finding a Solution

Q. Dynamic programming algorithms compute
optimal value. What if we want the solution itself?

A. Do some post-processing

Run M-Compute-0pt(n)
Run Find-Solution(n)

Find-Solution(j):

if j =0:
output nothing

elif v; + M[p(3)] > M[j-1]:
print j
Find-Solution(p(jd)

else:
Find-Solution(j-1)

Turning it Around...

We solved the Fibonacci problem as both recursive/
memoized and an iterative algorithm

Can we write this algorithm as an iterative solution?

Input: n jobs (associated start time s;, finish time f;, and
value vy;)

Sort jobs by finish times so that f; = f; = ... = f,
Compute p(1), p(2), .., p(n)

for j =1ton
MLj] = empty
M[@] = @

M-Compute-0pt(j):
if M[j] is empty:
MLj] = maxCv; + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))

return M[7] L

Iterative Solution

Build up solution from subproblems instead of
breaking down
Input: n, sq,.,Sy, fiym,fn | Viye,Vy

Sort jobs by finish times so that f, = f,

s ... s f.

Compute p(1), p(2), -, p(n)

Iterative-Compute-Opt
M[@e] = @
for j=1ton
M[J] = maxCv; + M[p(3)], M[3-11)

Typically, approach we’ll take "Runtime? |

Example: Iteratively
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Example: Iteratively
| M[3] = maxCv; + MIp(id1, ML[i-11)]
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Example: Iteratively

| ML3j] = maxCv; + MIpCid1, MLCi-11D]
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Example: Iteratively

| M[3] = maxCv; + MIp(id1, MCi-1DD]
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Example: Iteratively
| M[31 = maxCv; + M[pCid1, MLi-11)]
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Example: Iteratively
| MLj1 = maxCv; + MIpCid1, M[i-11)]
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Example: Iteratively
| M[3] = maxCv; + MIp(3)1, MLi-1D)]
P()
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Example: Iteratively
[ ML3] = maxCv; + MCp(3)1, MLCi-11))
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Example: Iteratively
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Summary:
Properties of Problems for DP

Polynomial number of subproblems

Solution to original problem can be easily computed
from solutions to subproblems

Natural ordering of subproblems, easy to compute
recurrence
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SEGMENTED LEAST
SQUARES

Least Squares

Foundational problem in statistic and numerical analysis

oo (% )

Find a line y = ax + b that minimizes the sum of the
squared error

« “line of best fit”

Sum of 0 )
squared | SSE = 3 (y—ax,-b)
error

Given n points in the plane: (x,, y,), (X, Ya) » -

X
Closed form solution. Calculus => min error is achieved

WheN nSi <GS0, S -als
3 -Gy "

Least Squares

Foundational problem in statistic and numerical
analysis

Given n points in the plane: (X, y;), (X5, ¥2) » - - -, (X0
¥a)

Find a line y = ax + b that minimizes the sum of the
squared error

« “line of best fit”

Sum of

< 2
squared | SSE = El(yr*“"r*b)
error
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Least Squares

What happens to the error if we try to fit one line to
these points?

o
()O
o

© 080

o
0008 90 00
00

\ X

What pattern does it seem like these points have?

48




Least Squares

What happens to the error if we try to fit one line to
these points?

« Large error

y 0°

\ x

Pattern: More like 3 lines
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Segmented Least Squares

Points lie roughly on a sequence of line segments

Given n points in the plane (X;, Y1), (X2, ¥2) 5 « « + 5 (Xos
y.) with x, < x,< ... < x,, find a sequence of lines
that minimizes f(x)

If | want the best fit, how many lines would | use?

@

y 0

Segmented Least Squares

Points lie roughly on a sequence of line segments

Given n points in the plane (x;, ¥;), (Xo, ¥2) 5 - - -, (X0, Ya)
with x,< x,< ... <X, find a sequence of lines that
minimizes f(x)

Q. What's a reasonable choice for f(x) to balance
accuracy and parsi'mon,\/?
t

goodness of fit number of lines

Segmented Least Squares

Points lie roughly on a sequence of several line segments.

Given n points in the plane (x;, y,), (X5, ¥2) 5 - - -, (X, ¥,) With X,
<Xx,<... <X, find a sequence of lines that minimizes:

« the sum of the sums of the squared errors E in each segment
« the number of lines L
Tradeoff function: E + c L, for some constant ¢ > 0.

O
Y O,
How should we define
an optimal solution?
X,
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Segmented Least Squares

What made it seem like the points were in 3 lines?
What happened?

Segmented Least Squares

What happens to the error if we try to fit one line to
these points?

Looking for change in linear approximation

« Where to partition points into line segments




Recall:
Properties of Problems for DP

Polynomial number of subproblems

Solution to original problem can be easily computed
from solutions to subproblems

Natural ordering of subproblems, easy to compute
recurrence

* Figure out how to compute solution from subproblems
» Define the recurrence relation between the problems

Mar 20, 2009 cse1
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Toward a Solution

Consider just the first or last point

« What do we know about those points/their segments/
cost of segments?
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