
2/4/09

1

Data structures: Graphs
  DAGs and Topological order

Greedy Algorithms

Objectives

1 Feb 4, 2009 CS211 1 2 Feb 4, 2009 CS211 2

Strong Connectivity: Algorithm
Theorem. Can determine if G is strongly connected
in O(m + n) time.
Pf.
  Pick any node s
  Run BFS from s in G
  Run BFS from s in Grev
  Return true iff all nodes reached in both BFS

executions
  Correctness follows immediately from previous lemma

– All reachable from one node, s is reached by all

reverse orientation of every edge in G
Or, the BFS using the in edges

Either DFS or BFS

3 Feb 4, 2009 CS211 3

Directed Acyclic Graphs
Def. A DAG is a directed graph that contains no
directed cycles.
Example. Precedence constraints: edge (vi, vj)
means vi must precede vj
  Course prerequisite graph: course vi must be taken

before vj
  Compilation: module vi must be compiled before vj
  Pipeline of computing jobs: output of job vi needed to

determine input of job vj

a DAG:

v2 v3

v6 v5 v4

v7 v1
4 Feb 4, 2009 CS211 4

Directed Acyclic Graphs
Given a set of tasks with dependencies, what is a

valid order in which the tasks could be performed?
Def. A topological order of a directed graph G =
(V, E) is an ordering of its nodes as v1, v2, …, vn so
that for every edge (vi, vj) we have i < j.

a DAG
a topological ordering

All edges point “forward”

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7

Does every DAG have a topological ordering?
  If so, how do we compute one?

What would we need to be able to create a
topological ordering?

  What are some characteristics of this graph?

Directed Acyclic Graphs

5 Feb 4, 2009 CS211 5

v1 v2 v3 v4 v5 v6 v7

Need some place to start … Where?

Does every DAG have a topological ordering?
  If so, how do we compute one?

What would we need to be able to create a
topological ordering?

  What are some characteristics of this graph?

Directed Acyclic Graphs

6 Feb 4, 2009 CS211 6

v1 v2 v3 v4 v5 v6 v7

Need someplace to
start:

a node with no
incoming edges (no

dependencies) Note that both v1 and v2
have no incoming edges

2/4/09

2

Does every DAG have a node with no incoming
edges?

Directed Acyclic Graphs

7 Feb 4, 2009 CS211 7

Lemma. If G is a DAG, then G has a node with no
incoming edges

  That node is our starting point of the topological
ordering

How to prove?

Directed Acyclic Graphs

8 Feb 4, 2009 CS211 8

Lemma. If G is a DAG, then G has a node with no
incoming edges

Proof idea: consider if there is no node without
incoming edges

  What does that mean?

  Recall that we know that G is a DAG
– What are its properties?

Directed Acyclic Graphs

9 Feb 4, 2009 CS211 9 10 Feb 4, 2009 CS211 10

Directed Acyclic Graphs
Lemma. If G is a DAG, then G has a node with no incoming
edges.
Pf. (by contradiction)
  Suppose that G is a DAG and every node has at least one

incoming edge
  Pick any node v, and follow edges backward from v

– Since v has at least one incoming edge (u, v), we can walk
backward to u

  Since u has at least one incoming edge (x, u), we can walk
backward to x

  Repeat until we visit a node, say w, twice
– Has to happen at least by n+1 steps (What if can’t go n+1 steps?)

  Let C denote the sequence of nodes encountered between
successive visits to w. C is a cycle. ▪

w x u v

With a node with no incoming edges, can create a
topological ordering

Think about a DAG with only one node. What is its
topological ordering?

Only two nodes?

Three nodes?
  What are the DAG, TO possibilities?

Creating a Topological Order

11 Feb 4, 2009 CS211

What are the possibilities?

Topological Order for Three Nodes

12 Feb 4, 2009 CS211

Can’t add any more edges without creating a cycle.

2/4/09

3

13 Feb 4, 2009 CS211 13

Directed Acyclic Graphs
Lemma. If G is a DAG, then G has a topological
ordering.
Pf. (by induction on n)
  Base case: true if n = 1
  Given DAG on n > 1 nodes, find a node v with no incoming

edges
  G - { v } is a DAG, since deleting v cannot create cycles
  By inductive hypothesis, G - { v } has a topological ordering
  Place v first in topological ordering; then append nodes of

G - { v }
  in topological order. This is valid since v has no incoming

edges. ▪

DAG
v

14 Feb 4, 2009 CS211 14

Directed Acyclic Graphs
Lemma. If G is a DAG, then G has a topological
ordering.
Algorithm:

DAG

v

15

v1

Topological Ordering Algorithm:
Example

Topological order:

v2 v3

v6 v5 v4

v7 v1

Feb 4, 2009 CS211 16

v2

Topological Ordering Algorithm:
Example

Topological order: v1

v2 v3

v6 v5 v4

v7

Feb 4, 2009 CS211

17

v3

Topological Ordering Algorithm:
Example

Topological order: v1, v2

v3

v6 v5 v4

v7

Feb 4, 2009 CS211 18

v4

Topological Ordering Algorithm:
Example

Topological order: v1, v2, v3

v6 v5 v4

v7

Feb 4, 2009 CS211

2/4/09

4

19

v5

Topological Ordering Algorithm:
Example

Topological order: v1, v2, v3, v4

v6 v5

v7

Feb 4, 2009 CS211 20

v6

Topological Ordering Algorithm:
Example

Topological order: v1, v2, v3, v4, v5

v6

v7

Feb 4, 2009 CS211

21

v7

Topological Ordering Algorithm:
Example

Topological order: v1, v2, v3, v4, v5, v6

v7

Feb 4, 2009 CS211 22

Topological Ordering Algorithm:
Example

Topological order: v1, v2, v3, v4, v5, v6, v7.

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7

Feb 4, 2009 CS211

Where are the costs?

Topological Order Runtime

23 Feb 4, 2009 CS211

Where are the costs?

Find a node without incoming edges and delete it:
O(n)

Repeat on all nodes
 O(n2)

Topological Order Runtime

24 Feb 4, 2009 CS211

Can we do better?

2/4/09

5

25 Feb 4, 2009 CS211 25

Topological Sorting Algorithm:
Running Time

Theorem. Find a topological order in O(m + n) time
Pf.
  Maintain the following information:

– count[w] = remaining number of incoming edges
– S = set of remaining nodes with no incoming edges

  Initialization: O(m + n) via single scan through graph
  Update: to delete v

– remove v from S

– decrement count[w] for all edges from v to w
•  add w to S if c count[w] hits 0

– O(1) per edge ▪

GREEDY ALGORITHMS

26 Feb 4, 2009 CS211

At each step
  Take as much as you can get

– “local” optimizations

Greedy Algorithms

27

How do you make change to give out the fewest
coins?

Example of Greedy Algorithm

28 Feb 4, 2009 CS211

How do you make change to give out the fewest
coins?

  Local optimum: coin of the highest value, less than the
remaining change owed

Example of Greedy Algorithm

29 Feb 4, 2009 CS211

while change > 0:	
	if change >= 25:	
	 	print “Quarter”	
	 	change -= 25	
	elif change >= 10:	
	 	print “Dime”	
	 	change -= 10	
	…	

Specifically, produce an optimal solution

Two approaches:
  Greedy algorithm stays ahead

– Does better than any other algorithm at each step

  Exchange argument
– Transform any solution into a greedy solution

Proving Greedy Algorithms Work

30 Feb 4, 2009 CS211

2/4/09

6

INTERVAL SCHEDULING
Greedy algorithm stays ahead

32

Interval Scheduling
Job j starts at sj and finishes at fj
Two jobs compatible if they don't overlap
Goal: find maximum subset of mutually compatible

jobs

Time
0 1 2 3 4 5 6 7 8 9 10 11

f
g

h

e

a
b

c
d

• Every job is worth
equal money.

• To earn the most
money  schedule the
most jobs

Consider jobs (or whatever) in some order
  Decision: what order is best

Take each job provided it's compatible with the ones
already taken

Greedy Algorithm Template

33 Feb 4, 2009 CS211

What are options for orders?

What is our goal?
What are we trying to
minimize/maximize?

What is the worst case?
34

Interval Scheduling: Greedy
Algorithms

Earliest start time. Consider jobs in ascending order of start
time sj

  Utilize CPU as soon as possible

Earliest finish time. Consider jobs in ascending order of finish
time fj

  Resource becomes free ASAP
  Maximize time left for other requests

Shortest interval. Consider jobs in ascending order of interval
length fj – sj

Fewest conflicts. For each job, count number of conflicting
jobs cj. Schedule in ascending order of conflicts cj

35

Interval Scheduling: Greedy
Algorithms

breaks earliest start time

breaks shortest interval

breaks fewest conflicts

Not optimal when …

36

Consider jobs in increasing order of finish time. Take each job
provided it's compatible with the ones already taken.

Runtime of algorithm?
  Where/what are the costs?

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn	

A = {}	
for j = 1 to n 	
 if (job j compatible with A)	
 A = A ∪ {j}	
return A 	

jobs
selected

Interval Scheduling: Greedy
Algorithm

2/4/09

7

Interval Scheduling

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

0 1 2 3 4 5 6 7 8 9 10 11

Jobs in order
of finishing

time

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B C

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B A

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B E

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B E D

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

2/4/09

8

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B E F

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B E G

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

Interval Scheduling

0 1 2 3 4 5 6 7 8 9 10 11
B E H

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

46

Consider jobs in increasing order of finish time. Take each job
provided it's compatible with the ones already taken.

Implementation. O(n log n)
  Remember job j* that was added last to A
  Job j is compatible with A if sj ≥ fj*

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn	

A = {}	
for j = 1 to n 	
 if (job j compatible with A)	
 A = A ∪ {j}	
return A 	

jobs
selected

Interval Scheduling: Greedy
Algorithm

Interval Scheduling: Analysis

Know that the intervals are compatible
  Handle by the if statement

But is it optimal?
  What are we looking for?

48

Interval Scheduling: Analysis
Theorem. Greedy algorithm is optimal.
Pf. (by contradiction)
  Assume greedy is not optimal, and let's see what happens
  Let i1, i2, ... ik denote set of jobs selected by greedy (k jobs)
  Let j1, j2, ... jm denote set of jobs in the optimal solution (m jobs)
  Same ordering, by finish times
 Want to show that k = m

j1 j2 jr

i1 i1 ir Greedy:

OPT:

What can we say about i1 and j1? f(i1) <= f(j1)

