
1/19/09

1

ALGORITHM ANALYSIS

4 Jan 19, 2009

Computational Tractability

"For me, great algorithms are the poetry of
computation. Just like verse, they can be
terse, allusive, dense, and even mysterious.
But once unlocked, they cast a brilliant new
light on some aspect of computing."

 -- Francis Sullivan

6

Computational Tractability

Charles Babbage (1864)

As soon as an Analytic Engine exists, it will necessarily guide
the future course of the science. Whenever any result is
sought by its aid, the question will arise - By what course of
calculation can these results be arrived at by the machine in
the shortest time? -- Charles Babbage

Analytic Engine (schematic)

7

Define Algorithm Efficiency

Jan 19, 2009

8

Polynomial-Time
Brute force. For many non-trivial problems, there is
a natural brute force search algorithm that checks
every possible solution
  Typically takes 2N time or worse for inputs of size N
  Unacceptable in practice

How many possible solutions are there in the
stable matching problem?

(In other words, how many possible perfect
matchings are there? We’re not worried about

stability right now.)
9

Polynomial-Time
Brute force. For many non-trivial problems, there is
a natural brute force search algorithm that checks
every possible solution
  Typically takes 2N time or worse for inputs of size N
  Unacceptable in practice
  Example: Stable matching: n! with n men and n

women
– If n increases by 1, what happens to the running time?

“Exponential”

1/19/09

2

10

Polynomial-Time

Desirable scaling property: When input size
doubles, algorithm should only slow down by some
constant factor C

Def. An algorithm is poly-time if the above scaling
property holds.

There exists constants c > 0 and d > 0 such that on every
input of size N, its running time is bounded by c Nd steps.

choose C = 2d

11

Worst-Case Analysis
Worst case running time. Obtain bound on largest
possible running time of algorithm on input of a given
size N
  Generally captures efficiency in practice
  Draconian view, but hard to find effective alternative

What are alternatives to worst-case analysis?

12

Average Case Running Time
Obtain bound on running time of algorithm on
random input as a function of input size N
  Hard (or impossible) to accurately model real

instances by random distributions

  Algorithm tuned for a certain distribution may perform
poorly on other inputs

13

Worst-Case Polynomial-Time
Def. An algorithm is efficient if its running time is polynomial
Justification: It really works in practice!
  In practice, poly-time algorithms that people develop almost

always have low constants and low exponents
  Although 6.02 × 1023 × N20 is technically poly-time, it would be

useless in practice
  Breaking through the exponential barrier of brute force typically

exposes some crucial structure of the problem

Exceptions.
  Some poly-time algorithms do have high constants and/or

exponents, and are useless in practice
  Some exponential-time (or worse) algorithms are widely used

because the worst-case instances seem to be rare

14

Why It Matters

Input Size

Polynomial
15

More Running Times

Jan 19, 2009

•  Huge difference from polynomial to not polynomial
•  Differences in runtime matter more as input size increases

Polynomial
1

1E+13
1E+26
1E+39
1E+52
1E+65
1E+78
1E+91

1E+104
1E+117
1E+130
1E+143
1E+156
1E+169
1E+182
1E+195
1E+208
1E+221
1E+234
1E+247
1E+260
1E+273
1E+286
1E+299

1 10 100 1000

Ru
nn

in
g

Ti
m
e

Input Size

2n

1.5n

n10

n3

n2

n

2n

1.5n

n10
n3

1/19/09

3

16

More Running Times

Jan 19, 2009

As input size increases, n3 dominates large constant * n2

 Care about running time as input size approaches infinity
 Only care about highest-order term

1

100

10000

1000000

100000000

1E+10

1E+12

1E+14

1E+16

1E+18

1E+20

1E+22

1E+24

1 10

10
0

10
00

10
00

0

10
00

00
0

10
00

00
00

10
00

00
00

0

Ru
nn

in
g

Ti
m
e

Input Size

10000*n2

n3

n3

10000 n2

T(n) is the worst case running time of an algorithm
We say that T(n) is O(f(n))
  “order f(n)”

if there exist constants c > 0 and n0 ≥ 0 such that for
all n ≥ n0
  i.e., sufficiently large n, c cannot depend on n

we have T(n) ≤ c · f(n)
  i.e., T(n) is bounded above by a constant multiple of

f(n)

 T is asymptotically upperbounded by f
17

Asymptotic Order of Growth:
Upper Bounds

T(n) = pn2 + qn + r
  p, q, r are positive constants

For all n ≥ 1,
T(n) = pn2 + qn + r ≤ pn2 + qn2 + rn2 = (p+q+r) n2
 T(n) ≤ cn2, where c = p+q+r
 T(n) = O(n2)
Also correct to say that T(n) = O(n3)

18

Example: Upper Bound

Jan 19, 2009 19

Asymptotic Order of Growth:
Lower Bounds

Complementary to upper bound.
T(n) is Ω(f(n))
if there exist constants ε > 0 and n0 ≥ 0 such that for
all n ≥ n0
  i.e., sufficiently large n, ε cannot depend on n

we have T(n) ≥ ε · f(n)
  i.e., T(n) is bounded below by a constant multiple of

f(n)

 T is asymptotically lowerbounded by f

T(n) = pn2 + qn + r
  p, q, r are positive constants

Idea: Need to deflate the terms rather than inflate
For all n ≥ 0,
T(n) = pn2 + qn + r ≥ pn2
 T(n) ≥ cn2, where ε = p
 T(n) = Ω(n2)
Also correct to say that T(n) = Ω(n)

20

Example: Lower Bound

Jan 19, 2009 21

Asymptotic Order of Growth
Tight bounds. T(n) is Θ(f(n)) if T(n) is both O(f(n))
and Ω(f(n))
  The “right” bound

1/19/09

4

22

Practice:
Asymptotic Order of Growth

T(n) = 32n2 + 17n + 32.
  What are the upper bound, lower bound, and tight

bound on T(n)?

23

Practice:
Asymptotic Order of Growth

T(n) = 32n2 + 17n + 32.
  T(n) is O(n2), O(n3), Ω(n2), Ω(n), and Θ(n2)
  T(n) is not O(n), Ω(n3), Θ(n), or Θ(n3)

Slight abuse of notation. T(n) = O(f(n))
  Asymmetric:

– f(n) = 5n3; g(n) = 3n2

– f(n) = O(n3) = g(n)

– but f(n) ≠ g(n).

  Better notation: T(n) ∈ O(f(n))

Meaningless statement. Any comparison-based
sorting algorithm requires at least O(n log n)
comparisons
  Use Ω for lower bounds

24

Notation

25

Properties
Transitivity
  If f = O(g) and g = O(h) then f = O(h)
  If f = Ω(g) and g = Ω(h) then f = Ω(h)
  If f = Θ(g) and g = Θ(h) then f = Θ(h) Proofs in book

26

Properties
Transitivity
  If f = O(g) and g = O(h) then f = O(h)
  If f = Ω(g) and g = Ω(h) then f = Ω(h)
  If f = Θ(g) and g = Θ(h) then f = Θ(h) Proofs in book

f

g

h f

g
h

Ω O

27

Properties
Additivity
  If f = O(h) and g = O(h) then f + g = O(h)
  If f = Ω(h) and g = Ω(h) then f + g = Ω(h)
  If f = Θ(h) and g = O(h) then f + g = Θ(h)

Proofs in book

1/19/09

5

28

Properties
Additivity
  If f = O(h) and g = O(h) then f + g = O(h)
  If f = Ω(h) and g = Ω(h) then f + g = Ω(h)
  If f = Θ(h) and g = O(h) then f + g = Θ(h)

Sketch proof for O
  f ≤ c · h
  g ≤ d · h
  f + g ≤ c · h + d · h = (c + d) h = c’ · h

Proofs in book

