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•  Data structures: Heaps, Graphs 1. Add elements into PQ with the number’s 
value as its priority 

2. Then extract the smallest number until done 
 Come out in sorted order 

Sorting n numbers takes at 
least O(n logn) time 

What is the goal running time for our 
PQ’s operations? 

What is the goal running time for our 
PQ’s operations? O(logn) 

Already know our “loops” will be O(n)  

•  Combines benefits of sorted array and list 
•  Balanced binary tree 

root 
• Each node has at most 2 children 
• Node value is its key 

Heap order: each node’s key is 
at least as large as its parent’s 

Note: not a binary search tree 

•  Option 1: Use pointers 
 Each node keeps 

•  Element it stores, key 
•  3 pointers: 2 children, parent 

•  Option 2: No pointers 
 Requires knowing upper bound on n 
 For node at position i 

•  left child is at 2i 
•  right child is at 2i+1 

•  Claim.  Assuming array H is almost a heap 
with key of H[i] too small, Heapify-Up 
fixes the heap property in O(log i) time 
 Can insert a new element in a heap of n 

elements in O(log n) time 
•  Proof.  By induction 

 If i=1, is already a heap  O(1) 
 If i>1, 

•  Swaps are O(1) 
•  Swaps continue up to root (max)   log i 

•  Delete at position i 

Delete at 
position 3 
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•  Delete at position i 
•  Removing an element: 

 Messes up heap order 
 Leaves a “hole” in the heap 

•  Not as straightforward as Heapify-Up	
•  Algorithm 

1.  Fill in element where hole was 
•  Patch hole: move nth element into ith spot 

2.  Adjust heap to be in order 
•  At position i because moved nth item up to i 

• What are the possibilities when we move nth 
element (w) into spot where element was 
removed? 
 Give an example for each possibility 

Delete at 
position 3 

w

•  Two possibilities: element w is 
 Too small: violation is between it and parent  
Heapify-Up (example: w = 0) 

 Too big: with one or both children  Heapify-
Down (example: w = 12) 

Delete at 
position 3 

w

•  Delete 9 
•  Replace with 5 

Example where new key is too small 

3 

4 7 

5 

6 

2 

9 10 

•  Delete 9 
•  Replace with 5 
•  But 5 < 6, so need to Heapify-Up	

Example where new key is too small 

3 

4 7 5 

6 

2 

10 

Heapify-down(H, i):	
	n = length(H)	
	if 2i > n then	
	 	Terminate with H unchanged	
	else if 2i < n then	
	 	left=2i and right=2i+1	
	 	j be index that minimizes	
	 	 	key[H[left]] and key[[H[right]]	
	else if 2i = n then	
	 	j=2i	

	if key[H[j]] < key[H[i]] then	
	 	swap array entries H[i] and H[j]	
	 	Heapify-down(H, j)	

Why can we stop? 
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Heapify-down(H, i):	
	n = length(H)	
	if 2i > n then	
	 	Terminate with H unchanged	
	else if 2i < n then	
	 	left=2i and right=2i+1	
	 	j be index that minimizes	
	 	 	key[H[left]] and key[[H[right]]	
	else if 2i = n then	
	 	j=2i	

	if key[H[j]] < key[H[i]] then	
	 	swap array entries H[i] and H[j]	
	 	Heapify-down(H, j)	

i  is a leaf – nowhere to go 

Moved 21 to where 
element was removed 

21 

21 

21 

7 

21 

7 

8 

7 

21 

Heapify-down(H, i):	
	n = length(H)	
	if 2i > n then	
	 	Terminate with H unchanged	
	else if 2i < n then	
	 	left=2i and right=2i+1	
	 	j be index that minimizes	
	 	 	key[H[left]] and key[[H[right]]	
	else if 2i = n then	
	 	j=2i	

	if key[H[j]] < key[H[i]] then	
	 	swap array entries H[i] and H[j]	
	 	Heapify-down(H, j)	

O(1) 

O(1) 

Num swaps: O(log n) 

Operation Description Run Time 

StartHeap(N) Creates an empty heap that 
can hold N elements 

Insert(v) Inserts item v into heap 

FindMin() Identifies minimum element in 
heap but does not remove it 

Delete(i) Deletes element in heap at 
position i 

ExtractMin() 
Identifies and deletes an 
element with minimum key from 
heap 
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Operation Description Run Time 

StartHeap(N) Creates an empty heap that 
can hold N elements O(N) 

Insert(v) Inserts item v into heap O(log n) 

FindMin() Identifies minimum element in 
heap but does not remove it O(1) 

Delete(i) Deletes element in heap at 
position i O(log n) 

ExtractMin() 
Identifies and deletes an 
element with minimum key from 
heap 

O(log n) 

Operation Heap Unsorted 
List 

Sorted 
List 

StartHeap(N) 
Insert(v) 
FindMin() 
Delete(i) 
ExtractMin() 

Operation Heap Unsorted 
List 

Sorted 
List 

StartHeap(N) O(N) 
Insert(v) O(log n) 
FindMin() O(1) 
Delete(i) O(log n) 
ExtractMin() O(log n) 

Operation Heap Unsorted 
List 

Sorted 
List 

StartHeap(N) O(N) O(1) O(1) 
Insert(v) O(log n) O(1) O(n) 
FindMin() O(1) O(n) O(1) 
Delete(i) O(log n) O(n) O(n) 
ExtractMin() O(log n) O(n) O(1) 

•  Access given element of PQ 
 Maintain additional array Position that stores 

current position of each element in heap 

•  Operations: 
 Delete(Position[v]) 

•  Does not increase overall running time 
 ChangeKey(v, α) 

•  Changes key of element v to key(v) = α 
•  Identify position of element v in array (Position 

array) 
•  Change key, heapify 
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•  V = nodes (vertices) 
•  E = edges between pairs of nodes 
•  Captures pairwise relationship between 

objects 
•  Graph size parameters:  n = |V|, m = |E| 

V = { 1, 2, 3, 4, 5, 6, 7, 8 } 
E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 } 
n = 8 
m = 11 

• Web graph 
 Node:  web page 
 Edge:  hyperlink from one page to another 

cnn.com 

people.com sportsillustrated.cnn.com netscape.com time.com 

hbo.com 

flightoftheconchords.com 

Directed Graph: 

•  Node: people; Edge: relationship between 2 
people 

•  Everything Bad Is Good for You: How Today's 
Popular Culture Is Actually Making Us Smarter 
•  Television shows 

have complex 
plots, complex 
social networks 

Social network of 
24's Jack Bauer 

http://www.cs.duke.edu/csed/harambeenet/
modules.html 

•  Food web graph 
 Node = species  
 Edge = from prey to 

predator 

Reference:  
http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff 

Directed Graph: 

transportation 

Graph 
street intersections 

Nodes Edges 
highways 

communication computers fiber optic cables 

World Wide Web web pages hyperlinks 

social people relationships 

food web species predator-prey 

software systems functions function calls 

scheduling tasks precedence constraints 

circuits gates wires 

•  n×n matrix with Auv = 1 if (u, v) is an edge 
 Two representations of each edge (symmetric 

matrix) 
 Space? 

 Checking if (u, v) is an edge? 
 Identifying all edges? 

  1 2 3 4 5 6 7 8 
1 0 1 1 0 0 0 0 0 
2 1 0 1 1 1 0 0 0 
3 1 1 0 0 1 0 1 1 
4 0 1 0 1 1 0 0 0 
5 0 1 1 1 0 1 0 0 
6 0 0 0 0 1 0 0 0 
7 0 0 1 0 0 0 0 1 
8 0 0 1 0 0 0 1 0 
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•  n×n matrix with Auv = 1 if (u, v) is an edge 
 Two representations of each edge (symmetric 

matrix) 
 Space: Θ(n2) 

 Checking if (u, v) is an edge: Θ(1) time 
 Identifying all edges: Θ(n2) time 

  1 2 3 4 5 6 7 8 
1 0 1 1 0 0 0 0 0 
2 1 0 1 1 1 0 0 0 
3 1 1 0 0 1 0 1 1 
4 0 1 0 1 1 0 0 0 
5 0 1 1 1 0 1 0 0 
6 0 0 0 0 1 0 0 0 
7 0 0 1 0 0 0 0 1 
8 0 0 1 0 0 0 1 0 

•  Node indexed array of lists 
 Two representations of each edge 
 Space? 
 Checking if (u, v) is an edge? 
 Identifying all edges? 

1 2 3 

2 

3 

4 2 5 

5 

6 

7 3 8 

8 

1 3 4 5 

1 2 5 8 7 

2 3 4 6 

5 

3 7 

no
de

 

edges 

What are the 
extremes? 

•  Node indexed array of lists 
 Two representations of each edge 
 Space = 2m + n = O(m + n) 
 Checking if (u, v) is an edge takes O(deg(u)) 

time 
 Identifying all edges takes Θ(m + n) time 

degree = number of 
neighbors of u 

no
de

 

edges 1 2 3 

2 

3 

4 2 5 

5 

6 

7 3 8 

8 

1 3 4 5 

1 2 5 8 7 

2 3 4 6 

5 

3 7 

•  Def.  A path in an undirected graph G = (V, E) is 
a sequence P of nodes v1, v2, …, vk-1, vk  
 each consecutive pair vi, vi+1 is joined by an edge in 

E 
•  Def.  A path is simple if all nodes are distinct 
•  Def.  An undirected graph is connected if ∀ 

pair of nodes u and v, there is a path between u 
and v 

• Short path 
• Distance 

•  Def.  A cycle is a path v1, v2, …, vk-1, vk in 
which v1 = vk, k > 2, and the first k-1 nodes 
are all distinct 

cycle C = 1-2-4-5-3-1 

•  Reading: Starting Chapter 3 
• Wednesday: notes about readings are due 
•  Friday: Problem Set 2 

 Start thinking about problems early 


