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Dynamic Programming 
  Shortest paths 
  Distance Vector Protocol 

Network flow 
  Maximum flow 
  Minimum cuts 

Objectives 
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SHORTEST PATHS 
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Shortest Paths 
Given a directed graph G = (V, E), with edge weights 

cvw, find shortest path from node s to node t 

Allows modeling other phenomena 

s 

3 

t 

2 

6 

7 

4 
5 

10 

18 
 -16 

9 

 6 

15  -8 

 30 

 20 

44 

16 

11 

6 

19 

6 

allow negative weights 
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Shortest Paths:  Failed Attempts 
Dijkstra.  Can fail if negative edge costs 
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Shortest Paths:  Failed Attempts 
Dijkstra.  Can fail if negative edge costs 

Re-weighting.  Adding a constant to every edge 
weight can fail 
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Why? 
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Shortest Paths:  Negative Cost 
Cycles 

If some path from s to t contains a negative cost 
cycle, there does not exist a shortest s-t path 

Otherwise, there exists one that is simple (i.e., does 
not repeat nodes) 

  What does this mean about number of edges in path? 
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Why? 



3/30/09 

2 

7 

Shortest Paths:  Negative Cost 
Cycles 

If some path from s to t contains a negative cost 
cycle, there does not exist a shortest s-t path 

Otherwise, there exists one that is simple (i.e., does 
not repeat nodes) 

  Path has at most n-1 edges, where n is # of nodes in 
graph 
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OPT(i,v): minimum cost of a v-t path P using at most 
i edges 

  This formulation eases later discussion 

Original problem is OPT(n-1, s) 

Towards a Recurrence 
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v t 

w 

Path P 

Break down into subproblems based on i and v 
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Shortest Paths:  Dynamic 
Programming 

Def.  OPT(i, v) = minimum cost of a v-t path P using 
at most i edges 

  Case 1:  P uses at most i-1 edges 
–  OPT(i, v) = OPT(i-1, v) 

  Case 2:  P uses exactly i edges 
–  if (v, w) is first edge, then OPT uses (v, w), and then 

selects best w-t path using at most i-1 edges 
–  Cost: cost of chosen edge 

  

€ 

OPT(i, v) =
 0 if  i = 0

  min OPT(i −1, v) ,
(v, w)∈ E

min OPT(i −1, w)+ cvw{ }
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Shortest Paths:  Implementation 

Shortest path is M[n-1, s] 

Shortest-Path(G, t) 	
   n = number of nodes in G	
   foreach node v ∈ V	
      M[0, v] = ∞    # infinite cost to reach all nodes	
   M[0, t] = 0  	  # no cost to reach destination from dest	

   for i = 1 to n-1	
      foreach node v ∈ V	
         M[i, v] = M[i-1, v]  # at most cost of 1 less	
         foreach edge (v, w) ∈ E	
             M[i, v] = min(M[i, v], M[i-1, w] + cvw )	
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Starting node 

Analysis? 

Cost of chosen 
edge 
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Shortest Paths:  Implementation 

Shortest path is M[n-1, s] 

Shortest-Path(G, t) 	
   n = number of nodes in G	
   foreach node v ∈ V	
      M[0, v] = ∞    # infinite cost to reach all nodes	
   M[0, t] = 0  	  # no cost to reach destination from dest	

   for i = 1 to n-1	
      foreach node v ∈ V	
         M[i, v] = M[i-1, v]  # at most cost of 1 less	
         foreach edge (v, w) ∈ E	
             M[i, v] = min(M[i, v], M[i-1, w] + cvw )	
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O(n3) 

0 1 2 3 4 5 
t 0 0 0 0 0 0 
a ∞ 
b ∞ 
c ∞ 
d ∞ 
e ∞ 

Example 
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What edges do we need to look at for each node? 
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0 1 2 3 4 5 
t 0 0 0 0 0 0 
a ∞ 
b ∞ 
c ∞ 
d ∞ 
e ∞ 

Example 
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Edges 
b , t 

d, e 
b, t 

a, t 
c, t 

0 1 2 3 4 5 
t 0 0 0 0 0 0 
a ∞ -3 
b ∞ ∞ 
c ∞ 3 
d ∞ 4 
e ∞ 2 

Example 
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Edges 
b , t 

d, e 
b, t 

a, t 
c, t 

0 1 2 3 4 5 
t 0 0 0 0 0 0 
a ∞ -3 -3 
b ∞ ∞ 0 
c ∞ 3 3 
d ∞ 4 3 
e ∞ 2 0 

Example 
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Edges 
b , t 

d, e 
b, t 

a, t 
c, t 

0 1 2 3 4 5 
t 0 0 0 0 0 0 
a ∞ -3 -3 -4 
b ∞ ∞ 0 -2 
c ∞ 3 3 3 
d ∞ 4 3 3 
e ∞ 2 0 0 

Example 
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Edges 
b , t 

d, e 
b, t 

a, t 
c, t 

0 1 2 3 4 5 
t 0 0 0 0 0 0 
a ∞ -3 -3 -4 -6 
b ∞ ∞ 0 -2 -2 
c ∞ 3 3 3 3 
d ∞ 4 3 3 2 
e ∞ 2 0 0 0 

Example 
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Edges 
b , t 

d, e 
b, t 

a, t 
c, t 

0 1 2 3 4 5 
t 0 0 0 0 0 0 
a ∞ -3 -3 -4 -6 -6 
b ∞ ∞ 0 -2 -2 -2 
c ∞ 3 3 3 3 3 
d ∞ 4 3 3 2 0 
e ∞ 2 0 0 0 0 

Example 
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Edges 
b , t 

d, e 
b, t 

a, t 
c, t 
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What could we do to improve the algorithm’s 
runtime/space requirements? 

Based on Example Experience 
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Practical improvements 
  Maintain only one array M[v] = shortest v-t path that we have 

found so far 
  No need to check edges of the form (v, w) unless M[w] changed 

in previous iteration 

Theorem.  Throughout algorithm, M[v] is length of some v-t 
path, and after i rounds of updates, the value M[v] is no 
larger than the length of shortest v-t path using ≤ i edges. 

Overall impact 
  Memory:  O(m + n) 
  Running time:  O(mn) worst case but substantially faster in 

practice 

Shortest Paths:  Practical 
Improvements 
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Bellman-Ford:  Efficient 
Implementation 

Push-Based-Shortest-Path(G, s, t) 	
   foreach node v ∈ V 	
      M[v] = ∞	
      successor[v] = φ 	

   M[t] = 0	
   for i = 1 to n-1 	
      foreach node w ∈ V 	
         if M[w] has been updated in previous iteration 	
            foreach node v such that (v, w) ∈ E 	
               if M[v] > M[w] + cvw	
                  M[v] = M[w] + cvw 	
                  successor[v] = w	

      If no M[w] value changed in iteration i, stop.	
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DISTANCE VECTOR 
PROTOCOL 
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Application of shortest-path problem: routers in 
communication network find most efficient path to 
destination 

Model of communication network 
  Nodes ≈ routers 
  Edge ≈ direct communication link 
  Cost of edge ≈ delay on link 

Possible solution: Dijkstra’s algorithm 

Problem Context 
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Naturally nonnegative 
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Distance Vector Protocol 
Model of communication network 
  Nodes ≈ routers; Edge ≈ direct communication link 
  Cost of edge ≈ delay on link 

Dijkstra's algorithm.  Requires global information of 
network 

Bellman-Ford.  Uses only local knowledge of 
neighboring nodes 

  Distribute algorithm: each node v maintains its 
value M[v] 
–  Updates its value after getting neighbor’s values: 

•  minw∈V (cvw + M[w]) 

Naturally nonnegative but 
Bellman-Ford used anyway! 
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Distance Vector Protocol 
Each router maintains a vector of shortest path lengths to 

every other node (distances) and the first hop on each 
path (directions) 

Algorithm:  each router performs n separate 
computations, one for each potential destination node 

Synchronization.  We don't expect routers to run in 
lockstep. The order in which each foreach loop 
executes in not important. Moreover, algorithm still 
converges even if updates are asynchronous. 

"Routing by rumor.” 
Used in many routers, e.g.  RIP, Xerox XNS RIP, 

Novell's IPX RIP, … 
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Issues with Distance Vector Protocol 
Original algorithm developed for one central 

machine; costs known in advance, didn’t change 
Edge costs may change during algorithm (or fail 

completely) 

t v 1 s 1 

1 

deleted 

"counting to infinity" 
2 1 
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Path Vector Protocols 
Link state routing 
  Each router stores the entire path 

–  Not just the distance and the first hop 
  Based on Dijkstra's algorithm 
  Avoids "counting-to-infinity" problem and related 

difficulties 
  Requires significantly more storage 

Ex.  Border Gateway Protocol (BGP), Open Shortest 
Path First (OSPF) 
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NETWORK FLOW 
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Soviet Rail Network, 1955 

Reference:  On the history of the transportation and maximum flow problems. 
Alexander Schrijver in Math Programming, 91: 3, 2002. 

Mar 30, 2009 CS211 

44 vertices 
105 edges 
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Maximum Flow and Minimum Cut 
Two very rich algorithmic problems 

Cornerstone problems in combinatorial optimization 

Beautiful mathematical duality 

Nontrivial applications / reductions 

  Data mining 

  Open-pit mining  

  Project selection 

  Airline scheduling 

  Bipartite matching 

  Baseball elimination 

  Image segmentation 

  Network connectivity 

  Network reliability 

  Distributed computing 

  Egalitarian stable matching 

  Security of statistical data 

  Network intrusion detection 

  Multi-camera scene reconstruction 

  Many many more . . . 
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Abstraction for material flowing through the edges 
G = (V, E) = directed graph, no parallel edges 
Two distinguished nodes:  s = source, t = sink 
c(e) = capacity of edge e, > 0 

Flow Network 
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What is special 
about the source 

and sink? 
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An s-t flow is a function that satisfies 
  Capacity condition:  For each e ∈ E: 0 ≤ f(e) ≤ c(e) 
  Conservation condition:  For each v ∈ V – {s, t}:         
∑e into y  f(e) =   ∑e out of y  f(e) 

Flows 
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Flow can’t 
exceed capacity 

Flow in == Flow out 
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The value of a flow f is v(f) = ∑e out of s  f(e)         

Flows 
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Make network most efficient 
  Use most of available capacity 

Goal: Find s-t flow of maximum value 

Maximum Flow Problem 
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Check satisfies 
constraints 
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An s-t cut is a partition (A, B) of V with s ∈ A and      
t ∈ B 

The capacity of a cut (A, B) is 

Cuts 
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 Capacity = 10 + 5 + 15 
              = 30 

   A 

  

€ 

cap( A, B)  =  c(e)
e out of A
∑

Mar 30, 2009 CS211 36 

s 

2 

3 

4 

5 

6 

7 

t 

 15 

 5 

 30 

 15 

   10 

 8 

 15 

 9 

 6  10 

 10 

   10  15  4 

 4 
   A 

Cuts 
An s-t cut is a partition (A, B) of V with s ∈ A and      

t ∈ B 
The capacity of a cut (A, B) is   
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e out of A
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 Capacity = 9 + 15 + 8 + 30 
              = 62 
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Find an s-t cut of minimum capacity 
  Puts upperbound on maximum flow 

Minimum Cut Problem 
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 Capacity = 10 + 8 + 10 
              = 28 
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Let f be any flow, and let (A, B) be any s-t cut.  Then, 
the net flow sent across the cut is equal to the 
amount leaving s. 

Flow Value Lemma 
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Let f be any flow, and let (A, B) be any s-t cut.  Then, 
the net flow sent across the cut is equal to the 
amount leaving s. 

Flow Value Lemma 

10 

6 

6 

1 10 

3 8 8 

0 
0 

0 

11 

s 

2 

3 

4 

5 

6 

7 

t 

 15 

 5 

 30 

 15 

   10 

 8 

 15 

 9 

 6  10 

 10 

   10  15  4 

 4 0 

€ 

f (e)
e out of A
∑ − f (e)

e in to A
∑  =  v( f )

 Value = 6 + 0 + 8 - 1 + 11 
          = 24 

4 

11 

A 

Mar 30, 2009 CS211 40 

Let f be any flow, and let (A, B) be any s-t cut.  Then, 
the net flow sent across the cut is equal to the 
amount leaving s. 

Flow Value Lemma 

10 

6 

6 

11 

1 10 

3 8 8 

0 
0 

0 

11 

s 

2 

3 

4 

5 

6 

7 

t 

 15 

 5 

 30 

 15 

   10 

 8 

 15 

 9 

 6  10 

 10 

   10  15  4 

 4 0 

€ 

f (e)
e out of A
∑ − f (e)

e in to A
∑  =  v( f )

 Value = 10 - 4 + 8 - 0 + 10 
          = 24 

4 

A 

Mar 30, 2009 CS211 

41 

Flow Value Lemma 
Let f be any flow, and let (A, B) be any s-t cut. 
Then 

Pf.    

  

€ 

f (e)
e out of A
∑ − f (e) = v( f )

e in to A
∑ .

€ 

v( f ) = f (e)
e out of s
∑

=
v ∈A
∑ f (e)

e out of v
∑  − f (e)

e in to v
∑

 

 
 

 

 
 

= f (e)
e out of A
∑  − f (e).

e in to A
∑

by flow conservation, all 
terms except v = s are 0 
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Chapters 7 & 8 
Wednesday: Course evaluations 
  Favorite and least favorite topics 
  Research papers 

–  Do you think that component should continue? 
•  Was it worth it? 

Friday: Problem set 6 due 
Saturday: Take-home final available 
  Due end of exam period: Friday at 5 p.m. 

This Week 
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