
1/21/09

1

Algorithm analysis
Data structures

1

Objectives

Jan 21, 2009

How do we define efficiency in algorithms?
  In what “case” do we analyze algorithms?

What term do we care about in algorithms? Why?
What is the definition of “big O”?
What is the symbol for the asymptotic lower bound?
What is the symbol for the asymptotic tight bound?

2

Review

Jan 21, 2009

3

Review:
Worst-Case Polynomial-Time

Def. An algorithm is efficient if its running time is
polynomial
Justification: It really works in practice!
  In practice, poly-time algorithms that people develop almost

always have low constants and low exponents
  Although 6.02 × 1023 × N20 is technically poly-time, it would

be useless in practice
Exceptions.
  Some poly-time algorithms do have high constants and/or

exponents, and are useless in practice
  Some exponential-time (or worse) algorithms are widely

used because the worst-case instances seem to be rare

Jan 21, 2009 4

Review: Running Times

Jan 21, 2009

•  Huge difference from polynomial to not polynomial
•  Differences in runtime matter more as input size increases

Polynomial
1

1E+13
1E+26
1E+39
1E+52
1E+65
1E+78
1E+91

1E+104
1E+117
1E+130
1E+143
1E+156
1E+169
1E+182
1E+195
1E+208
1E+221
1E+234
1E+247
1E+260
1E+273
1E+286
1E+299

1 10 100 1000

Ru
nn

in
g

Ti
m
e

Input Size

2n

1.5n

n10

n3

n2

n

2n

1.5n

n10
n3

5

Review: Running Times

Jan 21, 2009

As input size increases, n3 dominates large constant * n2

 Care about running time as input size approaches infinity
 Only care about highest-order term

1

100

10000

1000000

100000000

1E+10

1E+12

1E+14

1E+16

1E+18

1E+20

1E+22

1E+24

1 10

10
0

10
00

10
00

0

10
00

00
0

10
00

00
00

10
00

00
00

0

Ru
nn

in
g

Ti
m
e

Input Size

10000*n2

n3

n3

10000 n2

asymptotic

T(n) is the worst case running time of an algorithm
We say that T(n) is O(f(n))
  “order f(n)”

if there exist constants c > 0 and n0 ≥ 0 such that for
all n ≥ n0
  i.e., sufficiently large n, c cannot depend on n

we have T(n) ≤ c · f(n)
  i.e., T(n) is bounded above by a constant multiple of

f(n)

 T is asymptotically upperbounded by f
6

Review: Asymptotic Order of Growth
Upper Bounds

Jan 21, 2009

1/21/09

2

T(n) = pn2 + qn + r
  p, q, r are positive constants

For all n ≥ 1,
T(n) = pn2 + qn + r ≤ pn2 + qn2 + rn2 = (p+q+r) n2
 T(n) ≤ cn2, where c = p+q+r
 T(n) = O(n2)
Also correct to say that T(n) = O(n3)

7

Example: Upper Bound

Jan 21, 2009 8

Review: Asymptotic Order of
Growth: Lower Bounds

Complementary to upper bound.
T(n) is Ω(f(n))
if there exist constants ε > 0 and n0 ≥ 0 such that for
all n ≥ n0
  i.e., sufficiently large n, ε cannot depend on n

we have T(n) ≥ ε · f(n)
  i.e., T(n) is bounded below by a constant multiple of

f(n)

 T is asymptotically lowerbounded by f

Jan 21, 2009

T(n) = pn2 + qn + r
  p, q, r are positive constants

Idea: Need to deflate terms rather than inflate
For all n ≥ 0,
T(n) = pn2 + qn + r ≥ pn2
 T(n) ≥ cn2, where ε = p
 T(n) = Ω(n2)
Also correct to say that T(n) = Ω(n)

9

Example: Lower Bound

Jan 21, 2009 10

Asymptotic Order of Growth
Tight bounds. T(n) is Θ(f(n)) if T(n) is both O(f(n))
and Ω(f(n))
  The “right” bound

Jan 21, 2009

11

Properties
Transitivity
  If f = O(g) and g = O(h) then f = O(h)
  If f = Ω(g) and g = Ω(h) then f = Ω(h)
  If f = Θ(g) and g = Θ(h) then f = Θ(h)

Additivity
  If f = O(h) and g = O(h) then f + g = O(h)
  If f = Ω(h) and g = Ω(h) then f + g = Ω(h)
  If f = Θ(h) and g = O(h) then f + g = Θ(h)

Proofs in book

Jan 21, 2009 12

Transitivity

If f = O(g) and g = O(h) then f = O(h)
If f = Ω(g) and g = Ω(h) then f = Ω(h)
If f = Θ(g) and g = Θ(h) then f = Θ(h) Proofs in book

f

g

h f

g
h

Ω O

Jan 21, 2009

If g asymptotically upperbounds f
And h asymptotically upperbounds g
Then h assymptotically upperbounds h

1/21/09

3

13

Additivity
  If f = O(h) and g = O(h) then f + g = O(h)
  If f = Ω(h) and g = Ω(h) then f + g = Ω(h)
  If f = Θ(h) and g = O(h) then f + g = Θ(h)

Sketch proof for O
  f ≤ c · h (by defn of O)

  g ≤ d · h
  f + g ≤ c · h + d · h = (c + d) h = c’ · h

Proofs in book

Jan 21, 2009

ASYMPTOTIC BOUNDS FOR
CLASSES OF ALGORITHMS

14 Jan 21, 2009

15

Asymptotic Bounds for Polynomials
a0 + a1n + … + adnd is Θ(nd) if ad > 0
  Asymptotic runtime determined by higher-order term

Other examples of polynomial times:
  O(n1/2)
  O(n1.58)
  O(n log n) ≤ O(n2)

Jan 21, 2009 16

Asymptotic Bounds for Logarithms
Logarithms. logbn = x, where bx=n
  x is number of digits to represent n in base-b

representation

What does this mean for the running time of an
algorithm that is O(log n)?

Jan 21, 2009

17

Asymptotic Bounds for Logarithms
Logarithms. logbn = x, where bx=n
  x is number of digits to represent n in base-b

representation

0

5

10

15

20

25

30

1 10

10
0

10
00

10
00

0

10
00

00
0

10
00

00
00

10
00

00
00

0

Ru
nn

in
g

Ti
m
e

Input Size

log2 n

log5 n

log10 n

log2 n

log5 n

log10 n

Jan 21, 2009 18

Asymptotic Bounds for Logarithms
Logarithms: logbn = x, where bx=n
  x is number of digits to represent n in base-b

representation
➔ Slowly growing functions

O(log a n) = O(log b n) for any constants a, b > 0
  Don’t need to specify the base

For every x > 0, log n = O(nx)
  Log grows slower than every polynomial

Jan 21, 2009

1/21/09

4

19

Asymptotic Bounds for Exponentials
Exponentials: functions of the form f(n) = rn for
constant base r
  Faster growth rates as n increases

For every r > 1 and every d > 0, nd = O(rn)
 Every exponential grows faster than every polynomial

Jan 21, 2009

In terms of growth rates ….

20

Summary of Asymptotic Bounds

Jan 21, 2009

In terms of growth rates ….

21

Summary of Asymptotic Bounds

Jan 21, 2009

Logarithms < Polynomials < Exponentials

A SURVEY OF COMMON
RUNNING TIMES

22

23

Linear Time: O(n)
Running time is at most a constant factor times the
size of the input
  Example: process the input in one pass, doing

constant amount of work

  Online algorithms
  Data stream algorithms

Jan 21, 2009 24

Linear Time: O(n)
Computing the maximum: Compute maximum of n
numbers a1, …, an

max = a1	
for i = 2 to n 	
 if (ai > max)	
 max = ai	

Constant work
for each input

(does not depend on n)

Jan 21, 2009

1/21/09

5

25

Linear Time: O(n)
Example. Merge. Combine two sorted lists
A = a1,a2,…,an with B = b1,b2,…,bn into sorted
whole

Jan 21, 2009 26

Linear Time: O(n)
Example. Merge. Combine two sorted lists A =
a1,a2,…,an with B = b1,b2,…,bn into sorted whole

Claim. Merging two lists of size n takes O(n) time

i = 1, j = 1	
while (both lists are nonempty)	
 if (ai ≤ bj)	

	append ai to output list and increment i	
 else (ai > bj)	

	append bj to output list and increment j	

append remainder of nonempty list to output list	

Jan 21, 2009

27

Linear Time: O(n)
Example. Merge. Combine two sorted lists A =
a1,a2,…,an with B = b1,b2,…,bn into sorted whole
Claim. Merging two lists of size n takes O(n) time
Proof. After each comparison, the length of output
list increases by 1

i = 1, j = 1	
while (both lists are nonempty)	
 if (ai ≤ bj)	

	append ai to output list and increment i	
 else (ai ≤ bj)	

	append bj to output list and increment j	

append remainder of nonempty list to output list	

Jan 21, 2009

Also referred to as linearithmic time
Arises in divide-and-conquer algorithms
  Splitting input into equal pieces, solve recursively,

combine solutions in linear time

28

O(n log n) Time

What well-known set of algorithms has
an O(n logn) running time?

Jan 21, 2009

Sorting. Mergesort and heapsort are sorting
algorithms that perform O(n log n) comparisons
  Break input into equal-sized pieces

– Running time of this step?

  Sorts each half recursively
  Merges sorted halves into a sorted list

– Running time of this step?

29

O(n log n) Time Example

Jan 21, 2009

Largest empty interval. Given n time-stamps
x1, …, xn at which copies of a file arrive at a server,
what is largest interval of time when no copies of the
file arrive?

O(n log n) solution
  Sort time-stamps
  Scan sorted list in order, identifying the maximum gap

between successive time-stamps

30

O(n log n) Time Example

Jan 21, 2009

1/21/09

6

Examples?

31

Quadratic Time: O(n2)

Jan 21, 2009

Examples:
  Enumerate all pairs of elements
  Nested loops (n iterations)

32

Quadratic Time: O(n2)

Jan 21, 2009

Closest pair of points. Given a list of n points in the
plane (x1, y1), …, (xn, yn), find the pair that is closest

O(n2) solution. Try all pairs of points

33

Quadratic Time: O(n2)

min = (x1 - x2)2 + (y1 - y2)2	
for i = 1 to n {	
 for j = i+1 to n {	
 d = (xi - xj)2 + (yi - yj)2	
 if (d < min)	
 min = d	
 }	
}	

don't need to
take square roots

Ω(n2) seems inevitable, but Chapter 5 has an O(n logn) solution

Jan 21, 2009 34

Cubic Time: O(n3)
Examples?

Jan 21, 2009

35

Cubic Time: O(n3)
Enumerate all triples of elements
Set disjointness. Given n sets S1, …, Sn each of
which is a subset of 1, 2, …, n, is there some pair of
these which are disjoint?

Jan 21, 2009 36

Cubic Time: O(n3)
Enumerate all triples of elements
Set disjointness. Given n sets S1, …, Sn each of
which is a subset of 1, 2, …, n, is there some pair of
these which are disjoint?
O(n3) solution. For each pair of sets, determine if
they are disjoint

foreach set Si 	
 foreach other set Sj 	
 foreach element p of Si 	
 determine whether p also belongs to Sj	

 if (no element of Si belongs to Sj)	
 report that Si and Sj are disjoint 	

Jan 21, 2009

1/21/09

7

37

Polynomial Time: O(nk) Time
Independent set of size k. Given a graph, are there
k nodes such that no two are joined by an edge?
  k is a constant

Jan 21, 2009

If to get all pairs, the algorithm is O(n2), what is an
example of an O(nk) algorithm?

38

Polynomial Time: O(nk) Time

Jan 21, 2009

If to get all pairs, the algorithm is O(n2), what is an
example of an O(nk) algorithm?
  All subsets of size k

39

Polynomial Time: O(nk) Time

Jan 21, 2009 40

Polynomial Time: O(nk) Time
Independent set of size k. Given a graph, are there
k nodes such that no two are joined by an edge?
  k is a constant

Jan 21, 2009

41

Polynomial Time: O(nk) Time
Independent set of size k. Given a graph, are there
k nodes such that no two are joined by an edge?
  k is a constant

O(nk) solution.
  Enumerate all subsets of k nodes
  Check whether S is an independent set = O(k2).
  Number of k element subsets =
  O(k2 nk / k!) = O(nk).

foreach subset S of k nodes 	
 check whether S in an independent set	
 if (S is an independent set)	
 report S is an independent set 	

€

n
k







 =

n (n−1) (n− 2) (n− k +1)
k (k −1) (k − 2) (2) (1)

 ≤ n
k

k!

poly-time for k=17,
but not practical Jan 21, 2009 42

Exponential Time
Independent set. Given a graph, what is maximum
size of an independent set?
O(n2 2n) solution. Enumerate all subsets

S* = φ	
foreach subset S of nodes 	
 check whether S in an independent set	
 if (S is largest independent set seen so far)	

	S* = S	

Jan 21, 2009

1/21/09

8

Sublinear time
Know any algorithms that take O(log n) time?

43

O(log n) Time

Jan 21, 2009

Example: Binary search

Often requires some pre-processing or data structure
that allows cheaper “querying” than n time

44

O(log n) Time

Jan 21, 2009

