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Oh, the places you’ve been! 

Oh, the places you’ll go! 

Objectives 
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 Now, everything comes down to expert knowledge of 
algorithms and data structures.  If you don't speak fluent O-
notation, you may have trouble getting your next job at the 

technology companies in the forefront. 
    -- Larry Freeman 
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Algorithm Design Patterns 
What are some approaches to solving problems? 
How do they compare in terms of difficulty?  
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Algorithm Design Patterns 
  Greedy  
  Divide-and-conquer 
  Dynamic programming 
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Course Objectives: Given a problem… 
You’ll recognize when to try an approach 

 - AND, when to bail out and try something different 
Know the steps to solve the problem using the approach 

 - e.g., breaking it into subproblems, sorting 
possibilities in some order 

Know how to analyze the run time of the solution 
 - e.g., solving recurrence relation 
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Algorithm Design Patterns 
  Greedy   
  Divide-and-conquer 
  Dynamic programming 

  Duality – Chapter 7 
  Reductions – Chapter 8 
  Local search – Chapter 12 
  Randomization – Chapter 13 
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What Was Our Goal In Finding a 
Solution? 
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Polynomial Time  Efficient 

POLYNOMIAL-TIME 
REDUCTIONS 
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Classify Problems According to 
Computational Requirements 

Q.  Which problems will we be able to solve in 
practice? 

A. Working definition. [Cobham 1964, Edmonds 
1965, Rabin 1966]  Those with polynomial-time 
algorithms. 

Yes Probably no 

Shortest path Longest path 

Min cut Max cut 

2-SAT 3-SAT 

Matching 3D-matching 

Primality testing Factoring 

Planar 4-color Planar 3-color 

Bipartite vertex cover Vertex cover 
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Classify Problems 
Classify problems according to those that can be 

solved in polynomial-time and those that cannot. 
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Polynomial Exponential 

Examples: 
•  Given a Turing machine, does 

it halt in at most k steps? 
•  Given a board position in an n-

by-n generalization of chess, 
can black guarantee a win? 

? 

Frustrating news:  Many problems 
have defied classification. 
Chapter 8.  Show that problems are 
"computationally equivalent" and 
appear to be manifestations of one 
really hard problem. 
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Polynomial-Time Reduction 
Suppose we could solve Y in polynomial-time. What else 

could we solve in polynomial time? 
Reduction.  Problem X polynomial reduces to problem Y if 

arbitrary instances of problem X can be solved using: 

  Polynomial number of standard computational steps, plus 

  Polynomial number of calls to oracle that solves problem Y 
–  Assume have a black box that can solve Y 

Notation.  X ≤P Y 

“X is polynomial-time reducible to Y” 

Conclusion.  If X can be solved in polynomial time and         
Y ≤P X , then Y can be solved in polynomial time. 
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Problems from many different domains whose complexity 
is unknown 

NP-completeness and proof that all problems are 
equivalent is POWERFUL! 

  All open complexity questions are really ONE open 
question 

What does this mean? 
  “Computationally hard for practical purposes but we can’t 

prove it” 
  If you find an NP-Complete problem, you can stop looking 

for an efficient solution 
–  Or figure out efficient solution for ALL NP-complete problems 

NP Complete Problems 
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Polynomial-Time Reduction 
Purpose.  Classify problems according to relative 

difficulty. 
Design algorithms.  If X ≤P Y and Y can be solved in 

polynomial-time, then X can also be solved in 
polynomial time. 

Establish intractability.  If X ≤P Y and Y cannot be 
solved in polynomial-time, then X cannot be solved 
in polynomial time. 

Establish equivalence.  If X ≤P Y and Y ≤P X, we use 
notation X ≡P Y. 
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Reduction by simple equivalence 
Reduction from special case to general case 
Reduction by encoding with gadgets 

Basic Reduction Strategies 
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Independent Set 
Given a graph G = (V, E) and an integer k, is there a 

subset of vertices S ⊆ V such that |S| ≥ k, and for 
each edge at most one of its endpoints is in S? 
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Ex.  Is there an independent 
set of size ≥ 6? 

Ex.  Is there an independent 
set of size ≥ 7?  
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Independent Set 
Given a graph G = (V, E) and an integer k, is there a 

subset of vertices S ⊆ V such that |S| ≥ k, and for 
each edge at most one of its endpoints is in S? 
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Ex.  Is there an independent 
set of size ≥ 6? Yes 

Ex.  Is there an independent 
set of size ≥ 7? No  
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Vertex Cover 
Given a graph G = (V, E) and an integer k, is there a 

subset of vertices S ⊆ V such that |S| ≤ k, and for 
each edge, at least one of its endpoints is in S? 
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Ex.  Is there a vertex cover 
of size ≤ 4? 

Ex.  Is there a vertex cover 
of size ≤ 3? 

Application: place guards within an 
art gallery so that all corridors 
are visible at any time  
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Vertex Cover 
Given a graph G = (V, E) and an integer k, is there a 

subset of vertices S ⊆ V such that |S| ≤ k, and for 
each edge, at least one of its endpoints is in S? 
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vertex cover 
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Ex.  Is there a vertex cover 
of size ≤ 4? Yes 

Ex.  Is there a vertex cover 
of size ≤ 3? No 

Not known if either Independent Set or Vertex Cover 
can be solved in polynomial time 

BUT, what can we say about their relative difficulty?  

Problem 
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Vertex Cover and Independent Set 
Claim.  VERTEX-COVER ≡P INDEPENDENT-SET 
Pf.  We show S is an independent set iff V - S is a 

vertex cover 

vertex cover 

independent set 
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Vertex Cover and Independent Set 
Claim.  VERTEX-COVER ≡P INDEPENDENT-SET 
Pf.  We show S is an independent set iff V - S is a 

vertex cover 
⇒ 
  Let S be any independent set 
  Consider an arbitrary edge (u, v) 
  Since S is an independent set ⇒ u ∉ S or v ∉ S  ⇒  

u ∈ V - S or v ∈ V - S 
  Thus, V - S covers (u, v) 

–  Every edge has one end in V-S 
➙ V-S is a vertex Cover 
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Vertex Cover and Independent Set 
Claim.  VERTEX-COVER ≡P INDEPENDENT-SET 

Pf.  We show S is an independent set iff V - S is a 
vertex cover 

⇐  
  Let V - S be any vertex cover 
  Consider two nodes u ∈ S and v ∈ S 
  Observe that (u, v) ∉ E since V - S is a vertex 

cover 

  Thus, no two nodes in S are joined by an edge  ⇒ 
S independent set 
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 Reduction by simple equivalence. 
 Reduction from special case to general case. 
 Reduction by encoding with gadgets. 

Reduction from Special Case to 
General Case 

REVIEWING SOLUTIONS/
EXPECTATIONS  
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Find the median of two sorted lists 

Median: half the elements are bigger and half the 
elements are smaller 

If median falls at position k in A, it’s at n-k in B 

Finding Median of Two Sorted Lists 
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1 4 5 7 8 9 11 12 

-2 -1 0 2 3 6 10 13 

A 

B 

Compare medians of lists 
  k = n/2 

If A[k] < B[k], B[k] > the first k elements of A 
  B[k] is 2kth element; can ignore 2nd half of B 

Finding Median of Two Sorted Lists 
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Compare medians of remaining lists 

If A[k] < B[j], B[j] > the first k elements of A 
  B[k] is k+jth element; can ignore 2nd half of B 

Finding Median of Two Sorted Lists 
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-2 -1 0 2 3 6 10 13 

A 

B 

Compare medians of remaining lists 

If A[k] < B[j], B[j] > the first k elements of A 
  B[k] is 2kth element; can ignore 2nd half of B 

Finding Median of Two Sorted Lists 
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B 

Compare medians of remaining lists 

When down to 1 element in each list, median is 
average of 2  

Finding Median of Two Sorted Lists 
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Recurrence Relation: T(n) = T(n/2) + O(1) 
  Reduce problem to one of half the size 
  Comparison takes constant time 

T(n) = O(log n) 

Analyzing Algorithm 
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Goal: Maximize value of independent set 
  Keep track in M 

Break problem into subproblems 
  For node j, either pick the node 

–  Which means can’t pick next node 
–  Opt(j) = wj + Opt(j-2) 

  Or don’t pick node j 
–  Get the best solution for the remaining nodes 
–  Opt(j) = Opt(j-1) 

Independent Sets 
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Find max value: 
  M[0]=0 
  For each node j =1 to n 

–  M[j] = max(w[j]+M[j-2], M[j-1]) 
Find independent set: Trace backwards through M 
  FindSolution(j): 

–  If j == 0: return 
–  If M[j] == w[j] + M[j-2] 

•  add j to independent set 

•  FindSolution(j-2) 
–  Else: 

•  FindSolution(j-1) 

Independent Sets 
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Available Saturday at 2 p.m. 
Due Friday at 5 p.m. 
Open lecture notes, your notes, book 
Unlimited time (until next Friday at 5 p.m.) 

Final 
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