
2/11/09

1

Greedy Algorithms
  Optimal caching
  Shortest path

Objectives

1 Feb 11, 2009 CS211 1

Optimal Offline Caching:
Farthest-In-Future

Evict item in cache that is not requested until farthest
in the future

Theorem. [Bellady, 1960s] FF is optimal eviction
schedule

Pf. Algorithm and theorem are intuitive; proof is
subtle

  Better than least frequently used?

a	 b	

g a b c e d a b b a c d e a f a d e f g h ... 	

current cache: c	 d	 e	 f	

future queries:

cache miss eject this one

Feb 11, 2009 2 CS211

Reduced Eviction Schedules

Def. A reduced schedule is a schedule that only
inserts an item into the cache when that item is
requested

  No bringing in an item ahead of time; minimal amt
of work per step

a x

an unreduced schedule

c
a d c
a d b
a c b
a x b
a c b
a b c
a b c

a
c
d
a
b
c
a
a

a b

a reduced schedule

c
a b c
a d c
a d c
a d b
a c b
a c b
a c b

a
c
d
a
b
c
a
a

a b c a a b c a

Feb 11, 2009 3 CS211

re
qu

es
t

re
qu

es
t

Bringing in
items before

requested Cache miss

Reduced Eviction Schedules
Claim. Given any unreduced schedule S, can transform it into

a reduced schedule S' with no more cache misses
Pf. (by induction on number of unreduced items)
  Case 1: d evicted at time t', before next request for d
  Case 2: d requested at time t' before d is evicted

t

t'

d

c

t

t'

c
S'

d

S

d requested at time t'

t

t'

d

c

t

t'

c
S'

e

S

d evicted at time t',
before next d request

e

Case 1 Case 2 Feb 11, 2009 4 CS211

evicted evicted

unreduced reduced unreduced reduced

Theorem. FF is optimal eviction algorithm
Pf Sketch
  Let SFF be schedule by Farthest-in-Future
  Let S* be optimal schedule

– Fewest possible cache misses
  Transform S* into SFF

– One eviction decision at a time
– Not increasing number of cache misses

Farthest-In-Future: Analysis

5 Feb 11, 2009 CS211

Farthest-In-Future: Analysis

Let S be reduced schedule that satisfies invariant through j
requests. We produce reduced schedule S' that satisfies
invariant after j+1 requests

  Consider (j+1)st request d = dj+1

  Since S and SFF have agreed up until now, they have same
cache contents before request j+1

  What are the possibilities for what happens on (j+1)st request?

Invariant: There exists an optimal reduced schedule S that makes
the same eviction schedule as SFF through the first j+1 requests.

Feb 11, 2009 6 CS211

2/11/09

2

Farthest-In-Future: Analysis

Let S be reduced schedule that satisfies invariant through j
requests. We produce S' that satisfies invariant after j+1
requests.

  Consider (j+1)st request d = dj+1
  Since S and SFF have agreed up until now, they have the same

cache contents before request j+1
  Case 1: d is already in the cache. S' = S satisfies invariant
  Case 2: d is not in the cache and S and SFF evict the same

element.
S' = S satisfies invariant.

Invariant: There exists an optimal reduced schedule S that makes
the same eviction schedule as SFF through the first j requests.

Feb 11, 2009 7 CS211

Farthest-In-Future: Analysis
Pf. (continued)
  Case 3: d is not in the cache; SFF evicts e; S evicts f ≠ e

– begin construction of S' from S by evicting e instead of f

– now S' agrees with SFF on first j requests; we show that having
element f in cache is no worse than having element e
•  Need to get schedules’ caches back in sync again

•  All decisions will be the same until decision involves e or f

 j same f same f e e

S S'

 j same d same f d e

S S'
j+1

Feb 11, 2009 8 CS211

Farthest-In-Future: Analysis
Let j' be the first time after j+1 that S and S' take a different

action, and let g be item requested at time j'.

  What are the possibilities for g?
– Is g in the cache for S? For S’?
– What does their caches look like afterwards?

same e same f

S S'

j'

must involve e or f (or both)

Feb 11, 2009 9 CS211

Farthest-In-Future: Analysis
Let j' be the first time after j+1 that S and S' take a different

action, and let g be item requested at time j'.

  Case 3a: g = e
– Can't happen with Farthest-In-Future since there must be
a request for f before e

same e same f

S S'

j'

Feb 11, 2009 10 CS211

Let j' be the first time after j+1 that S and S' take a
different action, and let g be item requested at time j’

  Case 3b: g ≠ e, f
– g is not in either cache
– S must evict e

•  otherwise S' would take the same action

– Make S' evict f; now S and S' have the same cache:

Farthest-In-Future: Analysis

11 Feb 11, 2009 CS211

same g same g

S S'

j'

same e same f

S S'

j'

Let j' be the first time after j+1 that S and S' take a
different action, and let g be item requested at time j'.

  Case 3c: g = f
– Element f can't be in cache of S, so let e' be the element
that S evicts
•  If e' = e, now S and S' have same cache
•  If e' ≠ e, S' evicts e' and brings e into the cache; now S and S'

have the same cache

Farthest-In-Future: Analysis

12 Feb 11, 2009 CS211

same e same f

S S'

j'

Note: S' is no longer reduced, but can be transformed into
a reduced schedule that agrees with SFF through step j+1

2/11/09

3

Let j' be the first time after j+1 that S and S' take a
different action, and let g be item requested at time j'.

For both cases (3b, 3c), have reduced schedule S’
that agrees with SFF for first j+1 items

Farthest-In-Future: Analysis

13 Feb 11, 2009 CS211

same e same f

S S'

j'

Theorem. FF is optimal eviction algorithm
Pf. (by induction on number of requests j)
Let S* be an optimal schedule
Construct an optimal schedule S1 that agrees with SFF

through the first step
Apply previous proof inductively for j = 1, 2, 3, …, m,

producing schedules Sj that agree with SFF through
first j steps

Each schedule Sj incurs no more misses than the
corresponding SFF one

Sm= SFF because agrees through whole sequence

Farthest-in-Future: Analysis

14 Feb 11, 2009 CS211

Caching Perspective
Online vs. offline algorithms
  Offline: full sequence of requests is known a priori
  Online (reality): requests are not known in advance
  Caching is among most fundamental online problems in CS

LIFO. Evict page brought in most recently
LRU. Evict page whose most recent access was earliest
Theorem. FF is optimal offline eviction algorithm
  Provides basis for understanding and analyzing online

algorithms.
  LRU is k-competitive. [Section 13.8]
  LIFO is arbitrarily bad

FF with
direction of

time reversed!

Feb 11, 2009 15 CS211

SHORTEST PATHS IN A
GRAPH

16 Feb 11, 2009 CS211

Shortest Path Problem
Given
  Directed graph G = (V, E)
  Source s, destination t
  Length e = length of edge e (non-negative)

Shortest path problem: find shortest directed path
from s to t

Cost of path s-2-3-5-t
 = 9 + 23 + 2 + 16
 = 48

s

3

t

2

6

7

4
5

 23

 18
 2

 9

 14

 15 5

 30

 20

 44

 16

 11

 6

 19

 6

cost of path = sum of edge
costs in path

Feb 11, 2009 17 CS211

www.wlu.edu

www.cnn.com

Shortest Path Problem
Shortest path problem: find shortest directed path

from s to t
Towards algorithm ideas:
  What is shortest path from s to 2? To 6?
  What is the shortest path to 3? 5? 7?

Cost of path s-2-3-5-t
 = 9 + 23 + 2 + 16
 = 48

s

3

t

2

6

7

4
5

 23

 18
 2

 9

 14

 15 5

 30

 20

 44

 16

 11

 6

 19

 6

cost of path = sum of edge
costs in path

Feb 11, 2009 18 CS211

2/11/09

4

Dijkstra’s Algorithm

Maintain a set of explored nodes S
  Know the shortest path distance d(u) from s to u

Initialize S={s}, d(s)=0
Repeatedly choose unexplored node v which

minimizes
  add v to S and set d(v) = π(v)

,)(min)(
:),(eSuvue

udv +=
∈=

π

s

v

u
d(u)

S

e

shortest path to some u in
explored part, followed by a

single edge (u, v)

Dijkstra's Algorithm

s

v

u
d(u)

S

e

Feb 11, 2009 20 CS211

s

v

u
d(u)

S

e
Before

After

21

Dijkstra's Shortest Path Algorithm
Find shortest path from s to t.

s

3

t

2

6

7

4
5

 24

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

22

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4
5

 24

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 ∞

 ∞ ∞

 ∞

 ∞

 ∞
 ∞

 0

 distance label

S = { }
PQ = { s, 2, 3, 4, 5, 6, 7, t }

Initialize distances to all nodes to infinity

23

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4
5

 24

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 ∞

 ∞ ∞

 ∞

 ∞

 ∞
 ∞

 0

 distance label

S = { }
PQ = { s, 2, 3, 4, 5, 6, 7, t }

delmin

24

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4
5

 24

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9 ∞

 ∞

 ∞

 14

 ∞

 0

 distance label

S = { s }
PQ = { 2, 3, 4, 5, 6, 7, t }

decrease key

 ∞ X

 ∞

 ∞ X

X

Add node s to explored set
Update distances to nodes it points to

2/11/09

5

25

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4
5

 24

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9 ∞

 ∞

 ∞

 14

 ∞

 0

 distance label

S = { s }
PQ = { 2, 3, 4, 5, 6, 7, t }

 ∞ X

 ∞

 ∞ X

X

delmin

26

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4
5

 24

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9 ∞

 ∞

 ∞

 14

 ∞

 0

S = { s, 2 }
PQ = { 3, 4, 5, 6, 7, t }

 ∞ X

 ∞

 ∞ X

X

Add node 2 to explored set

27

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4
5

 24

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9 ∞

 ∞

 ∞

 14

 ∞

 0

S = { s, 2 }
PQ = { 3, 4, 5, 6, 7, t }

 ∞ X

 ∞

 ∞ X

X

decrease key

X 33
Update distances to nodes

it points to, if smaller

28

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4
5

 24

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9 ∞

 ∞

 ∞

 14

 ∞

 0

S = { s, 2 }
PQ = { 3, 4, 5, 6, 7, t }

 ∞ X

 ∞

 ∞ X

X

X 33

delmin

29

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4
5

 24

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9 ∞

 ∞

 ∞

 14

 ∞

 0

S = { s, 2, 6 }
PQ = { 3, 4, 5, 7, t }

 ∞ X

 ∞

 ∞ X

X

X 33

 44
X

X
 32

30

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4
5

 24

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9

 ∞

 ∞

 14

 ∞

 0

S = { s, 2, 6 }
PQ = { 3, 4, 5, 7, t }

 ∞ X

 ∞

 ∞ X

X

 44
X

delmin

 ∞ X 33 X
 32

2/11/09

6

31

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4
5

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9

 ∞

 ∞

 14

 ∞

 0

S = { s, 2, 6, 7 }
PQ = { 3, 4, 5, t }

 ∞ X

 ∞

 ∞ X

X

 44
X

 35 X

 59 X

 24

 ∞ X 33 X
 32

32

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4
5

 24

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9

 ∞

 ∞

 14

 ∞

 0

S = { s, 2, 6, 7 }
PQ = { 3, 4, 5, t }

 ∞ X

 ∞

 ∞ X

X

 44
X

 35 X

 59 X

delmin

 ∞ X 33 X
 32

33

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4
5

 24

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9

 ∞

 ∞

 14

 ∞

 0

S = { s, 2, 3, 6, 7 }
PQ = { 4, 5, t }

 ∞ X

 ∞

 ∞ X

X

 44
X

 35 X

 59 X X 51

X 34

 ∞ X 33 X
 32

34

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4
5

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9

 ∞

 ∞

 14

 ∞

 0

S = { s, 2, 3, 6, 7 }
PQ = { 4, 5, t }

 ∞ X

 ∞

 ∞ X

X

 44
X

 35 X

 59 X X 51

X 34

delmin

 ∞ X 33 X
 32

 24

35

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4
5

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9

 ∞

 ∞

 14

 ∞

 0

S = { s, 2, 3, 5, 6, 7 }
PQ = { 4, t }

 ∞ X

 ∞

 ∞ X

X

 44
X

 35 X

 59 X X 51

X 34

 24

X 50

X 45

 ∞ X 33 X
 32

36

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4
5

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9

 ∞

 ∞

 14

 ∞

 0

S = { s, 2, 3, 5, 6, 7 }
PQ = { 4, t }

 ∞ X

 ∞

 ∞ X

X

 44
X

 35 X

 59 X X 51

X 34

 24

X 50

X 45

delmin

 ∞ X 33 X
 32

2/11/09

7

37

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4
5

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9

 ∞

 ∞

 14

 ∞

 0

S = { s, 2, 3, 4, 5, 6, 7 }
PQ = { t }

 ∞ X

 ∞

 ∞ X

X

 44
X

 35 X

 59 X X 51

X 34

 24

X 50

X 45

 ∞ X 33 X
 32

38

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4
5

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9

 ∞

 ∞

 14

 ∞

 0

S = { s, 2, 3, 4, 5, 6, 7 }
PQ = { t }

 ∞ X

 ∞

 ∞ X

X

 44
X

 35 X

 59 X X 51

X 34

X 50

X 45

delmin

 ∞ X 33 X
 32

 24

39

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4
5

 24

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9

 ∞

 ∞

 14

 ∞

 0

S = { s, 2, 3, 4, 5, 6, 7, t }
PQ = { }

 ∞ X

 ∞

 ∞ X

X

 44
X

 35 X

 59 X X 51

X 34

X 50

X 45

 ∞ X 33 X
 32

40

Dijkstra's Shortest Path Algorithm

s

3

t

2

6

7

4
5

 24

 18

 2

 9

 14

 15
 5

 30

 20

 44

 16

 11

 6

 19

 6

 15

 9

 14

 0

S = { s, 2, 3, 4, 5, 6, 7, t }
PQ = { }

 34

 50

 45

 32

Dijkstra’s Algorithm

Maintain a set of explored nodes S
  Know the shortest path distance d(u) from s to u

Initialize S={s}, d(s)=0
Repeatedly choose unexplored node v which

minimizes
  add v to S and set d(v) = π(v)

,)(min)(
:),(eSuvue

udv +=
∈=

π

s

v

u
d(u)

S

e

shortest path to some u in
explored part, followed by a

single edge (u, v)

Running time?
Implementation?
Data structures?

Dijkstra’s Algorithm

Maintain a set of explored nodes S
  Know the shortest path distance d(u) from s to u

Initialize S={s}, d(s)=0
Repeatedly choose unexplored node v which

minimizes
  add v to S and set d(v) = π(v)

,)(min)(
:),(eSuvue

udv +=
∈=

π shortest path to some u in
explored part, followed by a

single edge (u, v)

Using a priority queue, how many
 Inserts?
 Finding minimum?
 Deletions?
 Updating the key?
 Determining if empty?

How long does each
operation take?

2/11/09

8

Dijkstra's Algorithm:
Implementation

For each unexplored node, explicitly maintain

  Next node to explore = node with minimum π(v).
  When exploring v, for each incident edge e = (v, w),

update

Efficient implementation. Maintain a priority queue of
unexplored nodes, prioritized by π(v)

Priority Queue PQ Operation

Insert

ExtractMin

ChangeKey

Binary heap

log n
log n
log n

IsEmpty 1
Total m log n

Dijkstra

n
n
m
n

€

π (v) = min
e = (u,v) : u∈ S

d (u) +  e .

€

π (w) = min { π (w), π (v)+  e }.

Feb 11, 2009 43 CS211

How Greedy?

How Greedy?

We always form shortest new s-v path from a path in
S followed by a single edge

Proof of optimality: Stays ahead of all other solutions
  Each time selects a path to a node v, that path is

shorter than every other possible path to v

Invariant. For each node u ∈ S, d(u) is the length of
the shortest s-u path

Pf. (by induction on |S|)
Base case: |S|=1 …
Inductive hypothesis?
Next step?

Dijkstra's Algorithm: Proof of
Correctness

46 Feb 11, 2009 CS211

Invariant. For each node u ∈ S, d(u) is the length of
the shortest s-u path

Pf. (by induction on |S|)
Base case: For |S| = 1, S={s}; d(s) = 0
Inductive hypothesis: Assume true for |S| = k, k ≥ 1
  Grow |S| to k+1
  Adding next node v by u→ v
  What do we know about s→ u?
  What can we say about other s→ v paths?
  Why didn’t we pick y as the next node?

Dijkstra's Algorithm: Proof of
Correctness

47 Feb 11, 2009 CS211

S

s

y

v

x

P

u

P'

