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•  Graph Traversal 
•  BFS & DFS Implementations, Analysis 

•  Designing algorithms 
 Be as descriptive as possible, provide intuition 
 Explain running time 

•  Match prescribed running time 
•  Or what you think the running time is 

• Wiki 
 Say something about how readable/interesting 

the section was on scale of 1 to 10 

• What do they do? 
•  How are their outcomes different? 
• When would we want to use one over the 

other? 

• What do they do? 
 Techniques for finding connected components 

•  Create a tree of connected components 
 Other uses as well 

•  How are their outcomes different? 
 BFS: shortest path; bushy tree 
 DFS: spindly tree 

• When would we want to use one over the 
other? 
 DFS: what you’d do in a maze (can’t split) 

•  Find all nodes reachable from s 

•  Theorem.  Upon termination, R is the 
connected component containing s 
 BFS = explore in order of distance from s 
 DFS = explore until hit “deadend” 
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In general…. 
R will consist of nodes to which s has a path	
R = {s}	
While there is an edge (u,v) where u∈R and v∉R	

	add v to R	

•  Intuition.  Explore outward from s in all 
possible directions (edges), adding nodes 
one "layer" at a time 

•  Algorithm  
 L0 = { s } 
 L1 = all neighbors of L0 

 L2 = all nodes that do not belong to L0 or L1 and 
that have an edge to a node in L1 

 Li+1 = all nodes that do not belong to an earlier 
layer and that have an edge to a node in Li 

s L1 L2 L n-1 
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•  Need to keep track of where 
you’ve been 

• When reach a “dead-end” (already 
explored all neighbors), backtrack 
to node with unexplored neighbor 

•  Algorithm: 
DFS(u):	

	Mark u as “Explored” and add u to R	
	For each edge (u, v) incident to u	
	 	If v is not marked “Explored” then	
	 	 	DFS(v)	

Explored: 1, 2, 4, 5, 3, 7, 8, 6 
Now: 1, 2, 4, 5, 3, 7, 8, 7, 3, 5, 6, 5, 4, 2, 1 
R: 1, 2, 4, 5, 7, 8, 6 
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•  Let T be a depth-first search tree, let x and y 
by nodes in T, and let (x, y) be an edge of G 
that is not an edge of T.  Then one of x or y 
is an ancestor of the other.   

•  Let T be a depth-first search tree, let x and y by 
nodes in T, and let (x, y) be an edge of G that is not 
an edge of T.  Then one of x or y is an ancestor of the 
other.  

•  Proof.   
 Suppose that x-y is an edge in G but not in T.  (From 

problem statement) 
 WLOG, assume that DFS reaches x before y 
 When edge x-y is considered in the DFS algorithm, we 

don’t add it to T (from problem statement), which means 
that y must have been explored. 

 But, since we reached x first, y had to be discovered 
between invocation and end of the recursive call DFS(x) 
•  i.e., y is a descendent of x 

•  For any two nodes s and t in a graph, their 
connected components are either identical or 
disjoint 

•  Proof? 

•  For any two nodes s and t in a graph, their 
connected components are either identical or 
disjoint 

•  Proof sketch: 
(i) There is a path between s and t  same set of 

connected components 
(ii) There is no path between s and t  disjoint set 

of connected components 
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•  How can we find the set of all connected 
components of graph?  

•  How can we find the set of all connected 
components of graph?  

R* = set of connected components	
While there is a node that does not belong to R*	

	select s not in R*	

	R = {s}	

	While there is an edge (u,v) where u∈R and v∉R	
	 	add v to R	

	Add R to R*	

•  How are queues and stacks similar? 
•  How are queues and stacks different? 

•  Both: doubly linked list 
 Always take first on list 
 Difference in where extracted 
 Have first and last pointers 
 Done in constant time 

•  Queue: FIFO 
 First in, first out 

•  Stack: LIFO 
 Last in, last out 

Queue 
Removes 

Stack 
Removes 

Described differently in book 
- Inserted differently 
- Extracted at same place 

•  Graph: Adjacency list 
•  Discovered array 
•  Maintain layers in separate lists, L[i] 
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•  Graph: Adjacency list 
•  Discovered array 
•  Maintain layers in separate lists, L[i] 

BFS(s):	
	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	For each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] == false then	
	 	 	 	Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	

L[i] as a queue 
or stack? 

What does this 
stopping 

condition mean? 

BFS(s):	
	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	For each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] == false then	
	 	 	 	Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	

L[i] as a queue or stack? 

 - Doesn’t matter because algorithm 
can consider nodes in any order 

BFS(s):	
	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	For each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] == false then	
	 	 	 	Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	
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BFS(s):	

	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	For each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] == false then	
	 	 	 	Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	

O(deg(u)) 
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Σu∈V deg(u) = 2m 

 O(n+m) 

•  Defined iteratively rather than recursively 
 Analogous to BFS 

•  Keep nodes to be processed in a stack 
DFS(s):	

	Initialize S to be a stack with one element s	
	Explored[v] = false, for all v	
	Parent[v] = 0, for all v	
	DFS tree T = {}	
	while S != {}	
	 	Take a node u from S	
	 	If Explored[u] = false	
	 	 	Explored[u] = true	
	 	 	Add edge (u, parent[u]) to T (if u ≠ s)	
	 	 	For each edge (u, v) incident to u	
	 	 	 	Add v to the stack S	
	 	 	 	Parent[v] = u	
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•  Continue reading Chapter 3 
 Post summaries on Wiki 

•  Problem Set 2 due Friday 


