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Greedy Algorithms 
  Minimum spanning tree 
  Union-Find Data Structure 
  Clustering 
  Data Compression 

Objectives 
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Laying Cable 
Comcast knows how to make money and how to save money 

They want to lay cable in a neighborhood 
  Reach all houses 

  Least cost Neighborhood Layout 

Cost of laying cable 
between houses depends on 
amt of cable, landscaping, 

obstacles, etc. 
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Minimum Spanning Tree 
Given a connected graph G = (V, E) with positive  edge 

weights ce, an MST is a subset of the edges T ⊆ E such 
that T is a spanning tree whose sum of edge weights is 
minimized 
  Spanning tree: spans all nodes in graph 
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G = (V, E) T,  Σe∈T ce = 50 
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Proof by Contradiction. 
Assume have a minimal solution V that is not a tree, 

i.e., it has a cycle 
Contains edges to all nodes because solution must 

be connected (spanning) 
Remove an edge from the cycle 

Can still reach all nodes (could go “long way around”) 
But at lower cost 
Contradiction to our minimal solution 

Minimal Spanning Tree: Why a Tree? 
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Greedy Algorithms 
All three algorithms produce a MST 

Kruskal's algorithm.  Start with T = φ. Consider edges in 
ascending order of cost. Insert edge e in T unless doing so 
would create a cycle. 

Reverse-Delete algorithm.  Start with T = E.  Consider edges 
in descending order of cost. Delete edge e from T unless 
doing so would disconnect T. 

Prim's algorithm.  Start with some root nodes and greedily 
grow a tree T from s outward.  At each step, add the 
cheapest edge e to T that has exactly one endpoint in T. 

  Similar to Dijkstra’s (but simpler) 
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What do these algorithms have/do/check in common? 

When is it safe to include an edge in the minimum 
spanning tree? 

When is it safe to eliminate an edge from the 
minimum spanning tree? 

What Do These Algorithms 
Have in Common? 

6 Feb 23, 2009 CS211 

Cut Property 

Cycle Property 
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Cut and Cycle Properties 
Simplifying assumption: All edge costs ce are distinct 
➡  MST is unique 

Cut property.  Let S be any subset of nodes, and let e be the 
min cost edge with exactly one endpoint in S.  Then the 
MST contains e. 

Cycle property.  Let C be any cycle, and let f be the max cost 
edge belonging to C.  Then the MST does not contain f. 

f  
C 

S 

e is in the MST 

e 

f is not in the MST 
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Cycles and Cuts 
Cycle.  Set of edges that form a-b, b-c, c-d, …, y-z, 

z-a  

Cutset.  A cut is a subset of nodes S.  The 
corresponding cutset D is the subset of edges with 
exactly one endpoint in S. 

Cycle C  =  1-2, 2-3, 3-4, 4-5, 
5-6, 6-1 
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Cut S       =  { 4, 5, 8 } 
Cutset  D =  5-6, 5-7, 3-4, 

3-5, 7-8 
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Cycle-Cut Intersection 
Claim.  A cycle and a cutset intersect in an even 

number of edges 

Pf.  (by picture) 
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Cycle  C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1 
Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8  
Intersection = 3-4, 5-6 
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(Cut) 

Edges link to not-Cut 

•  Cycle all in S or V-S 
•  Cycle has to go from 

SV-S and back 
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Cut Property: OK to Include Edge 
Simplifying assumption.  All edge costs ce are distinct 
Cut property.  Let S be any subset of nodes, and let e be the 

min cost edge with exactly one endpoint in S. Then the 
MST T* contains e. 

Pf. 
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Cut Property: OK to Include Edge 
Simplifying assumption.  All edge costs ce are distinct 
Cut property.  Let S be any subset of nodes, and let e be the 

min cost edge with exactly one endpoint in S. Then the 
MST T* contains e. 

Pf.  (exchange argument) 
  Suppose there is an MST T* that does not contain e 

– What do we know about T? 
– What do we know about the nodes e connects? 
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Cut Property: OK to Include Edge 
Simplifying assumption.  All edge costs ce are distinct 
Cut property.  Let S be any subset of nodes, and let e be the 

min cost edge with exactly one endpoint in S. Then the 
MST T* contains e 

Pf.  (exchange argument) 
  Suppose there is an MST T* that does not contain e 
  Adding e to T* creates a cycle C in T* 
  Edge e is in cycle C and in cutset corresponding to S   

⇒  There exists another edge, say f, that is in both C and S’s cutset 

AND ?!? 
f  

 T* 
e 

S 
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Cut Property: OK to Include Edge 
Simplifying assumption.  All edge costs ce are distinct 
Cut property.  Let S be any subset of nodes, and let e be the 

min cost edge with exactly one endpoint in S. Then the 
MST T* contains e 

Pf.  (exchange argument) 
  Suppose there is an MST T* that does not contain e 
  Adding e to T* creates a cycle C in T* 
  Edge e is in cycle C and in cutset corresponding to S   

⇒  there exists another edge, say f, that is in both C and S’s cutset 
  T' = T* ∪ { e } - { f } is also a spanning tree 
  Since ce < cf, cost(T') < cost(T*) 
  This is a contradiction.   ▪ 
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Feb 23, 2009 CS211 14 

Cut Property: OK to Include Edge 
Simplifying assumption.  All edge costs ce are distinct 
Cut property.  Let S be any subset of nodes, and let e be the 

min cost edge with exactly one endpoint in S. Then the 
MST T* contains e 

Implication: Can always include an edge (meeting 
criteria) with minimum cost 

  Many different configurations of S 

f  
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e 
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Cycle Property: OK to Remove Edge 
Simplifying assumption.  All edge costs ce are distinct 
Cycle property.  Let C be any cycle in G, and let f be 

the max cost edge belonging to C. Then the MST 
T* does not contain f. 

Ideas about approach? 
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Cycle Property: OK to Remove Edge 
Simplifying assumption.  All edge costs ce are distinct 
Cycle property.  Let C be any cycle in G, and let f be the max 

cost edge belonging to C. Then the MST T* does not 
contain f. 

Pf.  (exchange argument) 
  Suppose f belongs to T*, and let's see what happens. 

– What happens if we deleted f from T*? 

f  
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Cycle Property: OK to Remove Edge 
Simplifying assumption.  All edge costs ce are distinct 
Cycle property.  Let C be any cycle in G, and let f be the max 

cost edge belonging to C. Then the MST T* does not 
contain f. 

Pf.  (exchange argument) 
  Suppose f belongs to T*, and let's see what happens. 
  Deleting f from T* creates a cut S in T*. 
  Edge f is both in the cycle C and in the cutset S 

⇒  There exists another edge, say e, that is in both C and S 
  T' = T* ∪ { e } - { f } is also a spanning tree. 
  Since ce < cf, cost(T') < cost(T*). 
  This is a contradiction.   ▪ 

f  

 T* 
e 
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[Jarník 1930, Dijkstra 1957, Prim 1959] 

Start with some root node s 
Greedily grow a tree T from s outward 
At each step, add the cheapest edge e to T that has 

exactly one endpoint in T. 

Prim’s Algorithm 
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How can we prove its correctness? 
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Prim's Algorithm:  Proof of 
Correctness 

Initialize S = any node 
Apply cut property to S 
  Add min cost edge in S’s cutset to T 
  Add one new explored node u to S 

S 
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Implementation:  Prim's Algorithm 
Similar to Dijkstra’s algorithm 

Maintain set of explored nodes S 
For each unexplored node v, maintain attachment 

cost a[v] = cost of cheapest edge v to a node in S 
  O(m log n) with a heap 

CS211 

foreach (v ∈ V) a[v] = ∞	
Initialize an empty priority queue Q	
foreach (v ∈ V) insert v onto Q	
Initialize set of explored nodes S = φ	
while (Q is not empty) 	
   u = delete min element from Q	
   S = S ∪ { u }	
   foreach (edge e = (u, v) incident to u)	
       if ((v ∉ S) and (ce < a[v]))	
           decrease priority a[v] to ce	

Update 
attachment 

cost 

Start with T = φ 
Consider edges in ascending order of cost 
Insert edge e in T unless doing so would create a 

cycle 

Kruskal’s Algorithm [1956] 
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How can we prove its correctness? 
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Kruskal's Algorithm:  Proof of 
Correctness 

Consider edges in ascending order of weight 
Case 1:  If adding e to T creates a cycle, discard e 

according to cycle property 
Case 2:  Otherwise, insert e = (u, v) into T according to 

cut property where S = set of nodes in u's connected 
component 

Case 1 

v 

u 

Case 2 

e 

e 
S 
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What is tricky about implementing Kruskal’s 
algorithm? 

Implementing Kruskal’s Algorithm 
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What is tricky about implementing Kruskal’s 
algorithm? 

  How do we know when adding an edge will create a 
cycle? 
– What are the properties of an undirected /its nodes when 
adding an edge will create a cycle? 

Implementing Kruskal’s Algorithm 
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Keeps track of a graph as edges are added 
  Cannot handle when edges are deleted 

Maintains disjoint sets 
  E.g., graph’s connected components 

Operations: 
  Find(u): returns name of set containing u 

– How utilized to see if two nodes are in the same set? 
– Goal implementation: O(log n) 

  Union(A, B) : merge sets A and B into one set 
– Goal implementation: O(log n) 

Union-Find Data Structure 
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Implementing Kruskal's Algorithm 
Using the union-find data structure 
  Build set T of edges in the MST 
  Maintain set for each connected component 
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Sort edges weights so that c1 ≤ c2 ≤ ... ≤ cm	
T = {}	
foreach (u ∈ V) make a set containing singleton u	

for i = 1 to m	
   (u,v) = ei	
   if (u and v are in different sets)	
      T = T ∪ {ei}	
      merge the sets containing u and v	
return T	

are u and v in different connected components? 

merge two components 

Costs? 
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Implementing Kruskal's Algorithm 
Using best implementation of union-find 
  Sorting: O(m log n) 
  Union-find: O(m α (m, n)) 
⇒ O(m log n) 
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Sort edges weights so that c1 ≤ c2 ≤ ... ≤ cm	
T = {}	
foreach (u ∈ V) make a set containing singleton u	

for i = 1 to m	
   (u,v) = ei	
   if (u and v are in different sets)	
      T = T ∪ {ei}	
      merge the sets containing u and v	
return T	

are u and v in different connected components? 

merge two components 

m ≤ n2 ⇒ log m is O(log n) 

essentially a constant 

Motivating Example: Comcast laying cable 

Limitations to Applying MST? 
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Neighborhood Layout 
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CLUSTERING 

Outbreak of cholera deaths  in London in 1850s. 
Reference: Nina Mishra, HP Labs 

Intersections 
with polluted 

wells Given a set U of n objects labeled p1, …, pn, classify 
into coherent groups 

  Example objects: photos, documents, micro-organisms 

Distance function.  Numeric value specifying 
"closeness" of two objects 

Clustering 

30 Feb 23, 2009 CS211 
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Given a set U of n objects labeled p1, …, pn, classify into 
coherent groups 

  Example objects: photos, documents, micro-organisms 
Distance function.  Numeric value specifying "closeness" of 

two objects 
Fundamental problem.  Divide into clusters so that points in 

different clusters are far apart 
  Routing in mobile ad hoc networks 
  Identify patterns in gene expression 
  Identifying patterns in web application use cases 

– Sets of URLs 
  Similarity searching in medical image databases 
  Skycat:  cluster 109 sky objects into stars, quasars, galaxies 

Clustering 
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Clustering 
k-clustering.  Divide objects into k non-empty groups 
Distance function.  Assume it satisfies several 

natural properties 
  d(pi, pj) = 0 iff pi = pj   (identity of indiscernibles) 
  d(pi, pj) ≥ 0    (nonnegativity) 
  d(pi, pj) = d(pj, pi)   (symmetry) 
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Clustering of Maximum Spacing 
k-clustering.  Divide objects into k non-empty groups 
Spacing.  Min distance between any pair of points in 

different clusters 
Clustering of maximum spacing.  Given an integer k, 

find a k-clustering of maximum spacing 

spacing k = 4 
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Greedy algorithm? 
How relates to the minimum spanning tree? 

Ideas about Solving? 
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Single-link k-clustering algorithm 
  Form a graph on the vertex set U, corresponding to n 

clusters 
  Find the closest pair of objects such that each object is 

in a different cluster, and add an edge between them 
  Repeat n-k times until there are exactly k clusters 

Key observation. Same as Kruskal's algorithm 
  Except we stop when there are k connected 

components 
Remark.  Equivalent to finding an MST and deleting 

the k-1 most expensive edges 

Greedy Clustering Algorithm 
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Solutions not online 
See me to discuss your solution/write up or best solution 
Common mistakes 
  Not stating and/or discussing algorithm’s runtime 
  Not backing up claims 

– Ex: why has to have only one node in a layer 
  Not using “algorithm terms”, e.g., topological ordering, 

DAG, etc. 
– Not clear if following material, know how to apply solutions 

  Not explaining intuition or model 
– Ex: what nodes and edges represent in last problem 

Problem Set 2 
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Describe how modeling information: 
  Let G be a directed graph with two nodes for each 

person 
– One representing person’s birth, person’s death 

  A directed edge between nodes i and j means “i 
happened before j” 

  How can use this model for data collected… 
Data is consistent if G is a DAG 
  Topological ordering is relative birth and death dates 
  If cycle, inconsistent 

– Explain how can find a cycle 

Problem 3: Good Solution Sketch 
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Wednesday: Finish up Chapter 4: Huffman Codes 
Friday: 
  Problem Set 3 due 
  SSA – Extra credit opportunities 

– Added to homework grade 
Monday: Divide and conquer algorithms (Chap 5) 
Tue-Fri: Open-book midterm 
  Turned into my mailbox in CS office by Friday 
  I’ll be at a conference Tuesday through Saturday 

– Available by email 

Our Plan 
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