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Dynamic Programming 
  Segmented Least Squares 
  Subset Sums/Knapsack 

Objectives 
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Least Squares 
Foundational problem in statistic and numerical analysis 
Given n points in the plane: (x1, y1), (x2, y2) , . . . , (xn, yn) 
Find a line y = ax + b that minimizes the sum of the 

squared error 
  “line of best fit” 

Closed form solution.  Calculus  ⇒  min error is achieved 
when 
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Sum of 
squared 
error 

What happens to the error if we try to fit one line to 
these points? 

  Large error 

Pattern: More like 3 lines 

Least Squares 
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Segmented Least Squares 
Points lie roughly on a sequence of line segments 
Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) 

with x1 < x2 < ... < xn, find a sequence of lines that 
minimizes f(x) 

Q.  What's a reasonable choice for f(x) to balance 
accuracy and parsimony? 
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goodness of fit number of lines 
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Segmented Least Squares 
Points lie roughly on a sequence of several line segments. 
Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with x1 

< x2 < ... < xn, find a sequence of lines that minimizes: 
  the sum of the sums of the squared errors E in each segment 
  the number of lines L 

Tradeoff function:  E + c L, for some constant c > 0. 
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How should we define 
an optimal solution? 

What made it seem like the points were in 3 lines?  
What happened? 

Looking for change in linear approximation 
  Where to partition points into line segments 

Segmented Least Squares 
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Polynomial number of subproblems 
Solution to original problem can be easily computed 

from solutions to subproblems 
Natural ordering of subproblems, easy to compute 

recurrence 

Recall:  
Properties of Problems for DP 
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We need to: 
•  Figure out how to break the problem into subproblems 
•  Figure out how to compute solution from subproblems 
•  Define the recurrence relation between the problems 

Consider just the first or last point 
  What do we know about those points/their segments/

cost of segments? 

Toward a Solution 
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pn can only belong to one segment 
  Segment: pi, …, pn 

  Cost: c (cost for segment) + error of segment 

What is the remaining problem? 

Toward a Solution 
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pn can only belong to one segment 
  Segment: pi, …, pn 

  Cost: c (cost for segment) + error of segment 

What is the remaining problem? 
  Solve for p1, …, pi-1 

Goal: 
  Formulate as a recurrence 

Toward a Solution 
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Dynamic Programming:  Multiway 
Choice 

Notation. 
  OPT(j) = minimum cost for points p1, pi+1 , . . . , pj. 
  e(i, j)  = minimum sum of squares for points pi,            

pi+1 , . . . , pj. 

How do we compute OPT(j)? 
  Last problem: binary decision (include job or not) 
  This time: multiway decision 

–  Which option do we choose? 
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Dynamic Programming:  Multiway 
Choice 

Notation. 
  OPT(j) = minimum cost for points p1, pi+1 , . . . , pj. 
  e(i, j)   = minimum sum of squares for points pi, pi+1, 
 . . . , pj. 

To compute OPT(j): 
  Last segment contains points pi, pi+1 , . . . , pj for some i 
  Cost = e(i, j) + c + OPT(i-1). 

  

€ 

OPT( j) =
0 if  j = 0

min
1≤ i ≤ j

e(i, j) + c + OPT(i −1){ } otherwise
 
 
 

  
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Segmented Least Squares:  
Algorithm 

INPUT: n, p1,…,pN , c	

Segmented-Least-Squares()	
   M[0] = 0	
   e[0][0] = 0	
   for j = 1 to n	
      for i = 1 to j	
         e[i][j] = least square error for the	

	 	 	  segment pi, …, pj	

   for j = 1 to n	
      M[j] = min 1 ≤ i ≤ j (e[i][j] + c + M[i-1])	

   return M[n]	
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Costs? 
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Segmented Least Squares:  
Algorithm Analysis 

Bottleneck: computing e(i, j) for O(n2) pairs, O(n) per 
pair using previous formula 

can be improved to O(n2) by pre-computing various statistics 
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INPUT: n, p1,…,pN , c	

Segmented-Least-Squares()	
   M[0] = 0	
   e[0][0] = 0	
   for j = 1 to n	
      for i = 1 to j	
         e[i][j] = least square error for the 
         	 	segment pi,…, pj	

   for j = 1 to n	
      M[j] = min 1 ≤ i ≤ j (e[i][j] + c + M[i-1])	

   return M[n]	

O(n3) 

can be improved to 
O(n2) by pre-computing 

various statistics 

O(n2) 

KNAPSACK PROBLEM 
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Goal: Spend as much money as possible without 
going over $100 

  CD $18 
  Jeans $40 

  DVD $35 
  Dinner $15 
  Book $8 
  Ice cream $5 
  Shoes $61 

  Pizza $7  

The Price is Right 
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Or, shopping with someone else’s money 
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Possible solutions? 
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Knapsack Problem 
Given n objects and a "knapsack" 
Item i weighs wi  > 0 kilograms and has value vi > 0 
  Could be jobs that require wi  time 

Knapsack has capacity of W kilograms 
  W is time interval that resource is available 

Goal: fill knapsack so as to maximize total value 

1 

Value 

18 

22 

28 

1 
Weight 
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6 2 

7 

Item 
1 

3 

4 

5 

2 
W = 11 
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What do we know about the knapsack with respect 
to item i? 

Towards a Recurrence… 
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What do we know about the knapsack with respect 
to item i? 

  Either select item i or not 
  If don’t select 

–  Pick optimum solution of remaining items 
  Otherwise 

–  What happens? 
–  How does problem change? 

Towards a Recurrence… 
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Def.  OPT(i) = max profit subset of items 1, …, i 
  Case 1:  OPT does not select item i 

–  OPT selects best of { 1, 2, …, i-1 }  
  Case 2:  OPT selects item i 

–  Accepting item i does not immediately imply that we will 
have to reject other items 
•  No known conflicts 

–  Without knowing what other items were selected before i, 
we don't even know if we have enough room for i 

Dynamic Programming:  False Start 
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➡ Need more sub-problems! 

Def.  OPT(i, w) = max profit subset of items 1, …, i 
with weight limit w 

  Case 1:  OPT does not select item i 
–  OPT selects best of { 1, 2, …, i-1 } using weight limit w  

  Case 2:  OPT selects item i 
–  new weight limit = w – wi 

–  OPT selects best of { 1, 2, …, i–1 } using new weight limit 

Dynamic Programming:  Adding a 
New Variable 
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€ 

OPT(i, w) =

0 if  i = 0
OPT(i −1, w) if  wi > w
max OPT(i −1, w), vi + OPT(i −1, w−wi ){ } otherwise

 

 
 

 
 

Fill up an n-by-W array 
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Input: N, w1,…,wN, v1,…,vN	

for w = 0 to W	
   M[0, w] = 0	

for i = 1 to N  # for all items 	
   for w = 1 to W  # for possible weights	
      if wi > w  # item’s weight is more than available	
         M[i, w] = M[i-1, w]	
      else	
         M[i, w] = max{ M[i-1, w], vi + M[i-1, w-wi] }	

return M[n, W]	

Knapsack Problem:  Bottom-Up 
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Knapsack Algorithm 

n + 1 

1 
Value 

18 
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Weight 
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1 

3 
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{ 1, 2, 3, 4, 5 } 
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W + 1 

W = 11 

OPT: 
Value= 
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Knapsack Algorithm 

n + 1 

1 
Value 

18 
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28 

1 
Weight 
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6 2 
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Item 
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φ 

{ 1, 2 } 
{ 1, 2, 3 } 
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{ 1 } 
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0 
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OPT: 
Value= 
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Knapsack Algorithm 

n + 1 

1 
Value 

18 

22 

28 

1 
Weight 

5 

6 

6 2 

7 

Item 
1 

3 

4 

5 

2 

φ 

{ 1, 2 } 
{ 1, 2, 3 } 

{ 1, 2, 3, 4 } 

{ 1 } 

{ 1, 2, 3, 4, 5 } 

0 
0 

0 

0 

0 

0 

0 

1 
0 

1 
1 

2 
0 

6 
1 

3 
0 

7 
1 

4 
0 

7 
1 

5 
0 

7 
1 

6 
0 

7 
1 

7 
0 

7 
1 

8 
0 

7 
1 

9 
0 

7 
1 

10 
0 

7 
1 

11 
0 

7 
1 

W + 1 

W = 11 

OPT: 
Value= 
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N=2 
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Knapsack Algorithm 

n + 1 

1 
Value 

18 

22 

28 

1 
Weight 

5 

6 

6 2 

7 

Item 
1 

3 

4 

5 

2 

φ 

{ 1, 2 } 
{ 1, 2, 3 } 

{ 1, 2, 3, 4 } 

{ 1 } 
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0 
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0 

0 
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7 

1 
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0 
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7 
0 
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24 

1 

8 
0 

7 
25 
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9 
0 
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25 
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10 
0 
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25 

1 
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0 

7 
25 
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W + 1 

W = 11 

OPT: 
Value= 
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N=3 
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Knapsack Algorithm 

n + 1 

1 
Value 

18 

22 

28 

1 
Weight 

5 
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6 2 
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Item 
1 
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φ 

{ 1, 2 } 
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{ 1, 2, 3, 4 } 
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0 

1 
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0 

6 
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0 
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7 
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1 

5 
0 
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18 
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6 
0 
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7 
0 
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24 
24 
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8 
0 

7 
25 
28 

1 

9 
0 

7 
25 
29 

1 

10 
0 

7 
25 
29 

1 

11 
0 
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25 
40 
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W + 1 

W = 11 

OPT: 
Value= 
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Knapsack Algorithm 

n + 1 

1 
Value 

18 

22 

28 

1 
Weight 
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1 
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φ 
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{ 1, 2, 3 } 
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0 
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6 
6 

1 
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7 
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1 

7 
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0 
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7 

7 

1 

7 
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0 
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18 
18 

1 

18 

6 
0 
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19 
22 

1 

22 
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0 
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24 

1 

28 
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0 

7 
25 
28 

1 

29 
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0 
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25 
29 

1 
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OPT: 
Value= 
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Knapsack Algorithm 

n + 1 

1 
Value 

18 

22 

28 

1 
Weight 

5 
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Item 
1 

3 

4 
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2 

φ 

{ 1, 2 } 
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{ 1, 2, 3, 4 } 
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0 

0 
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0 

0 

0 
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0 
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1 

1 

1 

1 

2 
0 

6 

6 

6 

1 

6 

3 
0 

7 

7 

7 

1 

7 

4 
0 

7 

7 

7 

1 

7 

5 
0 

7 

18 

18 

1 

18 

6 
0 

7 

19 

22 

1 

22 

7 
0 

7 

24 

24 

1 

28 

8 
0 

7 

25 

28 

1 

29 

9 
0 

7 

25 

29 

1 

34 

10 
0 

7 

25 
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40 
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W + 1 

W = 11 

OPT:  { 4, 3 } 
Value = 22 + 18 = 40 
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Costs? 
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Input: N, w1,…,wN, v1,…,vN	

for w = 0 to W	
   M[0, w] = 0	

for i = 1 to N  # for all items 	
   for w = 1 to W  # for possible weights	
      if wi > w  # item’s weight is more than available	
         M[i, w] = M[i-1, w]	
      else	
         M[i, w] = max{ M[i-1, w], vi + M[i-1, w-wi] }	

return M[n, W]	

Analyzing Solution 
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Costs? 
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Input: N, w1,…,wN, v1,…,vN	

for w = 0 to W	
   M[0, w] = 0	

for i = 1 to N  # for all items 	
   for w = 1 to W  # for possible weights	
      if wi > w  # item’s weight is more than available	
         M[i, w] = M[i-1, w]	
      else	
         M[i, w] = max{ M[i-1, w], vi + M[i-1, w-wi] }	

return M[n, W]	

Analyzing Solution 
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O(W) 

O(N W) 
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Knapsack Problem:  Running Time 
Running time.  Θ(n W) 
  Not polynomial in input size! 
  "Pseudo-polynomial” 

–  Reasonably efficient when W is reasonably small 
  Decision version of Knapsack is NP-complete  

[Chapter 8] 

Knapsack approximation algorithm.  There exists a 
polynomial algorithm that produces a feasible 
solution that has value within 0.01% of optimum.  
[Section 11.8] 
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