
1/13/12	

1	

Objectives

•  Analyzing algorithms
•  Asymptotic running times

Jan 13, 2012 Sprenkle - CSCI211 1

Our Process

1. Understand/identify problem
Ø  Simplify as appropriate

2. Design a solution
3. Analyze

Ø  Correctness, efficiency
Ø  May need to go back to step 2 and try again

4.  Implement
Ø  Within bounds shown in analysis

Jan 13, 2012 Sprenkle - CSCI211 2

(On Monday)	

Computational Tractability

Jan 13, 2012 Sprenkle - CSCI211 3

Charles Babbage
(1864)	

As soon as an Analytic Engine exists, it will necessarily guide the future
course of the science. Whenever any result is sought by its aid, the

question will arise - By what course of calculation can these results be

arrived at by the machine in the shortest time?

	

 	

 	

 	

 	

-- Charles Babbage	

Analytic Engine
(schematic)	

http://plan28.org/	

TODAY’S GOAL:
DEFINE ALGORITHM

EFFICIENCY
Jan 13, 2012 Sprenkle - CSCI211 4

Brute Force

•  For many non-trivial problems, there is a
natural brute force search algorithm that
checks every possible solution
Ø Typically takes 2N time or worse for inputs of

size N
Ø Unacceptable in practice

Jan 13, 2012 Sprenkle - CSCI211 5

Example: How many possible solutions are there in the
stable matching problem?	

	

In other words, how many possible perfect matchings are there?
For each perfect match, we’ll check if it’s stable.	

“Exponential”	

Brute Force

•  For many non-trivial problems, there is a
natural brute force search algorithm that
checks every possible solution
Ø Typically takes 2N time or worse for inputs of

size N
Ø Unacceptable in practice

•  Example: Stable matching: n! with n men and
n women
Ø If n increases by 1, what happens to the running

time?

Jan 13, 2012 Sprenkle - CSCI211 6

“Exponential”	

1/13/12	

2	

How Do We Measure Runtime?

Jan 13, 2012 Sprenkle - CSCI211 7

Worst-Case Running Time

•  Obtain bound on largest possible running
time of algorithm on input of a given size N
Ø Generally captures efficiency in practice
Ø Draconian view but hard to find effective

alternative

Jan 13, 2012 Sprenkle - CSCI211 8

What are alternatives to worst-case analysis?	

Average Case Running Time

•  Obtain bound on running time of algorithm on
random input as a function of input size N
Ø Hard (or impossible) to accurately model real

instances by random distributions
Ø Algorithm tuned for a certain distribution may

perform poorly on other inputs

Jan 13, 2012 Sprenkle - CSCI211 9

Towards a Definition of Efficient…

•  Desirable scaling property: When input size
doubles, algorithm should only slow down by
some constant factor C
Ø Doesn’t grow multiplicatively

Jan 13, 2012 Sprenkle - CSCI211 10

Polynomial-Time

ü Desirable scaling property: When input size
doubles, algorithm should only slow down by
some constant factor C
Ø What happens if we double N?

•  Defn. An algorithm is polynomial time (or
polytime) if the above scaling property holds.

Jan 13, 2012 Sprenkle - CSCI211 11

Defn. There exists constants c > 0 and d > 0 ���
such that on every input of size N, ���

 its running time is bounded by c Nd steps.	

Algorithm Efficiency
•  Defn. An algorithm is efficient if its running time is

polynomial
•  Justification: It really works in practice!

Ø  In practice, poly-time algorithms that people develop
almost always have low constants and low exponents

Ø Breaking through the exponential barrier of brute force
typically exposes some crucial structure of the problem

•  Exceptions
Ø Some poly-time algorithms do have high constants and/

or exponents (6.02 × 1023 × N20) and are useless in
practice

Ø Some exponential-time (or worse) algorithms are widely
used because the worst-case instances seem to be rare

Jan 13, 2012 Sprenkle - CSCI211 12

1/13/12	

3	

Running Times

Jan 13, 2012 Sprenkle - CSCI211 13

Input Size	

Polynomial 	

Visualizing Running Times

Jan 13, 2012 Sprenkle - CSCI211 14

•  Huge difference from polynomial to not polynomial	

•  Differences in runtime matter more as input size increases	

Polynomial	

2n	

1.5n	

n10	

n3	

0.000001
1E+10
1E+26
1E+42
1E+58
1E+74
1E+90

1E+106
1E+122
1E+138
1E+154
1E+170
1E+186
1E+202
1E+218
1E+234
1E+250
1E+266
1E+282

1 10 100 1000

R
un

ni
ng

 T
im

e

Input Size

n2	

n	

Comparing 10000 n2 and n3

Jan 13, 2012 Sprenkle - CSCI211 15

As input size increases, n3 dominates large constant * n2	

è Care about running time as input size approaches infinity	

è Only care about highest-order term	

n3	

10000 n2	

0.000001

0.0001

0.01

1

100

10000

1000000

100000000

1E+10

1E+12

1E+14

1E+16

1E+18

1E+20

1E+22

1E+24

1 10 100 1000 10000 1000000 10000000 100000000

R
un

ni
ng

 T
im

e

Input Size

Asymptotic Order of Growth:
Upper Bounds

•  T(n) is the worst case running time of an
algorithm

• We say that T(n) is O(f(n)) if there exist

constants c > 0 and n0 ≥ 0 such that for all

n ≥ n0, we have T(n) ≤ c · f(n)

Jan 13, 2012 Sprenkle - CSCI211 16

sufficiently large n	

 T(n) is bounded above by a
constant multiple of f(n)	

èT is asymptotically upperbounded by f	

c cannot depend on n	

“order f(n)”	

Asymptotic Order of Growth:
Upper Bounds

Jan 13, 2012 Sprenkle - CSCI211 17

f(n)	

T(n)	

n0	

Point at which f(n) > T(n) 	

Upper Bounds Example

•  Find an upperbound for
 T(n) = pn2 + qn + r

Ø p, q, r are positive constants

Jan 13, 2012 Sprenkle - CSCI211 18

Idea: Let’s inflate the terms in the
equation so that all terms are n2	

1/13/12	

4	

Upper Bounds Example
•  T(n) = pn2 + qn + r

Ø p, q, r are positive constants
•  For all n ≥ 1,

è T(n) ≤ cn2, where c = p+q+r
è T(n) = O(n2)
•  Also correct to say that T(n) = O(n3)

Jan 13, 2012 Sprenkle - CSCI211 19

T(n) = pn2 + qn + r	

	

≤ pn2 + qn2 + rn2 	

	

= (p+q+r) n2	

	

= c n2	

Notation

•  T(n) = O(f(n)) is a slight abuse of notation
Ø Asymmetric:

•  f(n) = 5n3; g(n) = 3n2

•  f(n) = O(n3) = g(n)
•  But f(n) ≠ g(n).

Ø Better notation: T(n) ∈ O(f(n))
•  Meaningless statement. Any comparison-

based sorting algorithm requires at least
O(n log n) comparisons
Ø Use Ω for lower bounds

Jan 13, 2012 Sprenkle - CSCI211 20

Asymptotic Order of Growth:
Lower Bounds
•  Complementary to upper bound

•  T(n) is Ω(f(n)) if there exist constants ε > 0

and n0 ≥ 0 such that for all n ≥ n0 , we have

T(n) ≥ ε · f(n)

Jan 13, 2012 Sprenkle - CSCI211 21

èT is asymptotically lowerbounded by f	

sufficiently large n	

T(n) is bounded below by a
constant multiple of f(n)	

ε cannot depend on n	

Example: Lower Bound

•  T(n) = pn2 + qn + r
Ø p, q, r are positive constants

•  Idea: Deflate terms rather than inflate
•  For all n ≥ 0,

•  Also correct to say that T(n) = Ω(n)

Jan 13, 2012 Sprenkle - CSCI211 22

T(n) = pn2 + qn + r ≥ pn2	

è T(n) ≥ εn2, where ε = p > 0	

è T(n) = Ω(n2)	

Tight bounds

Ø The “right” bound

Jan 13, 2012 Sprenkle - CSCI211 23

T(n) is Θ(f(n)) if T(n) is both
O(f(n)) and Ω(f(n))

A Fashion Analogy

•  O == Hammer pants
Ø Loose and baggy with plenty of room for the

pants to shrink or the body to grow
•  Ω == The pants you plan to fit in this summer

after working off the snacks from Christmas
•  Θ == Katy Perry's skin tight jeans in a

teenage dream
Ø Can't make them any smaller, and no extra room

to even fit a cell phone in the pocket

Jan 13, 2012 Sprenkle - CSCI211 24

Courtesy Andy Danner, Swarthmore	

1/13/12	

5	

Property: Transitivity

•  If f = O(g) and g = O(h) then f = O(h)
•  If f = Ω(g) and g = Ω(h) then f = Ω(h)
•  If f = Θ(g) and g = Θ(h) then f = Θ(h)

Jan 13, 2012 Sprenkle - CSCI211 25

Proofs in book	

f	

g	

h	

 f	

g	

h	

Ω	

O

Property: Additivity

•  If f = O(h) and g = O(h) then f + g = O(h)
•  If f = Ω(h) and g = Ω(h) then f + g = Ω(h)
•  If f = Θ(h) and g = Θ(h) then f + g = Θ(h)

Jan 13, 2012 Sprenkle - CSCI211 26

Proofs in book	

Sketch proof for O:	

By defn, f ≤ c · h	

By defn, g ≤ d · h	

f + g ≤ c · h + d · h = (c + d) h = c’ · h	

à f + g is O(h)	

Practice:
Asymptotic Order of Growth

•  T(n) = 32n2 + 17n + 32

Jan 13, 2012 Sprenkle - CSCI211 27

What are the upper bounds, lower
bounds, and tight bound on T(n)?	

Practice:
Asymptotic Order of Growth

•  T(n) = 32n2 + 17n + 32
Ø T(n) is O(n2), O(n3), Ω(n2), Ω(n), and Θ(n2)
Ø T(n) is not O(n), Ω(n3), Θ(n), or Θ(n3)

Jan 13, 2012 Sprenkle - CSCI211 28

ASYMPTOTIC BOUNDS FOR
CLASSES OF ALGORITHMS

Jan 13, 2012 Sprenkle - CSCI211 29

Asymptotic Bounds for Polynomials
•  a0 + a1n + … + adnd ∈ Θ(nd) if ad > 0

•  Polynomial time. Running time is O(nd) for

some constant d that is independent of the
input size n

•  Other examples of polynomial times:
Ø O(n1/2)
Ø O(n1.58)
Ø O(n log n) ≤ O(n2)

Jan 13, 2012 Sprenkle - CSCI211 30

➔  Runtime determined by higher-order term

1/13/12	

6	

Asymptotic Bounds for Logarithms

•  Logarithms. logbn = x, where bx=n
Ø Approximate: To represent n in base-b, need

x+1 digits

Jan 13, 2012 Sprenkle - CSCI211 31

N b x
100 10
1000 10
100 2
1000 2

Asymptotic Bounds for Logarithms

•  Logarithms. logbn = x, where bx=n
Ø Approximate: To represent n in base-b, need

x+1 digits

Jan 13, 2012 Sprenkle - CSCI211 32

Describe the running time of an O(log n)
algorithm as the input size grows.	

Compare with polynomials.	

N b x
100 10 2
1000 10 3
100 2 6.64
1000 2 9.92

Asymptotic Bounds for Logarithms

•  Logarithms. logbn = x, where bx=n
Ø x is number of digits to represent n in base-b

representation

Jan 13, 2012 Sprenkle - CSCI211 33

0

5

10

15

20

25

30

1 10 100 1000 10000 1000000 10000000 100000000

N
um

be
r o

f I
ns

tr
uc

tio
ns

Input Size

log2 n

log5 n

log10 n

log2 n	

log5 n	

log10 n	

Asymptotic Bounds for Logarithms

•  Logarithms. logbn = x, where bx=n

•  Identity:
Ø Means that

•  O(log a n) = O(log b n) for any constants
a, b > 0

Jan 13, 2012 Sprenkle - CSCI211 34

➔  Slowly growing functions	

logan = logbn/logba	

logan = 1/logba * logbn
Constant!	

Asymptotic Bounds for Logarithms

•  Logarithms. logbn = x, where bx=n

•  O(log a n) = O(log b n) for any constants
a, b > 0

•  For every x > 0, log n = O(nx)

Jan 13, 2012 Sprenkle - CSCI211 35

➔  Slowly growing functions	

➔  Don’t need to specify the base	

➔  Log grows slower than every polynomial	

Asymptotic Bounds for Exponentials

•  Exponentials: functions of the form f(n) = rn
for constant base r
Ø Faster growth rates as n increases

•  For every r > 1 and every d > 0, nd = O(rn)

Jan 13, 2012 Sprenkle - CSCI211 36

➔  Every exponential grows faster than every polynomial	

1/13/12	

7	

Summary of Asymptotic Bounds

•  In terms of growth rates ….

Jan 13, 2012 Sprenkle - CSCI211 37

Logarithms < Polynomials < Exponentials	

A SURVEY OF COMMON
RUNNING TIMES

38 Jan 13, 2012 Sprenkle - CSCI211

Linear Time: O(n)

•  Running time is at most a constant factor
times the size of the input

•  Example. Computing the maximum:
Compute maximum of n numbers a1, …, an

Jan 13, 2012 Sprenkle - CSCI211 39

max = a1	
for i = 2 to n 	
 if (ai > max)	
 max = ai	
	

Constant work for
each input	

(does not depend on n)	

Example Linear Time: O(n)

•  Merge: Combine two sorted lists A = a1,a2,
…,an with B = b1,b2,…,bn into sorted whole

Jan 13, 2012 Sprenkle - CSCI211 40

Example Linear Time: O(n)

•  Merge: Combine two sorted lists A = a1,a2,
…,an with B = b1,b2,…,bn into sorted whole

•  Claim. Merging two lists of size n takes O(n)
time

Jan 13, 2012 Sprenkle - CSCI211 41

i = 1, j = 1	
while (both lists are nonempty)	
 if (ai ≤ bj)	

	append ai to output list and increment i	
 else (ai ≤ bj)	

	append bj to output list and increment j	
	
append remainder of nonempty list to output list	

Example Linear Time: O(n)

•  Merge: Combine two sorted lists A = a1,a2,
…,an with B = b1,b2,…,bn into sorted whole

•  Claim. Merging two lists of size n takes O(n)
time

•  Proof. After each comparison, the length of
output list increases by 1

Jan 13, 2012 Sprenkle - CSCI211 42

i = 1, j = 1	
while (both lists are nonempty)	
 if (ai ≤ bj)	

	append ai to output list and increment i	
 else (ai ≤ bj)	

	append bj to output list and increment j	
	
append remainder of nonempty list to output list	

1/13/12	

8	

O(n log n) Time

•  Also referred to as linearithmic time
•  Arises in divide-and-conquer algorithms

Ø Splitting input into equal pieces, solve
recursively, combine solutions in linear time

Jan 13, 2012 Sprenkle - CSCI211 43

What well-known set of algorithms ���
has an O(n logn) running time?	

O(n log n) Time Example

•  Sorting: Mergesort and heapsort are sorting
algorithms that perform O(n log n)
comparisons

•  Mergesort
1.  Break input into equal-sized pieces
2.  Sorts each half recursively
3.  Merges sorted halves into a sorted list

Jan 13, 2012 Sprenkle - CSCI211 44

Talk about the bound on
running time later…	

O(n log n) Time Example

•  Largest empty interval. Given n (not
necessarily ordered) time-stamps x1, …, xn at
which copies of a file arrive at a server, what
is largest interval of time when no copies of
the file arrive?

Jan 13, 2012 Sprenkle - CSCI211 45

O(n log n) Time Example

•  Largest empty interval. Given n (not
necessarily ordered) time-stamps x1, …, xn at
which copies of a file arrive at a server, what
is largest interval of time when no copies of
the file arrive?

•  O(n log n) solution
1.  Sort time-stamps
2.  Scan sorted list in order, identifying the

maximum gap between successive time-
stamps

Jan 13, 2012 Sprenkle - CSCI211 46

Quadratic Time: O(n2)

•  Examples?

Jan 13, 2012 Sprenkle - CSCI211 47

Quadratic Time: O(n2)

•  Examples:
Ø Enumerate all pairs of elements
Ø Often involves nested loops (n iterations)

Jan 13, 2012 Sprenkle - CSCI211 48

1/13/12	

9	

Quadratic Time: O(n2)

•  Closest pair of points. Given a list of n points
in the plane (x1, y1), …, (xn, yn), find the pair
that is closest

•  O(n2) solution. Try all pairs of points

Jan 13, 2012 Sprenkle - CSCI211 49

min = (x1 - x2)2 + (y1 - y2)2	
for i = 1 to n 	
 for j = i+1 to n 	
 d = (xi - xj)2 + (yi - yj)2	
 if (d < min)	
 min = d	

don't need to���
take square roots	

Ω(n2) seems inevitable, but Chapter 5 has an O(n logn) solution	

Assignments

•  Continue reading Chapter 2
Ø Covering later sections on Monday

•  Journal for Chapter 1-2.2 due Tuesday
•  Problem Set 1 due next Friday in class

Ø Start early!
Ø Read problems and let your brain start thinking

about them
Ø Proof, stable matching, asymptotic bounds

Jan 13, 2012 Sprenkle - CSCI211 50

