
1/25/12	

1	

Objectives

•  BFS & DFS Implementations, Analysis
•  Graph Application: Bipartiteness

Jan 25, 2012 1 CSCI211 - Sprenkle

Review: Finding Connected Components

Jan 25, 2012 CSCI211 - Sprenkle 2

R will consist of nodes to which s has a path	
R = {s}	
while there is an edge (u,v) where u∈R and v∉R	

	add v to R	

s	

u	

 v	

R	

it's safe to

add v	

DFS and BFS say what order we look at the edges.	

Review

• Why would we want to find all the connected
components in a graph?
Ø applications

•  Comparing BFS vs DFS
Ø What do they do?
Ø How are their outcomes different?
Ø When would we want to use one over the other?

Jan 25, 2012 CSCI211 - Sprenkle 3

Review: Comparing BFS vs DFS
•  What do they do?

Ø Techniques for finding connected components
•  Create a tree of connected components

Ø Other uses as well
•  How are their outcomes different?

Ø BFS: shortest path; bushy tree
Ø DFS: spindly tree

•  When would we want to use one over the other?
Ø BFS: Shortest path
Ø DFS: what you’d do in a maze (can’t split)

Jan 25, 2012 CSCI211 - Sprenkle 4

DFS Analysis

•  Let T be a depth-first search tree, let x and y
be nodes in T, and let (x, y) be an edge of G
that is not an edge of T.

•  Then one of x or y is an ancestor of the other
in T.

Jan 25, 2012 CSCI211 - Sprenkle 5

Analogous to BFS’s connected nodes are at most one layer apart	

DFS Analysis
•  Let T be a depth-first search tree, let x and y be

nodes in T, and let (x, y) be an edge of G that is not
an edge of T. Then one of x or y is an ancestor of the
other in T.

•  Proof.
Ø Suppose that x-y is an edge in G but not in T. (From

problem statement)
Ø WLOG, assume that DFS reaches x before y
Ø When edge x-y is considered in the DFS algorithm, we

don’t add it to T (from problem statement), which means
that y must have been explored.

Ø But, since we reached x first, y had to be discovered
between invocation and end of the recursive call DFS(x)
•  i.e., y is a descendent of x

Jan 25, 2012 CSCI211 - Sprenkle 6

1/25/12	

2	

Analysis of Connected Components

•  For any two nodes s and t in a graph, their
connected components are either identical or
disjoint

•  Proof?

Jan 25, 2012 CSCI211 - Sprenkle 7

Analysis of Connected Components

•  For any two nodes s and t in a graph, their
connected components are either identical or
disjoint

•  Proof sketch:
(i) There is a path between s and t à same set of

connected components
(ii) There is no path between s and t à disjoint set

of connected components

Jan 25, 2012 CSCI211 - Sprenkle 8

Set of All Connected Components

•  How can we find set of all connected
components of a graph?

Jan 25, 2012 CSCI211 - Sprenkle 9

Set of All Connected Components

•  How can we find set of all connected
components of a graph?

Jan 25, 2012 CSCI211 - Sprenkle

R* = set of connected components (a set of sets)	
	
while there is a node that does not belong to R*	

		
	select s not in R*	

	
	R = {s}	

	
	while there is an edge (u,v) where u∈R and v∉R	
	 	add v to R	

	
	

	Add R to R*	

10

IMPLEMENTATION &
ANALYSIS

Jan 25, 2012 CSCI211 - Sprenkle 11

Queues and Stacks

•  How are queues and stacks similar?
•  How are queues and stacks different?

Jan 25, 2012 CSCI211 - Sprenkle 12

1/25/12	

3	

Queues and Stacks

•  Both: doubly linked list
Ø Always take first on list
Ø Difference in where extracted
Ø Have first and last pointers
Ø Done in constant time

•  Queue: FIFO
Ø First in, first out

•  Stack: LIFO
Ø Last in, first out

Jan 25, 2012 CSCI211 - Sprenkle 13

Queue
Removes	

Stack
Removes	

Both add	

 Implementing BFS

• What do we need as input?
• What do we need to model?

Ø How will we model that?

Jan 25, 2012 CSCI211 - Sprenkle 14

Implementing BFS
•  Input: Graph as an adjacency list
•  Discovered array
•  Maintain layers in separate lists, L[i]

Jan 25, 2012 CSCI211 - Sprenkle 15

Implementing DFS

• What do we need as input?
• What do we need to model?

Ø How will we model that?

Jan 25, 2012 CSCI211 - Sprenkle 16

Implementing BFS
•  Graph: Adjacency list
•  Discovered array
•  Maintain layers in separate lists, L[i]

Jan 25, 2012 CSCI211 - Sprenkle

BFS(s):	
	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	for each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] == false then	
	 	 	 	Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	

L[i]
representation?	

17

What does this
stopping condition

mean?	

Analysis

Jan 25, 2012 CSCI211 - Sprenkle 18

BFS(s):	
	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	For each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] == false then	
	 	 	 	Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	

•  L[i] representation? List, queue, or stack���
- Doesn’t matter because algorithm can consider nodes in any order	

What is the running time?	

1/25/12	

4	

BFS(s):	
	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	For each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] == false then	
	 	 	 	Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	

Analysis

Jan 25, 2012 CSCI211 - Sprenkle

A
t

m
os

t
n	

A
t

m
os

t
n-

1	

O(n3)	

n	

19

A
t

m
os

t
n-

1	

BFS(s):	
	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	For each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] == false then	
	 	 	 	Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	

Analysis: Tighter Bound

Jan 25, 2012 CSCI211 - Sprenkle

A
t

m
os

t
n	

O(n2)	

n	

20

A
t

m
os

t
n-

1	

Because we’re going to look at each node at most once	

BFS(s):	
	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	For each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] == false then	
	 	 	 	Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	

Analysis: Even Tighter Bound

Jan 25, 2012 CSCI211 - Sprenkle

O(deg(u))	

A
t

m
os

t
n	

n	

Σu∈V deg(u) = 2m	

	

à O(n+m)	

21

Notes on Assignments

•  Designing algorithms
Ø Be as descriptive as possible, provide intuition
Ø Explain running time

•  Match prescribed running time
•  Or what you think the running time is

Jan 25, 2012 CSCI211 - Sprenkle 22

Problem Set #1

•  √2n < n + 10
•  n2log n < n2.5

Ø log n < n.5 (divide by n2)
Ø log log n < .5 * log n (take log of each)

•  Similar to solved problem in Chapter 2

Jan 25, 2012 CSCI211 - Sprenkle 23

Reminders

•  Friday: Problem Set 2 due
Ø See HeapBottomUp

Jan 25, 2012 CSCI211 - Sprenkle 24

