
1/18/12	

1	

Objectives

•  Finish survey of common running times
•  More on Data structures

•  Checking in on journal
•  Problem Set

Ø Solved exercises in text book

Jan 18, 2012 1 Sprenkle - CSCI211

A SURVEY OF
COMMON RUNNING TIMES

Continuing from Friday, Monday

2 Jan 18, 2012 Sprenkle - CSCI211

Polynomial Time: O(nk) Time

•  To get all pairs, the algorithm is O(n2)
•  To get all triplets, the algorithm is O(n3)

Jan 18, 2012 Sprenkle - CSCI211 3

What is an example of an O(nk) algorithm?	

All subsets of size k	

Polynomial Time: O(nk) Time

•  Independent set of size k. Given a graph,
are there k nodes such that no two are joined
by an edge?
Ø k is a constant

Jan 18, 2012 Sprenkle - CSCI211 4

2

3 1

4

5

6

7

Is there an independent
set of size 2? 3? 4? 5?	

Polynomial Time: O(nk) Time

•  Independent set of size k. Given a graph,
are there k nodes such that no two are joined
by an edge?
Ø k is a constant

Jan 18, 2012 Sprenkle - CSCI211 5

2

3 1

4

5

6

7

Is there an independent set of
size 2? Yes (2-3; 1-5; 6-7; …)	

3? (5-6-7; 2-3-5; …)	

4? (2-4-5-7; 1-4-6-7; …)	

But not 5	

Polynomial Time: O(nk) Time

•  Independent set of size k. Given a graph,
are there k nodes such that no two are joined
by an edge?
Ø k is a constant

•  O(nk) solution
1.  Enumerate all subsets of k nodes

2.  Check whether S is an independent set = O(k2).

Jan 18, 2012 Sprenkle - CSCI211 6

foreach subset S of k nodes 	
 check whether S in an independent set	
 if (S is an independent set)	
 report S is an independent set 	

poly-time for k=17���
but not practical	

O(k2 nk / k!) = O(nk)	

n!	

k! (n-k)!	

n (n-1) (n-2)…(n-k+1)	

k (k-1) (k-2) …(2) (1)	

n	

k	

=	

 =	

 ≤	

nk	

k!	

1/18/12	

2	

Exponential Time

•  Independent set. Given a graph, what is the
maximum size of an independent set?

•  O(n2 2n) solution. Enumerate all subsets

Jan 18, 2012 Sprenkle - CSCI211 7

S* = φ	
foreach subset S of nodes 	
 check whether S in an independent set	
 if (S is largest independent set seen so far)	

	S* = S	

O(log n) Time

•  Sublinear time
•  Know any algorithms that take O(log n) time?

Jan 18, 2012 Sprenkle - CSCI211 8

O(log n) Time

•  Example: Binary search

•  Often requires some pre-processing or data
structure that allows cheaper “querying” than
n time

Jan 18, 2012 Sprenkle - CSCI211 9

Summary of Running Times

Jan 18, 2012 Sprenkle - CSCI211 10

Running Time Example

O(log n) Generally dividing problem in half on
each iteration

O(n) Operate on each input value
O(n log n) Divide and conquer

O(n2) Operate on each pair of inputs
O(n!) Operate on each permutation of inputs

MORE COMPLEX
DATA STRUCTURES

Jan 18, 2012 Sprenkle - CSCI211 11

Improving Running Times

Jan 18, 2012 Sprenkle - CSCI211 12

After overcoming higher-level obstacles,	

lower-level implementation details

can improve runtime.	

1/18/12	

3	

PRIORITY QUEUES

Jan 18, 2012 Sprenkle - CSCI211 13

Priority Queues
•  Elements have a priority or key
•  Each time select an element from the priority

queue, want the one with highest priority
•  More formally…

Ø Maintains a set of elements S
•  Each element v ∈ S has a key(v) for its priority

Ø  Smaller keys represent higher priorities
Ø API

•  Add, delete elements
•  Select element with smallest key

Jan 18, 2012 14 Sprenkle - CSCI211

Key 2 4 5 6 9 20
Value 3542 5143 8712 1264 9123 5954 Process id	

Not implementation, just how to envision	

Priority	

Motivating Example:
Scheduling Processes

•  Each process has a priority or urgency
•  Processes do not arrive in priority order
•  Goal: run process with highest priority

Jan 18, 2012 15 Sprenkle - CSCI211

Key 2 4 5 6 9 20
Value 3542 5143 8712 1264 9123 5954 Process id	

Priority	

Using a Priority Queue

Jan 18, 2012 Sprenkle - CSCI211 16

How could we use a PQ to sort a list of numbers?	

Priority Queues for Sorting

1. Add elements into PQ with the number’s
value as its priority

2. Then extract the smallest number until done
Ø Come out in sorted order

Jan 18, 2012 17 Sprenkle - CSCI211

Sorting n numbers takes O(n logn) time	

What is the goal running time for our PQ’s
operations?	

What is the goal running time for our PQ’s
operations? O(logn)	

Already know our “loops” will be O(n) 	

Implementing a Priority Queue

•  Consider an unordered list, where there is a
pointer to minimum

•  How difficult (i.e., expensive) is
Ø Adding new elements?
Ø Extraction?

Jan 18, 2012 18 Sprenkle - CSCI211

min	

1/18/12	

4	

Implementing a Priority Queue
•  Consider an unordered list, where there is a

pointer to minimum

•  How difficult (i.e., expensive) is
Ø Adding new elements? easy (O(1))
Ø Extraction? difficult

•  Need to find “new” minimum: O(n)

Jan 18, 2012 19 Sprenkle - CSCI211

min	

What is the running time for sorting
using the PQ in this case?	

O(n2)	

Implementing a Priority Queue

•  Consider a sorted list where min is at the
beginning

•  Should you use an array or linked list?
•  How difficult is

Ø Adding new elements?
Ø Extraction?

Jan 18, 2012 20 Sprenkle - CSCI211

min	

Implementing a Priority Queue
•  Consider a sorted list where min is at the

beginning

•  Should you use an array or linked list?
•  How difficult is

Ø Adding new elements? difficult (insertion)
Ø Extraction? Easy

Jan 18, 2012 21 Sprenkle - CSCI211

min	

What is the running time for sorting
using the PQ in this case?	

O(n2)	

Reflection

•  All of “known” data structures has one
operation that takes O(n) time

•  Cannot implement PQs with “known” data
structures arrays and lists to meet desired
O(n log n) runtime

•  Motivates use of a new data structure (heap)
to implement PQ

Jan 18, 2012 22 Sprenkle - CSCI211

HEAPS

Jan 18, 2012 Sprenkle - CSCI211 23

Heap Defined

•  Combines benefits of sorted array and list
•  Balanced binary tree

Jan 18, 2012 24

root	

• Each node has at most 2 children	

• Node value is its key	

Heap order: each node’s key is
at least as large as its parent’s	

Note: not a binary search tree	

Sprenkle - CSCI211

1/18/12	

5	

Heaps

Jan 18, 2012 Sprenkle - CSCI211 25

Implementing a Heap

•  Option 1: Use pointers
Ø Each node keeps

•  Element it stores (key)
•  3 pointers: 2 children, parent

•  Option 2: No pointers
Ø Requires knowing upper bound on n
Ø For node at position i

•  left child is at 2i
•  right child is at 2i+1

Jan 18, 2012 26

If know child’s position, what is the position of parent?	

Sprenkle - CSCI211

Implementing a Heap: Operations

•  Finding the minimal element?

Jan 18, 2012 27 Sprenkle - CSCI211

Implementing a Heap: Operations

•  Finding the minimal element
Ø First element
Ø O(1)

Jan 18, 2012 28 Sprenkle - CSCI211

Implementing a Heap: Operations

•  Adding an element?
Ø Assume heap has less than N elements

Jan 18, 2012 29 Sprenkle - CSCI211

Implementing a Heap: Operations

•  Adding an element?
Ø Could add element to last position

•  What are possible scenarios?

Jan 18, 2012 30 Sprenkle - CSCI211

Add X	

X

1/18/12	

6	

Implementing a Heap: Operations

•  Adding an element?
Ø Could add element to last position

•  What are possible scenarios?
Ø Heap is no longer balanced
Ø Something that is almost a heap but a little off
Ø Need Heapify-up procedure to fix our heap

Jan 18, 2012 31 Sprenkle - CSCI211

Heapify-Up	

• Why does this algorithm work?
• What is the intuition?

Jan 18, 2012 32

Heapify-up(H, i):	
	if i > 1 then	
	 	j=parent(i)=floor(i/2)	
	 	if key[H[i]] < key[H[j]] then	
	 	 	swap array entries H[i] and H[j]	
	 	 	Heapify-up(H, j)	

Heap	

 Position where node added	

Sprenkle - CSCI211

Practice: Heapify-Up

Jan 18, 2012 33

Add 3	

3	

Sprenkle - CSCI211

Practice: Heapify-Up

Jan 18, 2012 34

Swap with 11	

3	

Sprenkle - CSCI211

11	

Practice: Heapify-Up

Jan 18, 2012 35

Swap with 5	

11	

5	

3	

Sprenkle - CSCI211

Heapify-Up

•  Claim. Assuming array H is almost a heap
with key of H[i] too small, Heapify-Up
fixes the heap property in O(log i) time
Ø Can insert a new element in a heap of n

elements in O(log n) time

Jan 18, 2012 36 Sprenkle - CSCI211

1/18/12	

7	

Heapify-Up

•  Claim. Assuming array H is almost a heap
with key of H[i] too small, Heapify-Up
fixes the heap property in O(log i) time
Ø Can insert a new element in a heap of n

elements in O(log n) time
•  Proof. By induction

Ø If i=1 …

Jan 18, 2012 37 Sprenkle - CSCI211

Heapify-Up

•  Claim. Assuming array H is almost a heap
with key of H[i] too small, Heapify-Up
fixes the heap property in O(log i) time
Ø Can insert a new element in a heap of n

elements in O(log n) time
•  Proof. By induction

Ø If i=1, is already a heap à O(1)
Ø If i>1, …

Jan 18, 2012 38 Sprenkle - CSCI211

Heapify-Up

•  Claim. Assuming array H is almost a heap
with key of H[i] too small, Heapify-Up
fixes the heap property in O(log i) time
Ø Can insert a new element in a heap of n

elements in O(log n) time
•  Proof. By induction

Ø If i=1, is already a heap à O(1)
Ø If i>1,

•  Swaps are O(1)
•  Swaps continue up to root (max) à log i

Jan 18, 2012 39 Sprenkle - CSCI211

Deleting an Element

Jan 18, 2012 Sprenkle - CSCI211 40

Delete at
position 3	

w

Deleting an Element
•  Delete at position i
•  Removing an element:

Ø Messes up heap order
Ø Leaves a “hole” in the heap

•  Not as straightforward as Heapify-Up	
•  Algorithm

1.  Fill in element where hole was
•  Patch hole: move nth element into ith spot

2.  Adjust heap to be in order
•  At position i because moved nth item up to i

Jan 18, 2012 41 Sprenkle - CSCI211

Deleting an Element

•  What are the possibilities when we move nth
element (w) into spot where element was
removed?
Ø Give an example for each possibility
Ø Consider other deletion spots, # elements in heap

Jan 18, 2012 42 Sprenkle - CSCI211

Delete at
position 3	

w

1/18/12	

8	

Assignment

•  Problem Set Due Friday
•  Finish reading, summarizing Chapter 2

Jan 18, 2012 Sprenkle - CSCI211 43

