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Objectives 

•  Directed graphs 
•  Topological Orderings of DAGs 
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Review 

•  Thoughts on Dr. Danner’s talks? 
•  Journals 
• What do we know about graphs? 
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Review 

• What do we know about graphs? 
Ø Space 
Ø Connectivity 

•  BFS, DFS 
Ø Bipartite graphs 

•  How to color? 
•  When know not colorable? 
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DIRECTED GRAPHS 
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Directed Graphs G = (V, E) 

•  Edge (u, v) goes from node u to node v 

•  Example: Web graph - hyperlink points from 
one web page to another 
Ø Directedness of graph is crucial 
Ø Modern web search engines exploit hyperlink 

structure to rank web pages by importance 
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How can we represent���
directed graphs?	



What information���
do we want?	



Representing Directed Graphs 

•  Edge (u, v) goes from node u to node v 

 

•  For each node, keep track of 
Ø Out edges (where links go) 
Ø In edges (from where links come in) 

•  Could only store out edges 
Ø Figure out in edges with increased computation/

time 
Ø Useful to have both in and out edges 
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CONNECTIVITY IN DIRECTED 
GRAPHS 
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Graph Search 

•  How does reachability change with directed 
graphs? 

 
•  Example: Web crawler   

1.  Start from web page s. 
2.  Find all web pages linked from s, either directly 

or indirectly. 
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Graph Search 

•  Directed reachability.  Given a node s, find all 
nodes reachable from s. 

•  Directed s-t shortest path problem.  Given 
two nodes s and t, what is the length of the 
shortest path between s and t? 
Ø Not necessarily the same as tàs shortest path 

•  Graph search.  BFS and DFS extend 
naturally to directed graphs 
Ø Trace through out edges 
Ø Run in O(m+n) time 
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Problem 

•  Find all nodes with paths to s 
Ø Rather than paths from s to other nodes 
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Problem/Solution 

•  Problem. Find all nodes with paths to s 
•  Solution.  Run BFS on in edges instead of 

out edges 
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Strong Connectivity 

•  Def.  Node u and v are mutually reachable 
if there is a path from u à v and also a path 
from v à u 

•  Def.  A graph is strongly connected if every 
pair of nodes is mutually reachable 

•  Lemma.  Let s be any node.  G is strongly 
connected iff every node is reachable from s 
and s is reachable from every node 
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Strong Connectivity 

•  Prove: If u and v are mutually reachable and 
v and w are mutually reachable, then u and 
w are mutually reachable 
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Strong Connectivity 
•  Claim.  If u and v are mutually reachable and 

v and w are mutually reachable, then u and 
w are mutually reachable. 

•  Proof.  We need to show that there is a path 
from u à w and from w à u. 
Ø By defn of mutually reachable 

•  There is a path u à v & a path v à u 
•  There is a path v à w,  and a path w à v 

Ø Take path uàv and then from v à w 
•  Path from uàw 

Ø Similarly for wàu 
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Strong Connectivity 

•  Def.  A graph is strongly connected if every 
pair of nodes is mutually reachable 

•  Lemma.  Let s be any node.  G is strongly 
connected iff every node is reachable from s 
and s is reachable from every node. 
Ø 1st prove ⇒ 
Ø 2nd prove ⇐ 
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Strong Connectivity 
•  Def.  A graph is strongly connected if every pair 

of nodes is mutually reachable 
•  Lemma.  Let s be any node.  G is strongly 

connected iff every node is reachable from s, 
and s is reachable from every node. 

•  Pf.  ⇒ Follows from definition of strongly 
connected 

•  Pf.  ⇐ For any nodes u and v, make path uàv 
and vàu  
Ø   uàv : concatenating uàs with sàv 
Ø   v àu: concatenate vàs with sàu 
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Strong Connectivity Problem 

•  Determine if G is strongly connected in        
O(m + n) time 
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strongly connected	

 not strongly connected	



Hint: Can we leverage any algorithms ���
we know have O(m+n) time?	



Strong Connectivity: Algorithm 
•  Theorem.  Can determine if G is strongly 

connected in O(m + n) time. 
•  Pf. 

Ø Pick any node s 
Ø Run BFS from s in G 
Ø Run BFS from s in Grev 
Ø Return true iff all nodes reached in both BFS 

executions 
Ø Correctness follows immediately from previous 

lemma 
•  All reachable from one node, s is reached by all 

Feb 1, 2012 CSCI211 - Sprenkle 18 

reverse orientation of every edge in G	


Or, the BFS using the in edges	
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Strong Components 

•  Prove: For any two nodes s and t in a 
directed graph, their strong components are 
either identical or disjoint 
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Hint: Consider a node in common…	



Strong Components 
•  Claim. For any two nodes s and t in a directed 

graph, their strong components are either 
identical or disjoint 

•  Proof. 
Ø Consider v in both strong components 

•  sà v; v à s; vàt; tàv è  tàs, sàt (mutually 
reachable) 

•  As soon as there is one common node, then have 
identical strong components 

Ø On the other hand, consider s and t are not mutually 
reachable 
•  No node v that is in the strong component of each 

Ø  What would it mean if there were? 
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DAGS AND TOPOLOGICAL 
ORDERING 
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Directed Acyclic Graphs 
•  Def.  A DAG is a directed graph that contains no 

directed cycles. 
•  Example.  Precedence constraints: edge (vi, vj) 

means vi must precede vj 
Ø Course prerequisite graph: course vi must be taken 

before vj 

Ø Compilation: module vi must be compiled before vj 

Ø Pipeline of computing jobs: output of job vi needed to 
determine input of job vj 
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v7 v1 

a DAG:	



Problem: Valid Ordering 

•  Given a set of tasks with dependencies, what 
is a valid order in which the tasks could be 
performed? 
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v2 v3 

v6 v5 v4 

v7 v1 

Topological Ordering 
•  Problem: Given a set of tasks with 

dependencies, what is a valid order in which the 
tasks could be performed? 

•  Def.  A topological order of a directed graph  
G = (V, E) is an ordering of its nodes as v1, v2, 
…, vn so that for every edge (vi, vj) we have i < j. 
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a DAG	



a topological ordering	


All edges point “forward”	
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Directed Acyclic Graphs 

•  Lemma.  If G has a topological order, then G 
is a DAG. 

•  Proof plan: Try to show that G has a cycle 
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v1	

 vi	

 vj	

 vn	



the supposed topological order:  v1, …, vn	



the directed cycle C	



Why isn’t this valid?	



DAGs & Topological Orderings 
•  Lemma.  If G has a topological order, then G is a DAG. 
•  Pf.  (by contradiction) 

Ø  Suppose that G has a topological order v1, …, vn and that G 
also has a directed cycle C. 

Ø  Let vi be the lowest-indexed node in C, and let vj be the node 
on C just before vi; thus (vj, vi) is an edge 

Ø  By our choice of i (lowest-indexed node), i < j 
Ø  Since (vj, vi) is an edge and v1, …, vn is a topological order, 

we must have j < i, a contradiction.   ▪ 
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v1	

 vi	

 vj	

 vn	



the directed cycle C	



the supposed topological order:  v1, …, vn	



Directed Acyclic Graphs 

•  Does every DAG have a topological 
ordering? 
Ø If so, how do we compute one? 
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Directed Acyclic Graphs 

•  Does every DAG have a topological 
ordering? 
Ø If so, how do we compute one? 

• What would we need to be able to create a 
topological ordering? 
Ø What are some characteristics of this graph? 
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v1 v2 v3 v4 v5 v6 v7 

Directed Acyclic Graphs 

•  Does every DAG have a topological 
ordering? 
Ø If so, how do we compute one? 

• What would we need to be able to create a 
topological ordering? 
Ø What are some characteristics of this graph? 

Feb 1, 2012 CSCI211 - Sprenkle 29 

v1 v2 v3 v4 v5 v6 v7 

Need someplace to start:	


a node with no incoming edges 

(no dependencies)	


Note that both v1 and v2 have no 

incoming edges	



Towards a Topological Ordering 
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Do we know there is always a ���
node with no incoming edges?	



Goal: Find an algorithm for finding the TO	


Idea: 1st node is one with no incoming edges	
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Directed Acyclic Graphs 

•  Lemma.  If G is a DAG, then G has a node 
with no incoming edges 
Ø This is our starting point of the topological 

ordering 
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How to prove?	



Towards a Topological Ordering 

•  Lemma. If G is a DAG, then G has a node 
with no incoming edges 

•  Proof idea: consider if there is no node 
without incoming edges 
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Towards a Topological Ordering 
•  Lemma.  If G is a DAG, then G has a node with no incoming 

edges. 
•  Pf.  (by contradiction) 

Ø  Suppose that G is a DAG and every node has at least one incoming 
edge 

Ø  Pick any node v, and follow edges backward from v. 
•  Since v has at least one incoming edge (u, v), we can walk backward to 

u 
Ø  Since u has at least one incoming edge (t, u), we can walk backward 

to t 
Ø  Repeat until we visit a node, say w, twice 

•  Has to happen at least by n+1 steps (Why?) 
Ø  Let C denote the sequence of nodes encountered between 

successive visits to w.  C is a cycle, which is a contradiction to G is a 
DAG  ▪ 
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w t u v 

Creating a Topological Order 

• With a node with no incoming edges, can 
create a topological ordering 
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Ideas?	



Topological Ordering Algorithm 

•  Lemma.  If G is a DAG, then G has a 
topological ordering. 

•  Algorithm: 
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DAG	


v	



Find a node v with no incoming edges	
Order v first	
Delete v from G	
Recursively compute a topological ordering of G-{v}	

	and append this order after v 

How do we know this works?	



Directed Acyclic Graphs 
•  Lemma.  If G is a DAG, then G has a topological 

ordering. 
•  Pf.  (by induction on n) 

Ø Base case:  true if n = 1 
Ø Given DAG on n > 1 nodes, find a node v with no 

incoming edges 
Ø G - { v } is a DAG, since deleting v cannot create cycles 
Ø By inductive hypothesis, G - { v } has a topological 

ordering 
Ø Place v first in topological ordering; then append nodes 

of G - { v } 
Ø  in topological order. This is valid since v has no incoming 

edges.   ▪ 
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Topological Ordering Algorithm 

•  Lemma.  If G is a DAG, then G has a 
topological ordering. 

•  Algorithm: 
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DAG	


v	



Find a node v with no incoming edges	
Order v first	
Delete v from G	
Recursively compute a topological ordering of G-{v}	

	and append this order after v 

Topological Ordering Algorithm:  
Example 

38 

v1 

Topological order:  	



v2 v3 

v6 v5 v4 

v7 v1 
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Topological Ordering Algorithm:  
Example 

39 

v2 

Topological order:  v1	



v2 v3 

v6 v5 v4 

v7 
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Topological Ordering Algorithm:  
Example 

40 

v3 

Topological order:  v1, v2	



v3 

v6 v5 v4 

v7 
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Topological Ordering Algorithm:  
Example 

41 

v4 

Topological order:  v1, v2, v3	



v6 v5 v4 

v7 

Feb 1, 2012 CSCI211 - Sprenkle 

Topological Ordering Algorithm:  
Example 

42 

v5 

Topological order:  v1, v2, v3, v4	



v6 v5 

v7 
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Topological Ordering Algorithm:  
Example 

43 

v6 

Topological order:  v1, v2, v3, v4, v5	



v6 

v7 
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Topological Ordering Algorithm:  
Example 
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v7 

Topological order:  v1, v2, v3, v4, v5, v6	



v7 
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Topological Ordering Algorithm:  
Example 

45 

Topological order:  v1, v2, v3, v4, v5, v6, v7.	



v2 v3 

v6 v5 v4 

v7 v1 

v1 v2 v3 v4 v5 v6 v7 
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Topological Order Runtime 

• Where are the costs? 
•  How would we implement? 
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Find a node v with no incoming edges	
Order v first	
Delete v from G	
Recursively compute a topological ordering of G-{v}	

	and append this order after v 

Topological Order Runtime 

•  Find a node without incoming edges and 
delete it: O(n) 

•  Repeat on all nodes 
à O(n2) 
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Can we do better?	



Find a node v with no incoming edges	
Order v first	
Delete v from G	
Recursively compute a topological ordering of G-{v}	

	and append this order after v 

O(n)	



O(n)	



Topological Sorting Algorithm: 
Running Time 
•  Theorem. Find a topological order in O(m + n) 

time 
•  Pf.   

Ø Maintain the following information: 
•  count[w] = remaining number of incoming edges 
•  S = set of remaining nodes with no incoming edges 

Ø  Initialization: O(m + n) via single scan through graph 
Ø Algorithm:  

•  Select a node v from S, remove v from S 
•  Decrement count[w] for all edges from v to w 

Ø  Add w to S if count[w] = 0 
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Looking Ahead 

•  Problem Set 3 due Friday 
•  Danner talk write up due Friday 
•  Exam 1 handed out on Friday 
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