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Objectives 

•  Analyzing algorithms 
•  Asymptotic running times 
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Our Process 

1. Understand/identify problem 
Ø  Simplify as appropriate 

2. Design a solution 
3. Analyze 

Ø  Correctness, efficiency 
Ø  May need to go back to step 2 and try again 

4.  Implement 
Ø  Within bounds shown in analysis 
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(On Monday)	



Computational Tractability 

Jan 13, 2012 Sprenkle - CSCI211 3 

Charles Babbage 
(1864)	



As soon as an Analytic Engine exists, it will necessarily guide the future 
course of the science.  Whenever any result is sought by its aid, the 

question will arise - By what course of calculation can these results be 

arrived at by the machine in the shortest time?   

	

 	

 	

 	

 	

-- Charles Babbage	



Analytic Engine 
(schematic)	



http://plan28.org/	

TODAY’S GOAL: 
DEFINE ALGORITHM 

EFFICIENCY 
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Brute Force 

•  For many non-trivial problems, there is a 
natural brute force search algorithm that 
checks every possible solution 
Ø Typically takes 2N time or worse for inputs of 

size N 
Ø Unacceptable in practice 
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Example: How many possible solutions are there in the 
stable matching problem?	


	


In other words, how many possible perfect matchings are there?  
For each perfect match, we’ll check if it’s stable.	



“Exponential”	



Brute Force 

•  For many non-trivial problems, there is a 
natural brute force search algorithm that 
checks every possible solution 
Ø Typically takes 2N time or worse for inputs of 

size N 
Ø Unacceptable in practice 

•  Example: Stable matching: n! with n men and 
n women 
Ø If n increases by 1, what happens to the running 

time? 
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“Exponential”	
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How Do We Measure Runtime? 
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Worst-Case Running Time 

•  Obtain bound on largest possible running 
time of algorithm on input of a given size N 
Ø Generally captures efficiency in practice 
Ø Draconian view but hard to find effective 

alternative 
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What are alternatives to worst-case analysis?	



Average Case Running Time 

•  Obtain bound on running time of algorithm on 
random input as a function of input size N 
Ø Hard (or impossible) to accurately model real 

instances by random distributions 
Ø Algorithm tuned for a certain distribution may 

perform poorly on other inputs 
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Towards a Definition of Efficient… 

•  Desirable scaling property: When input size 
doubles, algorithm should only slow down by 
some constant factor C   
Ø Doesn’t grow multiplicatively 
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Polynomial-Time 

ü Desirable scaling property:  When input size 
doubles, algorithm should only slow down by 
some constant factor C 
Ø What happens if we double N? 

•  Defn.  An algorithm is polynomial time (or 
polytime) if the above scaling property holds. 
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Defn.  There exists constants c > 0 and d > 0 ���
such that on every input of size N, ���

 its running time is bounded by c Nd steps.	



Algorithm Efficiency 
•  Defn.  An algorithm is efficient if its running time is 

polynomial 
•  Justification:  It really works in practice! 

Ø  In practice, poly-time algorithms that people develop 
almost always have low constants and low exponents 

Ø Breaking through the exponential barrier of brute force 
typically exposes some crucial structure of the problem 

•  Exceptions 
Ø Some poly-time algorithms do have high constants and/

or exponents (6.02 × 1023 × N20) and are useless in 
practice 

Ø Some exponential-time (or worse) algorithms are widely 
used because the worst-case instances seem to be rare 
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Running Times 
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Input Size	



Polynomial 	



Visualizing Running Times 
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•  Huge difference from polynomial to not polynomial	


•  Differences in runtime matter more as input size increases	



Polynomial	
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Comparing 10000 n2 and n3 
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As input size increases, n3 dominates large constant * n2	



è Care about running time as input size approaches infinity	


è Only care about highest-order term	
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Asymptotic Order of Growth: 
Upper Bounds 

•  T(n) is the worst case running time of an 
algorithm 

• We say that T(n) is O(f(n)) if there exist 

constants c > 0 and n0 ≥ 0 such that for all    

n ≥ n0, we have T(n) ≤ c · f(n) 
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sufficiently large n	

 T(n) is bounded above by a 
constant multiple of f(n)	



èT is asymptotically upperbounded by f	



c cannot depend on n	



“order f(n)”	



Asymptotic Order of Growth: 
Upper Bounds 
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f(n)	



T(n)	



n0	



Point at which f(n) > T(n) 	



Upper Bounds Example 

•  Find an upperbound for 
 T(n) = pn2 + qn + r 

Ø p, q, r are positive constants 
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Idea: Let’s inflate the terms in the 
equation so that all terms are n2	
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Upper Bounds Example 
•  T(n) = pn2 + qn + r 

Ø p, q, r are positive constants 
•  For all n ≥ 1,  

è T(n) ≤ cn2, where c = p+q+r 
è T(n) = O(n2) 
•  Also correct to say that T(n) = O(n3) 
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T(n) = pn2 + qn + r	


	

≤ pn2 + qn2 + rn2 	



	

= (p+q+r) n2	



	

= c n2	



Notation 

•  T(n) = O(f(n)) is a slight abuse of notation 
Ø Asymmetric: 

•  f(n) = 5n3;  g(n) = 3n2 

•  f(n) = O(n3) = g(n) 
•  But f(n) ≠ g(n). 

Ø Better notation:  T(n) ∈ O(f(n)) 
•  Meaningless statement.  Any comparison-

based sorting algorithm requires at least  
O(n log n) comparisons 
Ø Use Ω for lower bounds 
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Asymptotic Order of Growth: 
Lower Bounds 
•  Complementary to upper bound 

•  T(n) is Ω(f(n)) if there exist constants ε > 0 

and n0 ≥ 0 such that for all n ≥ n0 , we have  

T(n) ≥ ε · f(n) 
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èT is asymptotically lowerbounded by f	



sufficiently large n	



T(n) is bounded below by a 
constant multiple of f(n)	



ε cannot depend on n	



Example: Lower Bound 

•  T(n) = pn2 + qn + r 
Ø p, q, r are positive constants 

•  Idea: Deflate terms rather than inflate 
•  For all n ≥ 0,  

•  Also correct to say that T(n) = Ω(n) 
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T(n) = pn2 + qn + r ≥ pn2	


è T(n) ≥ εn2, where ε = p > 0	


è T(n) = Ω(n2)	



Tight bounds 

 
Ø The “right” bound 
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T(n) is Θ(f(n)) if T(n) is both 
O(f(n)) and Ω(f(n)) 

A Fashion Analogy 

•  O == Hammer pants 
Ø Loose and baggy with plenty of room for the 

pants to shrink or the body to grow 
•  Ω == The pants you plan to fit in this summer 

after working off the snacks from Christmas  
•  Θ == Katy Perry's skin tight jeans in a 

teenage dream 
Ø Can't make them any smaller, and no extra room 

to even fit a cell phone in the pocket  
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Courtesy Andy Danner, Swarthmore	
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Property: Transitivity 

•  If f = O(g) and g = O(h) then f = O(h) 
•  If f = Ω(g) and g = Ω(h) then f = Ω(h)  
•  If f = Θ(g) and g = Θ(h) then f = Θ(h) 
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Proofs in book	
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Property: Additivity 

•  If f = O(h) and g = O(h) then f + g = O(h) 
•  If f = Ω(h) and g = Ω(h) then f + g = Ω(h) 
•  If f = Θ(h) and g = Θ(h) then f + g = Θ(h) 
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Proofs in book	



Sketch proof for O:	


By defn, f ≤ c · h	


By defn, g ≤ d · h	


f + g ≤ c · h + d · h = (c + d) h = c’ · h	


à f + g is O(h)	



Practice:  
Asymptotic Order of Growth 

•  T(n) = 32n2 + 17n + 32 
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What are the upper bounds, lower 
bounds, and tight bound on T(n)?	



Practice: 
Asymptotic Order of Growth 

•  T(n) = 32n2 + 17n + 32 
Ø T(n) is O(n2), O(n3), Ω(n2), Ω(n), and Θ(n2)  
Ø T(n) is not O(n), Ω(n3), Θ(n), or Θ(n3) 
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ASYMPTOTIC BOUNDS FOR 
CLASSES OF ALGORITHMS 
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Asymptotic Bounds for Polynomials 
•  a0 + a1n + … + adnd ∈ Θ(nd) if ad > 0 

  
•  Polynomial time.  Running time is O(nd) for 

some constant d that is independent of the 
input size n 

•  Other examples of polynomial times: 
Ø O(n1/2) 
Ø O(n1.58) 
Ø O(n log n) ≤ O(n2) 
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➔  Runtime determined by higher-order term 
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Asymptotic Bounds for Logarithms 

•  Logarithms.  logbn = x, where bx=n 
Ø Approximate: To represent n in base-b, need     

x+1 digits 
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N b x 
100 10 
1000 10 
100 2 
1000 2 

Asymptotic Bounds for Logarithms 

•  Logarithms.  logbn = x, where bx=n 
Ø Approximate: To represent n in base-b, need     

x+1 digits 
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Describe the running time of an O(log n) 
algorithm as the input size grows.	



Compare with polynomials.	



N b x 
100 10 2 
1000 10 3 
100 2 6.64 
1000 2 9.92 

Asymptotic Bounds for Logarithms 

•  Logarithms.  logbn = x, where bx=n 
Ø x is number of digits to represent n in base-b 

representation 
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Asymptotic Bounds for Logarithms 

•  Logarithms.  logbn = x, where bx=n 

•  Identity:  
Ø Means that  

•  O(log a n) = O(log b n) for any constants        
a, b > 0 
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➔  Slowly growing functions	



logan = logbn/logba	



logan = 1/logba * logbn 
Constant!	



Asymptotic Bounds for Logarithms 

•  Logarithms.  logbn = x, where bx=n 

•  O(log a n) = O(log b n) for any constants        
a, b > 0 

•  For every x > 0,  log n = O(nx) 
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➔  Slowly growing functions	



➔  Don’t need to specify the base	



➔  Log grows slower than every polynomial	



Asymptotic Bounds for Exponentials 

•  Exponentials: functions of the form f(n) = rn 
for constant base r 
Ø Faster growth rates as n increases 

•  For every r > 1 and every d > 0,  nd = O(rn) 
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➔  Every exponential grows faster than every polynomial	
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Summary of Asymptotic Bounds 

•  In terms of growth rates …. 
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Logarithms < Polynomials < Exponentials	



A SURVEY OF COMMON 
RUNNING TIMES 

38 Jan 13, 2012 Sprenkle - CSCI211 

Linear Time: O(n) 

•  Running time is at most a constant factor 
times the size of the input 

•  Example. Computing the maximum: 
Compute maximum of n numbers a1, …, an 

Jan 13, 2012 Sprenkle - CSCI211 39 

max = a1	
for i = 2 to n 	
   if (ai > max)	
      max = ai	
	

Constant work for 
each input	



(does not depend on n)	



Example Linear Time: O(n) 

•  Merge: Combine two sorted lists A = a1,a2,
…,an with B = b1,b2,…,bn  into sorted whole 
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Example Linear Time: O(n) 

•  Merge: Combine two sorted lists A = a1,a2,
…,an with B = b1,b2,…,bn  into sorted whole 

•  Claim.  Merging two lists of size n takes O(n) 
time 
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i = 1, j = 1	
while (both lists are nonempty)	
   if (ai ≤ bj)	

	append ai to output list and increment i	
   else (ai ≤ bj)	

	append bj to output list and increment j	
	
append remainder of nonempty list to output list	

Example Linear Time: O(n) 

•  Merge: Combine two sorted lists A = a1,a2,
…,an with B = b1,b2,…,bn  into sorted whole 

•  Claim.  Merging two lists of size n takes O(n) 
time 

•  Proof.  After each comparison, the length of 
output list increases by 1 
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i = 1, j = 1	
while (both lists are nonempty)	
   if (ai ≤ bj)	

	append ai to output list and increment i	
   else (ai ≤ bj)	

	append bj to output list and increment j	
	
append remainder of nonempty list to output list	
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O(n log n) Time 

•  Also referred to as linearithmic time 
•  Arises in divide-and-conquer algorithms 

Ø Splitting input into equal pieces, solve 
recursively, combine solutions in linear time 
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What well-known set of algorithms ���
has an O(n logn) running time?	



O(n log n) Time Example 

•  Sorting: Mergesort and heapsort are sorting 
algorithms that perform O(n log n) 
comparisons 

•  Mergesort 
1.  Break input into equal-sized pieces 
2.  Sorts each half recursively 
3.  Merges sorted halves into a sorted list 
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Talk about the bound on 
running time later…	



O(n log n) Time Example 

•  Largest empty interval.  Given n (not 
necessarily ordered) time-stamps x1, …, xn at 
which copies of a file arrive at a server, what 
is largest interval of time when no copies of 
the file arrive? 
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O(n log n) Time Example 

•  Largest empty interval.  Given n (not 
necessarily ordered) time-stamps x1, …, xn at 
which copies of a file arrive at a server, what 
is largest interval of time when no copies of 
the file arrive? 

•  O(n log n) solution 
1.  Sort time-stamps 
2.  Scan sorted list in order, identifying the 

maximum gap between successive time-
stamps 
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Quadratic Time: O(n2) 

•  Examples? 
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Quadratic Time: O(n2) 

•  Examples: 
Ø Enumerate all pairs of elements 
Ø Often involves nested loops (n iterations) 
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Quadratic Time: O(n2) 

•  Closest pair of points.  Given a list of n points 
in the plane (x1, y1), …, (xn, yn), find the pair 
that is closest 

•  O(n2) solution.  Try all pairs of points 
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min = (x1 - x2)2 + (y1 - y2)2	
for i = 1 to n 	
   for j = i+1 to n 	
      d = (xi - xj)2 + (yi - yj)2	
      if (d < min)	
         min = d	

don't need to���
take square roots	



Ω(n2) seems inevitable, but Chapter 5 has an O(n logn) solution	



Assignments 

•  Continue reading Chapter 2 
Ø Covering later sections on Monday 

•  Journal for Chapter 1-2.2 due Tuesday 
•  Problem Set 1 due next Friday in class 

Ø Start early! 
Ø Read problems and let your brain start thinking 

about them 
Ø Proof, stable matching, asymptotic bounds 

Jan 13, 2012 Sprenkle - CSCI211 50 


