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Objectives 

•  Data structure: Heaps 
•  Implementing a Priority Queue 
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Review: Priority Queues for Sorting 

1. Add elements into PQ with the number’s 
value as its priority 

2. Then extract the smallest number until done 
Ø Come out in sorted order 
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Sorting n numbers takes O(n logn) time, 
which is our goal running time.	



However, “known” data structures won’t 
give us that running time.	



Already know our “loops” will be O(n) 	



Review: Heap Defined 

•  Combines benefits of sorted array and list 
•  Balanced binary tree 
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root	


• Each node has at most 2 children 
• Node value is its key 

Heap order: each node’s key is 
at least as large as its parent’s	



Note: not a binary search tree	
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Review: Implementing a Heap 

•  Option 1: Use pointers 
Ø Each node keeps 

•  Element it stores, key 
•  3 pointers: 2 children, parent 

•  Option 2: No pointers 
Ø Requires knowing upper bound on n 
Ø For node at position i 

•  left child is at 2i 
•  right child is at 2i+1 
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Review: Heapify-Up	
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Heapify-up(H, i):	
	if i > 1 then	
	 	j=parent(i)=floor(i/2)	
	 	if key[H[i]] < key[H[j]] then	
	 	 	swap array entries H[i] and H[j]	
	 	 	Heapify-up(H, j)	

Heap	

 Position where node added	



When is this algorithm used?	


What is the intuition?	


What is the run time?	



Deleting an Element 
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Delete at 
position 3	



w
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Deleting an Element 
•  Delete at position i 
•  Removing an element: 

Ø Messes up heap order 
Ø Leaves a “hole” in the heap 

•  Not as straightforward as Heapify-Up	
•  Algorithm 

1.  Fill in element where hole was 
•  Patch hole: move nth element into ith spot 

2.  Adjust heap to be in order 
•  At position i because moved nth item up to i 
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Deleting an Element 

• What are the possibilities when we move nth 
element (w) into spot where element was 
removed? 
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Delete at 
position 3	



w

Deleting an Element 

•  Two “bad” possibilities: element w is 
Ø Too small: violation is between it and parent à 
Heapify-Up 	

Ø Too big: with one or both children à Heapify-
Down (example: w = 12) 
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Delete at 
position 3	



w

Example of OK:	


11 deleted, replaced by 16	



Deleting an Element 

•  Delete 9 
•  Replace with 5 
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Example where new key is too small	
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Deleting an Element 

•  Delete 9 
•  Replace with 5 
•  But 5 < 6, so need to Heapify-Up	
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Example where new key is too small	
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Heapify-Down 
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Heapify-down(H, i):	
	n = length(H)	
	if 2i > n then	
	 	Terminate with H unchanged	
	else if 2i < n then	
	 	left=2i and right=2i+1	
	 	j be index that minimizes	
	 	 	key[H[left]] and key[[H[right]]	
	else if 2i = n then	
	 	j=2i	

	
	if key[H[j]] < key[H[i]] then	
	 	swap array entries H[i] and H[j]	
	 	Heapify-down(H, j)	
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Why can we stop?	
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Heapify-Down 
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Heapify-down(H, i):	
	n = length(H)	
	if 2i > n then	
	 	Terminate with H unchanged	
	else if 2i < n then	
	 	left=2i and right=2i+1	
	 	j be index that minimizes	
	 	 	key[H[left]] and key[[H[right]]	
	else if 2i = n then	
	 	j=2i	

	
	if key[H[j]] < key[H[i]] then	
	 	swap array entries H[i] and H[j]	
	 	Heapify-down(H, j)	
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i  is a leaf – nowhere to go	



Practice: Heapify-Down 
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Moved 21 to where 
element was removed 

21	
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Practice: Heapify-Down 
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Practice: Heapify-Down 
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Runtime of Heapify-Down? 

Jan 20, 2012 17 

Heapify-down(H, i):	
	n = length(H)	
	if 2i > n then	
	 	Terminate with H unchanged	
	else if 2i < n then	
	 	left=2i and right=2i+1	
	 	j be index that minimizes	
	 	 	key[H[left]] and key[[H[right]]	
	else if 2i = n then	
	 	j=2i	

	
	if key[H[j]] < key[H[i]] then	
	 	swap array entries H[i] and H[j]	
	 	Heapify-down(H, j)	
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O(1) 

O(1) 

Num swaps: O(log n)	



Implementing Priority Queues 
with Heaps 
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Operation Description Run Time 

StartHeap(N) Creates an empty heap that 
can hold N elements 

Insert(v) Inserts item v into heap 

FindMin() Identifies minimum element in 
heap but does not remove it 

Delete(i) Deletes element in heap at 
position i 

ExtractMin() 
Identifies and deletes an 
element with minimum key from 
heap 

Sprenkle - CSCI211 
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Implementing Priority Queues 
with Heaps 
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Operation Description Run Time 

StartHeap(N) Creates an empty heap that 
can hold N elements O(N) 

Insert(v) Inserts item v into heap O(log n) 

FindMin() Identifies minimum element in 
heap but does not remove it O(1) 

Delete(i) Deletes element in heap at 
position i O(log n) 

ExtractMin() 
Identifies and deletes an 
element with minimum key from 
heap 

O(log n) 
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Putting It All Together… 

1. Add elements into PQ with the number’s 
value as its priority 

2. Then extract the smallest number until done 
Ø Come out in sorted order 
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What is the running time of sorting numbers 
using a PQ implemented with a Heap?	



O(n log n)	



Comparing Data Structures 
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Operation Heap Unsorted 
List 

Sorted List 

Start(N) 

Insert(v) 

FindMin() 

Delete(i) 

ExtractMin() 

Comparing Data Structures 
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Operation Heap Unsorted 
List 

Sorted 
List 

Start(N) O(N) 
Insert(v) O(log n) 
FindMin() O(1) 
Delete(i) O(log n) 
ExtractMin() O(log n) 
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Comparing Data Structures 
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Operation Heap Unsorted 
List 

Sorted 
List 

Start(N) O(N) O(1) O(1) 
Insert(v) O(log n) O(1) O(n) 
FindMin() O(1) O(1) O(1) 
Delete(i) O(log n) O(n) O(1) 
ExtractMin() O(log n) O(n) O(1) 
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Additional Heap Operations 
•  Access elements in PQ by “name” 

Ø Maintain additional array Position that stores current 
position of each element in heap 

•  Operations: 
Ø Delete(Position[v]) 

•  Does not increase overall running time 
Ø ChangeKey(v, α) 

•  Changes key of element v to α 
•  Identify position of element v in array (Position array) 
•  Change key, heapify 
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Key 2 4 5 6 9 20 
Value 3542 5143 8712 1264 9123 5954 Process id	



Priority	
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GRAPHS 
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Undirected Graphs G = (V, E) 
•  V = nodes (vertices) 
•  E = edges between pairs of nodes 
•  Captures pairwise relationship between 

objects 
•  Graph size parameters:  n = |V|, m = |E| 

26 

V = { 1, 2, 3, 4, 5, 6, 7, 8 }	


E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 }���
n = 8	


m = 11	
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Social Networks 
•  Node: people; Edge: relationship between 2 

people 
•  Everything Bad Is Good for You: How Today's 

Popular Culture Is Actually Making Us Smarter 

27 

•  Television shows 
have complex 
plots, complex 
social networks 

Social network of 
24's Jack Bauer 

http://www.cs.duke.edu/csed/harambeenet/
modules.html	
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Facebook: Visualizing Friends 
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http://www.facebook.com/notes/facebook-engineering/
visualizing-friendships/469716398919	

World Wide Web 

• Web graph 
Ø Node:  web page 
Ø Edge:  hyperlink from one page to another 

29 

cnn.com 

people.com sportsillustrated.cnn.com netscape.aol.com time.com 

hbo.com 

boardwalkempire.com 

Directed Graph:	
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Graph of Web Page www.wlu.edu 
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http://www.aharef.info/static/htmlgraph	
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Ecological Food Web 

•  Food web graph 
Ø Node = species  
Ø Edge = from prey to 

predator 

31 

Reference: 	


https://www.msu.edu/course/isb/202/
ebertmay/images/foodweb.jpg	

Directed Graph:	
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Rock Paper Scissors Lizard Spock 
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Graph Applications 

33 

transportation	


Graph	



street intersections	



Nodes	

 Edges	


highways	



communication	

 computers	

 fiber optic cables	



World Wide Web	

 web pages	

 hyperlinks	



social	

 people	

 relationships	



food web	

 species	

 predator-prey	



software systems	

 functions	

 function calls	



scheduling	

 tasks	

 precedence constraints	



circuits	

 gates	

 wires	
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Graph Representation: Adjacency Matrix 

•  n×n matrix with Auv = 1 if (u, v) is an edge 
Ø Two representations of each edge (symmetric 

matrix) 
Ø Space? 

Ø Checking if (u, v) is an edge? 
Ø Identifying all edges? 

34 

  1 2 3 4 5 6 7 8 
1 0 1 1 0 0 0 0 0 
2 1 0 1 1 1 0 0 0 
3 1 1 0 0 1 0 1 1 
4 0 1 0 1 1 0 0 0 
5 0 1 1 1 0 1 0 0 
6 0 0 0 0 1 0 0 0 
7 0 0 1 0 0 0 0 1 
8 0 0 1 0 0 0 1 0 
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Graph Representation: Adjacency Matrix 

•  n×n matrix with Auv = 1 if (u, v) is an edge 
Ø Two representations of each edge (symmetric 

matrix) 
Ø Space: Θ(n2) 

Ø Checking if (u, v) is an edge: Θ(1) time 
Ø Identifying all edges: Θ(n2) time 
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  1 2 3 4 5 6 7 8 
1 0 1 1 0 0 0 0 0 
2 1 0 1 1 1 0 0 0 
3 1 1 0 0 1 0 1 1 
4 0 1 0 1 1 0 0 0 
5 0 1 1 1 0 1 0 0 
6 0 0 0 0 1 0 0 0 
7 0 0 1 0 0 0 0 1 
8 0 0 1 0 0 0 1 0 

Graph Representation: Adjacency List 

•  Node indexed array of lists 
Ø Two representations of each edge 
Ø Space? 
Ø Checking if (u, v) is an edge? 
Ø Identifying all edges? 

36 
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What are the 
extremes?	
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Graph Representation: Adjacency List 
•  Node indexed array of lists 

Ø Two representations of each edge 
Ø Space = 2m + n = O(m + n) 
Ø Checking if (u, v) is an edge takes O(deg(u)) time 
Ø  Identifying all edges takes Θ(m + n) time 
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degree = number of 
neighbors of u	
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Assignments 

•  Journals: Finish Chapter 2 for Tuesday 
Ø Chapter 3 started today but we’ll leave it for next 

week 
•  Problem Set  2 due Friday 
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