
1/20/12	

1	

Objectives

•  Data structure: Heaps
•  Implementing a Priority Queue

Jan 20, 2012 1 Sprenkle - CSCI211

Review: Priority Queues for Sorting

1. Add elements into PQ with the number’s
value as its priority

2. Then extract the smallest number until done
Ø Come out in sorted order

Jan 20, 2012 2 Sprenkle - CSCI211

Sorting n numbers takes O(n logn) time,
which is our goal running time.	

However, “known” data structures won’t
give us that running time.	

Already know our “loops” will be O(n) 	

Review: Heap Defined

•  Combines benefits of sorted array and list
•  Balanced binary tree

Jan 20, 2012 3

root	

• Each node has at most 2 children
• Node value is its key

Heap order: each node’s key is
at least as large as its parent’s	

Note: not a binary search tree	

Sprenkle - CSCI211

Review: Implementing a Heap

•  Option 1: Use pointers
Ø Each node keeps

•  Element it stores, key
•  3 pointers: 2 children, parent

•  Option 2: No pointers
Ø Requires knowing upper bound on n
Ø For node at position i

•  left child is at 2i
•  right child is at 2i+1

Jan 20, 2012 4 Sprenkle - CSCI211

Review: Heapify-Up	

Jan 20, 2012 Sprenkle - CSCI211 5

Heapify-up(H, i):	
	if i > 1 then	
	 	j=parent(i)=floor(i/2)	
	 	if key[H[i]] < key[H[j]] then	
	 	 	swap array entries H[i] and H[j]	
	 	 	Heapify-up(H, j)	

Heap	

 Position where node added	

When is this algorithm used?	

What is the intuition?	

What is the run time?	

Deleting an Element

Jan 20, 2012 Sprenkle - CSCI211 6

Delete at
position 3	

w

1/20/12	

2	

Deleting an Element
•  Delete at position i
•  Removing an element:

Ø Messes up heap order
Ø Leaves a “hole” in the heap

•  Not as straightforward as Heapify-Up	
•  Algorithm

1.  Fill in element where hole was
•  Patch hole: move nth element into ith spot

2.  Adjust heap to be in order
•  At position i because moved nth item up to i

Jan 20, 2012 7 Sprenkle - CSCI211

Deleting an Element

• What are the possibilities when we move nth
element (w) into spot where element was
removed?

Jan 20, 2012 8 Sprenkle - CSCI211

Delete at
position 3	

w

Deleting an Element

•  Two “bad” possibilities: element w is
Ø Too small: violation is between it and parent à
Heapify-Up 	

Ø Too big: with one or both children à Heapify-
Down (example: w = 12)

Jan 20, 2012 9 Sprenkle - CSCI211

Delete at
position 3	

w

Example of OK:	

11 deleted, replaced by 16	

Deleting an Element

•  Delete 9
•  Replace with 5

Jan 20, 2012 10

Example where new key is too small	

3	

4	

 7	

5	

6	

2	

9	

 10	

Sprenkle - CSCI211

Deleting an Element

•  Delete 9
•  Replace with 5
•  But 5 < 6, so need to Heapify-Up	

Jan 20, 2012 11

Example where new key is too small	

3	

4	

 7	

 5	

6	

2	

10	

Sprenkle - CSCI211

Heapify-Down

Jan 20, 2012 12

Heapify-down(H, i):	
	n = length(H)	
	if 2i > n then	
	 	Terminate with H unchanged	
	else if 2i < n then	
	 	left=2i and right=2i+1	
	 	j be index that minimizes	
	 	 	key[H[left]] and key[[H[right]]	
	else if 2i = n then	
	 	j=2i	

	
	if key[H[j]] < key[H[i]] then	
	 	swap array entries H[i] and H[j]	
	 	Heapify-down(H, j)	

Sprenkle - CSCI211

Why can we stop?	

1/20/12	

3	

Heapify-Down

Jan 20, 2012 13

Heapify-down(H, i):	
	n = length(H)	
	if 2i > n then	
	 	Terminate with H unchanged	
	else if 2i < n then	
	 	left=2i and right=2i+1	
	 	j be index that minimizes	
	 	 	key[H[left]] and key[[H[right]]	
	else if 2i = n then	
	 	j=2i	

	
	if key[H[j]] < key[H[i]] then	
	 	swap array entries H[i] and H[j]	
	 	Heapify-down(H, j)	

Sprenkle - CSCI211

i is a leaf – nowhere to go	

Practice: Heapify-Down

Jan 20, 2012 14

Moved 21 to where
element was removed

21	

Sprenkle - CSCI211

Practice: Heapify-Down

Jan 20, 2012 15

21	

21	

7	

Sprenkle - CSCI211

Practice: Heapify-Down

Jan 20, 2012 16

21	

7	

8	

7	

21	

Sprenkle - CSCI211

Runtime of Heapify-Down?

Jan 20, 2012 17

Heapify-down(H, i):	
	n = length(H)	
	if 2i > n then	
	 	Terminate with H unchanged	
	else if 2i < n then	
	 	left=2i and right=2i+1	
	 	j be index that minimizes	
	 	 	key[H[left]] and key[[H[right]]	
	else if 2i = n then	
	 	j=2i	

	
	if key[H[j]] < key[H[i]] then	
	 	swap array entries H[i] and H[j]	
	 	Heapify-down(H, j)	

Sprenkle - CSCI211

O(1)

O(1)

Num swaps: O(log n)	

Implementing Priority Queues
with Heaps

Jan 20, 2012 18

Operation Description Run Time

StartHeap(N) Creates an empty heap that
can hold N elements

Insert(v) Inserts item v into heap

FindMin() Identifies minimum element in
heap but does not remove it

Delete(i) Deletes element in heap at
position i

ExtractMin()
Identifies and deletes an
element with minimum key from
heap

Sprenkle - CSCI211

1/20/12	

4	

Implementing Priority Queues
with Heaps

Jan 20, 2012 19

Operation Description Run Time

StartHeap(N) Creates an empty heap that
can hold N elements O(N)

Insert(v) Inserts item v into heap O(log n)

FindMin() Identifies minimum element in
heap but does not remove it O(1)

Delete(i) Deletes element in heap at
position i O(log n)

ExtractMin()
Identifies and deletes an
element with minimum key from
heap

O(log n)

Sprenkle - CSCI211

Putting It All Together…

1. Add elements into PQ with the number’s
value as its priority

2. Then extract the smallest number until done
Ø Come out in sorted order

Jan 20, 2012 20 Sprenkle - CSCI211

What is the running time of sorting numbers
using a PQ implemented with a Heap?	

O(n log n)	

Comparing Data Structures

Jan 20, 2012 Sprenkle - CSCI211 21

Operation Heap Unsorted
List

Sorted List

Start(N)

Insert(v)

FindMin()

Delete(i)

ExtractMin()

Comparing Data Structures

Jan 20, 2012 22

Operation Heap Unsorted
List

Sorted
List

Start(N) O(N)
Insert(v) O(log n)
FindMin() O(1)
Delete(i) O(log n)
ExtractMin() O(log n)

Sprenkle - CSCI211

Comparing Data Structures

Jan 20, 2012 23

Operation Heap Unsorted
List

Sorted
List

Start(N) O(N) O(1) O(1)
Insert(v) O(log n) O(1) O(n)
FindMin() O(1) O(1) O(1)
Delete(i) O(log n) O(n) O(1)
ExtractMin() O(log n) O(n) O(1)

Sprenkle - CSCI211

Additional Heap Operations
•  Access elements in PQ by “name”

Ø Maintain additional array Position that stores current
position of each element in heap

•  Operations:
Ø Delete(Position[v])

•  Does not increase overall running time
Ø ChangeKey(v, α)

•  Changes key of element v to α
•  Identify position of element v in array (Position array)
•  Change key, heapify

Jan 20, 2012 24 Sprenkle - CSCI211

Key 2 4 5 6 9 20
Value 3542 5143 8712 1264 9123 5954 Process id	

Priority	

1/20/12	

5	

GRAPHS

Jan 20, 2012 Sprenkle - CSCI211 25

Undirected Graphs G = (V, E)
•  V = nodes (vertices)
•  E = edges between pairs of nodes
•  Captures pairwise relationship between

objects
•  Graph size parameters: n = |V|, m = |E|

26

V = { 1, 2, 3, 4, 5, 6, 7, 8 }	

E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 }���
n = 8	

m = 11	

Jan 20, 2012 Sprenkle - CSCI211

Sprenkle - CSCI211

Social Networks
•  Node: people; Edge: relationship between 2

people
•  Everything Bad Is Good for You: How Today's

Popular Culture Is Actually Making Us Smarter

27

•  Television shows
have complex
plots, complex
social networks

Social network of
24's Jack Bauer

http://www.cs.duke.edu/csed/harambeenet/
modules.html	

Jan 20, 2012

Facebook: Visualizing Friends

Jan 20, 2012 Sprenkle - CSCI211 28

http://www.facebook.com/notes/facebook-engineering/
visualizing-friendships/469716398919	

World Wide Web

• Web graph
Ø Node: web page
Ø Edge: hyperlink from one page to another

29

cnn.com

people.com sportsillustrated.cnn.com netscape.aol.com time.com

hbo.com

boardwalkempire.com

Directed Graph:	

Jan 20, 2012 Sprenkle - CSCI211

Graph of Web Page www.wlu.edu

Jan 20, 2012 Sprenkle - CSCI211 30

http://www.aharef.info/static/htmlgraph	

1/20/12	

6	

Ecological Food Web

•  Food web graph
Ø Node = species
Ø Edge = from prey to

predator

31

Reference: 	

https://www.msu.edu/course/isb/202/
ebertmay/images/foodweb.jpg	

Directed Graph:	

Jan 20, 2012 Sprenkle - CSCI211

Rock Paper Scissors Lizard Spock

Jan 20, 2012 Sprenkle - CSCI211 32

Graph Applications

33

transportation	

Graph	

street intersections	

Nodes	

 Edges	

highways	

communication	

 computers	

 fiber optic cables	

World Wide Web	

 web pages	

 hyperlinks	

social	

 people	

 relationships	

food web	

 species	

 predator-prey	

software systems	

 functions	

 function calls	

scheduling	

 tasks	

 precedence constraints	

circuits	

 gates	

 wires	

Jan 20, 2012 Sprenkle - CSCI211

Graph Representation: Adjacency Matrix

•  n×n matrix with Auv = 1 if (u, v) is an edge
Ø Two representations of each edge (symmetric

matrix)
Ø Space?

Ø Checking if (u, v) is an edge?
Ø Identifying all edges?

34

 1 2 3 4 5 6 7 8
1 0 1 1 0 0 0 0 0
2 1 0 1 1 1 0 0 0
3 1 1 0 0 1 0 1 1
4 0 1 0 1 1 0 0 0
5 0 1 1 1 0 1 0 0
6 0 0 0 0 1 0 0 0
7 0 0 1 0 0 0 0 1
8 0 0 1 0 0 0 1 0

Jan 20, 2012 Sprenkle - CSCI211

Graph Representation: Adjacency Matrix

•  n×n matrix with Auv = 1 if (u, v) is an edge
Ø Two representations of each edge (symmetric

matrix)
Ø Space: Θ(n2)

Ø Checking if (u, v) is an edge: Θ(1) time
Ø Identifying all edges: Θ(n2) time

35 Jan 20, 2012 Sprenkle - CSCI211

 1 2 3 4 5 6 7 8
1 0 1 1 0 0 0 0 0
2 1 0 1 1 1 0 0 0
3 1 1 0 0 1 0 1 1
4 0 1 0 1 1 0 0 0
5 0 1 1 1 0 1 0 0
6 0 0 0 0 1 0 0 0
7 0 0 1 0 0 0 0 1
8 0 0 1 0 0 0 1 0

Graph Representation: Adjacency List

•  Node indexed array of lists
Ø Two representations of each edge
Ø Space?
Ø Checking if (u, v) is an edge?
Ø Identifying all edges?

36

1	

 2	

 3	

2	

3	

4	

 2	

 5	

5	

6	

7	

 3	

 8	

8	

1	

 3	

 4	

 5	

1	

 2	

 5	

 8	

7	

2	

 3	

 4	

 6	

5	

3	

 7	

n
o

d
e
	

edges	

Jan 20, 2012 Sprenkle - CSCI211

What are the
extremes?	

1/20/12	

7	

Graph Representation: Adjacency List
•  Node indexed array of lists

Ø Two representations of each edge
Ø Space = 2m + n = O(m + n)
Ø Checking if (u, v) is an edge takes O(deg(u)) time
Ø  Identifying all edges takes Θ(m + n) time

Jan 20, 2012 Sprenkle - CSCI211 37

degree = number of
neighbors of u	

n
o

d
e
	

edges	

1	

 2	

 3	

2	

3	

4	

 2	

 5	

5	

6	

7	

 3	

 8	

8	

1	

 3	

 4	

 5	

1	

 2	

 5	

 8	

7	

2	

 3	

 4	

 6	

5	

3	

 7	

Assignments

•  Journals: Finish Chapter 2 for Tuesday
Ø Chapter 3 started today but we’ll leave it for next

week
•  Problem Set 2 due Friday

Jan 20, 2012 Sprenkle - CSCI211 38

