
2/1/12	

1	

Objectives

•  Directed graphs
•  Topological Orderings of DAGs

Feb 1, 2012 1 CSCI211 - Sprenkle

Review

•  Thoughts on Dr. Danner’s talks?
•  Journals
• What do we know about graphs?

Feb 1, 2012 CSCI211 - Sprenkle 2

Review

• What do we know about graphs?
Ø Space
Ø Connectivity

•  BFS, DFS
Ø Bipartite graphs

•  How to color?
•  When know not colorable?

Feb 1, 2012 CSCI211 - Sprenkle 3

DIRECTED GRAPHS

4 Feb 1, 2012 CSCI211 - Sprenkle

Directed Graphs G = (V, E)

•  Edge (u, v) goes from node u to node v

•  Example: Web graph - hyperlink points from
one web page to another
Ø Directedness of graph is crucial
Ø Modern web search engines exploit hyperlink

structure to rank web pages by importance
Feb 1, 2012 CSCI211 - Sprenkle 5

How can we represent���
directed graphs?	

What information���
do we want?	

Representing Directed Graphs

•  Edge (u, v) goes from node u to node v

•  For each node, keep track of
Ø Out edges (where links go)
Ø In edges (from where links come in)

•  Could only store out edges
Ø Figure out in edges with increased computation/

time
Ø Useful to have both in and out edges

Feb 1, 2012 CSCI211 - Sprenkle 6

2/1/12	

2	

CONNECTIVITY IN DIRECTED
GRAPHS

7 Feb 1, 2012 CSCI211 - Sprenkle

Graph Search

•  How does reachability change with directed
graphs?

•  Example: Web crawler

1.  Start from web page s.
2.  Find all web pages linked from s, either directly

or indirectly.
Feb 1, 2012 CSCI211 - Sprenkle 8

1	

 2	

5	

4	

7	

3	

6	

1	

 2	

5	

4	

7	

3	

6	

Graph Search

•  Directed reachability. Given a node s, find all
nodes reachable from s.

•  Directed s-t shortest path problem. Given
two nodes s and t, what is the length of the
shortest path between s and t?
Ø Not necessarily the same as tàs shortest path

•  Graph search. BFS and DFS extend
naturally to directed graphs
Ø Trace through out edges
Ø Run in O(m+n) time

Feb 1, 2012 CSCI211 - Sprenkle 9

1	

 2	

5	

4	

7	

3	

6	

Problem

•  Find all nodes with paths to s
Ø Rather than paths from s to other nodes

Feb 1, 2012 CSCI211 - Sprenkle 10

Problem/Solution

•  Problem. Find all nodes with paths to s
•  Solution. Run BFS on in edges instead of

out edges

Feb 1, 2012 CSCI211 - Sprenkle 11

Strong Connectivity

•  Def. Node u and v are mutually reachable
if there is a path from u à v and also a path
from v à u

•  Def. A graph is strongly connected if every
pair of nodes is mutually reachable

•  Lemma. Let s be any node. G is strongly
connected iff every node is reachable from s
and s is reachable from every node

Feb 1, 2012 CSCI211 - Sprenkle 12

s	

v	

u	

(not necessarily a direct edge)	

2/1/12	

3	

Strong Connectivity

•  Prove: If u and v are mutually reachable and
v and w are mutually reachable, then u and
w are mutually reachable

Feb 1, 2012 CSCI211 - Sprenkle 13

Strong Connectivity
•  Claim. If u and v are mutually reachable and

v and w are mutually reachable, then u and
w are mutually reachable.

•  Proof. We need to show that there is a path
from u à w and from w à u.
Ø By defn of mutually reachable

•  There is a path u à v & a path v à u
•  There is a path v à w, and a path w à v

Ø Take path uàv and then from v à w
•  Path from uàw

Ø Similarly for wàu
Feb 1, 2012 CSCI211 - Sprenkle 14

Strong Connectivity

•  Def. A graph is strongly connected if every
pair of nodes is mutually reachable

•  Lemma. Let s be any node. G is strongly
connected iff every node is reachable from s
and s is reachable from every node.
Ø 1st prove ⇒
Ø 2nd prove ⇐

Feb 1, 2012 CSCI211 - Sprenkle 15

Strong Connectivity
•  Def. A graph is strongly connected if every pair

of nodes is mutually reachable
•  Lemma. Let s be any node. G is strongly

connected iff every node is reachable from s,
and s is reachable from every node.

•  Pf. ⇒ Follows from definition of strongly
connected

•  Pf. ⇐ For any nodes u and v, make path uàv
and vàu
Ø  uàv : concatenating uàs with sàv
Ø  v àu: concatenate vàs with sàu

Feb 1, 2012 CSCI211 - Sprenkle 16

s	

v	

u	

Strong Connectivity Problem

•  Determine if G is strongly connected in
O(m + n) time

Feb 1, 2012 CSCI211 - Sprenkle 17

strongly connected	

 not strongly connected	

Hint: Can we leverage any algorithms ���
we know have O(m+n) time?	

Strong Connectivity: Algorithm
•  Theorem. Can determine if G is strongly

connected in O(m + n) time.
•  Pf.

Ø Pick any node s
Ø Run BFS from s in G
Ø Run BFS from s in Grev
Ø Return true iff all nodes reached in both BFS

executions
Ø Correctness follows immediately from previous

lemma
•  All reachable from one node, s is reached by all

Feb 1, 2012 CSCI211 - Sprenkle 18

reverse orientation of every edge in G	

Or, the BFS using the in edges	

2/1/12	

4	

Strong Components

•  Prove: For any two nodes s and t in a
directed graph, their strong components are
either identical or disjoint

Feb 1, 2012 CSCI211 - Sprenkle 19

Hint: Consider a node in common…	

Strong Components
•  Claim. For any two nodes s and t in a directed

graph, their strong components are either
identical or disjoint

•  Proof.
Ø Consider v in both strong components

•  sà v; v à s; vàt; tàv è tàs, sàt (mutually
reachable)

•  As soon as there is one common node, then have
identical strong components

Ø On the other hand, consider s and t are not mutually
reachable
•  No node v that is in the strong component of each

Ø  What would it mean if there were?

Feb 1, 2012 CSCI211 - Sprenkle 20

DAGS AND TOPOLOGICAL
ORDERING

21 Feb 1, 2012 CSCI211 - Sprenkle

Directed Acyclic Graphs
•  Def. A DAG is a directed graph that contains no

directed cycles.
•  Example. Precedence constraints: edge (vi, vj)

means vi must precede vj
Ø Course prerequisite graph: course vi must be taken

before vj

Ø Compilation: module vi must be compiled before vj

Ø Pipeline of computing jobs: output of job vi needed to
determine input of job vj

Feb 1, 2012 CSCI211 - Sprenkle 22

v2 v3

v6 v5 v4

v7 v1

a DAG:	

Problem: Valid Ordering

•  Given a set of tasks with dependencies, what
is a valid order in which the tasks could be
performed?

Feb 1, 2012 CSCI211 - Sprenkle 23

v2 v3

v6 v5 v4

v7 v1

Topological Ordering
•  Problem: Given a set of tasks with

dependencies, what is a valid order in which the
tasks could be performed?

•  Def. A topological order of a directed graph
G = (V, E) is an ordering of its nodes as v1, v2,
…, vn so that for every edge (vi, vj) we have i < j.

Feb 1, 2012 CSCI211 - Sprenkle 24

a DAG	

a topological ordering	

All edges point “forward”	

v2	

 v3

v6	

 v5	

 v4	

v7	

 v1	

v1	

 v2	

 v3 v4	

 v5	

 v6	

 v7	

2/1/12	

5	

Directed Acyclic Graphs

•  Lemma. If G has a topological order, then G
is a DAG.

•  Proof plan: Try to show that G has a cycle

Feb 1, 2012 CSCI211 - Sprenkle 25

v1	

 vi	

 vj	

 vn	

the supposed topological order: v1, …, vn	

the directed cycle C	

Why isn’t this valid?	

DAGs & Topological Orderings
•  Lemma. If G has a topological order, then G is a DAG.
•  Pf. (by contradiction)

Ø  Suppose that G has a topological order v1, …, vn and that G
also has a directed cycle C.

Ø  Let vi be the lowest-indexed node in C, and let vj be the node
on C just before vi; thus (vj, vi) is an edge

Ø  By our choice of i (lowest-indexed node), i < j
Ø  Since (vj, vi) is an edge and v1, …, vn is a topological order,

we must have j < i, a contradiction. ▪

Feb 1, 2012 CSCI211 - Sprenkle 26

v1	

 vi	

 vj	

 vn	

the directed cycle C	

the supposed topological order: v1, …, vn	

Directed Acyclic Graphs

•  Does every DAG have a topological
ordering?
Ø If so, how do we compute one?

Feb 1, 2012 CSCI211 - Sprenkle 27

Directed Acyclic Graphs

•  Does every DAG have a topological
ordering?
Ø If so, how do we compute one?

• What would we need to be able to create a
topological ordering?
Ø What are some characteristics of this graph?

Feb 1, 2012 CSCI211 - Sprenkle 28

v1 v2 v3 v4 v5 v6 v7

Directed Acyclic Graphs

•  Does every DAG have a topological
ordering?
Ø If so, how do we compute one?

• What would we need to be able to create a
topological ordering?
Ø What are some characteristics of this graph?

Feb 1, 2012 CSCI211 - Sprenkle 29

v1 v2 v3 v4 v5 v6 v7

Need someplace to start:	

a node with no incoming edges

(no dependencies)	

Note that both v1 and v2 have no

incoming edges	

Towards a Topological Ordering

Feb 1, 2012 CSCI211 - Sprenkle 30

Do we know there is always a ���
node with no incoming edges?	

Goal: Find an algorithm for finding the TO	

Idea: 1st node is one with no incoming edges	

2/1/12	

6	

Directed Acyclic Graphs

•  Lemma. If G is a DAG, then G has a node
with no incoming edges
Ø This is our starting point of the topological

ordering

Feb 1, 2012 CSCI211 - Sprenkle 31

How to prove?	

Towards a Topological Ordering

•  Lemma. If G is a DAG, then G has a node
with no incoming edges

•  Proof idea: consider if there is no node
without incoming edges

Feb 1, 2012 CSCI211 - Sprenkle 32

Towards a Topological Ordering
•  Lemma. If G is a DAG, then G has a node with no incoming

edges.
•  Pf. (by contradiction)

Ø  Suppose that G is a DAG and every node has at least one incoming
edge

Ø  Pick any node v, and follow edges backward from v.
•  Since v has at least one incoming edge (u, v), we can walk backward to

u
Ø  Since u has at least one incoming edge (t, u), we can walk backward

to t
Ø  Repeat until we visit a node, say w, twice

•  Has to happen at least by n+1 steps (Why?)
Ø  Let C denote the sequence of nodes encountered between

successive visits to w. C is a cycle, which is a contradiction to G is a
DAG ▪

Feb 1, 2012 CSCI211 - Sprenkle 33 33	

w t u v

Creating a Topological Order

• With a node with no incoming edges, can
create a topological ordering

Feb 1, 2012 CSCI211 - Sprenkle 34

Ideas?	

Topological Ordering Algorithm

•  Lemma. If G is a DAG, then G has a
topological ordering.

•  Algorithm:

Feb 1, 2012 CSCI211 - Sprenkle 35 35	

DAG	

v	

Find a node v with no incoming edges	
Order v first	
Delete v from G	
Recursively compute a topological ordering of G-{v}	

	and append this order after v

How do we know this works?	

Directed Acyclic Graphs
•  Lemma. If G is a DAG, then G has a topological

ordering.
•  Pf. (by induction on n)

Ø Base case: true if n = 1
Ø Given DAG on n > 1 nodes, find a node v with no

incoming edges
Ø G - { v } is a DAG, since deleting v cannot create cycles
Ø By inductive hypothesis, G - { v } has a topological

ordering
Ø Place v first in topological ordering; then append nodes

of G - { v }
Ø  in topological order. This is valid since v has no incoming

edges. ▪

Feb 1, 2012 CSCI211 - Sprenkle 36

DAG	

v	

2/1/12	

7	

Topological Ordering Algorithm

•  Lemma. If G is a DAG, then G has a
topological ordering.

•  Algorithm:

Feb 1, 2012 CSCI211 - Sprenkle 37 37	

DAG	

v	

Find a node v with no incoming edges	
Order v first	
Delete v from G	
Recursively compute a topological ordering of G-{v}	

	and append this order after v

Topological Ordering Algorithm:
Example

38

v1

Topological order: 	

v2 v3

v6 v5 v4

v7 v1

Feb 1, 2012 CSCI211 - Sprenkle

Topological Ordering Algorithm:
Example

39

v2

Topological order: v1	

v2 v3

v6 v5 v4

v7

Feb 1, 2012 CSCI211 - Sprenkle

Topological Ordering Algorithm:
Example

40

v3

Topological order: v1, v2	

v3

v6 v5 v4

v7

Feb 1, 2012 CSCI211 - Sprenkle

Topological Ordering Algorithm:
Example

41

v4

Topological order: v1, v2, v3	

v6 v5 v4

v7

Feb 1, 2012 CSCI211 - Sprenkle

Topological Ordering Algorithm:
Example

42

v5

Topological order: v1, v2, v3, v4	

v6 v5

v7

Feb 1, 2012 CSCI211 - Sprenkle

2/1/12	

8	

Topological Ordering Algorithm:
Example

43

v6

Topological order: v1, v2, v3, v4, v5	

v6

v7

Feb 1, 2012 CSCI211 - Sprenkle

Topological Ordering Algorithm:
Example

44

v7

Topological order: v1, v2, v3, v4, v5, v6	

v7

Feb 1, 2012 CSCI211 - Sprenkle

Topological Ordering Algorithm:
Example

45

Topological order: v1, v2, v3, v4, v5, v6, v7.	

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7

Feb 1, 2012 CSCI211 - Sprenkle

Topological Order Runtime

• Where are the costs?
•  How would we implement?

Feb 1, 2012 CSCI211 - Sprenkle 46

Find a node v with no incoming edges	
Order v first	
Delete v from G	
Recursively compute a topological ordering of G-{v}	

	and append this order after v

Topological Order Runtime

•  Find a node without incoming edges and
delete it: O(n)

•  Repeat on all nodes
à O(n2)

Feb 1, 2012 CSCI211 - Sprenkle 47

Can we do better?	

Find a node v with no incoming edges	
Order v first	
Delete v from G	
Recursively compute a topological ordering of G-{v}	

	and append this order after v

O(n)	

O(n)	

Topological Sorting Algorithm:
Running Time
•  Theorem. Find a topological order in O(m + n)

time
•  Pf.

Ø Maintain the following information:
•  count[w] = remaining number of incoming edges
•  S = set of remaining nodes with no incoming edges

Ø  Initialization: O(m + n) via single scan through graph
Ø Algorithm:

•  Select a node v from S, remove v from S
•  Decrement count[w] for all edges from v to w

Ø  Add w to S if count[w] = 0

Feb 1, 2012 CSCI211 - Sprenkle 48

2/1/12	

9	

Looking Ahead

•  Problem Set 3 due Friday
•  Danner talk write up due Friday
•  Exam 1 handed out on Friday

Feb 1, 2012 CSCI211 - Sprenkle 49

