Objectives

Divide and conquer
» Closest pair of points
» Integer multiplication
» Matrix multiplication

Mar 9, 2012 CSCI211 - Sprenkle 1

Reviewing Closest Pair of Points

Mar 9, 2012 CSCI211 - Sprenkle

Closest Pair of Points

Closest pair. Given n points in the plane, find a
pair with smallest Euclidean distance between
them.

~ Special case of nearest neighbor, Euclidean MST,
Voronoi.

Brute force. Check all pairs of points p and q
with ®(n2) comparisons

1-D version. O(nlog n)

» Easy if points are on a line

Assumption. No two points have same x
COO0 I’dinate to make presentation cleaner

Mar 9, 2012 CSCI211 - Sprenkle 3

Closest Pair of Points

Recall the approach?

Mar 9, 2012 CSCI211 - Sprenkle

Closest Pair of Points

Divide: draw vertical line L so that roughly
Yen points on each side

Mar 9, 2012 CSCI211 - Sprenkle 5

Closest Pair of Points

Divide: draw vertical line L so that roughly %z2n
points on each side

Conquer: find closest pair in each side
recursively

Mar 9, 2012 CSCI211 - Sprenkle

3/9/12

Closest Pair of Points

Divide: draw vertical line L so that roughly “zn points on each side
Conquer: find closest pair in each side recursively
Combine: find closest pair with one point in each side seems like 6(n?)

Return best of 3 solutions
Do we need to check all pairs?

° 1 s . °
° ° °
°
° ¢ » o
° 8 lo 1l
° o
°
° ° °
°
12, o . . .
° ° ° °
o °
Mar 9, 2012 CSCI211 - Sprenkle 7

Closest Pair of Points

Find closest pair with one point in each side,
assuming that distance < 6
where § = min(left_min_dist, right_min_dist)

° L o . o
o . .
o ° L ° °
O o
. . o d 21 . .
o
5 =min(12, 21)
12, © ° ° °
o o
e ° O °
© o
Mar 9, 2012 CSTTZTT=Sprenkie 8

Closest Pair of Points

Find closest pair with one point in each side,
assuming that distance < 9.
» Observation: only need to consider points within

d of line L. > 5
. L . -
o

° ° s O °
o

° . ° 6 21 ° .

o

8 =min(12, 21)
12,4 L ° ° °
o o
° ° ® °
I °
Mar 9, 2012 CSTIZTT=SPrenke 9

Closest Pair of Points

Find closest pair w/ 1 point in each side, assuming that
distance < d.

» Observation: only consider points within 3 of line L

» Sort points in 26-strip by their y coordinate

c .
L o
o o How should we
i ?
. ° o s solve this part?
.
. [° 21
e ® e
° 5 =min(12, 21)
lz o ° -] ° ° o
o . o o
Mar 9, 2012 o peree L 10

Closest Pair of Points

Find closest pair w/ 1 point in each side, assuming distance < &.
» Observation: only consider points within § of line L
~ Sort points in 23-strip by their y coordinate
f)ntlly checks distances of those within 11 positions in sorted
ist!

. L . -
o o
o
S0 o | ,
.
o o o s 2l o
o o
° 5=min(12, 21)
12 4 . |© R o "
o
o o o .
=t & °

Mar 9, 2012 CSCI211 - Sprenkle "

Analyzing Cost of Combining
Prepare minds to be blown...

Def. Let s; be the point in the oo
25-strip with the it smallest
y-coordinate
Claim. If]i—j| =12, ‘
then the distance between "
s;and s; is at least 3 ()
» What is the distance of the box? ; . g O im
» How many points can be in a
box? (] °
» When do we know that points are
> d apart?

Mar 9, 2012 CSCI211 - Sprenkle d d 1

LYy

3/9/12

Analyzing Cost of Combining

Def. Let s; be the point in the 26-strip
with the it smallest y-coordinate

eee

Claim. If]i—j] = 12, then the o—i
distance between s; and s; is at least & [
Pf.
No two points lie in same ¥20-by-'20 Vad
box 2 rows
.) o Y20
Two points at least 2 rows apart
have distance = 2(%29). i~ @ ®
Fact. Still true if we replace 12 with 7.
[}
o
Cost of combining is therefore...? ‘ oo
Mar 9, 2012 CSCI211 - Sprenkle d S 1

Closest Pair Algorithm

Closest-Pair(py, .., pn)
Compute separation line L such that half the points
are on one side and half on the other side.

8, = Closest-Pair(left half)
8, = Closest-Pair(right half)
8 = min(3;, &)

Delete all points further than 8 from separation
line L

Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between
each point and next 7 neighbors. If any of these
distances is less than 3, update &.

return &

Mar 9, 2012 CSCI211 - Sprenkle 14

Closest Pair Algorithm

Closest-Pair(py, -, pPn)
Compute separation line L such that half the points o, iogn)
are on one side and half on the other side.

8; = Closest-Pair(left half) 2T(n/2)
8, = Closest-Pair(right half)

Closest Pair of Points: Analysis

Running time. Solved in 5.2
T(n) £ 2T(n/2) + O(n log n) = T(n) = O(n log?n)
Can we achieve O(n log n)?
T(n) £ 2T(n/2) + O(n) = T(n) = O(n logn)
Yes. Don't sort points in strip from scratch
each time.

Each recursive returns two lists: all points sorted
by y coordinate, and all points sorted by x
coordinate

Sort by merging two pre-sorted lists

Mar 9, 2012 CSCI211 - Sprenkle 16

) min(d,, &)
Delete all points further than & from separation o
line L ®
Sort remaining points by y-coordinate. O(n log n)
Scan points in y-order and compare distance between
each point and next 7 neighbors. If any of these O(n)
distances is less than 8, update 3.
return & T(n) = 2T(n/2) + O(n log n)
Mar 9, 2012 CSCI211 - Sprenkle 15
Mar 9, 2012 CSCI211 - Sprenkle 17

Integer Arithmetic

Add. Given 2 n-digit integers a and b,
compute a + b.

Algorithm?
Runtime? |, |, , , , | o |
I 1 0 I 0 I 0 1
+ 0] I I I I 0 1
I 0 I 0 I 0 0 I 0
Mar 9, 2012 CSCI211 - Sprenkle 18

3/9/12

Integer Arithmetic

Add. Given 2 n-digit integers a and b,
compute a + b.

» Algorithm?
»Runtime? |, , , , | o |
I I 0 I 0 I 0 I
+ 0 1 I I 1 I 0 1
| 0 | 0 | 0 0 | 0
O(n) operations
Mar 9, 2012 CSCI211 - Sprenkle 19

Integer Arithmetic

Multiply. Given 2 n-digit integers a and b,
compute a x b

Algorithm?
) 11010101
Runtime? 01111101
Mar 9, 2012 CSCI211 - Sprenkle 20

Integer Arithmetic

Multiply. Given 2 n-digit integers a and b,
compute a x b.
> Brute force solution: ©(n2) bit operations

1010101
F N N T I I O I
Goal: Faster algorithm frorototo
000000000
Irrororotro
rro1rot1rot1o
Irrorotrotlo
Ir1rororotlo
Irtrorotrotlo
000000000
01 101000000000010

Mar 9, 2012 21

Divide-and-Conquer Multiplication:
Warmup
To multiply 2 n-digit integers:
» Multiply 4 %2 n-digit integers
» Add 2 %2 n-digit integers and shift to obtain result

Higher order bits Lower order bits

Shift ~— \
x =2y 4 ox,
yo= 2%y,
X o= (2 x) (277 +) = 2% ng + 27 (x+¥on) + Fove

A B C D

What is the recurrence relation?
* How many subproblems?

* What is merge cost?

* What is its runtime?

Mar 9, 2012 CSCI211 - Sprenkle 22

Divide-and-Conquer Multiplication:
Warmup

To multiply two n-digit integers:

» Multiply 4 2 n-digit integers

» Add 2 %2 n-digit integers and shift to obtain result

Higher order bits Lower order bits

Shifc ~— ’E, . Xu/

i
2%y + y,
(Zn/

=

» o
W= (273 x) (27 +3) = 20w + 2 (vt ¥on) + Xade
A B C D
T(n) = 4T(n/2) + O(m) = T(n)=0(n*)
=,
recursive calls add, shift
Not an improvement
. over brute force
assumes n is a power of 2
Mar 9, 2012 CSCI211 - Sprenkle 23

Karatsuba Multiplication

To multiply two n-digit integers:
» Add 2 %zn digit integers
» Multiply 3 “2n-digit integers
» Add, subtract, and shift Y2n-digit integers to
obtain result

x o= 2"y 4 x,
v o= 2%y
xy = 20y + 27 (et an) + X

27+ 27 (0 X)) (1 +90) = 104 = Xo¥o) + XY
A B A C ©

What is the recurrence relation? Runtime?

Mar 9, 2012 CSCI211 - Sprenkle 24

3/9/12

Karatsuba Multiplication

Theorem. [Karatsuba-Ofman, 1962] Can
multiply two n-digit integers in O(n'-585) bit
operations

2"y 4 x,

2%y 4y,

2" xyy + 2" (g +xon) + X0y,
2" 5y + 2" (5 + %) (71 +Y0) = %)= %odo) + XY
A B A c c

x

¥
g7

Ty = 7([n/2]) + 7([n/2]) + T(1+[n/2]) + O(n)

recursive alls add, subtract, shift

= T(n) = 0@"™*") = 0(n"*)

Mar 9, 2012 CSCI211 - Sprenkle 25

MATRIX MULTIPLICATION

Mar 9, 2012 CSCI211 - Sprenkle 26

Matrix Multiplication

Given 2 n-by-n matrices A and B,
compute C = AB

» EX:Cip = @39 Dyg + @1y Dy +@y3 by + . + a4, Dy

Solve using brute force ...

Mar 9, 2012 CSCI211 - Sprenkle 27

Matrix Multiplication

Given 2 n-by-n matrices A and B,
compute C = AB

& o e
¢ =Y a,b, :
= & G .
c

W G T

ZEXxicip = ag by tap by taby +o+a, by

Brute force. ®(n3) arithmetic operations

Fundamental question: Can we improve
upon brute force?

Mar 9, 2012 CSCI211 - Sprenkle 28

Matrix Multiplication: Warmup
Divide: partition A and B into ¥zn-by-zn
blocks
Conquer: multiply 8 “2n-by-zn recursively

Combine: add appropriate products using 4
matrix additions

Ci = (AyxBy) + (A xBy)
[Cu Cl2] _ [Au AIZ] X [Bu BIZ] Co = (4yxBy) + (4,%By)
Gy Cy Ay Ay By By Gy = (dyxBy) + (4 xBy)
Co = (AuxBp) + (4% Ba)
‘ Recurrence relation? Runtime? ‘
Mar 9, 2012 CSCI211 - Sprenkle 29

Matrix Multiplication: Warmup
Divide: partition A and B into ¥z2n-by-%zn
blocks
Conquer: multiply 8 ¥zn-by-'zn recursively

Combine: add appropriate products using 4
matrix additions

Cy = (4yxBy)+ (4,%By)
P P PO R R s
Cy = (AyxBy)+ (4nxBy)
Cp = (AyxBpy) + (A% By)
T(n)= 8T(n/2) + o@n?) = T(n)=0(n")
ar | e
Mar 9, 2012 UouIZ 1| - OpIEiINg 30

3/9/12

Matrix Multiplication: Key Idea

Multiply 2-by-2 block matrices with only 7
multiplications and 15 additions

[gu ?z] _ [ju jn] " [1;” zu] B = A, x(By-By)
2 Cn by A 2 By
b= (4 +4,)% By
Pyo= (A +4yn)x By
Gy = B+R-B+K By = Ay x(By-B)
C, = R+h B = (4 +4) % (B +By)
G = B+h B = (A= A) x(By + Byy)
Cy = RB+R-P-F B = (A=) x(B +By)
Mar 9, 2012 CSCI211 - Sprenkle 31

Fast Matrix Multiplication
[Strassen, 1969]
Divide: partition A and B into ¥2n-by-%2n blocks
Compute: 14 zn-by-%2n matrices via 10 matrix
additions
Conquer: multiply 7 “zn-by-'2n matrices
recursively
Combine: 7 products into 4 terms using 8
matrix additions . o
T(n) = 7T(n/2)+ On’) = Tm)=6n"*")=0n"")
Analysis. e
» Assume n is a power of 2.
» T(n) = # arithmetic operations.

Mar 9, 2012 CSCI211 - Sprenkle 32

Fast Matrix Multiplication in Practice

Implementation issues: problems with putting
theory into practice

~ Sparsity

» Caching effects

» Numerical stability

Theoretically correct but possible problems with
round off errors, etc

» Odd matrix dimensions
» Crossover to classical algorithm around n = 128

Mar 9, 2012 CSCI211 - Sprenkle 33

Fast Matrix Multiplication in Practice

Common misperception:
"Strassen is only a theoretical curiosity."

» Advanced Computation Group at Apple
Computer reports 8x speedup on G4 Velocity
Engine when n ~ 2,500

» Range of instances where it's useful is a subject
of controversy

Can "Strassenize" Ax=b, determinant,
eigenvalues, and other matrix ops

Mar 9, 2012 CSCI211 - Sprenkle 34

Fast Matrix Multiplication in Theory

Q. Multiply two 2-by-2 matrices with only 7 scalar
multiplications?

A. Yes! [Strassen, 1969] 0"y = 0"
Q. Multiply two 2-by-2 matrices with only 6 scalar
multiplications?

A. Impossible [Hopcroft and Kerr, 1971] e =% =0(>*)
Q. Two 3-by-3 matrices with only 21 scalar multiplications?
A. Also impossible 0" ™) =0m*")

Q. Two 70-by-70 matrices with only 143,640 scalar
multiplications?

A. Yes! [Pan, 1980] O I9) O ?9)
Decimal wars.

» December, 1979: O(n2521813)

» January, 1980: O(n2521801)

Mar 9, 2012 CSCI211 - Sprenkle 35

Fast Matrix Multiplication in Theory

Best known. O(n2376)
[Coppersmith-Winograd, 1987]
» But really large constant

Conjecture. O(n2*t) for any ¢ > 0.

Caveat. Theoretical improvements to
Strassen are progressively less practical.

Mar 9, 2012 CSCI211 - Sprenkle 36

3/9/12

Problem Set 5 Feedback

Don't forget to analyze the runtime of every
algorithm you write

How do you prove optimality of Greedy
algorithms?

Mar 9, 2012 CSCI211 - Sprenkle 37

Greedy Stays Ahead Proofs

Define your solutions
» Describe the form of your greedy solution and of some other solution
(possibly the optimal 'solution
Example: Let A be the solution constructed by the greedy algorithm and O
be a solution
Find a measure
» Find a measure by which greedy stays ahead of the optimal solution
Ex: Leta,, ..., a, be the first k measures of greedy algorithm and
0;,..., 0, be the first m measures of other solution (sometimes m =k)
Prove greedy stays ahead
» Show that the partial solutions constructed by greedy are always just
as good as the optimal solution’s initial segments based on the
measure
Ex: for all indices r < min(k,m), prove by induction thata, 20, ora, <o,
» Use the greedy algorithm to help you argue the inductive step
Prove optimality

» Prove that since ﬂreedy stays ahead of the other solution with respect
to the measure, then the greedy solution is optimal

Mar 9, 2012 CSCI211 - Sprenkle 38

Greedy Exchange Proofs

Label your algorithm’s solution and a general solution.
» Example: let A = {a,, a,, ..., a} be the solution generated by your algorithm, and
let O = {0, 0,, ..., 0.} be an arbitrary (or optimal) feasible solution.
Compare greedy with other solution.
» Assume that your arbitrary/optimal solution is not the same as your greedy
solution (since otherwise, you are done).
» Typically, can isolate a simple example of this difference, such as:
There is an element e € O that < A and an element f € A that ¢ O
2 consecutive elements in O are in a different order than in A (i.e., there is an
inversion).
Exchange.
» Swap the elements in question in O (either = swap one element out and
another in or ~ swap the order of the elements) and argue that solution is no
worse than before.
Argue that if you continue swapping, you eliminate all differences between O
and A in a finite # of steps without worsening the solution’s quality.
Thus, the greedy solution produced is just as good as any optimal solution, and
hence is optimal itself.

Y

Y

Mar 9, 2012 CSCI211 - Sprenkle 39

Assignments

Wiki for 5.2-5.5 due Tuesday
Chapter 6 starts Monday

PS7 due Friday

» May want to try to implement solutions (to some
extent) to help ensure that your algorithm is
correct

Mar 9, 2012 CSCI211 - Sprenkle 40

3/9/12

