
4/3/13	

1	

Objectives

•  Network Flow
Ø Application: Airline Scheduling
Ø Choosing good augmenting paths

•  Computational intractability

Apr 3, 2013 1 CSCI211 - Sprenkle

Review

• What is the power of the max-flow/min-cut
algorithm?

• What is our process in solving problems
using network flow?

Apr 3, 2013 CSCI211 - Sprenkle 2

7.9 AIRLINE SCHEDULING

Apr 3, 2013 CSCI211 - Sprenkle 3

Airline Scheduling
•  Scheduling goal: efficient in terms of

equipment usage, crew allocation, customer
satisfaction, …

•  Our simplified problem:
Ø Flight segment: origin & destination airport,

departure & arrival time
Ø Use a plane for two flight segments (i, j) if

•  i’s destination == j’s origin & enough time to
perform maintenance on plane OR

•  Add a flight segment in between that gets plane
to j’s origin with adequate time in between

Apr 3, 2013 CSCI211 - Sprenkle 4

Scheduling Planes

•  Maintenance time: 1 hour

Apr 3, 2013 CSCI211 - Sprenkle 5

Number Origin Departure Destination Arrival
1 Boston 6 a.m. DC 7 a.m.
2 Philadelphia 7 a.m. Pittsburgh 8 a.m.
3 DC 8 a.m. LAX 11 a.m.
4 Philadelphia 11 a.m. San Francisco 2 p.m.
5 San Francisco 2:15 p.m. Seattle 3:15 p.m.
6 Las Vegas 5 p.m. Seattle 6 p.m.

What is a valid use of one plane for > 1 segment?	

Scheduling Planes

•  Maintenance time: 1 hour

Apr 3, 2013 CSCI211 - Sprenkle 6

Number Origin Departure Destination Arrival
1 Boston 6 a.m. DC 7 a.m.
2 Philadelphia 7 a.m. Pittsburgh 8 a.m.
3 DC 8 a.m. LAX 11 a.m.
4 Philadelphia 11 a.m. San Francisco 2 p.m.
5 San Francisco 2:15 p.m. Seattle 3:15 p.m.
6 Las Vegas 5 p.m. Seattle 6 p.m.

What is a valid use of one plane for > 1 segment?	

1 à 3 à 6	

4/3/13	

2	

Problem Statement

•  A flight j is reachable from flight i if it is
possible to use the same plane for flight j as
flight i

Apr 3, 2013 CSCI211 - Sprenkle 7

Goal: Determine if it’s possible to serve all ���
m flights using at most k planes 	

Scheduling Planes

•  Maintenance time: 1 hour

Apr 3, 2013 CSCI211 - Sprenkle 8

Number Origin Departure Destination Arrival
1 Boston 6 a.m. DC 7 a.m.
2 Philadelphia 7 a.m. Pittsburgh 8 a.m.
3 DC 8 a.m. LAX 11 a.m.
4 Philadelphia 11 a.m. San Francisco 2 p.m.
5 San Francisco 2:15 p.m. Seattle 3:15 p.m.
6 Las Vegas 5 p.m. Seattle 6 p.m.

Could we schedule all flights from ���
previous example with only 2 planes? 	

Scheduling Planes

•  Maintenance time: 1 hour

Apr 3, 2013 CSCI211 - Sprenkle 9

Number Origin Departure Destination Arrival
1 Boston 6 a.m. DC 7 a.m.
2 Philadelphia 7 a.m. Pittsburgh 8 a.m.
3 DC 8 a.m. LAX 11 a.m.
4 Philadelphia 11 a.m. San Francisco 2 p.m.
5 San Francisco 2:15 p.m. Seattle 3:15 p.m.
6 Las Vegas 5 p.m. Seattle 6 p.m.

Yes.	

Plane A: 1 à 3 à 5	

Plane B: 2 à 4 à 6	

Problem Statement

•  A flight j is reachable from flight i if it is
possible to use the same plane for flight j as
flight i

Apr 3, 2013 CSCI211 - Sprenkle 10

Ideas about our solution/approach?	

Goal: Determine if it’s possible to serve all ���
m flights using at most k planes 	

Airline Scheduling Algorithm

•  Flow: airplanes; Nodes: airports
•  Find a feasible circulation

Apr 3, 2013 CSCI211 - Sprenkle 11

What do these
edges mean?	

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

[0, 1]	

[1, 1]	

Origin���
airports	

[0, 1]	

[0, k]	

Destination���
airports	

-k	
 k	

[0, 1]	

Airline Scheduling Algorithm

•  Flow: airplanes; Nodes: airports
•  Find a feasible circulation

Apr 3, 2013 CSCI211 - Sprenkle 12

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

[0, 1]	

[1, 1]	

Origin���
airports	

[0, 1]	

[0, k]	

Destination���
airports	

-k	
 k	

[0, 1]	

# of planes	

Must service flights	

Reachable	

How do we know if
we have a solution?	

How do we get the

solution?	

4/3/13	

3	

Scheduling Solution

•  Model
Ø Flow: airplanes
Ø Nodes: airports

•  Use FF algorithm to generate flow
Ø If feasible flow à feasible circulation

•  Construct schedules by following edges from
s to origin airports
Ø Represents the schedule of one plane

 Apr 3, 2013 CSCI211 - Sprenkle 13

Network Flow Solutions
1. Model problem as a flow network

Ø  Describe what nodes, edges, and capacity
represent

Ø  Describe what flow represents and how that maps
to your solution

Ø  Run Ford-Fulkerson algorithm
2. Prove that the solution found is correct/

feasible/optimal
3. Prove that you find all solutions
4. Analyze running time

Ø  Creating model
Ø  FF algorithm

Apr 3, 2013 CSCI211 - Sprenkle 14

CHOOSING GOOD
AUGMENTING PATHS

Apr 3, 2013 CSCI211 - Sprenkle 15

Ford-Fulkerson: Exponential Number
of Augmentations
•  Is generic Ford-Fulkerson algorithm

polynomial in input size?
Ø No. If max capacity is C, then algorithm can take

C iterations.

Apr 3, 2013 CSCI211 - Sprenkle 16

s

1

2

t

C	

C	

0	
 0	

0	
 0	

0	

C	

C	

1	
 s

1

2

t

C	

C	

1	

0	
 0	

0	
 0	

0	
X	
 1	

C	

C	

X	

X	

X	

1	

1	

1	

X	

X	

1	

1	
X	

X	

X	

1	

0	

1	

Choosing Good Augmenting Paths
•  Use care when selecting augmenting paths

Ø Some choices lead to exponential algorithms
Ø Clever choices lead to polynomial algorithms
Ø  If capacities are irrational, algorithm not guaranteed

to terminate!
•  Goal: choose augmenting paths so that:

Ø Can find augmenting paths efficiently
Ø Few iterations

•  [Edmonds-Karp 1972, Dinitz 1970]
Choose augmenting paths with:
Ø Max bottleneck capacity
Ø Fewest number of edges
Ø Sufficiently large bottleneck capacity

Apr 3, 2013 CSCI211 - Sprenkle 17

Intuition for Capacity Scaling
•  Choosing path with highest bottleneck capacity

increases flow by max possible amount.
Ø Don't worry about finding exact highest bottleneck path
Ø Maintain scaling parameter Δ
Ø  Let Gf (Δ) be the subgraph of the residual graph

consisting of only edges with capacity at least Δ

Apr 3, 2013 CSCI211 - Sprenkle 18

110	

s

4

2

t 1

170	

102	

122	

Gf	

110	

s

4

2

t

170	

102	

122	

Gf (100)	

4/3/13	

4	

Capacity Scaling

Apr 3, 2013 CSCI211 - Sprenkle 19

Scaling-Max-Flow(G, s, t, c)	
 foreach e ∈ E, f(e) = 0	
 Δ = greatest power of 2 less than or equal to C	
 Gf = residual graph	
 Gf(Δ) = Δ-residual graph	
	
 while Δ ≥ 1:	

	while there exists augmenting path P in Gf(Δ) :	
 f = augment(f, c, P)	
 update Gf(Δ)	
 	Δ = Δ / 2 	
	
 return f	

• Why does this work?	

• What is its running time?	

Capacity Scaling

Apr 3, 2013 CSCI211 - Sprenkle 20

Scaling-Max-Flow(G, s, t, c)	
 foreach e ∈ E, f(e) = 0	
 Δ = greatest power of 2 less than or equal to C	
 Gf = residual graph	
 Gf(Δ) = Δ-residual graph	
	
 while Δ ≥ 1:	

	while there exists augmenting path P in Gf(Δ) :	
 f = augment(f, c, P)	
 update Gf(Δ)	
 	Δ = Δ / 2 	
	
 return f	

O(log C)	

Capacity Scaling: Correctness
•  Assumption. All edge capacities are integers

between 1 and C.
•  Integrality invariant. All flow and residual

capacity values are integral.
•  Correctness. If the algorithm terminates, then

f is a max flow.
•  Pf.

Ø By integrality invariant, when Δ = 1 ⇒
Gf(Δ) = Gf

Ø Upon termination of Δ = 1 phase, there are no
augmenting paths. ▪

Apr 3, 2013 CSCI211 - Sprenkle 21

Capacity Scaling: Running Time

•  Lemma 1. The outer while loop repeats
O(log2 C) times.

•  Proof. Initially Δ ≤ C. Δ decreases by a factor
of 2 each iteration. ▪

Apr 3, 2013 CSCI211 - Sprenkle 22

Capacity Scaling: Running Time

•  Lemma 2. Let f be the flow at the end of a Δ-
scaling phase. Then value of the maximum
flow is at most v(f) + m Δ.

Apr 3, 2013 CSCI211 - Sprenkle 23

What happens to the flow’s value
at each iteration of the loop?	

Proof and further analysis���
in the book	

Objectives

•  Oh, the places you’ve been!

•  Oh, the places you’ll go!

Apr 3, 2013 CSCI211 - Sprenkle 24 24	

 Now, everything comes down to expert knowledge of
algorithms and data structures. If you don't speak
fluent O-notation, you may have trouble getting your
next job at the technology companies in the forefront.	

 — Larry Freeman	

4/3/13	

5	

Algorithm Design Patterns

• What are some approaches to solving
problems?

•  How do they compare in terms of difficulty?

Apr 3, 2013 CSCI211 - Sprenkle 25

Algorithm Design Patterns
•  Greedy
•  Divide-and-conquer
•  Dynamic programming
•  Duality/network flow

Apr 3, 2013 CSCI211 - Sprenkle 26

Course Objectives: Given a problem…	

You’ll recognize when to try an approach	

-  AND, when to bail out and try something different	

Know the steps to solve the problem using the approach	

- e.g., breaking it into subproblems, sorting possibilities
in some order	

Know how to analyze the run time of the solution	

	
- e.g., solving recurrence relation	

Algorithm Design Patterns

•  Greedy
•  Divide-and-conquer
•  Dynamic programming
•  Duality/network flow
•  Reductions – Chapter 8
•  Local search – Chapter 12
•  Randomization – Chapter 13

Apr 3, 2013 CSCI211 - Sprenkle 27

What Was Our Goal In Finding a
Solution?

Apr 3, 2013 CSCI211 - Sprenkle 28

Polynomial Time Efficient	

POLYNOMIAL-TIME
REDUCTIONS

Apr 3, 2013 CSCI211 - Sprenkle 29

Classify Problems According to
Computational Requirements

Apr 3, 2013 CSCI211 - Sprenkle 30

Fundamental Question: ���
Which problems will we be able

to solve in practice?	

4/3/13	

6	

Classify Problems According to
Computational Requirements

•  Working definition. [Cobham 1964, Edmonds 1965,
Rabin 1966] Those with polynomial-time algorithms.

Apr 3, 2013
CSCI211 - Sprenkle

31

Yes Probably no
Shortest path Longest path

Min cut Max cut

2-SAT 3-SAT

Matching 3D-matching

Primality testing Factoring

Planar 4-color Planar 3-color

Bipartite vertex cover Vertex cover

Which problems will we be able
to solve in practice?	

Classify Problems

Apr 3, 2013 CSCI211 - Sprenkle 32

Polynomial	
 Exponential	

Examples:	

•  Given a Turing machine, does it halt���

in at most k steps?	

•  Given a board position in an n-by-n

generalization of chess, ���
can black guarantee a win?	

?

Frustrating news: ���
Many problems have defied classification.	

	

Chapter 8. Show that problems are
"computationally equivalent" and appear to be
manifestations of one really hard problem.	

Classify problems according to those that can be
solved in polynomial-time and those that cannot.	

Polynomial-Time Reduction

Apr 3, 2013 CSCI211 - Sprenkle 33

Suppose we could solve Y in polynomial time. ���
What else could we solve in polynomial time?	

Polynomial-Time Reduction

•  Reduction. Problem X polynomial reduces to problem Y
if arbitrary instances of problem X can be solved using:
Ø  Polynomial number of standard computational steps, plus
Ø  Polynomial number of calls to oracle that solves problem Y

•  Assume have a black box that can solve Y

•  Notation: X ≤P Y
Ø  “X is polynomial-time reducible to Y”

•  Conclusion: If Y can be solved in polynomial time and
X ≤P Y, then X can be solved in polynomial time.

Apr 3, 2013 CSCI211 - Sprenkle 34

Suppose we could solve Y in polynomial-time. ���
What else could we solve in polynomial time?	

Y For X +

Looking Ahead
•  Problem Set 9 due Friday
•  Course Evaluations

Ø Fill out course evaluations on Sakai
Ø  If 60% of students fill out, 1% EC on problem sets

•  Additional 1% for every additional 12.5% who complete
•  Total problem set points: 192

Ø Due Monday at midnight
•  Final

Ø Given out on Friday
Ø Focus: Dynamic programming, network flow,

computational intractability
Ø Usual rules
Ø Due at end of exam period: next Friday at 5 p.m.

Apr 3, 2013 CSCI211 - Sprenkle 35

