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Objectives 

• Wrapping up implementing BFS and DFS 
•  Graph Application: Bipartite Graphs 
•  Directed Graphs 
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BFS(s):	
	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	For each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] == false then	
	 	 	 	Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	

Analysis 
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BFS(s):	
	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	For each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] == false then	
	 	 	 	Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	

Analysis: Tighter Bound 
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Because we’re going to look at each node at most once	


BFS(s):	
	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	For each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] == false then	
	 	 	 	Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	

Analysis: Even Tighter Bound 
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Implementing DFS 

•  Keep nodes to be processed in a stack 
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DFS(s):	
	Initialize S to be a stack with one element s	
	Explored[v] = false, for all v	
	Parent[v] = 0, for all v	
	DFS tree T = {}	
	while S != {}	
	 	Take a node u from S	
	 	if Explored[u] = false	
	 	 	Explored[u] = true	
	 	 	Add edge (u, Parent[u]) to T (if u ≠ s)	
	 	 	for each edge (u, v) incident to u	
	 	 	 	Add v to the stack S	
	 	 	 	Parent[v] = u	
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DFS(s):	
	Initialize S to be a stack with one element s	
	Explored[v] = false, for all v	
	Parent[v] = 0, for all v	
	DFS tree T = {}	
	while S != {}	
	 	Take a node u from S	
	 	if Explored[u] = false	
	 	 	Explored[u] = true	
	 	 	Add edge (u, Parent[u]) to T (if u ≠ s)	
	 	 	for each edge (u, v) incident to u	
	 	 	 	Add v to the stack S	
	 	 	 	Parent[v] = u	

Analyzing DFS 
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Analyzing Finding  
All Connected Components 
•  How can we find set of all connected 

components of graph?  
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Running time: O(m+n)	
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R* = set of connected components (a set of sets)	
	
while there is a node that does not belong to R*	

		
	select s not in R*	

	
	R = {s}	

	
	while there is an edge (u,v) where u∈R and v∉R	
	 	add v to R	

	
	

	Add R to R*	

But the inner loop is O(m+n)!	

How can this RT be possible?	


Set of All Connected Components 

•  How can we find set of all connected 
components of graph?  
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Where i is the subscript of the 
connected component	


R* = set of connected components (a set of sets)	
	
while there is a node that does not belong to R*	

		
	select s not in R*	

	
	R = {s}	

	
	while there is an edge (u,v) where u∈R and v∉R	
	 	add v to R	

	
	

	Add R to R*	

Imprecision in the running time 
of inner loop:  O(m+n)	


But that’s m and n of the 
connected component, ���
let’s say mi and ni .	


Σi O(mi+ ni) = O(m+n)	


BIPARTITE GRAPHS 
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Bipartite Graphs 

•  Def.  An undirected graph G = (V, E) is 
bipartite if the nodes can be colored red or 
blue such that every edge has one red and 
one blue end 
Ø Generally: vertices divided into sets X and Y 

•  Applications: 
Ø Stable marriage:  

•  men = red, women = blue 
Ø Scheduling:   

•  machines = red, jobs = blue 
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a bipartite graph	


Testing Bipartiteness 
•  Given a graph G, is it bipartite? 
•  Many graph problems become: 

Ø Easier if underlying graph is bipartite (e.g., matching) 
Ø Tractable if underlying graph is bipartite (e.g., 

independent set) 
•  Before designing an algorithm, need to understand 

structure of bipartite graphs 
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a bipartite 
graph G:	


another 
drawing of G:	


How Can We Determine if a Graph is 
Bipartite? 

•  Given a connected graph 
1.  Color one node red 

•  Doesn’t matter which color (Why?) 
Ø What should we do next? 

Jan 27, 2012 CSCI211 - Sprenkle 12 

Why connected?	
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•  How will we know when 
we’re finished?	


•  What does this process 
sound like?	




1/27/12	


3	


An Obstruction to Bipartiteness 

•  Lemma.  If a graph G is bipartite, it cannot 
contain an odd-length cycle. 
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bipartite ���
(2-colorable)	


not bipartite ���
(not 2-colorable)	


An Obstruction to Bipartiteness 

•  Lemma.  If a graph G is bipartite, it cannot 
contain an odd-length cycle. 

•  Pf.  Not possible to 2-color the odd cycle, let 
alone G. 
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bipartite ���
(2-colorable)	


not bipartite ���
(not 2-colorable)	


If find an odd cycle, 	

graph is NOT bipartite	


How Can We Determine if a Graph is 
Bipartite? 
•  Given a connected graph 

Ø Color one node red 
•  Doesn’t matter which color (Why?) 

Ø What should we do next? 
•  How will we know that we’re finished? 
• What does this process sound like? 

Ø BFS: alternating colors, layers 
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How can we implement the algorithm?	


Implementing Algorithm 

•  Modify BFS to have a Color array 
• When add v to list L[i+1] 

Ø Color[v] = red if i+1 is even 
Ø Color[v] = blue if i+1 is odd 
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What is the running time of this algorithm?	
What is the running time of this algorithm? O(n+m)	


Marks a change in how we think about algorithms	

Starting to apply known algorithms to solve new problems	


Analyzing Algorithm’s Correctness 
•  Lemma.  Let G be a connected graph, and let 

L0, …, Lk be the layers produced by BFS 
starting at node s.  Exactly one of the following 
holds: 
Ø (i) No edge of G joins two nodes of the same layer 

•  G is bipartite 
Ø (ii) An edge of G joins two nodes of the same layer 

•  G contains an odd-length cycle and hence is not 
bipartite 
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Analyzing Algorithm’s Correctness 
•  Lemma.  Let G be a connected graph, and let 

L0, …, Lk be the layers produced by BFS 
starting at node s.  Exactly one of the following 
holds: 
Ø (i) No edge of G joins two nodes of the same layer 

•  G is bipartite 
•  Pf.  (i) 

Ø Suppose no edge joins two nodes in the same layer 
Ø  Implies all edges join nodes on adjacent level 
Ø Bipartition 

Ø red = nodes on odd levels 
Ø blue = nodes on even levels 
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Analyzing Algorithm’s Correctness 
•  Lemma.  Let G be a connected graph, and let L0, …, 

Lk be the layers produced by BFS starting at node s.  
Exactly one of the following holds: 
Ø  (ii)  An edge of G joins two nodes of the same layer à   

G contains an odd-length cycle and hence is not bipartite 
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z = lca(x, y)	


•  Pf.  (ii) 
Ø Suppose (x, y) is an edge with x, y in same 

level Lj. 
Ø  Let z = lca(x, y) = lowest common ancestor 
Ø  Let Li be level containing z 
Ø Consider cycle that takes edge from x to y, 

then path y àz, then path from z à x 

Analyzing Algorithm’s Correctness 
•  Lemma.  Let G be a connected graph, and let L0, …, 

Lk be the layers produced by BFS starting at node s.  
Exactly one of the following holds: 
Ø  (ii)  An edge of G joins two nodes of the same layer à   

G contains an odd-length cycle and hence is not bipartite 
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•  Pf.  (ii) 
Ø  Suppose (x, y) is an edge with x, y in same 

level Lj. 
Ø  Let z = lca(x, y)=lowest common ancestor 
Ø  Let Li be level containing z 
Ø  Consider cycle that takes edge from x to y, 

then path y à z, then path z à x 
Ø  Its length is  1  +   (j-i)  +  (j-i),  which is odd 

(x, y)	
 path from���
y to z	


path from���
z to x	


z = lca(x, y)	


An Obstruction to Bipartiteness 

•  Corollary.  A graph G is bipartite iff it contains 
no odd length cycle. 
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5-cycle C	


bipartite ���
(2-colorable)	


not bipartite ���
(not 2-colorable)	


Looking ahead 

•  Monday: Andrew Danner 
Ø 11:15: Public talk 

•  Answers to questions on Sakai (10 points) 
Ø 4:10: external memory algorithms 

•  Reading Chapter 3.1-3.4 
Ø Wikis for Tuesday 

•  For next Friday: Problem Set 3 
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