
2/25/13	

1	

Objectives

•  Data Compression

Feb 25, 2013 1 CSCI211 - Sprenkle

My Break

•  Tweet:
Ø Second Washington University hacked data

base! Washington and Lee University full
unedited database! gist.github.com/anonymous/
4971936 #SweetInfoOp

Feb 25, 2013 CSCI211 - Sprenkle 2

Course in Review

• What is our process for solving problems, in
general?

•  How does the greedy technique work?
•  How do we prove that a greedy technique is

optimal?

Feb 25, 2013 CSCI211 - Sprenkle 3

Problem: Encoding
•  Computers use bits: 0s and 1s
•  Need to represent what we (humans) know

to what computers know

Ø Map symbol à unique sequence of 0s and 1s
Ø Process is called encoding

Feb 25, 2013 CSCI211 - Sprenkle 4

decimal, strings	
 binary	
 decimal, strings	

Problem: Encoding

•  Let’s say we want to encode characters
using 0s and 1s
Ø Lower case letters (26)
Ø Space
Ø Punctuation (, . ? ! ')

Feb 25, 2013 CSCI211 - Sprenkle 5

What is the least number of bits we would
we need to encode these characters?	

Problem: Encoding Symbols

•  32 characters to encode
Ø log2(32) = 5 bits
Ø Can’t use fewer bits

•  Examples:
Ø a à 00000
Ø b à 00001

•  Actual mapping from character to encoding
doesn’t matter
Ø Easier if have a way to compare …

Feb 25, 2013 CSCI211 - Sprenkle 6

2/25/13	

2	

For Long Strings of Characters…
•  Do we need an average of 5 bits/character

always?
• What if we could use shorter encodings for

frequently used characters, like a, e, s, t?

•  A fundamental problem for data
compression
Ø Represent data as compactly as possible

Feb 25, 2013 CSCI211 - Sprenkle 7

Goal: Optimal encoding that takes advantage
of nonuniformity of letter frequencies	

Example: Morse Code

•  Used for encoding messages over telegraph
•  Example of variable-length encoding

Feb 25, 2013 CSCI211 - Sprenkle 8

How are letters encoded?	

How are letters differentiated?	

Example: Morse Code

•  Used for encoding messages over telegraph
•  Example of variable-length encoding
•  How are letters encoded?

Ø Dots, dashes
Ø Most frequent letters use shorter sequences

•  e à dot; t à dash; a à dot-dash

•  How are letters differentiated?
Ø Spaces in between letters

•  Otherwise, ambiguous

Feb 25, 2013 CSCI211 - Sprenkle 9

Ambiguity in Morse Code

•  Original distress signal: CQD
Ø — · — · — — · — — · ·

•  Alternate: SOS
Ø · · · — — — · · ·
Ø Chosen because less ambiguity and can be

more easily distinguished against background
noise

Feb 25, 2013 CSCI211 - Sprenkle 10

Ambiguity in Morse Code

•  Encoding:
Ø e à dot; t à dash; a à dot-dash

•  Example: dot-dash-dot-dash could
correspond to

Feb 25, 2013 CSCI211 - Sprenkle 11

Ambiguity in Morse Code

•  Encoding:
Ø e à dot; t à dash; a à dot-dash

•  Example: dot-dash-dot-dash could
correspond to
Ø etet
Ø aa
Ø eta
Ø aet

Feb 25, 2013 CSCI211 - Sprenkle 12

What’s the problem?	

2/25/13	

3	

Problem

•  Ambiguity caused by
encoding of one character being
a prefix of encoding of another

Feb 25, 2013 CSCI211 - Sprenkle 13

Prefix Codes
•  Problem: Encoding of one character is a

prefix of encoding of another
•  Solution:

Prefix Codes: map letters to bit strings
such that no encoding is a prefix of any other
Ø Won’t need artificial devices like spaces to

separate characters
•  Example encodings:

Ø Verify that no encoding is
 a prefix of another
Ø What is 0010000011101?	

Feb 25, 2013 CSCI211 - Sprenkle 14

a: 11 	d: 10	
b: 01 	e: 000	
c: 001	

Optimal Prefix Codes

•  For typical English messages,
this set of prefix codes is not the optimal set

• Why not?

Feb 25, 2013 CSCI211 - Sprenkle 15

a: 11 	d: 10	
b: 01 	e: 000	
c: 001	

Optimal Prefix Codes

•  For typical English messages,
this set of prefix codes is not the optimal set

• Why not?
Ø ‘e’ is more commonly used than other letters and

should therefore have a shorter encoding

Feb 25, 2013 CSCI211 - Sprenkle 16

a: 11 	d: 10	
b: 01 	e: 000	
c: 001	

Optimal Prefix Codes

•  Goal: minimize Average number of Bits
per Letter (ABL):

 Σx∈Sfrequency of x * length of encoding of x

•  fx: frequency that letter x occurs
•  γ(x): encoding of x

Ø |γ(x)|: length of encoding of x

•  Minimize ABL = Σx∈Sfx |γ(x)|
 Feb 25, 2013 CSCI211 - Sprenkle 17

For all characters in our alphabet	

Example: Calculating ABL

•  ABL = Σx∈Sfx |γ(x)| = ?

Feb 25, 2013 CSCI211 - Sprenkle 18

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

a: 11	
b: 01	
c: 001	
d: 10	
e: 000	

handout	

2/25/13	

4	

Example: Calculating ABL

•  ABL = Σx∈Sfx |γ(x)| = ?
•  = .32 * 2 + .25 * 2 + .20 * 3 + .18 * 2 + .05 * 3
•  = 2.25

Feb 25, 2013 CSCI211 - Sprenkle 19

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

a: 11	
b: 01	
c: 001	
d: 10	
e: 000	

Consider a fixed-length encoding:	

Is it a prefix code? What is its ABL? 	

Fixed-Length Encodings

•  Is it a prefix code?
Ø Yes. Always look at fixed number of characters

• What is its ABL?
Ø ABL is the length of the encoding

•  For 5 characters, ABL is 3
•  Variable-length prefix code’s ABL (2.25) is an

improvement

Feb 25, 2013 CSCI211 - Sprenkle 20

Can We Improve the ABL?

Feb 25, 2013 CSCI211 - Sprenkle 21

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

a: 11	
b: 01	
c: 001	
d: 10	
e: 000	

Can We Improve the ABL?

•  ABL = Σx∈Sfx |γ(x)| = 2.23

Feb 25, 2013 CSCI211 - Sprenkle 22

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

a: 11	
b: 01	
c: 001	
d: 10	
e: 000	

Swap these because c
occurs more frequently
than d.	

Give c the shorter
encoding	

Problem Statement

•  Given an alphabet and a set of frequencies
for the letters, produce optimal (most
efficient) prefix code
Ø Minimizes average # of bits per letter (ABL)

Feb 25, 2013 CSCI211 - Sprenkle 23

Approaches to Solution

•  Brute force
Ø Search space is complicated à all ways to map

letters to bit strings that adhere to prefix code
property

•  Build towards greedy approach
Ø Start: representing prefix codes

•  Given we know the codes, how do we represent
them?

Feb 25, 2013 CSCI211 - Sprenkle 24

2/25/13	

5	

Binary Trees to Represent Prefix Codes

•  Exposes structure better than list of
mappings
Ø Each leaf node is a letter
Ø Follow path to the letter

•  Going left: 0
•  Going right: 1

Feb 25, 2013 CSCI211 - Sprenkle 25

Are these really prefix codes?	

How could we show they weren’t?	

Binary Trees to Represent Prefix Codes

•  Structure: Each leaf node is a letter
Ø Follow path to the letter

•  Going left: 0; Going right: 1

•  Proof. If it weren’t:
a letter’s encoding is a prefix of another letter
Ø Letter is in the path of another letter
Ø But, all letters are leaf nodes

•  Contradiction

Feb 25, 2013 CSCI211 - Sprenkle 26

Building the Binary Tree

•  Tree Rules:
Ø Each leaf node is a letter
Ø Follow path to the letter

•  Going left: 0
•  Going right: 1

Feb 25, 2013 CSCI211 - Sprenkle 27

How can we build the ���
binary tree for this mapping?	

Recursively Generate Tree

•  All letters are in root node
•  For all letters in node

Ø If encoding begins with 0, letter belongs in left
subtree

Ø Otherwise (encoding begins with 1), letter
belongs in right subtree

Ø If last bit of encoding, make the letter a leaf node
of that subtree

Ø Shift encoding one bit
Ø Process left and right children

Feb 25, 2013 CSCI211 - Sprenkle 28

Tree Properties

• What is the length of a letter’s encoding?

•  Define our optimal goal in tree terms

Feb 25, 2013 CSCI211 - Sprenkle 29

Tree Properties

• What is the length of a letter’s encoding?
Ø Length of path from root to leaf à its depth

•  Define our optimal goal in tree terms
Ø ABL = Σx∈Sfx |γ(x)| = Σx∈Sfx depth(x)

Feb 25, 2013 CSCI211 - Sprenkle 30

2/25/13	

6	

Tree Properties

• What do we want our tree to look like for the
optimal solution?
Ø How many leaves?
Ø How many internal nodes?

•  Think about parent nodes vs. child nodes
Ø When uniform frequencies?
Ø Nonuniform frequencies?

Feb 25, 2013 CSCI211 - Sprenkle 31

Tree Properties

•  Claim. The binary tree T corresponding to
the optimal prefix code is full, i.e., each
internal node has two children.

•  Proof?

Feb 25, 2013 CSCI211 - Sprenkle 32

Tree Properties

•  Claim. The binary tree T corresponding to
the optimal prefix code is full, i.e., each
internal node has two children.

•  Proof. Assume that T has an internal node
with only one child
Ø Without loss of generality, assume left child

Feb 25, 2013 CSCI211 - Sprenkle 33

u	

v:	

 root of
Subtree	

u	

v	

?	
 ?	

Tree Properties

•  Claim. The binary tree T corresponding to
the optimal prefix code is full, i.e., each
internal node has two children.

•  Proof. Assume that T has an internal node
with only one child

Feb 25, 2013 CSCI211 - Sprenkle 34

u	

v:	

 root of
Subtree	

u	

v	

v	

Replace u with v à decrease depth à original wasn’t optimal	

v:	

 root of
Subtree	

Toward a Solution…

•  Two problems to solve:
Ø Creating the prefix code tree
Ø Labeling the prefix code tree with alphabet/

frequencies

Feb 25, 2013 CSCI211 - Sprenkle 35

Simplifying: Know Optimal Prefix Code

•  Process: assume knowledge of optimal solution
to gain insight into finding solution

•  Assume we knew the tree structure of the
optimal prefix code, how would you label the
leaf nodes?

Feb 25, 2013 CSCI211 - Sprenkle 36

In
cr

ea
si

ng
	

 fr
eq

ue
nc

y	

2/25/13	

7	

Combining Our Conclusions

•  The binary tree corresponding to the optimal
prefix code is full, i.e., each internal node has
two children

• We want to label the leaf nodes of the binary
tree corresponding to the optimal prefix code
such that nodes with greatest depth have
least frequency

Feb 25, 2013 CSCI211 - Sprenkle 37

What does this mean the ���
bottom of our tree looks like?	

Combining Our Conclusions

•  The binary tree corresponding to the optimal
prefix code is full, i.e., each internal node has
two children

• We want to label the leaf nodes of the binary
tree corresponding to the optimal prefix code
such that nodes with greatest depth have
least frequency

Feb 25, 2013 CSCI211 - Sprenkle 38

What does this mean the bottom
of our tree looks like?	

fn-1	
fn	

2 letters with least

frequency:	

Could be flipped	

How Can We Use This?

•  Two letters with least frequency are definitely
going to be siblings
Ø Tie them together
Ø Their parent is a “meta-letter”

•  Frequency is sum of fn + fn-1

Feb 25, 2013 CSCI211 - Sprenkle 39

fn + fn-1	

fn-1	
fn	
2 letters with
least frequency:	

Could be flipped	

Meta-letter:	

Constructing an Optimal Prefix Code

Feb 25, 2013 CSCI211 - Sprenkle 40

Huffman’s Algorithm: 	

Replace lowest-freq
letters with meta letter 	

R
ed

uc
e	

Bu
ild

 u
p	

To construct a prefix code for an alphabet S with given
frequencies:	
	
if S has two letters:	

	Encode one letter as 0 and the other letter as 1	
	
	
else:	

	Let y* and z* be the two lowest-frequency letters	
	Form a new alphabet S’ by deleted y* and z* and replacing

them with a new letter w of freq fy* + fz*	
	Recursively construct a prefix code y’ for S’ with tree T’	
	Define a prefix code for S as follows:	
	 	Start with T’	
	 	Take the leaf labeled w and add two children below it

labeled y* and z*	

Alternative Description

1. Create a leaf node for each symbol, labeled
by its frequency, and add to a queue

2. While there is more than one node in the
queue
a)  Remove the two nodes of lowest frequency
b)  Create a new internal node with these two

nodes as children and with frequency equal to
the sum of the two nodes' probabilities

c)  Add the new node to the queue
3. The remaining node is the tree’s root node

Feb 25, 2013 CSCI211 - Sprenkle 41

Creating the Optimal Prefix Code

Feb 25, 2013 CSCI211 - Sprenkle 42

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

2/25/13	

8	

Creating the Optimal Prefix Code

Feb 25, 2013 CSCI211 - Sprenkle 43

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

e	
d	

c	
a	
 b	

de=	

.23	

Lowest frequencies	

Merge	

Creating the Optimal Prefix Code

Feb 25, 2013 CSCI211 - Sprenkle 44

fa = .32
fb = .25
fc = .20
fde = .23

e	
d	

c	

a	
 b	

de=	

.23	

Lowest frequencies	

Merge	

cde=	

.43	

Creating the Optimal Prefix Code

Feb 25, 2013 CSCI211 - Sprenkle 45

fa = .32
fb = .25
fcde = .43

e	
d	

c	
a	
 b	

de=	

.23	

Lowest frequencies	

Merge	

cde=	

.43	

ab=	

.57	

Creating the Optimal Prefix Code

Feb 25, 2013 CSCI211 - Sprenkle 46

fab = .57
fcde = .43

e	
d	

c	
a	
 b	

de=	

.23	

Lowest frequencies	

Merge	

cde=	

.43	

ab=	

.57	

abcde
=1	

What are the resulting encodings?	

What is the ABL?	

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

Creating the Optimal Prefix Code

Feb 25, 2013 CSCI211 - Sprenkle 47

e	
d	

c	
a	
 b	

de=	

.23	

cde=	

.43	

ab=	

.57	

abcde
=1	
0	

0	
 0	

0	

1	

1	
 1	

1	

a: 00	
b: 01	
c: 10	
d: 110	
e: 111	

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

ABL=.32*2 + .25*2 + .20*2 + .18*3 + .05*3
 = .64 + .5 + .4 + .54 + .15
 = 2.23

I chose to build the tree this way.	

What if I had switched the order of the children?	

Exam

•  Median, Average: 88%
•  Solutions posted later

Feb 25, 2013 CSCI211 - Sprenkle 48

2/25/13	

9	

Looking Ahead

• Wiki due Tuesday
Ø 4.2, 4.4-4.6

•  Skipping 4.3

•  Problem Set 5 due Friday in class

Feb 25, 2013 CSCI211 - Sprenkle 49

