
3/18/13	

1	

Objectives

•  Dynamic Programming
Ø Segmented Least Squares
Ø Subset Sums

Mar 18, 2013 1 CSCI211 - Sprenkle

Review: Weighted Interval Scheduling

1. Determine optimal substructure of problem
Ø  Define the recurrence relation

2. Define algorithm to find the value of optimal
solution

3. Optionally, change algorithm to an iterative
rather than recursive solution

4. Define algorithm to find optimal solution
5. Analyze running time of algorithms

Mar 18, 2013 CSCI211 - Sprenkle 2

Map to weighted-interval scheduling	

Review: Iterative Weighted Interval
Scheduling Solution
•  Build up solution from subproblems instead

of breaking down

•  Typically, we’ll take iterative approach

Mar 18, 2013 CSCI211 - Sprenkle 3

Input: n, s1,…,sn , f1,…,fn , v1,…,vn	
	
Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.	
	
Compute p(1), p(2), …, p(n)	
	
M[0] = 0	
for j = 1 to n	
 M[j] = max(vj + M[p(j)], M[j-1])	 O(n)	

Review: Weighted Interval Scheduling:
Finding a Solution
•  Dynamic programming algorithms compute

optimal value
•  What if we want the solution itself

(not simply the value)?
•  Do some post-processing

Mar 18, 2013 CSCI211 - Sprenkle 4

M-Compute-Opt(n)	
Find-Solution(n)	
	
def Find-Solution(j):	
 if j = 0:	
 output nothing	
 elif vj + M[p(j)] > M[j-1]:	
 print j	
 Find-Solution(p(j))	
 else:	
 Find-Solution(j-1)	

Runtime: O(n)	

SEGMENTED LEAST SQUARES

Mar 18, 2013 CSCI211 - Sprenkle 5

Least Squares

•  Foundational problem in statistic and
numerical analysis

•  Given n points in the plane:
(x1, y1), (x2, y2) , . . . , (xn, yn)

•  Find a line y = ax + b that minimizes the sum
of the squared error
Ø “line of best fit”

Mar 18, 2013 CSCI211 - Sprenkle 6

€

SSE = (yi − axi −b)2
i=1

n
∑

x	

y	

Sum of
squared

error	

3/18/13	

2	

Least Squares
•  Foundational problem in statistic and numerical

analysis
•  Given n points in the plane: (x1, y1), (x2, y2) , . . . , (xn, yn)
•  Find a line y = ax + b that minimizes the sum of the

squared error
Ø  “line of best fit”

•  Closed form solution. Calculus ⇒ min error is

achieved when

Mar 18, 2013 CSCI211 - Sprenkle 7

€

SSE = (yi − axi −b)2
i=1

n
∑

€

a =
n xi yi − (xi)i∑ (yi)i∑i∑

n xi
2 − (xi)

2
i∑i∑

, b =
yi − a xii∑i∑

n

x	

y	

Sum of���
squared error	

Least Squares

• What happens to the error if we try to fit one
line to these points?

• What pattern does it seem like these points

have?
Mar 18, 2013 CSCI211 - Sprenkle 8

x	

y	

Least Squares

• What happens to the error if we try to fit one
line to these points?
Ø Large error

•  Pattern: More like 3 lines
Mar 18, 2013 CSCI211 - Sprenkle 9

x	

y	

Our Problem:
Segmented Least Squares
•  Points lie roughly on a sequence of line segments
•  Given n points in the plane (x1, y1), (x2, y2) , . . . ,

(xn, yn) with x1 < x2 < ... < xn, find a sequence of line
segments that minimizes f(x)

Mar 18, 2013 CSCI211 - Sprenkle 10
x	

y	

If I want the best fit, how many lines should I use?	

Segmented Least Squares
•  Points lie roughly on a sequence of line segments
•  Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn)

with x1 < x2 < ... < xn, find a sequence of line segments
that minimizes f(x)

Mar 18, 2013 CSCI211 - Sprenkle 11
x	

y	

goodness of fit	
 number of lines	

What's a reasonable choice for f(x) to
balance accuracy and parsimony?	

Segmented Least Squares
•  Points lie roughly on a sequence of several line segments.
•  Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with

x1 < x2 < ... < xn, find a sequence of line segments that
minimizes:
Ø  E: sum of the sums of the squared errors in each segment
Ø  L: the number of lines

•  Tradeoff function: E + c L, for some constant c > 0.

Mar 18, 2013 CSCI211 - Sprenkle 12
x	

y	

How should we define
an optimal solution?	

3/18/13	

3	

Segmented Least Squares

• What made it seem like the points were in
3 lines? What happened?

Mar 18, 2013 CSCI211 - Sprenkle 13

x	

y	

Segmented Least Squares
• What made it seem like the points were in

3 lines? What happened?

Ø Error increased à want to minimize error
Ø Looking for change in linear approximation

•  Where to partition points into line segments

Mar 18, 2013 CSCI211 - Sprenkle 14

x	

y	

Recall:
Properties of Problems for DP
•  Polynomial number of subproblems
•  Solution to original problem can be easily

computed from solutions to subproblems
•  Natural ordering of subproblems, easy to

compute recurrence

Mar 18, 2013 CSCI211 - Sprenkle 15

We need to:	

• Figure out how to break the problem into subproblems	

• Figure out how to compute solution from subproblems	

• Define the recurrence relation between the problems	

Toward a Solution

•  Consider just the first or last point

Mar 18, 2013 CSCI211 - Sprenkle 16

x	

y	

What do we know about those points?
their segments? cost of a segment?	

Toward a Solution

•  pn can only belong to one segment
Ø Segment: pi, …, pn

Ø Cost: c (cost for segment) + error of segment
• What is the remaining problem?

Mar 18, 2013 CSCI211 - Sprenkle 17

x	

y	

Toward a Solution

•  pn can only belong to one segment
Ø Segment: pi, …, pn

Ø Cost: c (cost for segment) + error of segment
• What is the remaining problem?

Ø Solve for p1, …, pi-1

Mar 18, 2013 CSCI211 - Sprenkle 18

x	

y	

Next: Formulate as a recurrence	

3/18/13	

4	

Dynamic Programming: Multiway Choice

•  Notation.
Ø OPT(j) = minimum cost for points p1, pi+1 , … , pj.
Ø e(i, j) = minimum sum of squares for points

pi, pi+1 , …, pj.

•  How do we compute OPT(j)?
Ø Last problem: binary decision (include job or not)
Ø This time: multiway decision

•  Which option do we choose?

Mar 18, 2013 CSCI211 - Sprenkle 19

Dynamic Programming: Multiway Choice

•  Notation.
Ø OPT(j) = minimum cost for points p1, pi+1 , … , pj.
Ø e(i, j) = minimum sum of squares for points

pi, pi+1 , …, pj.
•  To compute OPT(j):

Ø Last segment contains points pi, pi+1, … , pj for
some i

Ø Cost = e(i, j) + c + OPT(i-1).

Mar 18, 2013 CSCI211 - Sprenkle 20

€

OPT(j) =
0 if j = 0

min
1≤ i ≤ j

e(i, j) + c + OPT(i −1){ } otherwise
$
%
&

' &

Segmented Least Squares: Algorithm

Mar 18, 2013 CSCI211 - Sprenkle 21

INPUT: n, p1,…,pN , c	
	
Segmented-Least-Squares()	
 M[0] = 0	
 e[0][0] = 0 # needed?	
 for j = 1 to n	
 for i = 1 to j	
 e[i][j] = least square error for the	

	 	 	 segment pi, …, pj	
	
 for j = 1 to n	
 M[j] = min 1 ≤ i ≤ j (e[i][j] + c + M[i-1])	
	
 return M[n]	

Costs?	

Segmented Least Squares:
 Algorithm Analysis

•  Bottleneck: computing e(i, j) for O(n2) pairs,
O(n) per pair using previous formula

Mar 18, 2013 CSCI211 - Sprenkle 22

can be improved to O(n2) by pre-computing various statistics	

INPUT: n, p1,…,pN , c	
	
Segmented-Least-Squares()	
 M[0] = 0	
 e[0][0] = 0	
 for j = 1 to n	
 for i = 1 to j	
 e[i][j] = least square error for the  
 	 	segment pi,…, pj	
	
 for j = 1 to n	
 M[j] = min 1 ≤ i ≤ j (e[i][j] + c + M[i-1])	
	
 return M[n]	

O(n3)	

can be improved to O(n2) by
pre-computing various statistics	

O(n2)	

How do we find the solution?	

Post-Processing: Finding the Solution

Mar 18, 2013 CSCI211 - Sprenkle 23

FindSegments(j):	
	if j = 0:	
	 	output nothing	
	else:	
	 	Find an i that minimizes ei,j + c + M[i-1]	
	 	Output the segment {pi, …, pj}	
	 	FindSegments(i-1) 	

Cost?	
 O(n2)	
 SUBSET SUMS and
KNAPSACKS

Mar 18, 2013 CSCI211 - Sprenkle 24

3/18/13	

5	

The Price is Right

•  Goal: Spend as much money as possible
without going over $100
Ø CD $18
Ø Jeans $40
Ø DVD $35
Ø Dinner $15
Ø Book $8
Ø Ice cream $5
Ø Shoes $62
Ø Pizza $7

Mar 18, 2013 CSCI211 - Sprenkle 25

Or, shopping with someone else’s money	

Possible solutions?	

Knapsack Problem

•  Given n objects and a "knapsack"
•  Item i weighs wi > 0 kilograms and

has value vi > 0
Ø Alternative: jobs require wi time

•  Knapsack has capacity of W kilograms
Ø Alternative: W is time interval that resource is

available

•  Greedy: repeatedly add item with maximum
ratio vi / wi.

•  Ex: { 5, 2, 1 } achieves only value = 35 ⇒
greedy not optimal.

Mar 18, 2013 CSCI211 - Sprenkle 26

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2
W = 11 Goal: fill knapsack so as to

maximize total value	

Towards a Recurrence…

• What do we know about the knapsack with
respect to item i?

Mar 18, 2013 CSCI211 - Sprenkle 27

Towards a Recurrence…

• What do we know about the knapsack with
respect to item i?
Ø Either select item i or not
Ø If don’t select

•  Pick optimum solution of remaining items
Ø Otherwise

•  What happens?
•  How does problem change?

Mar 18, 2013 CSCI211 - Sprenkle 28

Dynamic Programming: False Start

•  Def. OPT(i) = max profit subset of items 1,
…, i
Ø Case 1: OPT does not select item i

•  OPT selects best of { 1, 2, …, i-1 }
Ø Case 2: OPT selects item i

•  Accepting item i does not immediately imply that
we will have to reject other items
Ø No known conflicts

•  Without knowing what other items were selected
before i, we don't even know if we have enough
room for i

Mar 18, 2013 CSCI211 - Sprenkle 29
➡ Need more sub-problems!	

Dynamic Programming:
Adding a New Variable
•  Def. OPT(i, w) = max profit subset of items 1,

…, i with weight limit w
Ø Case 1: OPT does not select item i

•  OPT selects best of { 1, 2, …, i-1 } using weight
limit w

Ø Case 2: OPT selects item i
•  new weight limit = w – wi

•  OPT selects best of { 1, 2, …, i–1 } using new
weight limit

Mar 18, 2013 CSCI211 - Sprenkle 30

€

OPT(i, w) =

0 if i = 0
OPT(i −1, w) if wi > w
max OPT(i −1, w), vi + OPT(i −1, w−wi){ } otherwise

$
%

&
%

3/18/13	

6	

Looking Ahead

•  Exam 2 due Friday
• Wednesday work period

Mar 18, 2013 CSCI211 - Sprenkle 31

