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Objectives 

•  Data structure: Heaps 
•  Implementing a Priority Queue 
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•  Check in on problem set	

•  Algorithm runtimes	
 MORE COMPLEX 

DATA STRUCTURES 

Moving from integers, lists, arrays 
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Improving Running Times 
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After overcoming higher-level obstacles,	

lower-level implementation details 

can improve runtime.	


PRIORITY QUEUES 
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Priority Queues 
•  Elements have a priority or key 
•  Each time select an element from the priority 

queue, want the one with highest priority 
•  More formally… 

Ø Maintains a set of elements S 
•  Each element v ∈ S has a key(v) for its priority 

Ø  Smaller keys represent higher priorities 
Ø Example methods: 

•  Add, delete elements 
•  Select element with smallest key 
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Key 2 4 5 6 9 20 
Value 3542 5143 8712 1264 9123 5954 Process id	


Not implementation, just how to envision	


Priority	


Motivating Example: 
Scheduling Processes 

•  Each process has a priority or urgency 
•  Processes do not arrive in priority order 
•  Goal: run process with highest priority 

Jan 18, 2013 6 Sprenkle - CSCI211 

Key 2 4 5 6 9 20 
Value 3542 5143 8712 1264 9123 5954 Process id	


Priority	
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Using a Priority Queue 

•  Given API: 
Ø Add an element with a given key (i.e., priority) 
Ø Delete an element with a given priority 
Ø Select element with smallest key/highest priority 
Ø Get the number of elements in PQ 
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How could we use a PQ to sort a list of numbers?	


Priority Queues for Sorting 

1. Add elements into PQ with the number’s 
value as its priority 

2. Then extract the smallest number until done 
Ø Come out in sorted order 
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Sorting n numbers takes O(n logn) time	


What is the goal running time for our PQ’s 
operations?	


What is the goal running time for our ���
PQ’s operations? O(logn)	


Already know our “loops” will be O(n) 	


Implementing a Priority Queue 

•  Consider an unordered list, where there is a 
pointer to minimum 

•  How difficult (i.e., expensive) is 
Ø Adding new elements? 
Ø Extraction? 
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min	


Implementing a Priority Queue 
•  Consider an unordered list, where there is a 

pointer to minimum 

•  How difficult (i.e., expensive) is 
Ø Adding new elements? easy (O(1)) 
Ø Extraction? difficult 

•  Need to find “new” minimum: O(n) 
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min	


What is the running time for sorting 
using the PQ in this case?	


O(n2)	


Implementing a Priority Queue 

•  Consider a sorted list where min is at the 
beginning 

•  Should you use an array or linked list? 
•  How difficult is 

Ø Adding new elements? 
Ø Extraction? 
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min	


Implementing a Priority Queue 
•  Consider a sorted list where min is at the 

beginning 

•  Should you use an array or linked list? 
•  How difficult is 

Ø Adding new elements? difficult (insertion) 
Ø Extraction? Easy 
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min	


What is the running time for sorting 
using the PQ in this case?	


O(n2)	
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Comparing Data Structures 
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Operation Unsorted 
List 

Sorted List 

Start(N) 

Insert(v) 

FindMin() 

Delete(i) 

ExtractMin() 

Comparing Data Structures 
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Operation Unsorted 
List 

Sorted 
List 

Start(N) O(1) O(1) 
Insert(v) O(1) O(n) 
FindMin() O(1) O(1) 
Delete(i) O(n) O(1) 
ExtractMin() O(n) O(1) 
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Reflection 

•  All of “known” data structures has one 
operation that takes O(n) time 

•  Cannot implement PQs with “known” data 
structures arrays and lists to meet desired  
O(n log n) runtime 

•  Motivates use of a new data structure (heap) 
to implement PQ 
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HEAPS 
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Heap Defined 

•  Combines benefits of sorted array and list 
•  Balanced binary tree 
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root	

• Each node has at most 2 children	

• Node value is its key	


Heap order: each node’s key is 
at least as large as its parent’s	


Note: not a binary search tree	
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Heaps 
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Implementing a Heap 

•  Option 1: Use pointers 
Ø Each node keeps 

•  Element it stores (key) 
•  3 pointers: 2 children, parent 

•  Option 2: No pointers 
Ø Requires knowing upper bound on n 
Ø For node at position i 

•  left child is at 2i 
•  right child is at 2i+1 
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Where does the index in the array start?	

If know child’s position, what is the position of parent?	


Implementing a Heap: Operations 

•  Finding the minimal element? 
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Implementing a Heap: Operations 

•  Finding the minimal element 
Ø First element 
Ø O(1) 
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Implementing a Heap: Operations 

•  Adding an element? 
Ø Assume heap has less than N elements 
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Implementing a Heap: Operations 

•  Adding an element? 
Ø Could add element to last position 

•  What are possible scenarios? 
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Add X	


X

Implementing a Heap: Operations 

•  Adding an element? 
Ø Could add element to last position 

•  What are possible scenarios? 
Ø Heap is no longer balanced 
Ø Something that is almost a heap but a little off 
Ø Need Heapify-up procedure to fix our heap 
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Heapify-Up	

• Why does this algorithm work? 
• What is the intuition? 
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Heapify-up(H, i):	
	if i > 1 then	
	 	j=parent(i)=floor(i/2)	
	 	if key[H[i]] < key[H[j]] then	
	 	 	swap array entries H[i] and H[j]	
	 	 	Heapify-up(H, j)	

Heap	
 Position where node added	
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Practice: Heapify-Up  
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Add 3	


3	
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Practice: Heapify-Up  
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Swap with 11	


3	
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Practice: Heapify-Up  
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Swap with 5	


11	


5	


3	
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Heapify-Up  

•  Claim.  Assuming array H is almost a heap 
with key of H[i] too small, Heapify-Up 
fixes the heap property in O(log i) time 
Ø Can insert a new element in a heap of n 

elements in O(log n) time 
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Assignments 

•  Journals: Finish Chapter 2 for Tuesday 

•  Problem Set  2 due Friday 
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