
1/23/13	

1	

Objectives

•  Graph Connectivity, Traversal
•  BFS & DFS Implementations, Analysis

Jan 23, 2013 1 CSCI211 - Sprenkle

Review

• What is a graph?
•  How do we refer to a graphs number of

nodes/vertices and number of edges?
•  How can we represent a graph?

Jan 23, 2013 CSCI211 - Sprenkle 2

Graph Representation: Adjacency Matrix

•  n×n matrix with Auv = 1 if (u, v) is an edge
Ø Two representations of each edge (symmetric

matrix)
Ø Space: Θ(n2)

Ø Checking if (u, v) is an edge: Θ(1) time
Ø Identifying all edges: Θ(n2) time

3 Jan 23, 2013 CSCI211 - Sprenkle

 1 2 3 4 5 6 7 8
1 0 1 1 0 0 0 0 0
2 1 0 1 1 1 0 0 0
3 1 1 0 0 1 0 1 1
4 0 1 0 0 1 0 0 0
5 0 1 1 1 0 1 0 0
6 0 0 0 0 1 0 0 0
7 0 0 1 0 0 0 0 1
8 0 0 1 0 0 0 1 0

Graph Representation: Adjacency List

•  Node indexed array of lists
Ø Two representations of each edge
Ø Space?
Ø Checking if (u, v) is an edge?
Ø Identifying all edges?

4

1	
 2	
 3	

2	

3	

4	
 2	
 5	

5	

6	

7	
 3	
 8	

8	

1	
 3	
 4	
 5	

1	
 2	
 5	
 8	
7	

2	
 3	
 4	
 6	

5	

3	
 7	

n
o
d
e
	

edges	

Jan 23, 2013 CSCI211 - Sprenkle

What are the
extremes?	

Graph Representation: Adjacency List
•  Node indexed array of lists

Ø Two representations of each edge
Ø Space = 2m + n = O(m + n)
Ø Checking if (u, v) is an edge takes O(deg(u)) time
Ø  Identifying all edges takes Θ(m + n) time

Jan 23, 2013 CSCI211 - Sprenkle 5

degree = number of
neighbors of u	

n
o
d
e
	

edges	
1	
 2	
 3	

2	

3	

4	
 2	
 5	

5	

6	

7	
 3	
 8	

8	

1	
 3	
 4	
 5	

1	
 2	
 5	
 8	
7	

2	
 3	
 4	
 6	

5	

3	
 7	

Paths and Connectivity
•  Def. A path in an undirected graph G = (V, E) is

a sequence P of nodes v1, v2, …, vk-1, vk
Ø Each consecutive pair vi, vi+1 is joined by an edge in

E
•  Def. A path is simple if all nodes are distinct
•  Def. An undirected graph is connected if ∀

pair of nodes u and v, there is a path between u
and v

6

• Short path	

• Distance	

Jan 23, 2013 CSCI211 - Sprenkle

1/23/13	

2	

Cycles

•  Def. A cycle is a path v1, v2, …, vk-1, vk in
which v1 = vk, k > 2, and the first k-1 nodes
are all distinct

7

cycle C = 1-2-4-5-3-1	

Jan 23, 2013 CSCI211 - Sprenkle

TREES

Jan 23, 2013 CSCI211 - Sprenkle 8

Trees

•  Def. An undirected graph is a tree if it is
connected and does not contain a cycle

•  Simplest connected graph
Ø Deleting any edge from a tree will disconnect it

9 Jan 23, 2013 CSCI211 - Sprenkle

Rooted Trees

•  Given a tree T, choose a root node r and
orient each edge away from r

•  Models hierarchical structure

10

a tree	

v	

parent of v	

child of v	

root r	

Jan 23, 2013 CSCI211 - Sprenkle Why n-1 edges?	

the same tree, rooted at 1

Rooted Trees

• Why n-1 edges?
Ø Each non-root node has an edge to its parent

11 Jan 23, 2013 CSCI211 - Sprenkle

a tree	

v	

parent of v	

child of v	

root r	

the same tree, rooted at 1

Trees

•  Theorem. Let G be an undirected graph on n
nodes. Any two of the following statements
imply the third:
Ø G is connected
Ø G does not contain a cycle
Ø G has n-1 edges

12 Jan 23, 2013 CSCI211 - Sprenkle

1/23/13	

3	

Phylogeny Trees
•  Describe evolutionary

history of species
Ø mammals and birds share

a common ancestor that
they do not share with
other species

Ø all animals are descended
from an ancestor not
shared with mushrooms,
trees, and bacteria

13

anim
als	

Jan 23, 2013 CSCI211 - Sprenkle

Tiffani Williams, Texas A&M	

Computational Biology	

GRAPH CONNECTIVITY &
TRAVERSAL

Jan 23, 2013 CSCI211 - Sprenkle 14

Connectivity
•  s-t connectivity problem. Given nodes

s and t, is there a path between s and t?
•  s-t shortest path problem. Given nodes

s and t, what is the length of the shortest path
between s and t?

•  Applications
Ø Facebook
Ø Maze traversal
Ø Kevin Bacon number
Ø Spidering the web
Ø Fewest number of hops in a communication network

Jan 23, 2013 CSCI211 - Sprenkle 15

Application: Connected Component

•  Find all nodes reachable from s

•  Connected component containing node 1 is
{ 1, 2, 3, 4, 5, 6, 7, 8 }

Jan 23, 2013 CSCI211 - Sprenkle 16

Application: Flood Fill
•  Given lime green pixel in an image, change

color of entire blob of neighboring lime pixels to
blue
Ø Node: pixel
Ø Edge: two neighboring lime pixels
Ø Blob: connected component of lime pixels

Jan 23, 2013 CSCI211 - Sprenkle 17

recolor lime
green blob to

blue	

Application: Flood Fill
•  Given lime green pixel in an image, change

color of entire blob of neighboring lime pixels to
blue
Ø Node: pixel
Ø Edge: two neighboring lime pixels
Ø Blob: connected component of lime pixels

Jan 23, 2013 CSCI211 - Sprenkle 18

recolor lime
green blob to

blue	

1/23/13	

4	

My Facebook Friends

Jan 23, 2013 CSCI211 - Sprenkle 19

HS	

Extreme
Blue	

Created with Social Graph ���
http://apps.facebook.com/socgraph/	

Family	

Duke	

Gburg	

UDel	

A General Algorithm

•  R will be the connected component
containing s

•  Algorithm is underspecified

Jan 23, 2013 CSCI211 - Sprenkle 20

R will consist of nodes to which s has a path	
R = {s}	
while there is an edge (u,v) where u∈R and v∉R	

	add v to R	

s	

u	
 v	

R	

it's safe to

add v	

In what order should we consider the edges?	

Breadth-First Search

•  Intuition. Explore outward from s in all
possible directions (edges), adding nodes
one "layer" at a time

•  Algorithm
Ø L0 = { s }
Ø L1 = all neighbors of L0

Ø L2 = all nodes that have an edge to a node in L1
and do not belong to L0 or L1

Ø Li+1 = all nodes that have an edge to a node in Li
and do not belong to an earlier layer

Jan 23, 2013 CSCI211 - Sprenkle 21

s	
 L1	
 L2	
 L n-1	

L0	

Run BFS on This Graph

Jan 23, 2013 CSCI211 - Sprenkle 22

s = 1

Example of Breadth-First Search

Jan 23, 2013 CSCI211 - Sprenkle 23

L0	

L1	

L2	

L3	

s = 1

Creates a tree	

-- is a node in the graph that is not in the tree	

Breadth-First Search

•  Theorem.
For each i, Li consists of all nodes at
distance exactly i from s.
There is a path from s to t iff t appears in
some layer.

Jan 23, 2013 CSCI211 - Sprenkle 24

s	
 L1	
 L2	
 L n-1	

• What does this theorem mean?	

• Can we determine the distance between s and t?	

1/23/13	

5	

Breadth-First Search

•  Theorem. For each i, Li consists of all nodes
at distance exactly i from s. There is a path
from s to t iff t appears in some layer.
Ø Shortest path to t from s, is the i from Li

Ø All nodes reachable from s are in L1, L2, …, Ln-1

Jan 23, 2013 CSCI211 - Sprenkle 25

s	
 L1	
 L2	
 L n-1	

Breadth-First Search

•  Property. Let T be a BFS tree of G = (V, E),
and let (x, y) be an edge of G. Then the level
of x and y differ by at most 1.

Jan 23, 2013 CSCI211 - Sprenkle 26

G: 	

If x is in Li, ���

then y must be in ???	

Connected Component: BFS

•  Find all nodes reachable from s

Jan 23, 2013 CSCI211 - Sprenkle 27

In general….	

R will consist of nodes to which s has a path	
R = {s}	
while there is an edge (u,v) where u∈R and v∉R	

	add v to R	

In what order does BFS consider edges?	

Connected Component: BFS vs DFS

•  Find all nodes reachable from s

•  Theorem. Upon termination, R is the
connected component containing s
Ø BFS = explore in order of distance from s
Ø DFS = explore until hit “deadend”

Jan 23, 2013 CSCI211 - Sprenkle 28

In general….	

R will consist of nodes to which s has a path	
R = {s}	
while there is an edge (u,v) where u∈R and v∉R	

	add v to R	

Depth-First Search
•  Need to keep track of where

you’ve been
• When reach a “dead-end” (already

explored all neighbors), backtrack
to node with unexplored neighbor

•  Algorithm:

Jan 23, 2013 CSCI211 - Sprenkle

DFS(u):	
	Mark u as “Explored” and add u to R	
	For each edge (u, v) incident to u	
	 	If v is not marked “Explored” then	
	 	 	DFS(v)	

29

Depth-First Search

•  How does DFS work on this graph?
Ø Starting from node 1

Jan 23, 2013 CSCI211 - Sprenkle 30

1/23/13	

6	

DFS vs BFS
•  Compare the resulting trees

Jan 23, 2013 CSCI211 - Sprenkle 31

DFS Analysis

•  Let T be a depth-first search tree, let x and y
be nodes in T, and let (x, y) be an edge of G
that is not an edge of T. Then one of x or y
is an ancestor of the other in T.

Jan 23, 2013 CSCI211 - Sprenkle 32

“equivalent” of BFS: connected nodes are at most one layer apart	

DFS Analysis
•  Let T be a depth-first search tree, let x and y be

nodes in T, and let (x, y) be an edge of G that is not
an edge of T. Then one of x or y is an ancestor of the
other in T.

•  Proof.
Ø Suppose that x-y is an edge in G but not in T. (From

problem statement)
Ø WLOG, assume that DFS reaches x before y
Ø When edge x-y is considered in the DFS algorithm, we

don’t add it to T (from problem statement), which means
that y must have been explored.

Ø But, since we reached x first, y had to be discovered
between invocation and end of the recursive call DFS(x)
•  i.e., y is a descendent of x

Jan 23, 2013 CSCI211 - Sprenkle 33

Notes on Assignments

•  Designing algorithms
Ø Be as descriptive as possible, provide intuition
Ø Explain running time

•  Match prescribed running time
•  Or what you think the running time is

Jan 23, 2013 CSCI211 - Sprenkle 34

Problem Set #1

•  Follow template for induction hypothesis

•  √2n < n + 10
•  n2log n < n2.5

Ø log n < n.5 (divide by n2)
Ø log log n < .5 * log n (take log of each)

•  Similar to solved problem in Chapter 2

Jan 23, 2013 CSCI211 - Sprenkle 35

Looking Ahead

•  Friday: Problem Set 2 due
•  Continue reading Chapter 3

Jan 23, 2013 CSCI211 - Sprenkle 36

