
1/18/13	

1	

Objectives

•  Data structure: Heaps
•  Implementing a Priority Queue

Jan 18, 2013 1 Sprenkle - CSCI211

•  Check in on problem set	

•  Algorithm runtimes	
 MORE COMPLEX

DATA STRUCTURES

Moving from integers, lists, arrays

Jan 18, 2013 Sprenkle - CSCI211 2

Improving Running Times

Jan 18, 2013 Sprenkle - CSCI211 3

After overcoming higher-level obstacles,	

lower-level implementation details

can improve runtime.	

PRIORITY QUEUES

Jan 18, 2013 Sprenkle - CSCI211 4

Priority Queues
•  Elements have a priority or key
•  Each time select an element from the priority

queue, want the one with highest priority
•  More formally…

Ø Maintains a set of elements S
•  Each element v ∈ S has a key(v) for its priority

Ø  Smaller keys represent higher priorities
Ø Example methods:

•  Add, delete elements
•  Select element with smallest key

Jan 18, 2013 5 Sprenkle - CSCI211

Key 2 4 5 6 9 20
Value 3542 5143 8712 1264 9123 5954 Process id	

Not implementation, just how to envision	

Priority	

Motivating Example:
Scheduling Processes

•  Each process has a priority or urgency
•  Processes do not arrive in priority order
•  Goal: run process with highest priority

Jan 18, 2013 6 Sprenkle - CSCI211

Key 2 4 5 6 9 20
Value 3542 5143 8712 1264 9123 5954 Process id	

Priority	

1/18/13	

2	

Using a Priority Queue

•  Given API:
Ø Add an element with a given key (i.e., priority)
Ø Delete an element with a given priority
Ø Select element with smallest key/highest priority
Ø Get the number of elements in PQ

Jan 18, 2013 Sprenkle - CSCI211 7

How could we use a PQ to sort a list of numbers?	

Priority Queues for Sorting

1. Add elements into PQ with the number’s
value as its priority

2. Then extract the smallest number until done
Ø Come out in sorted order

Jan 18, 2013 8 Sprenkle - CSCI211

Sorting n numbers takes O(n logn) time	

What is the goal running time for our PQ’s
operations?	

What is the goal running time for our ���
PQ’s operations? O(logn)	

Already know our “loops” will be O(n) 	

Implementing a Priority Queue

•  Consider an unordered list, where there is a
pointer to minimum

•  How difficult (i.e., expensive) is
Ø Adding new elements?
Ø Extraction?

Jan 18, 2013 9 Sprenkle - CSCI211

min	

Implementing a Priority Queue
•  Consider an unordered list, where there is a

pointer to minimum

•  How difficult (i.e., expensive) is
Ø Adding new elements? easy (O(1))
Ø Extraction? difficult

•  Need to find “new” minimum: O(n)

Jan 18, 2013 10 Sprenkle - CSCI211

min	

What is the running time for sorting
using the PQ in this case?	

O(n2)	

Implementing a Priority Queue

•  Consider a sorted list where min is at the
beginning

•  Should you use an array or linked list?
•  How difficult is

Ø Adding new elements?
Ø Extraction?

Jan 18, 2013 11 Sprenkle - CSCI211

min	

Implementing a Priority Queue
•  Consider a sorted list where min is at the

beginning

•  Should you use an array or linked list?
•  How difficult is

Ø Adding new elements? difficult (insertion)
Ø Extraction? Easy

Jan 18, 2013 12 Sprenkle - CSCI211

min	

What is the running time for sorting
using the PQ in this case?	

O(n2)	

1/18/13	

3	

Comparing Data Structures

Jan 18, 2013 Sprenkle - CSCI211 13

Operation Unsorted
List

Sorted List

Start(N)

Insert(v)

FindMin()

Delete(i)

ExtractMin()

Comparing Data Structures

Jan 18, 2013 14

Operation Unsorted
List

Sorted
List

Start(N) O(1) O(1)
Insert(v) O(1) O(n)
FindMin() O(1) O(1)
Delete(i) O(n) O(1)
ExtractMin() O(n) O(1)

Sprenkle - CSCI211

Reflection

•  All of “known” data structures has one
operation that takes O(n) time

•  Cannot implement PQs with “known” data
structures arrays and lists to meet desired
O(n log n) runtime

•  Motivates use of a new data structure (heap)
to implement PQ

Jan 18, 2013 15 Sprenkle - CSCI211

HEAPS

Jan 18, 2013 Sprenkle - CSCI211 16

Heap Defined

•  Combines benefits of sorted array and list
•  Balanced binary tree

Jan 18, 2013 17

root	

• Each node has at most 2 children	

• Node value is its key	

Heap order: each node’s key is
at least as large as its parent’s	

Note: not a binary search tree	

Sprenkle - CSCI211

Heaps

Jan 18, 2013 Sprenkle - CSCI211 18

1/18/13	

4	

Implementing a Heap

•  Option 1: Use pointers
Ø Each node keeps

•  Element it stores (key)
•  3 pointers: 2 children, parent

•  Option 2: No pointers
Ø Requires knowing upper bound on n
Ø For node at position i

•  left child is at 2i
•  right child is at 2i+1

Jan 18, 2013 19 Sprenkle - CSCI211

Where does the index in the array start?	

If know child’s position, what is the position of parent?	

Implementing a Heap: Operations

•  Finding the minimal element?

Jan 18, 2013 20 Sprenkle - CSCI211

Implementing a Heap: Operations

•  Finding the minimal element
Ø First element
Ø O(1)

Jan 18, 2013 21 Sprenkle - CSCI211

Implementing a Heap: Operations

•  Adding an element?
Ø Assume heap has less than N elements

Jan 18, 2013 22 Sprenkle - CSCI211

Implementing a Heap: Operations

•  Adding an element?
Ø Could add element to last position

•  What are possible scenarios?

Jan 18, 2013 23 Sprenkle - CSCI211

Add X	

X

Implementing a Heap: Operations

•  Adding an element?
Ø Could add element to last position

•  What are possible scenarios?
Ø Heap is no longer balanced
Ø Something that is almost a heap but a little off
Ø Need Heapify-up procedure to fix our heap

Jan 18, 2013 24 Sprenkle - CSCI211

1/18/13	

5	

Heapify-Up	

• Why does this algorithm work?
• What is the intuition?

Jan 18, 2013 25

Heapify-up(H, i):	
	if i > 1 then	
	 	j=parent(i)=floor(i/2)	
	 	if key[H[i]] < key[H[j]] then	
	 	 	swap array entries H[i] and H[j]	
	 	 	Heapify-up(H, j)	

Heap	
 Position where node added	

Sprenkle - CSCI211

Practice: Heapify-Up

Jan 18, 2013 26

Add 3	

3	

Sprenkle - CSCI211

Practice: Heapify-Up

Jan 18, 2013 27

Swap with 11	

3	

Sprenkle - CSCI211

11	

Practice: Heapify-Up

Jan 18, 2013 28

Swap with 5	

11	

5	

3	

Sprenkle - CSCI211

Heapify-Up

•  Claim. Assuming array H is almost a heap
with key of H[i] too small, Heapify-Up
fixes the heap property in O(log i) time
Ø Can insert a new element in a heap of n

elements in O(log n) time

Jan 18, 2013 29 Sprenkle - CSCI211

Assignments

•  Journals: Finish Chapter 2 for Tuesday

•  Problem Set 2 due Friday

Jan 18, 2013 Sprenkle - CSCI211 30

