
1/21/13	

1	

Objectives

• Wrap up: Implementing a PQ
•  Data structure: Graphs

Jan 21, 2013 1 CSCI211 - Sprenkle

Notes

•  Journals
Ø Maybe: page #s of algorithms, proofs
Ø Still provide intuition, runtime

•  Problem Set
Ø Recommend typing because have electronic

copy later (e.g., during take-home exam)

Jan 21, 2013 CSCI211 - Sprenkle 2

Review

• What is a priority queue?
• What is a heap?

Ø Properties
Ø Implementation

• What is the process for finding the smallest
element in a heap?

• What is the process for adding to a heap?

Jan 21, 2013 CSCI211 - Sprenkle 3

Review: Heap Defined

•  Combines benefits of sorted array and list
•  Balanced binary tree

Jan 21, 2013 4

root	

• Each node has at most 2 children	

• Node value is its key	

Heap order: each node’s key is
at least as large as its parent’s	

Note: not a binary search tree	

CSCI211 - Sprenkle

Review: Implementing a Heap

•  Option 1: Use pointers
Ø Each node keeps

•  Element it stores (key)
•  3 pointers: 2 children, parent

•  Option 2: No pointers
Ø Requires knowing upper bound on n
Ø For node at position i

•  left child is at 2i
•  right child is at 2i+1

Jan 21, 2013 5 CSCI211 - Sprenkle

Review: Implementing a Heap

•  Finding the minimal element
Ø First element
Ø O(1)

Jan 21, 2013 6 CSCI211 - Sprenkle

1/21/13	

2	

Review: Heapify-Up	

• Why does this algorithm work?
• What is the intuition?

Jan 21, 2013 7

Heapify-up(H, i):	
	if i > 1 then	
	 	j=parent(i)=floor(i/2)	
	 	if key[H[i]] < key[H[j]] then	
	 	 	swap array entries H[i] and H[j]	
	 	 	Heapify-up(H, j)	

Heap	
 Position where node added	

CSCI211 - Sprenkle

Heapify-Up

•  Claim. Assuming array H is almost a heap
with key of H[i] too small, Heapify-Up
fixes the heap property in O(log i) time
Ø Can insert a new element in a heap of n

elements in O(log n) time

Jan 21, 2013 8 CSCI211 - Sprenkle

Heapify-Up

•  Claim. Assuming array H is almost a heap
with key of H[i] too small, Heapify-Up
fixes the heap property in O(log i) time
Ø Can insert a new element in a heap of n

elements in O(log n) time
•  Proof. By induction

Ø If i=1, is already a heap à O(1)
Ø If i>1,

•  Swaps are O(1)
•  Swaps continue up to root (max) à log i

Jan 21, 2013 9 CSCI211 - Sprenkle

Deleting an Element

Jan 21, 2013 CSCI211 - Sprenkle 10

Delete at
position 3	

w

Deleting an Element
•  Delete at position i
•  Removing an element:

Ø Messes up heap order
Ø Leaves a “hole” in the heap

•  Not as straightforward as Heapify-Up	
•  Algorithm

1.  Fill in element where hole was
•  Patch hole: move nth element into ith spot

2.  Adjust heap to be in order
•  At position i because moved nth item up to i

Jan 21, 2013 11 CSCI211 - Sprenkle

Deleting an Element

• What are the possibilities when we move nth
element (w) into spot where element was
removed?

Jan 21, 2013 12 CSCI211 - Sprenkle

Delete at
position 3	

w

1/21/13	

3	

Deleting an Element

•  Two “bad” possibilities: element w is
Ø Too small: violation is between it and parent à
Heapify-Up 	

Ø Too big: with one or both children à Heapify-
Down (example: w becomes 12)

Jan 21, 2013 13 CSCI211 - Sprenkle

Delete at
position 3	

w

Example of OK:	

11 deleted, replaced by 16	

Deleting an Element

•  Delete 9
•  Replace with 5

Jan 21, 2013 14

Example where new key is too small	

3	

4	
 7	

5	

6	

2	

9	
 10	

CSCI211 - Sprenkle

Deleting an Element

•  Delete 9
•  Replace with 5
•  But 5 < 6, so need to Heapify-Up	

Jan 21, 2013 15

Example where new key is too small	

3	

4	
 7	
 5	

6	

2	

10	

CSCI211 - Sprenkle

Heapify-Down

Jan 21, 2013 16

Heapify-down(H, i):	
	n = length(H)	
	if 2i > n then	
	 	Terminate with H unchanged	
	else if 2i < n then	
	 	left=2i and right=2i+1	
	 	j be index that minimizes	
	 	 	key[H[left]] and key[[H[right]]	
	else if 2i = n then	
	 	j=2i	

	
	if key[H[j]] < key[H[i]] then	
	 	swap array entries H[i] and H[j]	
	 	Heapify-down(H, j)	

CSCI211 - Sprenkle

Why can we stop?	

Heapify-Down

Jan 21, 2013 17

Heapify-down(H, i):	
	n = length(H)	
	if 2i > n then	
	 	Terminate with H unchanged	
	else if 2i < n then	
	 	left=2i and right=2i+1	
	 	j be index that minimizes	
	 	 	key[H[left]] and key[[H[right]]	
	else if 2i = n then	
	 	j=2i	

	
	if key[H[j]] < key[H[i]] then	
	 	swap array entries H[i] and H[j]	
	 	Heapify-down(H, j)	

CSCI211 - Sprenkle

i is a leaf – nowhere to go	

Practice: Heapify-Down

Jan 21, 2013 18

Moved 21 to where
element was removed

21	

CSCI211 - Sprenkle

1/21/13	

4	

Practice: Heapify-Down

Jan 21, 2013 19

21	

21	

7	

CSCI211 - Sprenkle

Practice: Heapify-Down

Jan 21, 2013 20

21	

7	

8	

7	

21	

CSCI211 - Sprenkle

Runtime of Heapify-Down?

Jan 21, 2013 21

Heapify-down(H, i):	
	n = length(H)	
	if 2i > n then	
	 	Terminate with H unchanged	
	else if 2i < n then	
	 	left=2i and right=2i+1	
	 	j be index that minimizes	
	 	 	key[H[left]] and key[[H[right]]	
	else if 2i = n then	
	 	j=2i	

	
	if key[H[j]] < key[H[i]] then	
	 	swap array entries H[i] and H[j]	
	 	Heapify-down(H, j)	

CSCI211 - Sprenkle

O(1)

O(1)

Num swaps: O(log n)	

Implementing Priority Queues
with Heaps

Jan 21, 2013 22

Operation Description Run Time

StartHeap(N) Creates an empty heap that
can hold N elements

Insert(v) Inserts item v into heap

FindMin() Identifies minimum element in
heap but does not remove it

Delete(i) Deletes element in heap at
position i

ExtractMin()
Identifies and deletes an
element with minimum key from
heap

CSCI211 - Sprenkle

Implementing Priority Queues
with Heaps

Jan 21, 2013 23

Operation Description Run Time

StartHeap(N) Creates an empty heap that
can hold N elements O(N)

Insert(v) Inserts item v into heap O(log n)

FindMin() Identifies minimum element in
heap but does not remove it O(1)

Delete(i) Deletes element in heap at
position i O(log n)

ExtractMin()
Identifies and deletes an
element with minimum key from
heap

O(log n)

CSCI211 - Sprenkle

Putting It All Together…

1. Add elements into PQ with the number’s
value as its priority

2. Then extract the smallest number until done
Ø Come out in sorted order

Jan 21, 2013 24 CSCI211 - Sprenkle

What is the running time of sorting numbers
using a PQ implemented with a Heap?	

O(n log n)	

1/21/13	

5	

Comparing Data Structures

Jan 21, 2013 CSCI211 - Sprenkle 25

Operation Heap Unsorted
List

Sorted List

Start(N)

Insert(v)

FindMin()

Delete(i)

ExtractMin()

Comparing Data Structures

Jan 21, 2013 26

Operation Heap Unsorted
List

Sorted
List

Start(N) O(N)
Insert(v) O(log n)
FindMin() O(1)
Delete(i) O(log n)
ExtractMin() O(log n)

CSCI211 - Sprenkle

Comparing Data Structures

Jan 21, 2013 27

Operation Heap Unsorted
List

Sorted
List

Start(N) O(N) O(1) O(1)
Insert(v) O(log n) O(1) O(n)
FindMin() O(1) O(1) O(1)
Delete(i) O(log n) O(n) O(1)
ExtractMin() O(log n) O(n) O(1)

CSCI211 - Sprenkle

Additional Heap Operations
•  Access elements in PQ by “name”

Ø Maintain additional array Position that stores current
position of each element in heap

•  Operations:
Ø Delete(Position[v])

•  Does not increase overall running time
Ø ChangeKey(v, α)

•  Changes key of element v to α
•  Identify position of element v in array (Position array)
•  Change key, heapify

Jan 21, 2013 28 CSCI211 - Sprenkle

Key 2 4 5 6 9 20
Value 3542 5143 8712 1264 9123 5954 Process id	

Priority	

GRAPHS

Jan 21, 2013 CSCI211 - Sprenkle 29

Undirected Graphs G = (V, E)
•  V = nodes (vertices)
•  E = edges between pairs of nodes
•  Captures pairwise relationship between

objects
•  Graph size parameters: n = |V|, m = |E|

30

V = { 1, 2, 3, 4, 5, 6, 7, 8 }	

E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 }���
n = 8	

m = 11	

Jan 21, 2013 CSCI211 - Sprenkle

1/21/13	

6	

CSCI211 - Sprenkle

Social Networks
•  Node: people; Edge: relationship between 2

people
•  Everything Bad Is Good for You: How Today's

Popular Culture Is Actually Making Us Smarter

31

•  Television shows
have complex
plots, complex
social networks

Social network of
24's Jack Bauer

http://www.cs.duke.edu/csed/harambeenet/
modules.html	

Jan 21, 2013

Facebook: Visualizing Friends

Jan 21, 2013 CSCI211 - Sprenkle 32

http://www.facebook.com/notes/facebook-engineering/
visualizing-friendships/469716398919	

World Wide Web

• Web graph
Ø Node: web page
Ø Edge: hyperlink from one page to another

33

cnn.com

people.com sportsillustrated.cnn.com netscape.aol.com time.com

hbo.com

boardwalkempire.com

Directed Graph:	

Jan 21, 2013 CSCI211 - Sprenkle

Graph of Web Page www.wlu.edu

Jan 21, 2013 CSCI211 - Sprenkle 34

http://www.aharef.info/static/htmlgraph	

Ecological Food Web

•  Food web graph
Ø Node = species
Ø Edge = from prey to

predator

35

Reference: 	

https://www.msu.edu/course/isb/202/
ebertmay/images/foodweb.jpg	

Directed Graph:	

Jan 21, 2013 CSCI211 - Sprenkle

Graph Applications

36

transportation	

Graph	

street intersections	

Nodes	
 Edges	

highways	

communication	
 computers	
 fiber optic cables	

World Wide Web	
 web pages	
 hyperlinks	

social	
 people	
 relationships	

food web	
 species	
 predator-prey	

software systems	
 functions	
 function calls	

scheduling	
 tasks	
 precedence constraints	

circuits	
 gates	
 wires	

Jan 21, 2013 CSCI211 - Sprenkle

1/21/13	

7	

Graph Representation: Adjacency Matrix

•  n×n matrix with Auv = 1 if (u, v) is an edge
Ø Two representations of each edge (symmetric

matrix)
Ø Space?

Ø Checking if (u, v) is an edge?
Ø Identifying all edges?

37

 1 2 3 4 5 6 7 8
1 0 1 1 0 0 0 0 0
2 1 0 1 1 1 0 0 0
3 1 1 0 0 1 0 1 1
4 0 1 0 0 1 0 0 0
5 0 1 1 1 0 1 0 0
6 0 0 0 0 1 0 0 0
7 0 0 1 0 0 0 0 1
8 0 0 1 0 0 0 1 0

Jan 21, 2013 CSCI211 - Sprenkle

Graph Representation: Adjacency Matrix

•  n×n matrix with Auv = 1 if (u, v) is an edge
Ø Two representations of each edge (symmetric

matrix)
Ø Space: Θ(n2)

Ø Checking if (u, v) is an edge: Θ(1) time
Ø Identifying all edges: Θ(n2) time

38 Jan 21, 2013 CSCI211 - Sprenkle

 1 2 3 4 5 6 7 8
1 0 1 1 0 0 0 0 0
2 1 0 1 1 1 0 0 0
3 1 1 0 0 1 0 1 1
4 0 1 0 0 1 0 0 0
5 0 1 1 1 0 1 0 0
6 0 0 0 0 1 0 0 0
7 0 0 1 0 0 0 0 1
8 0 0 1 0 0 0 1 0

Graph Representation: Adjacency List

•  Node indexed array of lists
Ø Two representations of each edge
Ø Space?
Ø Checking if (u, v) is an edge?
Ø Identifying all edges?

39

1	
 2	
 3	

2	

3	

4	
 2	
 5	

5	

6	

7	
 3	
 8	

8	

1	
 3	
 4	
 5	

1	
 2	
 5	
 8	
7	

2	
 3	
 4	
 6	

5	

3	
 7	

n
o

d
e
	

edges	

Jan 21, 2013 CSCI211 - Sprenkle

What are the
extremes?	

Graph Representation: Adjacency List
•  Node indexed array of lists

Ø Two representations of each edge
Ø Space = 2m + n = O(m + n)
Ø Checking if (u, v) is an edge takes O(deg(u)) time
Ø  Identifying all edges takes Θ(m + n) time

Jan 21, 2013 CSCI211 - Sprenkle 40

degree = number of
neighbors of u	

n
o

d
e
	

edges	
1	
 2	
 3	

2	

3	

4	
 2	
 5	

5	

6	

7	
 3	
 8	

8	

1	
 3	
 4	
 5	

1	
 2	
 5	
 8	
7	

2	
 3	
 4	
 6	

5	

3	
 7	

TODO

•  Journal: Rest of Chapter 2
•  Problem Set 2 due Friday

Jan 21, 2013 CSCI211 - Sprenkle 41

