
4/6/12	

1	

Objectives

•  Reducibility
•  Conclusions

Apr 6, 2012 Sprenkle - CSCI211 1 1	

Review

• What does “polynomial time reducible”
mean?
Ø What is it relating?

• What is a way of showing that one algorithm
is polynomial time reducible to another?

• What does NP-Complete mean?

Apr 6, 2012 Sprenkle - CSCI211 2

Now you “get” this xkcd comic

Apr 6, 2012 Sprenkle - CSCI211 3 How is this a knapsack problem?	

“Status of the P vs NP Problem”

Apr 6, 2012 Sprenkle - CSCI211 4

From Numbers

Charlie: Dad, uhm.. I've been working on a problem. P vs.

NP. It can't be solved.
Alan: I think you knew that when you started.
Charlie: I could work on it forever. Constantly pushing

forward, still never reaching an end.
…

Fun Fact: Connecting Chapters 7 and 8

•  Karp, of the Edmonds-Karp algorithm (max-
flow problem on networks), published a
paper in complexity theory on "Reducibility
Among Combinatorial Problems", in which he
proved 21 Problems to be NP-complete

Apr 6, 2012 Sprenkle - CSCI211 5

Review: Polynomial-Time Reduction

•  Reduction. Problem X polynomial reduces to problem Y
if arbitrary instances of problem X can be solved using:
Ø  Polynomial number of standard computational steps, plus
Ø  Polynomial number of calls to oracle that solves problem Y

•  Assume have a black box that can solve Y

•  Notation: X ≤P Y
Ø  “X is polynomial-time reducible to Y”

•  Conclusion: If Y can be solved in polynomial time and
X ≤P Y, then X can be solved in polynomial time.

Apr 6, 2012 Sprenkle - CSCI211 6

Suppose we could solve Y in polynomial-time. ���
What else could we solve in polynomial time?	

Y For X +

4/6/12	

2	

Review: Polynomial-Time Reduction

•  Purpose. Classify problems according to
relative difficulty.

•  Design algorithms. If X ≤P Y and Y can be
solved in polynomial-time, then X can also be
solved in polynomial time.

•  Establish intractability. If X ≤P Y and X
cannot be solved in polynomial-time, then Y
cannot be solved in polynomial time.

•  Establish equivalence. If X ≤P Y and Y ≤P X,
we use notation X ≡P Y.

Apr 6, 2012 Sprenkle - CSCI211 7

Considering X ≤P Y

•  Need to be careful putting X in terms of Y
•  Make sure you’re not putting an easy

problem (X) in terms of a hard problem (Y)
Ø While you could do that, what does that do for

you?
Ø Just because Y is hard to solve does *not* mean

that X is hard to solve

Apr 6, 2012 Sprenkle - CSCI211 8

Review: Basic Reduction Strategies

•  Reduction by simple equivalence
•  Reduction from special case to general case
•  Reduction by encoding with gadgets

Apr 6, 2012 Sprenkle - CSCI211 9

Basic Reduction Strategies

•  Reduction by simple equivalence
•  Reduction from special case to general case
•  Reduction by encoding with gadgets

Apr 4, 2012 Sprenkle - CSCI211 10

Set Cover
•  SET COVER: Given a set U of elements, a collection S1,

S2, . . . , Sm of subsets of U, and an integer k, does there
exist a collection of size ≤ k of these sets whose union is
equal to U?

•  Sample application
Ø  m available pieces of software
Ø  Set U of n capabilities that we would like our system to have
Ø  The ith piece of software provides the set Si ⊆ U of capabilities
Ø  Goal: achieve all n capabilities using fewest pieces of

software
•  Ex:

11 Apr 4, 2012 Sprenkle - CSCI211

U = { 1, 2, 3, 4, 5, 6, 7 }���
k = 2	

S1 = {3, 7} 	
 	
S4 = {2, 4}	

S2 = {3, 4, 5, 6} 	
 	
S5 = {5}���
S3 = {1} 	
 	
 	
S6 = {1, 2, 6, 7}	

Choose S2 and S6	

Vertex Cover Reduces to Set Cover
•  Claim. VERTEX-COVER ≤P SET-COVER
•  Pf. Given a VERTEX-COVER instance

G = (V, E), k, we construct a set cover instance
whose size equals the size of the vertex cover
instance.
Ø …

Apr 4, 2012 Sprenkle - CSCI211 12

SET COVER?	
a	

d	

b	

e	

f	
 c	

VERTEX COVER	

k = 2	

e1 	

e2 	
 e3 	

e5 	

e4 	

e6 	

e7 	

4/6/12	

3	

Vertex Cover Reduces to Set Cover
•  Claim. VERTEX-COVER ≤P SET-COVER
•  Pf. Given a VERTEX-COVER instance

G = (V, E), k, we construct a set cover instance
whose size equals the size of the vertex cover
instance.
Ø …

Apr 4, 2012 Sprenkle - CSCI211 13

SET COVER	

	

U = { 1, 2, 3, 4, 5, 6, 7 }���
k = 2	

Sa = {3, 7}	
 	
Sb = {2, 4}	

Sc = {3, 4, 5, 6} 	
Sd = {5}���
Se = {1} 	
 	
Sf= {1, 2, 6, 7}	

a	

d	

b	

e	

f	
 c	

VERTEX COVER	

k = 2	

e1 	

e2 	
 e3 	

e5 	

e4 	

e6 	

e7 	

Vertex Cover Reduces to Set Cover
•  Claim. VERTEX-COVER ≤ P SET-COVER
•  Pf. Given a VERTEX-COVER instance G = (V, E), k, we

construct a set cover instance whose size equals the size
of the vertex cover instance.

•  Construction.
Ø  Create SET-COVER instance:

•  k = k, U = E, Sv = {e ∈ E : e incident to v }
Ø  Set-cover of size ≤ k iff vertex cover of size ≤ k. ▪

Apr 4, 2012 Sprenkle - CSCI211 14

SET COVER	

	

U = { 1, 2, 3, 4, 5, 6, 7 }���
k = 2	

Sa = {3, 7}	
 	
Sb = {2, 4}	

Sc = {3, 4, 5, 6} 	
Sd = {5}���
Se = {1} 	
 	
Sf= {1, 2, 6, 7}	

a	

d	

b	

e	

f	
 c	

VERTEX COVER	

k = 2	

e1 	

e2 	
 e3 	

e5 	

e4 	

e6 	

e7 	

NP
•  Problems that no polytime algorithm has been

found AND have not proven that no polytime
algorithm exists
Ø A little more …

•  Examples:

Apr 6, 2012 Sprenkle - CSCI211 15

Name Description

Hamiltonian
circuit

Determine whether a given graph has a Hamiltonian
circuit (a path that starts & ends at the same vertex and
passes through all other vertices exactly once)

Traveling
salesman

Find the shortest tour through n cities with known
positive integer distances between them (each city
once)

Graph coloring
Find a graph’s chromatic number: smallest # of colors
that need to be assigned to the graph’s vertices so that
no 2 adjacent vertices are assigned the same color.

Common Feature

•  Computationally difficult BUT checking if a
proposed solution solves problem can be
solved in polynomial time

•  Example: easy to check if a proposed list of
vertices is an independent set or a vertex
cover for a graph

Apr 6, 2012 Sprenkle - CSCI211 16

Nondeterministic Algorithm

•  Input: instance of a decision problem
1. Nondeterministic “guessing” stage: guess a

solution to problem
2. Deterministic “verification” stage: outputs

yes if solution is a solution to the problem

Apr 6, 2012 Sprenkle - CSCI211 17

NP: A nondeterministic algorithm whose
verification stage has a polynomial runtime.	

What We’re Trying To Figure Out

Apr 6, 2012 Sprenkle - CSCI211 18

NP

P

P ⊆ NP	

NP P = NP

P = NP	

4/6/12	

4	

“Status of the P vs NP Problem”

• What are the consequences of NP
Completeness?

• What if P = NP?
•  How have people tried to prove P ≠ NP?

Ø Limitations? Still in progress?

Apr 6, 2012 Sprenkle - CSCI211 19

Exam 2

•  Common issues
Ø Missing analysis of runtime
Ø Missing proofs

•  How do you prove a greedy algorithm?
Ø Incorrect/inefficient/unclear algorithms

•  What needs to be returned/output?

Apr 6, 2012 Sprenkle - CSCI211 20

Average Pct Median Pct
83.5 81.1

PS8

•  Dynamic programming
•  Expected followed examples from class/book

Ø Use memoization
Ø Process to find solution after finding value

Apr 6, 2012 Sprenkle - CSCI211 21

Final
•  Usual rules
•  Due next Friday, 5 p.m. (end of exams)
•  Can use book, notes, handouts, my lecture

notes, me (limited)
Ø “The status of the P versus NP problem”
Ø No other outside resources

•  Office hours: Monday and Tuesday afternoons
Ø Others by appointment

•  Evaluations due Monday at midnight on Sakai
(tests and quizzes)
Ø Last checked: 4 submissions of evaluations

Apr 6, 2012 Sprenkle - CSCI211 22

