
3/16/12	

1	

Objectives

•  Dynamic Programming
Ø Segmented Least Squares
Ø Subset Sums problem

Mar 16, 2012 1 CSCI211 - Sprenkle

Review: Weighted Interval Scheduling

•  Jobs have start time, end time, value/weight
Ø Goal: schedule compatible jobs with maximum

weight
• What was the key insight to solving the

weighted interval scheduling problem?

•  How do we pick the solution?

Mar 16, 2012 CSCI211 - Sprenkle 2

Binary decision:	

 - Optimal solution for jobs i through j includes j or doesn’t	

Choose the larger value of ���
 - [choose j and the best solution of compatible jobs] OR ���

	
[best solution if don’t pick j] 	

Then what did we do?	

Review

• What is the process for applying dynamic
programming to a problem?

Mar 16, 2012 CSCI211 - Sprenkle 3

Dynamic Programming Process

•  Determine optimal substructure of problem
Ø  Define the recurrence relation

•  Define algorithm to find the value of optimal
solution

•  Optionally, change algorithm to an iterative
rather than recursive solution

•  Define algorithm to find optimal solution
•  Analyze running time of algorithms

Mar 16, 2012 CSCI211 - Sprenkle 4

SEGMENTED LEAST SQUARES

Mar 16, 2012 CSCI211 - Sprenkle 5

Least Squares

•  Foundational problem in statistic and
numerical analysis

•  Given n points in the plane: (x1, y1),
 (x2, y2) , . . . , (xn, yn)

•  Find a line y = ax + b that minimizes the sum
of the squared error
Ø “line of best fit”

Mar 16, 2012 CSCI211 - Sprenkle 6

!

SSE = (yi " axi "b)2
i=1

n
#

x	

y	

Sum of
squared

error	

3/16/12	

2	

Least Squares
•  Foundational problem in statistic and numerical

analysis
•  Given n points in the plane: (x1, y1), (x2, y2) , . . . , (xn, yn)
•  Find a line y = ax + b that minimizes the sum of the

squared error
Ø  “line of best fit”

•  Closed form solution. Calculus ⇒ min error is

achieved when

Mar 16, 2012 CSCI211 - Sprenkle 7

!

SSE = (yi " axi "b)2
i=1

n
#

!

a =
n xi yi " (xi)i# (yi)i#i#

n xi
2 " (xi)

2
i#i#

, b =
yi " a xii#i#

n

x	

y	

Sum of���
squared error	

Least Squares

• What happens to the error if we try to fit one
line to these points?

• What pattern does it seem like these points

have?
Mar 16, 2012 CSCI211 - Sprenkle 8

x	

y	

Least Squares

• What happens to the error if we try to fit one
line to these points?
Ø Large error

•  Pattern: More like 3 lines
Mar 16, 2012 CSCI211 - Sprenkle 9

x	

y	

Segmented Least Squares
•  Points lie roughly on a sequence of line segments
•  Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn,

yn) with x1 < x2 < ... < xn, find a sequence of line
segments that minimizes f(x)

Mar 16, 2012 CSCI211 - Sprenkle 10
x	

y	

If I want the best fit, how many lines should I use?	

Segmented Least Squares
•  Points lie roughly on a sequence of line segments
•  Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn)

with x1 < x2 < ... < xn, find a sequence of line segments
that minimizes f(x)

Mar 16, 2012 CSCI211 - Sprenkle 11
x	

y	

goodness of fit	
 number of lines	

What's a reasonable choice for f(x) to
balance accuracy and parsimony?	

Segmented Least Squares
•  Points lie roughly on a sequence of several line segments.
•  Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with

x1 < x2 < ... < xn, find a sequence of line segments that
minimizes:
Ø  E: sum of the sums of the squared errors in each segment
Ø  L: the number of lines

•  Tradeoff function: E + c L, for some constant c > 0.

Mar 16, 2012 CSCI211 - Sprenkle 12
x	

y	

How should we define
an optimal solution?	

3/16/12	

3	

Segmented Least Squares

• What made it seem like the points were in 3
lines? What happened?

Mar 16, 2012 CSCI211 - Sprenkle 13

x	

y	

Segmented Least Squares
• What made it seem like the points were in 3

lines? What happened?

•  Error increased
•  Looking for change in linear approximation

Ø Where to partition points into line segments
Mar 16, 2012 CSCI211 - Sprenkle 14

x	

y	

Recall:
Properties of Problems for DP
•  Polynomial number of subproblems
•  Solution to original problem can be easily

computed from solutions to subproblems
•  Natural ordering of subproblems, easy to

compute recurrence

Mar 16, 2012 CSCI211 - Sprenkle 15

We need to:	

• Figure out how to break the problem into subproblems	

• Figure out how to compute solution from subproblems	

• Define the recurrence relation between the problems	

Toward a Solution

•  Consider just the first or last point

Mar 16, 2012 CSCI211 - Sprenkle 16

x	

y	

What do we know about those points?
their segments? cost of a segment?	

Toward a Solution

•  pn can only belong to one segment
Ø Segment: pi, …, pn

Ø Cost: c (cost for segment) + error of segment
• What is the remaining problem?

Mar 16, 2012 CSCI211 - Sprenkle 17

x	

y	

Toward a Solution

•  pn can only belong to one segment
Ø Segment: pi, …, pn

Ø Cost: c (cost for segment) + error of segment
• What is the remaining problem?

Ø Solve for p1, …, pi-1

Mar 16, 2012 CSCI211 - Sprenkle 18

x	

y	

Next: Formulate as a recurrence	

3/16/12	

4	

Dynamic Programming: Multiway Choice

•  Notation.
Ø OPT(j) = minimum cost for points p1, pi+1 , … , pj.
Ø e(i, j) = minimum sum of squares for points

pi, pi+1 , …, pj.

•  How do we compute OPT(j)?
Ø Last problem: binary decision (include job or not)
Ø This time: multiway decision

•  Which option do we choose?

Mar 16, 2012 CSCI211 - Sprenkle 19

Dynamic Programming: Multiway Choice

•  Notation.
Ø OPT(j) = minimum cost for points p1, pi+1 , … , pj.
Ø e(i, j) = minimum sum of squares for points

pi, pi+1 , …, pj.
•  To compute OPT(j):

Ø Last segment contains points pi, pi+1, … , pj for
some i

Ø Cost = e(i, j) + c + OPT(i-1).

Mar 16, 2012 CSCI211 - Sprenkle 20

!

OPT(j) =
0 if j = 0

min
1" i " j

e(i, j) + c + OPT(i #1){ } otherwise
$
%
&

' &

Segmented Least Squares: Algorithm

Mar 16, 2012 CSCI211 - Sprenkle 21

INPUT: n, p1,…,pN , c	
	
Segmented-Least-Squares()	
 M[0] = 0	
 e[0][0] = 0 # needed?	
 for j = 1 to n	
 for i = 1 to j	
 e[i][j] = least square error for the	

	 	 	 segment pi, …, pj	
	
 for j = 1 to n	
 M[j] = min 1 ≤ i ≤ j (e[i][j] + c + M[i-1])	
	
 return M[n]	

Costs?	

Segmented Least Squares:
 Algorithm Analysis

•  Bottleneck: computing e(i, j) for O(n2) pairs,
O(n) per pair using previous formula

Mar 16, 2012 CSCI211 - Sprenkle 22

can be improved to O(n2) by pre-computing various statistics	

INPUT: n, p1,…,pN , c	
	
Segmented-Least-Squares()	
 M[0] = 0	
 e[0][0] = 0	
 for j = 1 to n	
 for i = 1 to j	
 e[i][j] = least square error for the  
 	 	segment pi,…, pj	
	
 for j = 1 to n	
 M[j] = min 1 ≤ i ≤ j (e[i][j] + c + M[i-1])	
	
 return M[n]	

O(n3)	

can be improved to O(n2) by
pre-computing various statistics	

O(n2)	

How do we find the solution?	

Post-Processing: Finding the Solution

Mar 16, 2012 CSCI211 - Sprenkle 23

FindSegments(j):	
	if j = 0:	
	 	output nothing	
	else:	
	 	Find an i that minimizes ei,j + c + M[i-1]	
	 	Output the segment {pi, …, pj}	
	 	FindSegments(i-1) 	

Cost?	
 O(n2)	

Dynamic Programming Process

•  Determine optimal substructure of problem
Ø  Define the recurrence relation

•  Define algorithm to find the value of optimal
solution

•  Optionally, change algorithm to an iterative
rather than recursive solution

•  Define algorithm to find optimal solution
•  Analyze running time of algorithms

Mar 16, 2012 CSCI211 - Sprenkle 24

3/16/12	

5	

SUBSET SUMS and
KNAPSACKS

Mar 16, 2012 CSCI211 - Sprenkle 25

The Price is Right

•  Goal: Spend as much money as possible
without going over $100
Ø CD $18
Ø Jeans $40
Ø DVD $35
Ø Dinner $15
Ø Book $8
Ø Ice cream $5
Ø Shoes $62
Ø Pizza $7

Mar 16, 2012 CSCI211 - Sprenkle 26

Or, shopping with someone else’s money	

Possible solutions?	

Knapsack Problem

•  Given n objects and a "knapsack"
•  Item i weighs wi > 0 kilograms and

has value vi > 0
Ø Alternative: jobs require wi time

•  Knapsack has capacity of W kilograms
Ø Alternative: W is time interval that resource is

available

•  Greedy: repeatedly add item with maximum
ratio vi / wi.

•  Ex: { 5, 2, 1 } achieves only value = 35 ⇒
greedy not optimal.

Mar 16, 2012 CSCI211 - Sprenkle 27

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2
W = 11 Goal: fill knapsack so as to

maximize total value	

Towards a Recurrence…

• What do we know about the knapsack with
respect to item i?

Mar 16, 2012 CSCI211 - Sprenkle 28

Towards a Recurrence…

• What do we know about the knapsack with
respect to item i?
Ø Either select item i or not
Ø If don’t select

•  Pick optimum solution of remaining items
Ø Otherwise

•  What happens?
•  How does problem change?

Mar 16, 2012 CSCI211 - Sprenkle 29

Dynamic Programming: False Start

•  Def. OPT(i) = max profit subset of items 1,
…, i
Ø Case 1: OPT does not select item i

•  OPT selects best of { 1, 2, …, i-1 }
Ø Case 2: OPT selects item i

•  Accepting item i does not immediately imply that
we will have to reject other items
Ø No known conflicts

•  Without knowing what other items were selected
before i, we don't even know if we have enough
room for i

Mar 16, 2012 CSCI211 - Sprenkle 30
➡ Need more sub-problems!	

3/16/12	

6	

Looking Ahead

•  Exam 2 due next Friday
Ø Wednesday work period

•  No wiki for next week

Mar 16, 2012 CSCI211 - Sprenkle 31

