
3/30/12	

1	

Objectives

•  Network Flow
Ø Wrap up Max flow, Min cut
Ø Applications

Mar 30, 2012 1 CSCI211 - Sprenkle

Review: Flow Network
•  Abstraction for material flowing through the edges
•  G = (V, E) = directed graph, no parallel edges
•  Two distinguished nodes: s = source, t = sink
•  c(e) = capacity of edge e, > 0

Mar 30, 2012 CSCI211 - Sprenkle 2

s

2

3

4

5

6

7

t

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	
 10	

 10	

 10	
 15	
 4	

 4	

capacity	

source	
 sink	

Review: Flows
•  An s-t flow is a function that satisfies

Ø Capacity condition: For each e ∈ E: 0 ≤ f(e) ≤ c(e)
Ø Conservation condition: For each v ∈ V – {s, t}:
∑e into y f(e) = ∑e out of y f(e)

Mar 30, 2012 CSCI211 - Sprenkle 3

Flow can’t exceed
capacity	

Flow in == Flow out	

4	

0	

0	

0	

0	
 0	

0	
 4	
 4	

0	

0	

0	

0	

capacity	

flow	

0	

4	

 15	

s

2

3

4

5

6

7

t

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	
 10	

 10	

 10	
 15	
 4	

 4	

source	
 sink	

Review: Flows

•  The value of a flow f is v(f) = ∑e out of s f(e)

Mar 30, 2012 CSCI211 - Sprenkle 4

4	

0	

0	

0	

0	
 0	

0	
 4	
 4	

0	

0	

0	

Value = 4	

0	

capacity	

flow	

0	

4	

s

2

3

4

5

6

7

t

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	
 10	

 10	

 10	
 15	
 4	

 4	

Review: Cuts

•  An s-t cut is a partition (A, B) of V with s ∈ A
and t ∈ B

•  The capacity of a cut (A, B) is

Mar 30, 2012 CSCI211 - Sprenkle 5

s

2

3

4

5

6

7

t

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	
 10	

 10	

 10	
 15	
 4	

 4	
 A	

!

cap(A, B) = c(e)
e out of A
"

 Capacity =���
	
9 + 15 + 8 + 30���
	
= 62	

 B	

Review: Minimum Cut Problem

•  Goal: Find an s-t cut of minimum capacity
Ø Puts upperbound on maximum flow

Mar 30, 2012 CSCI211 - Sprenkle 6

s

2

3

4

5

6

7

t

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	
 10	

 10	

 10	
 15	
 4	

 4	

 A	
 Capacity = 10 + 8 + 10���
 = 28	

 B	

3/30/12	

2	

Review: Flow Value Lemma

Mar 30, 2012 CSCI211 - Sprenkle 7

10	

6	

6	

1	
 10	

3	
 8	
 8	

0	

0	

0	

11	

s

2

3

4

5

6

7

t

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	
 10	

 10	

 10	
 15	
 4	

 4	
 0	

 Value = 6 + 0 + 8 - 1 + 11���
 = 24	

4	

11	

A	

B	

!

f (e)
e out of A
" # f (e)

e in to A
" = v(f)

•  Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal
to the amount leaving s.

Review: Weak Duality

•  Let f be any flow and let (A, B) be any s-t cut.
Then the value of the flow is at most the cut’s
capacity

Mar 30, 2012 CSCI211 - Sprenkle 8

Cut capacity = 30 ⇒ Flow value ≤ 30 	

s

2

3

4

5

6

7

t

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	
 10	

 10	

 10	
 15	
 4	

 4	

Capacity = 30	

A	

Review: Certificate of Optimality

•  Corollary. Let f be any flow, and let (A, B) be
any cut. If v(f) = cap(A, B), then f is a max
flow and (A, B) is a min cut.

Mar 30, 2012 CSCI211 - Sprenkle 9

Value of flow = 28���
Cut capacity = 28 ⇒���

	
Flow value ≤ 28	

10	

9	

9	

14	

4	
 10	

4	
 8	
 9	

1	

0	
 0	

0	

14	

s

2

3

4

5

6

7

t

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	
 10	

 10	

 10	
 15	
 4	

 4	
 0	
A	

B	

Review

• What is the Ford-Fulkerson algorithm?
Ø When does it stop?

Mar 30, 2012 CSCI211 - Sprenkle 10

Analyzing Augmenting Path Algorithm

Mar 30, 2012 CSCI211 - Sprenkle 11

Ford-Fulkerson(G, s, t, c)	
 foreach e ∈ E f(e) = 0 # initially no flow	
 Gf = residual graph	
	
 while there exists augmenting path P	
 f = Augment(f, c, P) # change the flow	
 update Gf 	 	# build a new residual graph	
	
 return f	

Augment(f, c, P)	
 b = bottleneck(P) # edge on P with least capacity	
 foreach e ∈ P	
 if (e ∈ E) f(e) = f(e) + b # forward edge, é flow	
 else f(eR) = f(e) - b # forward edge, ê flow 	
 return f	

Intuition Behind Correctness of
F-F Algorithm

•  Let A be set of vertices reachable from s in
residual graph at end of F-F alg execution

•  By definition of A, s ∈ A
•  By definition of the F-F algorithm’s resulting

flow, t ∉ A

Mar 30, 2012 CSCI211 - Sprenkle 12

3/30/12	

3	

Ford-Fulkerson Algorithm

Mar 30, 2012 CSCI211 - Sprenkle 13

s

2

3

4

5 t 10	

 10	

 9	

 8	

 4	

 10	

 10	
 6	
 2	

10	

3	

9	

9	
 9	
 10	

7	

0	

 G:	

s

2

3

4

5 t 1	
 9	

 1	

 1	
 6	
 2	

 Gf:	

 10	

 7	
 10	

6	

 9	

9	

 3	

 1	

Flow value = 19	
Cut capacity = 19	

A	

• What do we know about the flow out of A?	

• What do we know about the flow into A?	

A: nodes reachable from s 	

A	

Ford-Fulkerson Algorithm

Mar 30, 2012 CSCI211 - Sprenkle 14

s

2

3

4

5 t 10	

 10	

 9	

 8	

 4	

 10	

 10	
 6	
 2	

10	

3	

9	

9	
 9	
 10	

7	

0	

 G:	

s

2

3

4

5 t 1	
 9	

 1	

 1	
 6	
 2	

 Gf:	

 10	

 7	
 10	

6	

 9	

9	

 3	

 1	

Flow value = 19	
Cut capacity = 19	

• What do we know about the flow out of A?	

• What do we know about the flow into A?	

A	

• All edges out of A are completely saturated	

• All edges into A are completely unused	

A	

Max-Flow Min-Cut Theorem

•  Proof strategy. Prove both simultaneously by
showing the following are equivalent:
 (i) There exists a cut (A, B) such that v(f) = cap(A, B).
 (ii) Flow f is a max flow.
 (iii) There is no augmenting path relative to f.

15 Mar 30, 2012 CSCI211 - Sprenkle

Max-flow min-cut theorem. [Ford-Fulkerson 1956] ���
The value of the max flow is equal to the value of the min cut.	

Augmenting path theorem. ���
Flow f is a max flow iff there are no augmenting paths. 	

See formal proof in book	

Example

Mar 28, 2012 CSCI211 - Sprenkle 16

s

1

2

t

10	

10	

20	
 0	

0	
 20	

20	

20	

20	

30	

Flow value = 20	

s

1

2

t

10	

10	

0	

0	

10	

20	

20	

20	

Residual Graph	
Graph	

Analyzing Augmenting Path Algorithm

Mar 30, 2012 CSCI211 - Sprenkle 17

Ford-Fulkerson(G, s, t, c)	
 foreach e ∈ E f(e) = 0 # initially no flow	
 Gf = residual graph	
	
 while there exists augmenting path P	
 f = Augment(f, c, P) # change the flow	
 update Gf 	 	# build a new residual graph	
	
 return f	

Augment(f, c, P)	
 b = bottleneck(P) # edge on P with least capacity	
 foreach e ∈ P	
 if (e ∈ E) f(e) = f(e) + b # forward edge, é flow	
 else f(eR) = f(e) - b # forward edge, ê flow 	
 return f	

Analyzing Augmenting Path Algorithm

Mar 30, 2012 CSCI211 - Sprenkle 18

Ford-Fulkerson(G, s, t, c)	
 foreach e ∈ E f(e) = 0 # initially no flow	
 Gf = residual graph	
	
 while there exists augmenting path P	
 f = Augment(f, c, P) # change the flow	
 update Gf 	 	# build a new residual graph	
	
 return f	

Augment(f, c, P)	
 b = bottleneck(P) # edge on P with least capacity	
 foreach e ∈ P	
 if (e ∈ E) f(e) = f(e) + b # forward edge, é flow	
 else f(eR) = f(e) - b # forward edge, ê flow 	
 return f	

O(m)	

O(m)	

O(m)	

O(m)	

O(n)	

O(n)	

O(1)	

O(1)	

Total: O(n) à O(m), since n ≤ 2m

Total: O(Fm)

Find path: O(m); Iterations: O(F) iterations, where F = max flow	

3/30/12	

4	

Running Time
•  Assumption. All capacities are integers between 1 and C.
•  Invariant. Every flow value f(e) and every residual

capacity’s cf(e) remains an integer throughout algorithm.

•  Theorem. The algorithm terminates in at most v(f*) ≤ nC
iterations.

•  Pf. Each augmentation increases value by at least 1.
•  Corollary. If C = 1, Ford-Fulkerson runs in O(mn) time.

•  Integrality theorem. If all capacities are integers, then
there exists a max flow f for which every flow value f(e) is
an integer.

•  Pf. Since algorithm terminates, theorem follows from
invariant.

19 Mar 30, 2012 CSCI211 - Sprenkle

Power of Max Flow Problem

Mar 30, 2012 CSCI211 - Sprenkle 20

Some problems with non-trivial combinatorial searches
can be formulated as max flow or���

 min cut in a directed graph	

BIPARTITE MATCHING

Mar 30, 2012 CSCI211 - Sprenkle 21

Bipartite Matching
•  Input: undirected, bipartite graph G = (L ∪ R, E)

Ø  Edges: one end in L, one end in R
•  Matching M ⊆ E such that each node appears in at most

1 edge in M.

Mar 30, 2012 CSCI211 - Sprenkle 22

1

3

5

1'

3'

5'

2

4

2'

4'

matching	

1-2', 3-1', 4-5' 	

R	
L	

V	

Problem: find matching of largest possible size	

Can we do better?	

Bipartite Matching
•  Input: undirected, bipartite graph G = (L ∪ R, E)

Ø  Edges: one end in L, one end in R
•  Matching M ⊆ E such that each node appears in at most

1 edge in M.

Mar 30, 2012 CSCI211 - Sprenkle 23

V	

1

3

5

1'

3'

5'

2

4

2'

4'

R	
L	

max matching

1-1', 2-2', 3-3' 4-4'

Max Flow Formulation
1.  Create digraph G' = (L ∪ R ∪ {s, t}, E')
2.  Direct all edges from L to R, and assign unit capacity
3.  Add source s, and unit capacity edges from s to each node in L
4.  Add sink t, and unit capacity edges from each node in R to t

Mar 30, 2012 CSCI211 - Sprenkle 24

1

3

5

2

4

s

1	

1'

3'

5'

2'

4'

t

1	

1	

R	
L	

G'	

Why does
this work?	

What is cost of
generating

model?	

What is C ���
in this model?	

3/30/12	

5	

Bipartite Matching: Proof of Correctness

•  Theorem. Max cardinality matching in G =
value of max flow in G'.

•  Proof: Need to show in both directions

Mar 30, 2012 CSCI211 - Sprenkle 25

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1	
 1	

1	
1

3

5

1'

3'

5'

2

4

2'

4'

G'	
G	

Bipartite Matching: Proof of Correctness
•  Theorem. Max cardinality matching in G = value of

max flow in G'.
•  Pf. à

Ø Given max matching M of cardinality k.
Ø Consider flow f that sends 1 unit along each of k paths.
Ø  f is a flow and has cardinality k. ▪

Mar 30, 2012 CSCI211 - Sprenkle 26

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1	
 1	

1	
1

3

5

1'

3'

5'

2

4

2'

4'

G'	
G	

Bipartite Matching: Proof of Correctness
•  Theorem. Max cardinality matching in G = value of max flow in G'.
•  Pf. ß

Ø  Let f be a max flow in G' of value k.
Ø  Integrality theorem ⇒ k is integral and can assume f is 0-1.
Ø  Consider M = set of edges from L to R with f(e) = 1.

•  each node in L and R participates in at most one edge in M
•  |M| = k: consider cut (L ∪ s, R ∪ t) ▪

Mar 30, 2012 CSCI211 - Sprenkle 27

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1	
 1	

1	
1

3

5

1'

3'

5'

2

4

2'

4'

G'	
G	

Summary of Approach

1. Model problem as a flow network
2. Run Ford-Fulkerson algorithm
3. Analyze running time

Ø  Creating model
Ø  FF algorithm

Mar 30, 2012 CSCI211 - Sprenkle 28

EXTENSIONS TO MAX FLOW

Mar 30, 2012 CSCI211 - Sprenkle 29

Circulation with Demands

•  Directed graph G = (V, E)
•  Edge capacities c(e), e ∈ E
•  Node supply and demands d(v), v ∈ V

Mar 30, 2012 CSCI211 - Sprenkle 30

•  d(v) > 0 à demand	

•  d(v) < 0 à supply	

•  d(v) = 0 à transshipment	

3/30/12	

6	

Example Graph:
Circulation with Demands

Mar 30, 2012 CSCI211 - Sprenkle 31

3	

10	
 6	

-7	

-8	

11	

-6	

4	

9	

7	

3	

10	
 0	

7	

4	

4	

6	

6	

7	

1	

4	
 2	

flow	

capacity	

demand	

supply	

Circulation with Demands
•  Circulation with demands

Ø Directed graph G = (V, E)
Ø Edge capacities c(e), e ∈ E
Ø Node supply and demands d(v), v ∈ V

•  Def. A circulation is a function that satisfies:
Ø For each e ∈ E: 0 ≤ f(e) ≤ c(e) (capacity)
Ø For each v ∈ V: (conservation)

Mar 30, 2012 CSCI211 - Sprenkle 32

!

f (e)
e in to v
" # f (e)

e out of v
" = d (v)

demand if d(v) > 0; supply if d(v) < 0; transshipment if d(v) = 0	

Circulation problem: ���
given (V, E, c, d), does a circulation exist?	

(Can we satisfy demand with supply?)	

Example Graph:
Circulation with Demands

Mar 30, 2012 CSCI211 - Sprenkle 33

3	

10	
 6	

-7	

-8	

11	

-6	

4	

9	

7	

3	

10	
 0	

7	

4	

4	

6	

6	

7	

1	

4	
 2	

flow	

capacity	

demand	

supply	

Circulation with Demands

•  Necessary condition:
 sum of supplies = sum of demands

Mar 30, 2012 CSCI211 - Sprenkle 34

!

d (v)
v : d (v) > 0
" = # d (v)

v : d (v) < 0
" =: D

3	

10	
 6	

-7	

-8	

11	

-6	

4	

9	

7	

3	

10	
 0	

7	

4	

4	

6	

6	

7	

1	

4	
 2	

flow	

capacity	

demand	

supply	

Circulation with Demands:
 Towards Max Flow Formulation

Mar 30, 2012 CSCI211 - Sprenkle 35

G:	

Ideas about how we can formulate this as a max flow problem?	

3	

10	
 6	

-7	

-8	

11	

-6	

4	

9	

7	

3	

10	
 0	

7	

4	

4	

6	

6	

7	

1	

4	
 2	

flow	

capacity	

demand	

supply	

Circulation with Demands:
 Max Flow Formulation

•  Add new source s and sink t
•  For each v with d(v) < 0, add edge (s, v) with capacity -d(v)
•  For each v with d(v) > 0, add edge (v, t) with capacity d(v)
•  Claim: G has circulation iff G' has max flow of value D

Mar 30, 2012 CSCI211 - Sprenkle 36

G':	

supply	

3	

10	
 6	
 9	

0	

7	

4	

7	

4	

s

t

10	
 11	

7	
 8	
 6	

saturates all edges���
leaving s and entering t	

demand	

3/30/12	

7	

Circulation with Demands:
Characterization
•  Given (V, E, c, d), there does not exist a

circulation iff there exists a node partition
(A, B) such that

 Σv∈B dv > cap(A, B)

•  Pf?
Ø What can we use to prove this?

Mar 30, 2012 CSCI211 - Sprenkle 37

supply of nodes in B + ���
max capacity of edges going from A à B	

demand by	

nodes in B	

exceeds

Circulation with Demands:
Characterization
•  Given (V, E, c, d), there does not exist a

circulation iff there exists a node partition
(A, B) such that

 Σv∈B dv > cap(A, B)

•  Pf idea. Look at min cut in G'.

Mar 30, 2012 CSCI211 - Sprenkle 38

supply of nodes in B + ���
max capacity of edges going from A à B	

demand by	

nodes in B	

exceeds

ANOTHER EXTENSION:
LOWER BOUNDS

Mar 30, 2012 CSCI211 - Sprenkle 39

Circulation with Demands and
Lower Bounds
•  Feasible circulation

Ø Directed graph G = (V, E)
Ø Edge capacities c(e) and lower bounds (e), e ∈ E
Ø Node supply and demands d(v), v ∈ V

•  Def. A circulation is a function that satisfies:
Ø For each e ∈ E: 0 ≤ (e) ≤ f(e) ≤ c(e) (capacity)
Ø For each v ∈ V: (conservation)

Mar 30, 2012 CSCI211 - Sprenkle 40

!

f (e)
e in to v
" # f (e)

e out of v
" = d (v)

Circulation problem with lower bounds.���
Given (V, E, , c, d), does a circulation exist?	

Force flow to use���
 certain edges	

Circulation with Demands and
Lower Bounds

•  Model lower bounds with demands
Ø Send (e) units of flow along edge e
Ø Update demands of both endpoints

Mar 30, 2012 CSCI211 - Sprenkle 41

v w [2, 9]	

lower
bound	

upper
bound	

v w
d(v)	
 d(w)	
 d(v) + 2	
 d(w) - 2	

G	
 G'	

7	

capacity	

Proof in book	

Supply and demand decrease	
 7.8 SURVEY DESIGN

Mar 30, 2012 CSCI211 - Sprenkle 42

3/30/12	

8	

Survey Design
•  Design survey asking consumers about

products
•  Can only survey a consumer about a product

if they own it
Ø Consumer can own multiple products

•  Ask consumer i between ci and ci’ questions
•  Ask between pj and pj’ consumers about

product j	

Mar 30, 2012 CSCI211 - Sprenkle 43

Goal: Design a survey that meets these specs, if possible.	

How can we model this problem?	

Bipartite Graph

•  Nodes: customers and products
•  Edge between customer and product means

customer owns product
•  For each customer, range of # of products

asked about
•  For each product, range of # of customers

asked about it

Mar 30, 2012 CSCI211 - Sprenkle 44

What does the flow represent?	

Next Week

• Wiki - Tuesday
Ø Skip the rest of Chapter 6 (unless you want to)
Ø Chapter 7 up through 7.2, 7.5, 7.7

•  Problem Set 9 due Friday
Ø Implementing pretty print
Ø Network flow problems

•  As usual, check out the solved exercises at end
of chapter

Mar 30, 2012 CSCI211 - Sprenkle 45

