Objectives

Dynamic Programming
~ Improving Shortest Path

Network Flow

Mar 28, 2011 CSCI211 - Sprenkle

Shortest Paths: Failed Attempts

Dijkstra. Can fail if negative edge costs

AUN
S/ ’ ’ \V
| -6/
SN
Re-weighting. Adding a constant to every
edge weight can fail Orig: New:
g/ ~— g 4 10
/ \
e o
3\ 0 3 3 12
S
Mar 28, 2011 CSCI211 - Sprenkle 3

3/28/11

Shortest Paths

Problem: Given a directed graph G = (V, E),
with edge weights c,,,, find shortest path from
node s to node t

allow negative weights
Allows modeling other phenomena

<l —
/

Mar 28, 2011 CSCI211 - Sprenkle 2

Shortest Paths: Negative Cost Cycles

Ps YOoun
N

7—> (W) <0

If some path from s to f contains a negative
cost cycle, there does not exist a shortest s-f
path
Otherwise, there exists one that is simple
(i.e., does not repeat nodes)
» Path has at most n-1 edges, where n is # of
nodes in graph

Mar 28, 2011 CSCI211 - Sprenkle

Towards a Recurrence

OPT(i,v): minimum cost of a v-t path P using
at most i edges
» This formulation eases later discussion

Original problem is OPT(n-1, s)

Break down into subproblems based on iand v

CVW

Costs on all edges

Shortest Paths: Dynamic Programming

OPT(i, v) = minimum cost of a v-t path P
using at most i edges
» Case 1: P uses at most i-1 edges
OPT(i, v) = OPT(i-1, v)
» Case 2: P uses exactly j edges

if (v, w) is first edge, then OPT uses (v, w), and
then selects best w-t path using at most /-1 edges

Cost: cost of chosen edge
0 if i=0

@) = { min{ OPT(i-1,v), min {OPT(i-1, w)+c,, }} otherwise
vWEE

Mar 28, 2011 CSCI211 - Sprenkle

Mar 28, 2011 CSCI211 - Sprenkle 5

Shortest Paths: Analysis

Shortest-Path(G, t)
n = number of nodes in G
foreach node v € V
M0, v] = » # infinite cost to reach all nodes
MO, t] =0 # no cost to reach destination from dest

for i =1 to n-1 O(n)
foreach node v € V
M[i, v] = M[i-1, v] # at most cost of 1 less O(m)
foreach edge (v, w) € E
M[i, v] = min(M[i, v], M[i-1, W] + c,)

Time: O(n?), ®(mn)
Space: 8(n2)

Example

Number of edges in path

0 | 1|2 |3] 4|5
t 0 0 0 0 0
a

b | «

c LY

d | «

e 0

Mar 28, 2011

CSCI211 - Sprenkle

Mar 28, 2011 CSCI211 - Sprenkle 7
Exam ple Number of edges in path
0 1 2 3 4 5

t 0 0 0 0 0 0

a

b)

c)

d)

e)

‘ What edges do we need to look at for each node?

Example

Mar 28, 2011

Number of edges in path

0 | 1 [2] 3] 4
t 0 0 0 0 0
a
b | «
c L)
d |
e 0

CSCI211 - Sprenkle

Mar 28, 2011 CSCI211 - Sprenkle 9
Exam ple Number of edges in path
0 1 2 3 4 5
t 0 0 0 0 0
a o | -3
b 3)
c i 3
d © | 4
e ° 2
Mar 28, 2011 CSCI211 - Sprenkle "

Example

Mar 28, 2011

Number of edges in path

0 1 2 3 4
t 0 0 0 0 0
a -3 | -3
b = = 0
c ° 3 3
d = 4 3
e ° 2 0

CSCI211 - Sprenkle

3/28/11

Example Number of edges in path
0 1 2 3 4 5
t 0 0 0 0 0 0
a © | -3[-3] 4
b | w| | 0] -2
c s 3 3 3
d il 4 3 3
e s 2 0 0
Mar 28, 2011 CSCI211 - Sprenkle 13

Example Number of edges in path
0 1 2 3 4 5

t 0 0 0 0 0
a 3| 3| 4] -6
b il il 0| -2 | -2
c s 3 3 3 3
d il 4 3 3

e i 2 0 0 0

Mar 28, 2011 CSCI211 - Sprenkle 14

Example Number of edges in path

0 1 2 3 4
t 0 0 0 0 0
a © | -3|-3|4]|6]|-6
b il @ 0|-2]-2]-2
c I 3 3 3 3 3
d @ 4 3 3 2 0
e s 2 0 0 0 0

Mar 28, 2011 CSCI211 - Sprenkle 15

Shortest Paths: Implementation

Shortest-Path(G, t)
n = number of nodes in G
foreach node v € V
M[@, v] = # infinite cost to reach all nodes
M@, t] =0 # no cost to reach destination from dest

for i =1 to n-1
foreach node v € V
M[i, v] = M[i-1, v] # at most cost of 1 less
foreach edge (v, w) € E
M[i, v] = min(M[i, v], M[i-1, w] + c,,)

Shortest path length is M[n-1, s]

Mar 28, 2011 CSCI211 - Sprenkle 16

Discussion
How can we find the shortest path?

What information do we need?

Based on experience from example, what
could we do to improve the algorithm’s
runtime and space requirements?

Mar 28, 2011 CSCI211 - Sprenkle 17

Shortest Paths: Practical Improvements

To find the shortest paths, maintain a
successor for each node
Practical improvements
Maintain only one array M[v] = shortest v-t path
length that we have found so far
No need to check edges of the form (v, w)
unless M[w] changed in previous iteration
Theorem. Throughout algorithm, M[v] is
length of some v-t path.
After i rounds of updates, the value M[v] is no

larger than the length of shortest v-t path using <
i edges

Mar 28, 2011 CSCI211 - Sprenkle 18

3/28/11

Bellman-Ford: Efficient Implementation

Push-Based-Shortest-Path(G, s, t)
foreach node v € V
M[V] = =
successor[v] = ¢

M[t] =
for i =1 to n-1
foreach node w € V
if M[w] has been updated in previous iteration
foreach node v such that (v, w) € E
if M[v] > M[w] + c,,
M[v] = M[w] + c,,
successor[v] = w

if no M[w] value changed in iteration i, stop.

Analysis of running time, space?

Mar 28, 2011 CSCI211 - Sprenkle 19

Bellman-Ford: Efficient Implementation

Push-Based-Shortest-Path(G, s, t)
foreach node v € V
Mv] = ©
successor[v] = ¢

M[t] = 0
for i =1 to n-1
foreach node w € V
if M[w] has been updated in previous iteration
foreach node v such that (v, w) € E
if M[v] > M[w] + c,,
M[v] = M[w] + c,,
successor[v] = w

if no M[w] value changed in iteration i, stop.

Space: O(m + n)
Running time: O(mn) worst case but substantially faster in practice
Mar 28, 2011 CSCI211 - Sprenkle 20

Bellman-Ford: Efficient Implementation

Push-Based-Shortest-Path(G, s, t)
foreach node v € V
MIV] =
successor[v] = ¢

M[t] =
for i =1 to n-1
foreach node w € V
if M[w] has been updated in previous iteration
foreach node v such that (v, w) € E
if M[v] > M[w] + c,,,
MLv] = M[w] + c,,
successor[v] = w

if no M[w] value changed in iteration i, stop.

How do we get the solution if only have O(m+n) space? ‘

Mar 28, 2011 CSCI211 - Sprenkle 21

DISTANCE VECTOR
PROTOCOL

Mar 28, 2011 CSCI211 - Sprenkle 22

Application of Shortest-Path Problem

Routers in communication network need to
find most efficient path to destination
Model of communication network

Nodes = routers

Edge = direct communication link

Cost of edge = delay on link

Possible solution: Dijkstra’s algorithm
Why?

Mar 28, 2011 CSCI211 - Sprenkle 23

Distance Vector Protocol

Model of communication network
Nodes = routers
Edge = direct communication link
Cost of edge = delay on link +—— Naturally non-negative

However, Dijkstra's algorithm requires global
information of network
Create whole paths from node

Better: use only local information

Mar 28, 2011 CSCI211 - Sprenkle 24

3/28/11

Distance Vector Protocol

Model of communication network
~» Nodes = routers
» Edge = direct communication link
» Cost of edge = delay on link «—— Naturally non-negative

Bellman-Ford uses only local knowledge of
neighboring nodes

» Distribute algorithm: each node v maintains its
value M[v]

» Updates its value after getting neighbor’s values:

rninwEV (va + M[W])

Mar 28, 2011 CSCI211 - Sprenkle 25

Distance Vector Protocol

Each router maintains vector

Algorithm: each router performs n computations,
1 for each potential destination node

» Periodically gets updates from neighbors
Synchronization issues

» Routers don’t run in lockstep

» Order foreach loop executes is not important

» Algorithm still converges even if updates are
asynchronous

"Routing by rumor”
» Reliance on neighbors

Mar 28, 2011 CSCI211 - Sprenkle 26

Issues with Distance Vector Protocol

Original algorithm developed for one central
machine

» Costs known in advance, didn’t change

Edge costs may change during algorithm (or
fail completely)

e
S b= |>V | t "counting to infinity"
2 |

deleted

Mar 28, 2011 CSCI211 - Sprenkle 27

Path Vector Protocols

Link state routing
» Each router stores entire path

Not just the distance and the first hop
» Based on Dijkstra's algorithm

» Avoids "counting-to-infinity" problem and related
difficulties

» Tradeoff: requires significantly more storage
Ex. Border Gateway Protocol (BGP), Open
Shortest Path First (OSPF)

Milestone: Page 300 in book

Mar 28, 2011 CSCI211 - Sprenkle 28

Next Week

Wiki - Wednesday

~ Finish reading Chapter 6: 6.4-6.8
Problem Set 8 due Friday

» Implementing pretty printing

Mar 28, 2011 CSCI211 - Sprenkle 29

3/28/11

