
1/11/13	

1	

Objectives

•  Proving correctness of
Stable Matching algorithm

•  Analyzing algorithms
•  Asymptotic running times

Jan 11, 2013 Sprenkle - CSCI211 1

Wiki	

Everyone log in okay?	

Decide on either using a blog or wiki-style journal?	

Review

• What is the stable matching problem?
Ø What is given?
Ø What is output?

•  Provide a sketch of the algorithm
• What were our observations about how a

woman’s state changed over the duration of
the algorithm?

Jan 11, 2013 Sprenkle - CSCI211 2

Stable Matching: Proving Correctness

•  Need to show
Ø Algorithm terminates
Ø Result is a perfect matching
Ø Result is a stable matching

Jan 11, 2013 Sprenkle - CSCI211 3

Propose-And-Reject Algorithm

Jan 11, 2013 Sprenkle - CSCI211 4

Initialize each person to be free	
while (some man is free and hasn't proposed to every woman) 	
 Choose such a man m	
 w = 1st woman on m's list to whom m has not yet proposed	
 if w is free	
 assign m and w to be engaged	
 else if w prefers m to her fiancé m'	
 assign m and w to be engaged and m' to be free	
 else	
 w rejects m	

[Gale-Shapley 1962]	

Does algorithm terminate?	

Proof of Correctness: Termination

•  Claim. Algorithm terminates after at most n2
iterations of while loop.
Ø Hint: How wouldn’t the algorithm terminate?

5 Jan 11, 2013 Sprenkle - CSCI211

Proof of Correctness: Termination

•  Claim. Algorithm terminates after at most n2
iterations of while loop.

•  Pf. Each time through the while loop, a man
proposes to a new woman. There are only n2
possible proposals.

6 Jan 11, 2013 Sprenkle - CSCI211

1/11/13	

2	

Algorithm Analysis

•  Perfect matching: everyone is matched
monogamously

•  Hint: in algorithm, we know if m is free at
some point in the execution of the algorithm,
then there is a woman to whom he has not
yet proposed.

Jan 11, 2013 Sprenkle - CSCI211 7

Prove that final matching is a perfect matching	

Proof of Correctness: Perfection

•  Claim. All men and women get matched.
•  Pf. (by contradiction)

Ø Where should we start?

Jan 11, 2013 Sprenkle - CSCI211 8

Suppose that some man m is not
matched upon termination of algorithm	

Proof of Correctness: Perfection
•  Claim. All men and women get matched.
•  Pf. (by contradiction)

Ø Suppose that m is not matched upon termination
of algorithm

Ø Then some woman, say w, is not matched upon
termination.

Ø By Observation 2, w was never proposed to.
Ø But, last man proposed to everyone, since he

ends up unmatched
•  (by the while loop’s condition)

Ø Contradiction ▪

9 Jan 11, 2013 Sprenkle - CSCI211

Proof of Correctness: Stability

•  Claim. No unstable pairs.

10

Bertha-Zeus	

Amy-Yancey	

S*	

. . .	

Jan 11, 2013 Sprenkle - CSCI211

What does it mean to be unstable, ���
given matching S*?	

How do you think we should ���
approach this proof?	

Proof of Correctness: Stability

•  Claim. No unstable pairs.
•  Pf. (by contradiction)

Ø Suppose m-w is an unstable pair:
each prefers each other to partner in
Gale-Shapley matching S*.

11

Bertha-Zeus	

Amy-Yancey	

S*	

. . .	

Jan 11, 2013 Sprenkle - CSCI211

What are the possibilities that lead to this?	

Proof of Correctness: Stability
•  Claim. No unstable pairs.
•  Pf. (by contradiction)

Ø Suppose m-w is an unstable pair: each prefers each
other to partner in Gale-Shapley matching S*.

Ø Case 1: m never proposed to w
 ⇒ m prefers his GS partner to w.
 ⇒ m-w is stable.

Ø Case 2: m proposed to w
 ⇒ m rejected w (right away or later)
 ⇒ w prefers her GS partner to m.
 ⇒ m-w is stable.

Ø  In either case m-w is stable, a contradiction. ▪

12

Bertha-Zeus	

Amy-Yancey	

S*	

. . .	

men propose in
decreasing order of
preference	

women only trade up	

Jan 11, 2013 Sprenkle - CSCI211

1/11/13	

3	

Summary So Far…

•  Stable matching problem. Given n men
and n women and their preferences, find a
stable matching if one exists.

•  Gale-Shapley algorithm. Guarantees to
find a stable matching for any input

13 Jan 11, 2013 Sprenkle - CSCI211

Remaining Questions: 	

•  If there are multiple stable matchings, which one does GS

find? (see book)	

•  How to implement GS algorithm efficiently? (Monday)	

•  What is our goal running time?	

Review: Our Process

1. Understand/identify problem
Ø  Simplify as appropriate

2. Design a solution
3. Analyze

Ø  Correctness, efficiency
Ø  May need to go back to step 2 and try again

4.  Implement
Ø  Within bounds shown in analysis

Jan 11, 2013 Sprenkle - CSCI211 14

Stable Matching Summary

•  Stable matching problem. Given
preference profiles of n men and n women,
find a stable matching.

•  Gale-Shapley algorithm. Finds a stable
matching in O(n2) time.
Ø Claim: can implement algorithm efficiently

15

no man and woman prefer to be with���
each other than assigned partner	

Jan 11, 2013 Sprenkle - CSCI211

Lloyd
Shapley

•  2012 Nobel Memorial Prize in Economic
Sciences “for the theory of stable allocations
and the practice of market design.”

Jan 11, 2013 Sprenkle - CSCI211 16

1980	
2012	

TODAY’S GOAL:
DEFINE ALGORITHM

EFFICIENCY
Jan 11, 2013 Sprenkle - CSCI211 17

Our Process

1. Understand/identify problem
Ø  Simplify as appropriate

2. Design a solution
3. Analyze

Ø  Correctness, efficiency
Ø  May need to go back to step 2 and try again

4.  Implement
Ø  Within bounds shown in analysis

Jan 11, 2013 Sprenkle - CSCI211 18

(On Monday)	

1/11/13	

4	

Computational Tractability

Jan 11, 2013 Sprenkle - CSCI211 19

Charles Babbage
(1864)	

As soon as an Analytic Engine exists, it will necessarily guide the future
course of the science. Whenever any result is sought by its aid, the

question will arise - By what course of calculation can these results be

arrived at by the machine in the shortest time?

	
 	
 	
 	
 	
-- Charles Babbage	

Analytic Engine
(schematic)	

http://plan28.org/	

Brute Force

•  For many non-trivial problems, there is a
natural brute force search algorithm that
checks every possible solution
Ø Typically takes 2N time or worse for inputs of

size N
Ø Unacceptable in practice

Jan 11, 2013 Sprenkle - CSCI211 20

Example: How many possible solutions are there in the
stable matching problem?	

	

In other words, how many possible perfect matchings are there?
For each perfect match, we’ll check if it’s stable.	

“Exponential”	

Brute Force

•  For many non-trivial problems, there is a
natural brute force search algorithm that
checks every possible solution
Ø Typically takes 2N time or worse for inputs of

size N
Ø Unacceptable in practice

•  Example: Stable matching: n! with n men and
n women
Ø If n increases by 1, what happens to the running

time?

Jan 11, 2013 Sprenkle - CSCI211 21

“Exponential”	

How Do We Measure Runtime?

Jan 11, 2013 Sprenkle - CSCI211 22

Worst-Case Running Time

•  Obtain bound on largest possible running
time of algorithm on input of a given size N
Ø Generally captures efficiency in practice
Ø Draconian view but hard to find effective

alternative

Jan 11, 2013 Sprenkle - CSCI211 23

What are alternatives to worst-case analysis?	

Average Case Running Time

•  Obtain bound on running time of algorithm on
random input as a function of input size N
Ø Hard (or impossible) to accurately model real

instances by random distributions
Ø Algorithm tuned for a certain distribution may

perform poorly on other inputs

Jan 11, 2013 Sprenkle - CSCI211 24

1/11/13	

5	

Towards a Definition of Efficient…

•  Desirable scaling property: When input size
doubles, algorithm should only slow down by
some constant factor C
Ø Doesn’t grow multiplicatively

Jan 11, 2013 Sprenkle - CSCI211 25

Polynomial-Time

ü Desirable scaling property: When input size
doubles, algorithm should only slow down by
some constant factor C
Ø What happens if we double N?

•  Defn. An algorithm is polynomial time (or
polytime) if the above scaling property holds.

Jan 11, 2013 Sprenkle - CSCI211 26

Defn. There exists constants c > 0 and d > 0 ���
such that on every input of size N, ���

 its running time is bounded by c Nd steps.	

Algorithm Efficiency
•  Defn. An algorithm is efficient if its running time is

polynomial
•  Justification: It really works in practice!

Ø  In practice, poly-time algorithms that people develop
almost always have low constants and low exponents

Ø Breaking through the exponential barrier of brute force
typically exposes some crucial structure of the problem

•  Exceptions
Ø Some poly-time algorithms do have high constants and/

or exponents (6.02 × 1023 × N20) and are useless in
practice

Ø Some exponential-time (or worse) algorithms are widely
used because the worst-case instances seem to be rare

Jan 11, 2013 Sprenkle - CSCI211 27

Running Times

Jan 11, 2013 Sprenkle - CSCI211 28

Input Size	

Polynomial 	

Visualizing Running Times

Jan 11, 2013 Sprenkle - CSCI211 29

•  Huge difference from polynomial to not polynomial	

•  Differences in runtime matter more as input size increases	

Polynomial	

2n	

1.5n	

n10	

n3	

0.000001
1E+10
1E+26
1E+42
1E+58
1E+74
1E+90

1E+106
1E+122
1E+138
1E+154
1E+170
1E+186
1E+202
1E+218
1E+234
1E+250
1E+266
1E+282

1 10 100 1000

R
un

ni
ng

 T
im

e

Input Size

n2	

n	

Comparing 10000 n2 and n3

Jan 11, 2013 Sprenkle - CSCI211 30

As input size increases, n3 dominates large constant * n2	

è Care about running time as input size approaches infinity	

è Only care about highest-order term	

n3	

10000 n2	

0.000001

0.0001

0.01

1

100

10000

1000000

100000000

1E+10

1E+12

1E+14

1E+16

1E+18

1E+20

1E+22

1E+24

1 10 100 1000 10000 1000000 10000000 100000000

R
un

ni
ng

 T
im

e

Input Size

1/11/13	

6	

Asymptotic Order of Growth:
Upper Bounds

•  T(n) is the worst case running time of an
algorithm

• We say that T(n) is O(f(n)) if there exist

constants c > 0 and n0 ≥ 0 such that for all

n ≥ n0, we have T(n) ≤ c · f(n)

Jan 11, 2013 Sprenkle - CSCI211 31

sufficiently large n	
 T(n) is bounded above by a
constant multiple of f(n)	

èT is asymptotically upperbounded by f	

c cannot depend on n	

“order f(n)”	

Asymptotic Order of Growth:
Upper Bounds

Jan 11, 2013 Sprenkle - CSCI211 32

f(n)	

T(n)	

n0	

Point at which f(n) > T(n) 	

Upper Bounds Example

•  Find an upperbound for
 T(n) = pn2 + qn + r

Ø p, q, r are positive constants

Jan 11, 2013 Sprenkle - CSCI211 33

Idea: Let’s inflate the terms in the
equation so that all terms are n2	

Upper Bounds Example
•  T(n) = pn2 + qn + r

Ø p, q, r are positive constants
•  For all n ≥ 1,

è T(n) ≤ cn2, where c = p+q+r
è T(n) = O(n2)
•  Also correct to say that T(n) = O(n3)

Jan 11, 2013 Sprenkle - CSCI211 34

T(n) = pn2 + qn + r	

	
≤ pn2 + qn2 + rn2 	

	
= (p+q+r) n2	

	
= c n2	

Notation

•  T(n) = O(f(n)) is a slight abuse of notation
Ø Asymmetric:

•  f(n) = 5n3; g(n) = 3n2

•  f(n) = O(n3) = g(n)
•  But f(n) ≠ g(n).

Ø Better notation: T(n) ∈ O(f(n))
•  Meaningless statement. Any comparison-

based sorting algorithm requires at least
O(n log n) comparisons
Ø Use Ω for lower bounds

Jan 11, 2013 Sprenkle - CSCI211 35

Asymptotic Order of Growth:
Lower Bounds
•  Complementary to upper bound

•  T(n) is Ω(f(n)) if there exist constants ε > 0

and n0 ≥ 0 such that for all n ≥ n0 , we have

T(n) ≥ ε · f(n)

Jan 11, 2013 Sprenkle - CSCI211 36

èT is asymptotically lowerbounded by f	

sufficiently large n	

T(n) is bounded below by a
constant multiple of f(n)	

ε cannot depend on n	

1/11/13	

7	

Assignments
•  Continue reading Chapter 2

Ø Covering later sections on Monday
•  Journal for Chapter 1-2.2 due Tuesday

Ø No journal for Chapter 1.2
•  Problem Set 1 due next Friday in class

Ø Proof, stable matching, asymptotic bound
Ø Start early!

•  Read problems and let your brain start thinking
about them

•  Solved exercises in book
Ø Honor Code

Jan 11, 2013 Sprenkle - CSCI211 37

