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Objectives 

•  Network Flow 
 Max flow 
 Min cut 
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Motivating Flow Network Problems 

•  Modeling transportation networks 
 Edges: carry traffic 
 Nodes: pass traffic between edges 

•  Can represent many different types of 
problems 
 Instead of looking at all possibilities, formulate as 

a flow problem 
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Flow Network 
•  G = (V, E) = directed graph, no parallel 

edges 
•  Two distinguished nodes: s = source, t = sink 
•  c(e) = capacity of edge e, > 0 
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Flows 
•  An s-t flow is a function that satisfies 

 Capacity condition: For each e ∈ E: 0 ≤ f(e) ≤ c(e) 
 Conservation condition: For each v ∈ V – {s, t}:         
∑e into y  f(e) =  ∑e out of y  f(e) 
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Flow can’t exceed 
capacity	
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Flows 

•  The value of a flow f is v(f) = ∑e out of s  f(e)         
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Maximum Flow Problem 

•  Make network most efficient 
 Use most of available capacity 
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Goal: Find s-t flow of maximum value 
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Towards a Max Flow Algorithm 
•  Greedy algorithm 

 Start all edges e ∈ E at f(e) = 0 
 Find an s-t path P with the most capacity: f(e) < c(e) 
 Augment flow along path P 
 Repeat until you get stuck 
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Towards a Max Flow Algorithm 
•  Greedy algorithm 

 Start all edges e ∈ E at f(e) = 0 
 Find an s-t path P with the most capacity: f(e) < c(e) 
 Augment flow along path P 
 Repeat until you get stuck 
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Is this optimal?	


Flow value = 20	


Towards a Max Flow Algorithm 
•  Greedy algorithm 

  Start all edges e ∈ E at f(e) = 0 
  Find an s-t path P with the most capacity: f(e) < c(e) 
  Augment flow along path P 
  Repeat until you get stuck 
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greedy = 20	
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locally optimality does not ⇒ global optimality	


RESIDUAL GRAPHS 
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Towards a Residual Graph 

•  Original edge: e = (u, v)  ∈ E 
 Flow f(e), capacity c(e) 
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Towards a Residual Graph 

•  Original edge: e = (u, v)  ∈ E 
 Flow f(e), capacity c(e) 

•  Residual edge 
 e = (u, v) w/ capacity c(e) - f(e) 
 eR = (v, u) with capacity f(e)  

•  To undo flow 
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Residual Graph: Gf 

•  Original edge: e = (u, v)  ∈ E 
 Flow f(e), capacity c(e) 

•  Residual edge 
 e = (u, v) w/ capacity c(e) - f(e) 
 eR = (v, u) with capacity f(e)  

•  To undo flow 

•  Residual graph:  Gf = (V, Ef ) 
 Residual edges with positive residual capacity 
 Ef = {e : f(e) < c(e)}  ∪  {eR : f(e) > 0} 
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Applying Residual Graph 

•  Used to find the maximum flow 
 Use similar idea to greedy algorithm 

•  Residual path: simple s-t path in Gf 
 Also known as augmenting path 
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Augmenting Path Algorithm 
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Ford-Fulkerson(G, s, t, c)	
   foreach e ∈ E  f(e) = 0  # initially no flow	
   Gf = residual graph	
	
   while there exists augmenting path P	
      f = Augment(f, c, P)     # change the flow	
      update Gf   	 	# build a new residual graph	
	
   return f	

Augment(f, c, P)	
   b = bottleneck(P) # edge on P with least capacity	
   foreach e ∈ P	
      if (e ∈ E) f(e) = f(e) + b  # forward edge, é flow	
      else       f(eR) = f(e) - b  # forward edge, ê flow 	
   return f	

c=capacity	
 Ford-Fulkerson Algorithm 
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Ford-Fulkerson Algorithm 
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Ford-Fulkerson Algorithm 

Mar 30, 2011 CSCI211 - Sprenkle 21 

0	


s 

2 

3 

4 

5 t  10	


   10	


 9	


 8	


 4	


 10	


   10	
 6	
 2	


10	


0	


0	


0	
 2	
 10	


8	


2	


 G:	


s 

2 

3 

4 

5 t 

 4	


 2	


 Gf:	


 10	


 8	
10	


2	


 10	
 7	


   10	
 6	


X	


6	

6	


6	


X	


X	


8	
X	


Flow value = 10	


Ford-Fulkerson Algorithm 
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Ford-Fulkerson Algorithm 
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Ford-Fulkerson Algorithm 
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Ford-Fulkerson Algorithm 
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Flow value = 19	
Cut capacity = 19	


Analyzing Augmenting Path Algorithm 
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Ford-Fulkerson(G, s, t, c)	
   foreach e ∈ E  f(e) = 0  # initially no flow	
   Gf = residual graph	
	
   while there exists augmenting path P	
      f = Augment(f, c, P)     # change the flow	
      update Gf   	 	# build a new residual graph	
	
   return f	

Augment(f, c, P)	
   b = bottleneck(P) # edge on P with least capacity	
   foreach e ∈ P	
      if (e ∈ E) f(e) = f(e) + b  # forward edge, é flow	
      else       f(eR) = f(e) - b  # forward edge, ê flow 	
   return f	

Why does alg work? 	
What is happening at each iteration?	

What is the running time?	
 Need more analysis …	


MINIMUM CUTS 
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Cuts 

•  An s-t cut is a partition (A, B) of V with s ∈ A 
and t ∈ B 

•  The capacity of a cut (A, B) is 
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Minimum Cut Problem 

•  Find an s-t cut of minimum capacity 
 Puts upperbound on maximum flow 
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Recall 

•  The value of a flow f is v(f) = ∑e out of s  f(e)         
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Flow Value Lemma 
•  Let f be any flow, and let (A, B) be any s-t cut.  

Then, the value of the flow is = fout(A) – fin(A). 
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Flow Value Lemma 
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•  Let f be any flow, and let (A, B) be any s-t cut. 
Then, the value of the flow is = fout(A) – fin(A). 

! 

f (e)
e out of A
" # f (e)

e in to A
"  =  v( f )

Flow Value Lemma 

•  Let f be any flow, and let (A, B) be any s-t 
cut. 

•  Then 
•  Pf.    
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By definition	


Possibilities for edge e:	

•  Both ends in A (0)	

•  Points out from A (+)	

•  Points in to A (-)	
 A	
 B	
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Weak Duality 

•  Let f be any flow and let (A, B) be any s-t cut.  
Then the value of the flow is at most the cut’s 
capacity 
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Cut capacity = 30   ⇒    Flow value ≤ 30 	
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Weak Duality 

•  Let f be any flow.  Then, for any s-t cut (A, B) 
v(f) ≤ cap(A, B). 

•  Pf. 

    

Mar 30, 2011 CSCI211 - Sprenkle 35 

! 

v( f ) = f (e)
e out of A
" # f (e)

e in to A
"

$ f (e)
e out of A
"

$ c(e)
e out of A
"

= cap(A,B) s 

t 

A	
 B	


 7	


6	


 8	

4	
By FVL	


Certificate of Optimality 

•  Corollary.  Let f be any flow, and let (A, B) be 
any cut.  If v(f) = cap(A, B), then f is a max 
flow and (A, B) is a min cut. 
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Value of flow = 28���
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This Week 

•  Problem Set 8 due Friday 
 Implementing pretty printing 

•  Start reading chapter 7 
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