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Objectives 

•  Network Flow 
Ø Application: Airline Scheduling 
Ø Choosing good augmenting paths 

•  Computational intractability  
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Review 

• What is the power of the max-flow/min-cut 
algorithm? 

• What is our process in solving problems 
using network flow? 
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7.9 AIRLINE SCHEDULING 
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Airline Scheduling 
•  Scheduling goal: efficient in terms of 

equipment usage, crew allocation, customer 
satisfaction, … 

•  Our simplified problem: 
Ø Flight segment: origin & destination airport, 

departure & arrival time 
Ø Use a plane for two flight segments (i, j) if 

•  i’s destination == j’s origin & enough time to 
perform maintenance on plane  OR 

•  Add a flight segment in between that gets plane 
to j’s origin with adequate time in between 
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Scheduling Planes 

•  Maintenance time: 1 hour 
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Number Origin Departure Destination Arrival 
1 Boston 6 a.m. DC 7 a.m. 
2 Philadelphia 7 a.m. Pittsburgh 8 a.m. 
3 DC 8 a.m. LAX 11 a.m. 
4 Philadelphia 11 a.m. San Francisco 2 p.m. 
5 San Francisco 2:15 p.m. Seattle 3:15 p.m. 
6 Las Vegas 5 p.m. Seattle 6 p.m. 

What is a valid use of one plane for > 1 segment?	


Scheduling Planes 

•  Maintenance time: 1 hour 
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Number Origin Departure Destination Arrival 
1 Boston 6 a.m. DC 7 a.m. 
2 Philadelphia 7 a.m. Pittsburgh 8 a.m. 
3 DC 8 a.m. LAX 11 a.m. 
4 Philadelphia 11 a.m. San Francisco 2 p.m. 
5 San Francisco 2:15 p.m. Seattle 3:15 p.m. 
6 Las Vegas 5 p.m. Seattle 6 p.m. 

What is a valid use of one plane for > 1 segment?	


1 à 3 à 6	
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Problem Statement 

•  A flight j is reachable from flight i if it is 
possible to use the same plane for flight j as 
flight i 
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Goal: Determine if it’s possible to serve all ���
m flights using at most k planes 	


Scheduling Planes 

•  Maintenance time: 1 hour 
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Number Origin Departure Destination Arrival 
1 Boston 6 a.m. DC 7 a.m. 
2 Philadelphia 7 a.m. Pittsburgh 8 a.m. 
3 DC 8 a.m. LAX 11 a.m. 
4 Philadelphia 11 a.m. San Francisco 2 p.m. 
5 San Francisco 2:15 p.m. Seattle 3:15 p.m. 
6 Las Vegas 5 p.m. Seattle 6 p.m. 

Could we schedule all flights from ���
previous example with only 2 planes?  	


Scheduling Planes 

•  Maintenance time: 1 hour 
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Number Origin Departure Destination Arrival 
1 Boston 6 a.m. DC 7 a.m. 
2 Philadelphia 7 a.m. Pittsburgh 8 a.m. 
3 DC 8 a.m. LAX 11 a.m. 
4 Philadelphia 11 a.m. San Francisco 2 p.m. 
5 San Francisco 2:15 p.m. Seattle 3:15 p.m. 
6 Las Vegas 5 p.m. Seattle 6 p.m. 

Yes.	

Plane A: 1 à 3 à 5	

Plane B: 2 à 4 à 6	


Problem Statement 

•  A flight j is reachable from flight i if it is 
possible to use the same plane for flight j as 
flight i 
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Ideas about our solution/approach?	


Goal: Determine if it’s possible to serve all ���
m flights using at most k planes 	


Airline Scheduling Algorithm 

•  Flow: airplanes; Nodes: airports 
•  Find a feasible circulation 
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What do these 
edges mean?	
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Airline Scheduling Algorithm 

•  Flow: airplanes; Nodes: airports 
•  Find a feasible circulation 
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How do we know if 
we have a solution?	

How do we get the 

solution?	
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Scheduling Solution 

•  Model 
Ø Flow: airplanes 
Ø Nodes: airports 

•  Use FF algorithm to generate flow 
Ø If feasible flow à feasible circulation 

•  Construct schedules by following edges from 
s to origin airports 
Ø Represents the schedule of one plane 
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Network Flow Solutions 
1. Model problem as a flow network 

Ø  Describe what nodes, edges, and capacity 
represent 

Ø  Describe what flow represents and how that maps 
to your solution 

Ø  Run Ford-Fulkerson algorithm 
2. Prove that the solution found is correct/

feasible/optimal 
3. Prove that you find all solutions 
4. Analyze running time 

Ø  Creating model 
Ø  FF algorithm 
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CHOOSING GOOD 
AUGMENTING PATHS 
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Ford-Fulkerson: Exponential Number 
of Augmentations 
•  Is generic Ford-Fulkerson algorithm 

polynomial in input size? 
Ø No. If max capacity is C, then algorithm can take 

C iterations.   
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Choosing Good Augmenting Paths 
•  Use care when selecting augmenting paths 

Ø Some choices lead to exponential algorithms 
Ø Clever choices lead to polynomial algorithms 
Ø  If capacities are irrational, algorithm not guaranteed 

to terminate! 
•  Goal: choose augmenting paths so that: 

Ø Can find augmenting paths efficiently 
Ø Few iterations 

•  [Edmonds-Karp 1972, Dinitz 1970]  
Choose augmenting paths with: 
Ø Max bottleneck capacity 
Ø Fewest number of edges 
Ø Sufficiently large bottleneck capacity 
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Intuition for Capacity Scaling 
•  Choosing path with highest bottleneck capacity 

increases flow by max possible amount. 
Ø Don't worry about finding exact highest bottleneck path 
Ø Maintain scaling parameter Δ 
Ø  Let Gf (Δ) be the subgraph of the residual graph 

consisting of only edges with capacity at least Δ 
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Capacity Scaling 
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Scaling-Max-Flow(G, s, t, c)	
   foreach e ∈ E,  f(e) = 0	
   Δ = greatest power of 2 less than or equal to C	
   Gf = residual graph	
   Gf(Δ) = Δ-residual graph	
	
   while Δ ≥ 1:	

	while there exists augmenting path P in Gf(Δ) :	
          f = augment(f, c, P)	
          update Gf(Δ)	
      	Δ = Δ / 2 	
	
   return f	

• Why does this work?	

• What is its running time?	


Capacity Scaling 
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Scaling-Max-Flow(G, s, t, c)	
   foreach e ∈ E,  f(e) = 0	
   Δ = greatest power of 2 less than or equal to C	
   Gf = residual graph	
   Gf(Δ) = Δ-residual graph	
	
   while Δ ≥ 1:	

	while there exists augmenting path P in Gf(Δ) :	
          f = augment(f, c, P)	
          update Gf(Δ)	
      	Δ = Δ / 2 	
	
   return f	

O(log C)	


Capacity Scaling: Correctness 
•  Assumption. All edge capacities are integers 

between 1 and C.  
•  Integrality invariant. All flow and residual 

capacity values are integral. 
•  Correctness. If the algorithm terminates, then 

f is a max flow. 
•  Pf. 

Ø By integrality invariant, when Δ = 1  ⇒   
Gf(Δ)  = Gf 

Ø Upon termination of Δ = 1 phase, there are no 
augmenting paths.  ▪ 
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Capacity Scaling: Running Time 

•  Lemma 1. The outer while loop repeats  
O(log2 C) times. 

•  Proof. Initially Δ ≤ C.  Δ decreases by a factor 
of 2 each iteration. ▪ 
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Capacity Scaling: Running Time 

•  Lemma 2. Let f be the flow at the end of a Δ-
scaling phase. Then value of the maximum 
flow is at most v(f) + m Δ. 
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What happens to the flow’s value 
at each iteration of the loop?	


Proof and further analysis���
in the book	


Objectives 

•  Oh, the places you’ve been! 

•  Oh, the places you’ll go! 
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 Now, everything comes down to expert knowledge of 
algorithms and data structures.  If you don't speak 
fluent O-notation, you may have trouble getting your 
next job at the technology companies in the forefront.	


    — Larry Freeman	
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Algorithm Design Patterns 

• What are some approaches to solving 
problems? 

•  How do they compare in terms of difficulty?  
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Algorithm Design Patterns 
•  Greedy   
•  Divide-and-conquer 
•  Dynamic programming 
•  Duality/network flow 
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Course Objectives: Given a problem…	


You’ll recognize when to try an approach	

-  AND, when to bail out and try something different	


Know the steps to solve the problem using the approach	

- e.g., breaking it into subproblems, sorting possibilities 
in some order	


Know how to analyze the run time of the solution	

	
- e.g., solving recurrence relation	


Algorithm Design Patterns 

•  Greedy  
•  Divide-and-conquer 
•  Dynamic programming 
•  Duality/network flow 
•  Reductions – Chapter 8 
•  Local search – Chapter 12 
•  Randomization – Chapter 13 
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What Was Our Goal In Finding a 
Solution? 
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Polynomial Time  Efficient	


POLYNOMIAL-TIME 
REDUCTIONS 
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Classify Problems According to 
Computational Requirements 
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Fundamental Question: ���
Which problems will we be able 

to solve in practice?	
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Classify Problems According to 
Computational Requirements 

•  Working definition. [Cobham 1964, Edmonds 1965, 
Rabin 1966]  Those with polynomial-time algorithms. 
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Yes Probably no 
Shortest path Longest path 

Min cut Max cut 

2-SAT 3-SAT 

Matching 3D-matching 

Primality testing Factoring 

Planar 4-color Planar 3-color 

Bipartite vertex cover Vertex cover 

Which problems will we be able 
to solve in practice?	


Classify Problems 
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Polynomial	
 Exponential	


Examples:	

•  Given a Turing machine, does it halt���

in at most k steps?	

•  Given a board position in an n-by-n 

generalization of chess, ���
can black guarantee a win?	


? 

Frustrating news:  ���
Many problems have defied classification.	

	

Chapter 8.  Show that problems are 
"computationally equivalent" and appear to be 
manifestations of one really hard problem.	


Classify problems according to those that can be 
solved in polynomial-time and those that cannot.	


Polynomial-Time Reduction 
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Suppose we could solve Y in polynomial time. ���
What else could we solve in polynomial time?	


Polynomial-Time Reduction 

•  Reduction. Problem X polynomial reduces to problem Y 
if arbitrary instances of problem X can be solved using: 
Ø  Polynomial number of standard computational steps, plus 
Ø  Polynomial number of calls to oracle that solves problem Y 

•  Assume have a black box that can solve Y 

•  Notation: X ≤P Y 
Ø  “X is polynomial-time reducible to Y” 

•  Conclusion: If Y can be solved in polynomial time and 
X ≤P Y, then X can be solved in polynomial time. 
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Suppose we could solve Y in polynomial-time. ���
What else could we solve in polynomial time?	


Y For X + 

Looking Ahead 
•  Problem Set 9 due Friday 
•  Course Evaluations 

Ø Fill out course evaluations on Sakai 
Ø  If 60% of students fill out, 1% EC on problem sets 

•  Additional 1% for every additional 12.5% who complete 
•  Total problem set points: 192 

Ø Due Monday at midnight 
•  Final 

Ø Given out on Friday 
Ø Focus: Dynamic programming, network flow, 

computational intractability 
Ø Usual rules 
Ø Due at end of exam period: next Friday at 5 p.m. 
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