
3/26/12	

1	

Objectives

•  Dynamic Programming
Ø Sequence Alignment – linear space
Ø Shortest Path

Mar 26, 2012 1 CSCI211 - Sprenkle

Has This Ever Happened To You?

Mar 26, 2012 CSCI211 - Sprenkle 2

How does Google know what I really meant?	

Review: Sequence Alignment

• What was the problem?
• What was our solution?

Mar 26, 2012 CSCI211 - Sprenkle 3

Edit Distance

•  [Levenshtein 1966, Needleman-Wunsch
1970]

Ø Gap penalty: δ
Ø Mismatch penalty: αpq

•  If p and q are the same,
then mismatch penalty is 0

Ø Cost = sum of gap and mismatch penalties

Mar 26, 2012 CSCI211 - Sprenkle 4

2δ + αCA	

C G A C C T A C C T

C T G A C T A C A T

T G A C C T A C C T

C T G A C T A C A T

- T

C

C

C

αTC + αGT + αAG+ 2αCA	

-

Parameters allow
us to tweak cost	

Sequence Alignment:
Problem Structure

Mar 26, 2012 CSCI211 - Sprenkle 5

!

OPT(i, j) =

"

$
$ $

%

$
$
$

j& if i = 0

min

'xi y j
+ OPT(i (1, j (1)

& + OPT(i (1, j)
& + OPT(i, j (1)

"

$

%
$

otherwise

i& if j = 0

Gaps for remainder of X	

Gaps for remainder of Y	

Ran out of 1st string 	

Ran out of 2nd string 	

Sequence Alignment: Algorithm

Mar 26, 2012 CSCI211 - Sprenkle 6

•  Analysis. Θ(mn) time and space.
•  English words or sentences: m, n ≤ 10.
•  Computational biology: m = n = 100,000.

10 billions ops OK, but 10GB array?

	
Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, δ, α) 	
 for i = 0 to m	
 M[i, 0] = iδ	
 for j = 0 to n	
 M[0, j] = jδ	
	
 for i = 1 to m	
 for j = 1 to n	
 M[i, j] = min(α[xi, yj] + M[i-1, j-1],	
 δ + M[i-1, j],	
 δ + M[i, j-1])	
 return M[m, n]	

Cost parameters	

Ran out of y 	

Ran out of x	

3/26/12	

2	

Example

Mar 26, 2012 CSCI211 - Sprenkle 7

α = 1, for vowel mismatch	

α = 2, for other mismatches	

δ = 2	

b a i t

b
o
o
t

i	

j	

X = bait 	
 	
Y = boot	

Sequence Alignment: Algorithm

Mar 26, 2012 CSCI211 - Sprenkle 8

•  Analysis. Θ(mn) time and space.
•  English words or sentences: m, n ≤ 10.
•  Computational biology: m = n = 100,000.

10 billions ops OK, but 10GB array?

What are the space costs?	

When computing M[i,j], which entries in M are used?	

	
Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, δ, α) 	
 for i = 0 to m	
 M[i, 0] = iδ	
 for j = 0 to n	
 M[0, j] = jδ	
	
 for i = 1 to m	
 for j = 1 to n	
 M[i, j] = min(α[xi, yj] + M[i-1, j-1],	
 δ + M[i-1, j],	
 δ + M[i, j-1])	
 return M[m, n]	

	
Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, δ, α) 	
 for i = 0 to m	
 M[i, 0] = iδ	
 for j = 0 to n	
 M[0, j] = jδ	
	
 for i = 1 to m	
 for j = 1 to n	
 M[i, j] = min(α[xi, yj] + M[i-1, j-1],	
 δ + M[i-1, j],	
 δ + M[i, j-1])	
 return M[m, n]	

Sequence Alignment: Analysis

Mar 26, 2012 CSCI211 - Sprenkle 9

Space Cost: O(mn)	

Observation: to calculate the current value, ���
we only need the row above us and the entry to the left	

SEQUENCE ALIGNMENT IN
LINEAR SPACE

Mar 26, 2012 CSCI211 - Sprenkle 10

Sequence Alignment: O(m) Space

•  Collapse into an m x 2 array
Ø M[i,0] represents previous row; M[i,1] -- current

Mar 26, 2012 CSCI211 - Sprenkle 11

	
Space-Efficient-Alignment(m, n, x1x2...xm, y1y2...yn, δ, α) 	
 for i = 0 to m 	 	# initialize first row	
 M[i, 0] = iδ	
 for j = 1 to n	
 M[0, 1] = jδ	 	# first gap	
	
 	for i = 1 to m	

	 M[i, 1] = min(α[xi, yj] + M[i-1, 0],	
 δ + M[i, 0],	
 δ + M[i-1, 1])	

	for i = 1 to m 	# copy current row into previous	
	 M[i, 0] = M[i, 1]	

 return M[m, 1]	
Any drawbacks?	

Sequence Alignment: O(m) Space

•  Collapse into an m x 2 array
Ø M[i,0] represents previous row; M[i,1] -- current

Mar 26, 2012 CSCI211 - Sprenkle 12

	
Space-Efficient-Alignment(m, n, x1x2...xm, y1y2...yn, δ, α) 	
 for i = 0 to m 	 	# initialize first row	
 M[i, 0] = iδ	
 for j = 1 to n	
 M[0, 1] = jδ	 	# first gap	
	
 	for i = 1 to m	

	 M[i, 1] = min(α[xi, yj] + M[i-1, 0],	
 δ + M[i, 0],	
 δ + M[i-1, 1])	

	for i = 1 to m 	# copy current row into previous	
	 M[i, 0] = M[i, 1]	

 return M[m, 1]	 Finds optimal value but will
not be able to find alignment 	

3/26/12	

3	

Why Do We Care About Space?

•  For English words or sentences, probably
doesn’t matter

•  Matters for Biological sequence alignment
Ø Consider: 2 strings with 100,000 symbols each

•  Processor can do 10 billion primitive operations
•  BUT dealing with a 10 GB array

Mar 26, 2012 CSCI211 - Sprenkle 13

Sequence Alignment: Linear Space

•  Can we avoid using quadratic space?
Ø Optimal value in O(m) space and O(mn) time.

•  Compute OPT(i, •) from OPT(i-1, •)
•  BUT, no simple way to recover alignment itself

•  Theorem. [Hirschberg 1975] Optimal
alignment in O(m + n) space and O(mn) time.
Ø Clever combination of divide-and-conquer and

dynamic programming

Mar 26, 2012 CSCI211 - Sprenkle 14

Recall Our Example

Mar 26, 2012 CSCI211 - Sprenkle 15

•  Analysis. Θ(mn) time and space.
•  English words or sentences: m, n ≤ 10.
•  Computational biology: m = n = 100,000.

10 billions ops OK, but 10GB array?

X = bait 	
 	
Y = boot	

b a i t
0 2 4 6 8

b 2 0 2 4 6
o 4 2 1 3 5
o 6 4 3 2 4
t 8 6 5 4 2

i	

j	

α = 1, for vowel mismatch	

α = 2, for other mismatches	

δ = 2	

Mapping to a Graph Problem

Mar 26, 2012 CSCI211 - Sprenkle 16

b	

o	

b	

o	

a	
 i	
 t	

ε	

ε	

• Horizontal and vertical
edges cost δ

• Diagonal edges cost α	

t	

Goal: Find shortest path
from top-left to bottom-right	

α = 1, for vowel mismatch	

α = 2, for other mismatches	

δ = 2	

Why is this formulation
the same as the original?	

Mapping to a Graph Problem

Mar 26, 2012 CSCI211 - Sprenkle 17

b	

o	

b	

o	

a	
 i	
 t	

ε	

ε	

t	

2	

0	

2	

2	
 2	
 2	

2	

2	

2	

2	

2	

2	

2	

2	
 0	

1	

1	
2	

2	

2	

2	

2	

2	

1	

1	

2	

2	
 2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	
 2	

2	

2	

2	
 2	

2	

2	

2	

2	

2	

α = 1, for vowel mismatch	

α = 2, for other mismatches	

δ = 2	

• Horizontal and vertical
edges cost δ

• Diagonal edges cost α	

Goal: Find shortest path
from top-left to bottom-right	

Sequence Alignment: Forward

•  Edit distance graph
Ø Let f(i, j) be shortest path from (0,0) to (i, j)
Ø Observation: f(i, j) = OPT(i, j)

Mar 26, 2012 CSCI211 - Sprenkle 18

i, j

m,n

x1	

x2	

y1	

x3	

y2	
 y3	
 y4	
 y5	
 y6	

ε	

ε	

0,0

δ	

δ	

!

"xi y j

(start)	

3/26/12	

4	

Sequence Alignment: Backward
•  Edit distance graph

Ø Let g(i, j) be shortest path from (m, n) to (i, j)
Ø Can compute by reversing the edge orientations

and inverting the roles of (0, 0) and (m, n)

Mar 26, 2012 CSCI211 - Sprenkle 19

i,j

m,n

x1	

x2	

y1	

x3	

y2	
 y3	
 y4	
 y5	
 y6	

ε	

ε	

0,0

δ	

δ	

!

"xi y j

(end)	

Sequence Alignment: Linear Space

•  Observation. The cost of the shortest path
that uses (i, j) is f(i, j) + g(i, j)

Mar 26, 2012 CSCI211 - Sprenkle 20

i,j

m,n

x1	

x2	

y1	

x3	

y2	
 y3	
 y4	
 y5	
 y6	

ε	

ε	

00

Sequence Alignment: Forward
•  Edit distance graph

Ø Let f(i, j) be shortest path from (0,0) to (i, j)
Ø Can compute f(*, j) for any j in O(mn) time and

O(m + n) space

Mar 26, 2012 CSCI211 - Sprenkle 21

i,j

m,n

x1	

x2	

y1	

x3	

y2	
 y3	
 y4	
 y5	
 y6	

ε	

ε	

0,0

j	

(start)	

Sequence Alignment: Backward
•  Edit distance graph

Ø Let g(i, j) be shortest path from (m, n) to (i, j)
Ø Can compute g(*, j) for any j in O(mn) time and

O(m + n) space

Mar 26, 2012 CSCI211 - Sprenkle 22

i,j

m,n

x1	

x2	

y1	

x3	

y2	
 y3	
 y4	
 y5	
 y6	

ε	

ε	

0,0

j	

(end)	

Sequence Alignment: Linear Space
•  Let q be an index that minimizes f(q, n/2) +

g(q, n/2)
•  Then, the shortest path from (0, 0) to (m, n)

uses (q, n/2)

Mar 26, 2012 CSCI211 - Sprenkle 23

q, n/2

m,n

x1	

x2	

y1	

x3	

y2	
 y3	
 y4	
 y5	
 y6	

ε	

ε	

0,0

n / 2	

q	

Have to go through one
node in this column	

Sequence Alignment: Linear Space

•  Divide: find index q that minimizes f(q, n/2) +
g(q, n/2) using DP
Ø Align xq and yn/2

Mar 26, 2012 CSCI211 - Sprenkle 24

q,n/2 x1	

x2	

y1	

x3	

y2	
 y3	
 y4	
 y5	
 y6	

ε	

ε	

0,0

q	

n / 2	

m,n

3/26/12	

5	

Sequence Alignment: Linear Space
•  Conquer: recursively compute optimal alignment

in each piece
Ø Reuse working space from one recursive call to next

Mar 26, 2012 CSCI211 - Sprenkle 25

q,n/2 x1	

x2	

y1	

x3	

y2	
 y3	
 y4	
 y5	
 y6	

ε	

ε	

0,0

m,n

Divide and Conquer Sequence Alignment

Mar 26, 2012 CSCI211 - Sprenkle 26

Create graph, label edges with weights	
	
P contains node on shortest corner-to-corner path	
	
Divide-and-Conquer-Alignment(X, Y)	
	
Divide-and-Conquer-Alignment (X, Y):	

	m = length of X	
	n = length of Y	
	if m <= 2 or n <= 2	
	 	compute optimal alignment using Alignment(X, Y)	
	 	return	

 	Space-Efficient-Alignment(X, Y[1:n/2])	
	Backward-Space-Efficient-Alignment(X, Y[n/2+1:n])	
	q = index that minimizes f(q, n/2) + g(q, n/2)	
	add(q, n/2) to P	
	Divide-and-Conquer-Alignment(X[1:q],Y[1:n/2])	
	Divide-and-Conquer-Alignment(X[q:m],Y[(n/2):n])	
	return P	

Example

Mar 26, 2012 CSCI211 - Sprenkle 27

α = 1, for vowel mismatch	

α = 2, for other mismatches	

δ = 2	

b	

o	

b	

o	

a	
 i	
 t	

0	

0	

0,0

t	
 m,n

2	

0	

2	

2	
 2	
 2	

2	

2	

2	

2	

2	

2	

2	

2	
 0	

1	

1	
2	

2	

2	

2	

2	

2	

1	

1	

2	

2	
 2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	
 2	

2	

2	

2	
 2	

2	

2	

2	

2	

2	

Space-efficient alignment: Left

Mar 26, 2012 CSCI211 - Sprenkle 28

b	

o	

b	

o	

a	

0	

0	

0,0

t	

2	

0	

2	

2	

2	

2	

2	

2	

1	
2	

2	

2	

2	

2	

2	

1	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

compute f (*, j), shortest path
from (0,0) to (i, j)	

Space-efficient alignment: Left

Mar 26, 2012 CSCI211 - Sprenkle 29

b	

o	

b	

o	

a	

0	

0	

0,0

t	

2	

0	

2	

2	

2	

2	

2	

2	

1	
2	

2	

2	

2	

2	

2	

1	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

f()	

4	

2	

1	

3	

5	

Backward Space Efficient

Mar 26, 2012 CSCI211 - Sprenkle 30

i	
 t	

m,n

2	

2	

2	

2	

2	
0	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	
 2	

Compute g(*, j), shortest path
from (m,n) to (i, j)	
 b	

o	

o	

t	

a	
 2	

1	

1	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

3/26/12	

6	

Backward Space Efficient

Mar 26, 2012 CSCI211 - Sprenkle 31

g()	

5	

3	

1	

2	

4	

i	
 t	

m,n

2	

2	

2	

2	

2	
0	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	
 2	

b	

o	

o	

t	

a	
 2	

1	

1	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

Example

Mar 26, 2012 CSCI211 - Sprenkle 32

b	

o	

b	

o	

a	
 i	
 t	

0	

0	

0,0

t	
 m,n

2	

0	

2	

2	
 2	
 2	

2	

2	

2	

2	

2	

2	

2	

2	
 0	

1	

1	
2	

2	

2	

2	

2	

2	

1	

1	

2	

2	
 2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	
 2	

2	

2	

2	
 2	

2	

2	

2	

2	

2	

f()	

4	

2	

1	

3	

5	

Pick minimum sum	

g()	

5	

3	

1	

2	

4	

Example

Mar 26, 2012 CSCI211 - Sprenkle 33

b	

o	

b	

o	

a	
 i	
 t	

0	

0	

0,0

t	
 m,n

2	

0	

2	

2	
 2	
 2	

2	

2	

2	

2	

2	

2	

2	

2	
 0	

1	

1	
2	

2	

2	

2	

2	

2	

1	

1	

2	

2	
 2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	
 2	

2	

2	

2	
 2	

2	

2	

2	

2	

2	

f()	

4	

2	

1	

3	

5	

Pick minimum sum	

g()	

5	

3	

1	

2	

4	

Example

Mar 26, 2012 CSCI211 - Sprenkle 34

b	

o	

b	

o	

a	
 i	
 t	

0	

0	

0-0

t	
 m-n

2	

0	

2	

2	
 2	
 2	

2	

2	

2	

2	

2	

2	

2	

2	
 0	

1	

1	
2	

2	

2	

2	

2	

2	

1	

1	

2	

2	
 2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	
 2	

2	

2	

2	
 2	

2	

2	

2	

2	

2	

f()	

4	

2	

1	

3	

5	

g()	

5	

3	

1	

2	

4	

Divide and Conquer Sequence Alignment:
Analysis

Mar 26, 2012 CSCI211 - Sprenkle 35

P contains node on shortest corner-to-corner path	
Divide-and-Conquer-Alignment (X, Y)	

	m = length of X	
	n = length of Y	
	if m <= 2 or n <= 2	
	 	compute optimal alignment using Alignment(X, Y)	
	 	return	

 	Space-Efficient-Alignment(X, Y[1:n/2])	
	Backward-Space-Efficient-Alignment(X, Y[n/2+1:n])	
	q = index that minimizes f(q, n/2) + g(q, n/2)	
	add(q, n/2) to P	
	Divide-and-Conquer-Alignment(X[1:q],Y[1:n/2])	
	Divide-and-Conquer-Alignment(X[q:m],Y[(n/2):n])	
	return P	

What is the recurrence relation?	

Sequence Alignment:
Running Time Analysis Warmup
•  Theorem. Let T(m, n) = max running time of

algorithm on strings of length at most m and
n. T(m, n) = O(mn log n).

•  Remark. Analysis is not tight because sub-

problems are of size (q, n/2) and (m - q, n/2).

Mar 26, 2012 CSCI211 - Sprenkle 36

!

T (m, n) " 2T (m, n /2) + O(mn) # T (m, n) = O(mn logn)

Divide-and-Conquer-Alignment(X[1:q],Y[1:n/2])	
Divide-and-Conquer-Alignment(X[q:m],Y[(n/2):n])	

3/26/12	

7	

Sequence Alignment:
Running Time Analysis
•  Theorem. Let T(m, n) = max running time of

algorithm on strings of length m and n.
T(m, n) = O(mn)

•  Recurrence Relation:

•  Solve using substitution:

Mar 26, 2012 CSCI211 - Sprenkle 37

cmn
cmncqncmncqn

cmnnqmccqn
cmnnqmTnqTnmT

2

2/)(22/2
)2/,()2/,(),(

=

+!+=

+!+"

+!+"

!

T(m, 2) " cm
T(2, n) " cn
T(m, n) " cmn + T(q, n /2) + T(m# q, n /2)

IMPROVING SHORTEST PATH

Mar 26, 2012 CSCI211 - Sprenkle 38

Shortest Paths

•  Problem: Given a directed graph G = (V, E),
with edge weights cvw, find shortest path from
node s to node t

•  Allows modeling other phenomena

Mar 26, 2012 CSCI211 - Sprenkle 39

s

3

t

2

6

7

4
5

10	

18	

 -16	

9	

 6	

15	
 -8	

 30	

 20	

44	

16	

11	

6	

19	

6	

allow negative weights	

Shortest Paths: Failed Attempts

•  Review: What was Dijkstra’s algorithm?
Ø Dijkstra can fail if negative edge costs

Mar 26, 2012 CSCI211 - Sprenkle 40

u

t

s v
2	

 1	

3	

-6	

Shortest path from s àt?	

Shortest Paths: Failed Attempts

•  Dijkstra. Can fail if negative edge costs

•  Re-weighting. Adding a constant to every
edge weight can fail

Mar 26, 2012 CSCI211 - Sprenkle 41

s t

2	

 3	

2	

-3	

3	

5	
 5	

6	
6	

0	

Why?	

u

t

s v
2	

 1	

3	

-6	

Shortest Paths: Failed Attempts

•  Dijkstra. Can fail if negative edge costs

•  Re-weighting. Adding a constant to every
edge weight can fail

Mar 26, 2012 CSCI211 - Sprenkle 42

s t

2	

 3	

2	

-3	

3	

5	
 5	

6	
6	

0	

Why?	

u

t

s v
2	

 1	

3	

-6	

4	

3	

Orig: 	
 New: 	

10	

12	

3/26/12	

8	

Shortest Paths: Negative Cost Cycles

•  If some path from s to t contains a negative
cost cycle, there does not exist a shortest s-t
path

•  Otherwise, there exists one that is simple
(i.e., does not repeat nodes)

Mar 26, 2012 CSCI211 - Sprenkle 43

s t
W	

c(W) < 0	

 -6	

 7	

 -4	

Why?	

What does this mean about number of edges in path?	

Shortest Paths: Negative Cost Cycles

•  If some path from s to t contains a negative
cost cycle, there does not exist a shortest s-t
path

•  Otherwise, there exists one that is simple
(i.e., does not repeat nodes)
Ø Path has at most n-1 edges, where n is # of

nodes in graph
Mar 26, 2012 CSCI211 - Sprenkle 44

s t
W	

c(W) < 0	

 -6	

 -4	

 7	

Towards a Recurrence

•  OPT(i,v): minimum cost of a v-t path P using
at most i edges
Ø This formulation eases later discussion

•  Original problem is OPT(n-1, s)

Mar 26, 2012 CSCI211 - Sprenkle 45

v	
 t	

Costs on all edges	

Break down into subproblems based on i and v	

w	
cvw	

Shortest Paths: Dynamic Programming

•  OPT(i, v) = minimum cost of a v-t path P
using at most i edges
Ø Case 1: P uses at most i-1 edges

•  OPT(i, v) = OPT(i-1, v)
Ø Case 2: P uses exactly i edges

•  if (v, w) is first edge, then OPT uses (v, w), and
then selects best w-t path using at most i-1 edges

•  Cost: cost of chosen edge

Mar 26, 2012 CSCI211 - Sprenkle 46

!

OPT(i, v) =
 0 if i = 0

 min OPT(i "1, v) ,
(v, w)# E

min OPT(i "1, w)+ cvw{ }
$
%
&

'
(
)

otherwise

$

%
*

& *

Shortest Paths: Implementation

•  Shortest path length is M[n-1, s]

•  Analysis. Θ(mn) time, Θ(n2) space.

•  Finding the shortest paths. Maintain a
"successor" for each table entry.

Mar 26, 2012 CSCI211 - Sprenkle 47

Shortest-Path(G, s) 	
 n = number of nodes in G	
 foreach node v ∈ V	
 M[0, v] = ∞ 	
 M[0, s] = 0	
	
 for i = 1 to n-1	
 foreach node v ∈ V	
 M[i, v] = M[i-1, v]	
 foreach edge (v, w) ∈ E	
 M[i, v] = min(M[i, v], M[i-1, w] + cvw)	

Starting node	

Cost of
chosen edge	

Starting node	

Shortest Paths: Implementation

•  Shortest path length is M[n-1, s]

•  Analysis. Θ(mn) time, Θ(n2) space.

•  Finding the shortest paths. Maintain a
"successor" for each table entry.

Mar 26, 2012 CSCI211 - Sprenkle 48

Shortest-Path(G, s) 	
 n = number of nodes in G	
 foreach node v ∈ V	
 M[0, v] = ∞ 	
 M[0, s] = 0 # distance to yourself is 0	
	
 for i = 1 to n-1	
 foreach node v ∈ V	
 M[i, v] = M[i-1, v]	
 foreach edge (v, w) ∈ E	
 M[i, v] = min(M[i, v], M[i-1, w] + cvw)	

Starting node	

Cost of
chosen edge	

Starting node	

3/26/12	

9	

Looking Ahead

• Wiki for Tuesday: 6 – 6.4
•  PS 8 due Friday

Mar 26, 2012 CSCI211 - Sprenkle 49

