Objectives

Wrap Up: Minimizing Lateness
» Greedy exchange
Problem: Shortest Path
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Review: Scheduling to Minimizing Lateness

Single resource processes one job at a time

Job j requires t units of processing time and is due at
time d, (its deadline)

If j starts at time s;, it finishes at time f; = s; + {,
Lateness: /,=max{0, f-d}

Goal: schedule all jobs to minimize maximum
lateness L = max /
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Minimizing Lateness: Inversions

Claim. Swapping two adjacent, inverted jobs
reduces the number of inversions by one and
does not increase the max lateness.

How to prove? v
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d <d.
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Minimizing Lateness: Inversions

Claim. Swapping two adjacent, inverted jobs
reduces the number of inversions by one and
does not increase the max lateness.

Pf. Let ¢ be the lateness before the swap,
and let 7' be it afterwards merson”
before n—
after i [

d. <d.
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Minimizing Lateness: Inversions

Claim. Swapping two adjacent jobs with the same
deadline does not increase the max lateness

Pf. Let ¢ be the lateness before the swap,
and let ¢’ be it afterwards

~ Lateness remains the same for all other jobs:

=/t forallk=i,j

» I;< [, because d; < d;

~ Lateness of i before is /,=f-d; =T, 1+t + - d;

» Lateness of j afteris /=f - d; =T, +t;+ t- d,

Butd<d, £ Put in terms of /;
before swap I
afeer swap T
fl
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Minimizing Lateness: Inversions

Claim. Swapping two adjacent, inverted jobs
reduces the number of inversions by one and
does not increase the max lateness.

Pf. Let ¢ be the lateness before the swap,

and let /' be it afterwards merson”
U = forallk =i, | before ..—‘

afer i ]
Fl=l, s f
~Ifjobjislate: ‘¢ = fj-d,  (definition) d; <d;
= fi-d; (j finishes at time f;)
= f-d, (i<J)
= (definition)

Shows that the maximum lateness of jobs does not increase after swap
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Greedy Exchange Proofs

Label your algorithm’s solution and a general solution.
» Example: let A = {a,, a,, ..., a,} be the solution generated by your algorithm,
and let O = {0, 0,, ..., 0.} be an optimal feasible solution.
Compare greedy with other solution.
» Assume that the arbitrary/optimal solution is not the same as
your greedy solution (since otherwise, you are done).
» Typically, can isolate a simple example of this difference, such as:
1 There is an element e € O that ¢ A and an element f € A that ¢ O
2) 2 consecutive elements in O are in a different order than in A
> ie, thereis an inversion
Exchange.
» Swap the elements in question in O (either (1) swap one element out and
another in or (2) swap the order of the elements) and argue that solution is no
worse than before.
Argue that if you continue swapping, you eliminate all differences between O
and A in a finite # of steps without worsening the solution’s quality.
Thus, the greedy solution produced is just as good as any optimal solution, and
hence is optimal itself.

N

Y
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Minimizing Lateness:

Analysis of Greedy Algorithm
Theorem. Greedy schedule S is optimal
Pf idea. Convert Opt to Greedy

» Does opt schedule have idle time?
» What if opt schedule has no inversions?
» What if opt schedule has inversions?
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Minimizing Lateness:
Analysis of Greedy Algorithm
Theorem. Greedy schedule S is optimal
Pf. Define S* to be an optimal schedule that
has the fewest number of inversions,
and let's see what happens
» Can assume S* has no idle time
» If S* has no inversions (and no idle time), then S = S*
» If S* has an inversion, let i-j be an adjacent inversion

Swapping i and j does not increase the maximum
lateness and strictly decreases the number of
inversions

This contradicts definition of S* =
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Analyzing Running Time
Earliest deadline first.

Sort n jobs by deadline so that d; s d; < .. = d,
=0
for j=1ton

Assign job j to interval [t, t + t;]

s;=1t
fi=t+t O(n logn)
t=t+t
output intervals [s;, f;]
max lateness = |
di=6 dy=8 dy=9 d=9 ds= 14 dg=15

What is the runtime of this algorithm?
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Greedy Analysis Strategies

Greedy algorithm stays ahead.

Show that after each step of the greedy
algorithm, its solution is at least as good as
any other algorithm's.

Exchange argument. Gradually transform
any solution to the one found by the greedy
algorithm without hurting its quality.
Structural. Discover a simple "structural"
bound asserting that every possible solution
must have a certain value. Then show that
your algorithm always achieves this bound.
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SHORTEST PATH
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Shortest Path Problem Shortest Path Problem
Given Shortest path problem: find shortest directed
~ Directed graph G = (V, E) path fromstot
» Source s, destination t Brainstorming on solution ...

» Length 7, = length of edge e (non-negative)
Shortest path problem: find shortest directed

www.wlu.edu
path fromstot D
cost of path =
www.wlu.edu - 3 8 sum of edge costs in path
97" @ * 19
14 18 ) 6 Cost of path s-A-B-E-t
=9+23+2+16
30 " 19 =48
wl |

www.cnn.com

Dijkstra’s Algorithm Dijkstra's Algorithm
Before

Maintain a set of explored nodes S

» Keep the shortest path distance d(u) from s to u

Initialize S={s}, d(s)=0, Vu#s, d(u)=«

Repeatedly choose unexplored node v

which minimizes =)= _ min _ dG)+L,.

» Add v to S and set d(v) = 7(V)  shortest path to some u
le

in explored part
followed by a single edge (u, v)
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Dijkstra’s Algorithm How is Algorithm Greedy?
Maintain a set of explored nodes S We always form shortest new s-v path from
> Keep the shortest path distance d(u) from s to u a path in S followed by a single edge
Initialize S={s}, d(s)=0, V u#s, d(u)=
Repeatedly choose unexplored node v Proof of optimality: Stays ahead of all other
which minimizes =)= _ min _ dG)+L,. solutions
» Add v to S and set d(V) = 71(V)  shortest path to some u » Each time selects a path to a node v, that path is
fo"owe:s;:'::g‘fengge o) shorter than every other possible path to v
S
O How is algorithm Greedy?
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Dijkstra’s Algorithm

Maintain a set of explored nodes S

» Keep the shortest path distance d(u) from s to u

Initialize S={s}, d(s)=0, V u#s, d(u)=

Repeatedly choose unexplored node v

which minimizes =)= _ min _ d()+L,.

» Add v to S and set d(v) = 7(V)  shortest path to some u
/,

in explored part
followed by a single edge (u, v)

Implementation Ideas
* What to represent?
* How to represent?
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Looking Ahead

Exam due today at 5 p.m.
Wiki due Tuesday for sections 3.4-3.6;
chapter 4 (front matter), 4.1
» Directed graphs, topological order
» Greedy algorithms
PS4 due Friday
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