
3/9/12	

1	

Objectives

•  Divide and conquer
Ø Closest pair of points
Ø Integer multiplication
Ø Matrix multiplication

Mar 9, 2012 1 CSCI211 - Sprenkle

Reviewing Closest Pair of Points

Mar 9, 2012 CSCI211 - Sprenkle 2

Closest Pair of Points
•  Closest pair. Given n points in the plane, find a

pair with smallest Euclidean distance between
them.
Ø Special case of nearest neighbor, Euclidean MST,

Voronoi.
•  Brute force. Check all pairs of points p and q

with Θ(n2) comparisons
•  1-D version. O(n log n)

Ø Easy if points are on a line
•  Assumption. No two points have same x

coordinate

Mar 9, 2012 CSCI211 - Sprenkle 3

to make presentation cleaner	

Closest Pair of Points

•  Recall the approach?

Mar 9, 2012 CSCI211 - Sprenkle 4

Closest Pair of Points

•  Divide: draw vertical line L so that roughly
½n points on each side

Mar 9, 2012 CSCI211 - Sprenkle 5

L	

Closest Pair of Points
•  Divide: draw vertical line L so that roughly ½n

points on each side
•  Conquer: find closest pair in each side

recursively

Mar 9, 2012 CSCI211 - Sprenkle 6

12	

21	

L	

3/9/12	

2	

Closest Pair of Points
•  Divide: draw vertical line L so that roughly ½n points on each side
•  Conquer: find closest pair in each side recursively
•  Combine: find closest pair with one point in each side
•  Return best of 3 solutions

Mar 9, 2012 CSCI211 - Sprenkle 7

12	

21	

8	

L	

seems like Θ(n2) 	

Do we need to check all pairs?	

Closest Pair of Points

•  Find closest pair with one point in each side,
assuming that distance < δ
 where δ = min(left_min_dist, right_min_dist)

Mar 9, 2012 CSCI211 - Sprenkle 8

12	

21	

δ = min(12, 21)

L	

Closest Pair of Points
•  Find closest pair with one point in each side,

assuming that distance < δ.
Ø Observation: only need to consider points within
δ of line L.

Mar 9, 2012 CSCI211 - Sprenkle 9

12	

21	

δ	

L	

δ = min(12, 21)

Closest Pair of Points
•  Find closest pair w/ 1 point in each side, assuming that

distance < δ.
Ø Observation: only consider points within δ of line L
Ø Sort points in 2δ-strip by their y coordinate

Mar 9, 2012 CSCI211 - Sprenkle 10

12	

21	

1	

2	

3	

4	
 5	

6	

7	

δ	

L	

δ = min(12, 21)

How should we
solve this part?	

Closest Pair of Points
•  Find closest pair w/ 1 point in each side, assuming distance < δ.

Ø  Observation: only consider points within δ of line L
Ø  Sort points in 2δ-strip by their y coordinate

•  Only checks distances of those within 11 positions in sorted
list!

Mar 9, 2012 CSCI211 - Sprenkle 11

12	

21	

1	

2	

3	

4	
 5	

6	

7	

δ	

L	

δ = min(12, 21)

Analyzing Cost of Combining

•  Def. Let si be the point in the
2δ-strip with the ith smallest
y-coordinate

•  Claim. If |i – j| ≥ 12,
then the distance between
si and sj is at least δ
Ø What is the distance of the box?
Ø How many points can be in a

box?
Ø When do we know that points are

> δ apart?
Mar 9, 2012 CSCI211 - Sprenkle 12 δ	

27	

29	

30	

31	

28	

26	

25	

δ	

½δ	

½δ	

½δ	

39	

i	

j	

Prepare minds to be blown…	

3/9/12	

3	

Analyzing Cost of Combining
•  Def. Let si be the point in the 2δ-strip

with the ith smallest y-coordinate
•  Claim. If |i – j| ≥ 12, then the

distance between si and sj is at least δ
•  Pf.

Ø  No two points lie in same ½δ-by-½δ
box

Ø  Two points at least 2 rows apart
have distance ≥ 2(½δ). ▪

•  Fact. Still true if we replace 12 with 7.

Mar 9, 2012 CSCI211 - Sprenkle 13 δ	

27	

29	

30	

31	

28	

26	

25	

δ	

½δ	

 2 rows	

½δ	

½δ	

39	

i	

j	

Cost of combining is therefore…?	

Closest Pair Algorithm

Mar 9, 2012 CSCI211 - Sprenkle 14

Closest-Pair(p1, …, pn) 	
 Compute separation line L such that half the points  
 are on one side and half on the other side.	
	
 δ1 = Closest-Pair(left half)	
 δ2 = Closest-Pair(right half)	
 δ = min(δ1, δ2)	
	
 Delete all points further than δ from separation

line L	
	
 Sort remaining points by y-coordinate.	
	
 Scan points in y-order and compare distance between  
 each point and next 7 neighbors. If any of these  
 distances is less than δ, update δ.	
	
 return δ	

Closest Pair Algorithm

Mar 9, 2012 CSCI211 - Sprenkle 15

Closest-Pair(p1, …, pn) 	
 Compute separation line L such that half the points  
 are on one side and half on the other side.	
	
 δ1 = Closest-Pair(left half)	
 δ2 = Closest-Pair(right half)	
 δ = min(δ1, δ2)	
	
 Delete all points further than δ from separation

line L	
	
 Sort remaining points by y-coordinate.	
	
 Scan points in y-order and compare distance between  
 each point and next 7 neighbors. If any of these  
 distances is less than δ, update δ.	
	
 return δ	

O(n log n)	

2T(n / 2)	

O(n)	

O(n log n)	

O(n)	

Total running time?	
T(n) = 2 T(n/2) + O(n log n)	

Closest Pair of Points: Analysis
•  Running time.

•  Can we achieve O(n log n)?

•  Yes. Don't sort points in strip from scratch
each time.
Ø Each recursive returns two lists: all points sorted

by y coordinate, and all points sorted by x
coordinate

Ø Sort by merging two pre-sorted lists

Mar 9, 2012 CSCI211 - Sprenkle 16

Solved in 5.2	

T(n) ≤ 2T(n/2) + O(n) è T(n) = O(n logn)	

T(n) ≤ 2T(n/2) + O(n log n) è T(n) = O(n log2n)	

INTEGER AND MATRIX
MULTIPLICATION

Mar 9, 2012 CSCI211 - Sprenkle 17

Integer Arithmetic

•  Add. Given 2 n-digit integers a and b,
compute a + b.
Ø Algorithm?
Ø Runtime?

Mar 9, 2012 CSCI211 - Sprenkle 18

1

0	
1	
1 1	

1	
1	
0 1	
+

0	
1	
0 1	

1	
1	
1

0	
1	
0 1	

0	
1	
1 1	

1	
0	
0 0	

1	
0	
1 1	
1

3/9/12	

4	

Integer Arithmetic

•  Add. Given 2 n-digit integers a and b,
compute a + b.
Ø Algorithm?
Ø Runtime?

Mar 9, 2012 CSCI211 - Sprenkle 19

1

0	
1	
1 1	

1	
1	
0 1	
+

0	
1	
0 1	

1	
1	
1

0	
1	
0 1	

0	
1	
1 1	

1	
0	
0 0	

1	
0	
1 1	
1

O(n) operations

Integer Arithmetic

•  Multiply. Given 2 n-digit integers a and b,
compute a × b
Algorithm?
Runtime?

Mar 9, 2012 CSCI211 - Sprenkle 20

1	

1	

0	

0	

1	

1	

0	

1	

1	

1	

0	

1	

1	

1	

1	

0	
*	

Integer Arithmetic

•  Multiply. Given 2 n-digit integers a and b,
compute a × b.
Ø Brute force solution: Θ(n2) bit operations

Mar 9, 2012 CSCI211 - Sprenkle 21

1	

1	

0	

0	

0	

1	

1	

1	

0	

0	

1	

1	

1	

1	

0	

0	

1	

1	

1	

1	

0	

1	

0	

1	

0	
0	
0	
0	
0	
0	
0	
0	

0	
1	
0	
1	
0	
1	
0	
1	

0	
1	
0	
1	
0	
1	
0	
1	

0	
1	
0	
1	
0	
1	
0	
1	

0	
1	
0	
1	
0	
1	
0	
1	

0	
1	
0	
1	
0	
1	
0	
1	

0	
0	
0	
0	
0	
0	
0	
0	

0	
1	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
1	
0	
1	
1	

1	

0	

1	

1	

1	

1	

1	

0	

0	

*	

Goal: Faster algorithm	

Divide-and-Conquer Multiplication:
Warmup
•  To multiply 2 n-digit integers:

Ø Multiply 4 ½ n-digit integers
Ø Add 2 ½ n-digit integers and shift to obtain result

Mar 9, 2012 CSCI211 - Sprenkle 22

!

x = 2n / 2 " x1 + x0

y = 2n / 2 " y1 + y0

xy = 2n / 2 " x1 + x0() 2n / 2 " y1 + y0() = 2n " x1y1 + 2n / 2 " x1y0 + x0 y1() + x0 y0

Higher order bits	
 Lower order bits	

What is the recurrence relation?	

•  How many subproblems?	

•  What is merge cost?	

•  What is its runtime?	

Shift	

A	
 B	
 C	
 D	

Divide-and-Conquer Multiplication:
Warmup
•  To multiply two n-digit integers:

Ø Multiply 4 ½ n-digit integers
Ø Add 2 ½ n-digit integers and shift to obtain result

Mar 9, 2012 CSCI211 - Sprenkle 23

!

x = 2n / 2 " x1 + x0

y = 2n / 2 " y1 + y0

xy = 2n / 2 " x1 + x0() 2n / 2 " y1 + y0() = 2n " x1y1 + 2n / 2 " x1y0 + x0 y1() + x0 y0

Higher order bits	
 Lower order bits	

Shift	

A	
 B	
 C	
 D	

!

T(n) = 4T n /2()
recursive calls
! " # $ #

 + "(n)
add, shift
! " $ # T(n) ="(n2)

assumes n is a power of 2	

Not an improvement
over brute force	

Karatsuba Multiplication

•  To multiply two n-digit integers:
Ø Add 2 ½n digit integers
Ø Multiply 3 ½n-digit integers
Ø Add, subtract, and shift ½n-digit integers to

obtain result

Mar 9, 2012 CSCI211 - Sprenkle 24

!

x = 2n / 2 " x1 + x0

y = 2n / 2 " y1 + y0

xy = 2n " x1y1 + 2n / 2 " x1y0 + x0 y1() + x0 y0

= 2n " x1y1 + 2n / 2 " (x1 + x0) (y1 + y0) # x1y1 # x0 y0() + x0 y0

A	
 B	
 C	
A	
 C	

What is the recurrence relation? Runtime?	

3/9/12	

5	

Karatsuba Multiplication

•  Theorem. [Karatsuba-Ofman, 1962] Can
multiply two n-digit integers in O(n1.585) bit
operations

Mar 9, 2012 CSCI211 - Sprenkle 25

!

x = 2n / 2 " x1 + x0

y = 2n / 2 " y1 + y0

xy = 2n " x1y1 + 2n / 2 " x1y0 + x0 y1() + x0 y0

= 2n " x1y1 + 2n / 2 " (x1 + x0) (y1 + y0) # x1y1 # x0 y0() + x0 y0

!

T(n) " T n /2# $() + T n /2% &() + T 1+ n /2% &()
recursive calls

! " # # # # # # # $ # # # # # # #
+ '(n)

add, subtract, shift
! " # $ #

(T(n) = O(n log 2 3) = O(n1.585)

A	
 B	
 C	
A	
 C	

MATRIX MULTIPLICATION

Mar 9, 2012 CSCI211 - Sprenkle 26

Matrix Multiplication

•  Given 2 n-by-n matrices A and B,
compute C = AB

Ø Ex: c12 = a11 b12 + a12 b22 + a13 b32 + … + a1n bn2

Mar 9, 2012 CSCI211 - Sprenkle 27

!

cij = aik bkj
k=1

n

"

!

c11 c12 ! c1n

c21 c22 ! c2n

" " # "
cn1 cn2 ! cnn

"

$
$
$
$

%

&

'
'
'
'

=

a11 a12 ! a1n

a21 a22 ! a2n

" " # "
an1 an2 ! ann

"

$
$
$
$

%

&

'
'
'
'

(

b11 b12 ! b1n

b21 b22 ! b2n

" " # "
bn1 bn2 ! bnn

"

$
$
$
$

%

&

'
'
'
'

Solve using brute force …	

Matrix Multiplication
•  Given 2 n-by-n matrices A and B,

compute C = AB

Ø Ex: c12 = a11 b12 + a12 b22 + a13 b32 + … + a1n bn2

•  Brute force. Θ(n3) arithmetic operations
•  Fundamental question: Can we improve

upon brute force?
Mar 9, 2012 CSCI211 - Sprenkle 28

!

cij = aik bkj
k=1

n

"

!

c11 c12 ! c1n

c21 c22 ! c2n

" " # "
cn1 cn2 ! cnn

"

$
$
$
$

%

&

'
'
'
'

=

a11 a12 ! a1n

a21 a22 ! a2n

" " # "
an1 an2 ! ann

"

$
$
$
$

%

&

'
'
'
'

(

b11 b12 ! b1n

b21 b22 ! b2n

" " # "
bn1 bn2 ! bnn

"

$
$
$
$

%

&

'
'
'
'

Matrix Multiplication: Warmup

•  Divide: partition A and B into ½n-by-½n
blocks

•  Conquer: multiply 8 ½n-by-½n recursively
•  Combine: add appropriate products using 4

matrix additions

Mar 9, 2012 CSCI211 - Sprenkle 29

!

C11 = A11 " B11() + A12 " B21()
C12 = A11 " B12() + A12 " B22()
C21 = A21 " B11() + A22 " B21()
C22 = A21 " B12() + A22 " B22()

!

C11 C12

C21 C22

"

$

%

&
' =

A11 A12

A21 A22

"

$

%

&
' (

B11 B12

B21 B22

"

$

%

&
'

Recurrence relation? Runtime?	

Matrix Multiplication: Warmup

•  Divide: partition A and B into ½n-by-½n
blocks

•  Conquer: multiply 8 ½n-by-½n recursively
•  Combine: add appropriate products using 4

matrix additions

Mar 9, 2012 CSCI211 - Sprenkle 30

!

C11 = A11 " B11() + A12 " B21()
C12 = A11 " B12() + A12 " B22()
C21 = A21 " B11() + A22 " B21()
C22 = A21 " B12() + A22 " B22()

!

C11 C12

C21 C22

"

$

%

&
' =

A11 A12

A21 A22

"

$

%

&
' (

B11 B12

B21 B22

"

$

%

&
'

!

T(n) = 8T n /2()
recursive calls
! " # $ #

 + "(n2)
add, form submatrices
! " # # $ # # # T(n) ="(n3)

3/9/12	

6	

Matrix Multiplication: Key Idea

•  Multiply 2-by-2 block matrices with only 7
multiplications and 15 additions

Ø 7 multiplications.
Ø 18 = 10 + 8 additions (or subtractions).

Mar 9, 2012 CSCI211 - Sprenkle 31

!

P1 = A11 " (B12 # B22)
P2 = (A11 + A12) " B22
P3 = (A21 + A22) " B11
P4 = A22 " (B21 # B11)
P5 = (A11 + A22) " (B11 + B22)
P6 = (A12 # A22) " (B21 + B22)
P7 = (A11 # A21) " (B11 + B12)

!

C11 = P5 + P4 " P2 + P6
C12 = P1 + P2
C21 = P3 + P4
C22 = P5 + P1 " P3 " P7

!

C11 C12

C21 C22

"

$

%

&
' =

A11 A12

A21 A22

"

$

%

&
' (

B11 B12

B21 B22

"

$

%

&
'

Trading expensive multiplication for
less expensive addition/subtraction

Fast Matrix Multiplication
[Strassen, 1969]
•  Divide: partition A and B into ½n-by-½n blocks
•  Compute: 14 ½n-by-½n matrices via 10 matrix

additions
•  Conquer: multiply 7 ½n-by-½n matrices

recursively
•  Combine: 7 products into 4 terms using 8

matrix additions
•  Analysis.

Ø Assume n is a power of 2.
Ø T(n) = # arithmetic operations.

Mar 9, 2012 CSCI211 - Sprenkle 32

!

T(n) = 7T n /2()
recursive calls
! " # $ #

+ "(n2)
add, subtract
! " # $ # # T(n) ="(n log2 7) = O(n2.81)

Fast Matrix Multiplication in Practice

•  Implementation issues: problems with putting
theory into practice
Ø Sparsity
Ø Caching effects
Ø Numerical stability

•  Theoretically correct but possible problems with
round off errors, etc

Ø Odd matrix dimensions
Ø Crossover to classical algorithm around n = 128

Mar 9, 2012 CSCI211 - Sprenkle 33

Fast Matrix Multiplication in Practice

•  Common misperception:
"Strassen is only a theoretical curiosity."
Ø Advanced Computation Group at Apple

Computer reports 8x speedup on G4 Velocity
Engine when n ~ 2,500

Ø Range of instances where it's useful is a subject
of controversy

•  Can "Strassenize" Ax=b, determinant,
eigenvalues, and other matrix ops

Mar 9, 2012 CSCI211 - Sprenkle 34

Fast Matrix Multiplication in Theory
•  Q. Multiply two 2-by-2 matrices with only 7 scalar

multiplications?
•  A. Yes! [Strassen, 1969]
•  Q. Multiply two 2-by-2 matrices with only 6 scalar

multiplications?
•  A. Impossible [Hopcroft and Kerr, 1971]
•  Q. Two 3-by-3 matrices with only 21 scalar multiplications?
•  A. Also impossible
•  Q. Two 70-by-70 matrices with only 143,640 scalar

multiplications?
•  A. Yes! [Pan, 1980]

•  Decimal wars.
Ø December, 1979: O(n2.521813)
Ø  January, 1980: O(n2.521801)

Mar 9, 2012 CSCI211 - Sprenkle 35

!

" (n log3 21) = O(n 2.77)

!

" (n log70 143640) = O(n 2.80)

!

"(n log2 6) = O(n 2.59)

!

"(n log2 7) = O(n 2.81)

Fast Matrix Multiplication in Theory

•  Best known. O(n2.376)
 [Coppersmith-Winograd, 1987]

Ø But really large constant
•  Conjecture. O(n2+ε) for any ε > 0.

•  Caveat. Theoretical improvements to
Strassen are progressively less practical.

Mar 9, 2012 CSCI211 - Sprenkle 36

3/9/12	

7	

Problem Set 5 Feedback

•  Don’t forget to analyze the runtime of every
algorithm you write

•  How do you prove optimality of Greedy
algorithms?

Mar 9, 2012 CSCI211 - Sprenkle 37

Greedy Stays Ahead Proofs
1.  Define your solutions

Ø  Describe the form of your greedy solution and of some other solution
(possibly the optimal solution)

•  Example: Let A be the solution constructed by the greedy algorithm and O
be a solution

2.  Find a measure
Ø  Find a measure by which greedy stays ahead of the optimal solution

•  Ex: Let a1, . . . , ak be the first k measures of greedy algorithm and
o1 , . . . , om be the first m measures of other solution (sometimes m = k)

3.  Prove greedy stays ahead
Ø  Show that the partial solutions constructed by greedy are always just

as good as the optimal solution’s initial segments based on the
measure

•  Ex: for all indices r ≤ min(k,m), prove by induction that ar ≥ or or ar ≤ or
Ø  Use the greedy algorithm to help you argue the inductive step

4.  Prove optimality
Ø  Prove that since greedy stays ahead of the other solution with respect

to the measure, then the greedy solution is optimal

Mar 9, 2012 CSCI211 - Sprenkle 38

Greedy Exchange Proofs
1.  Label your algorithm’s solution and a general solution.

Ø  Example: let A = {a1, a2, ..., ak} be the solution generated by your algorithm, and
let O = {o1, o2, ..., om} be an arbitrary (or optimal) feasible solution.

2.  Compare greedy with other solution.
Ø  Assume that your arbitrary/optimal solution is not the same as your greedy

solution (since otherwise, you are done).
Ø  Typically, can isolate a simple example of this difference, such as:
①  There is an element e ∈ O that ∉ A and an element f ∈ A that ∉ O
②  2 consecutive elements in O are in a different order than in A (i.e., there is an

inversion).

3.  Exchange.
Ø  Swap the elements in question in O (either ➀ swap one element out and

another in or ➁ swap the order of the elements) and argue that solution is no
worse than before.

Ø  Argue that if you continue swapping, you eliminate all differences between O
and A in a finite # of steps without worsening the solution’s quality.

Ø  Thus, the greedy solution produced is just as good as any optimal solution, and
hence is optimal itself.

Mar 9, 2012 CSCI211 - Sprenkle 39

Assignments

• Wiki for 5.2-5.5 due Tuesday
•  Chapter 6 starts Monday
•  PS7 due Friday

Ø May want to try to implement solutions (to some
extent) to help ensure that your algorithm is
correct

Mar 9, 2012 CSCI211 - Sprenkle 40

