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Objectives 

•  Review: Directed Graphs 
•  Topological Orderings of DAGs 
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Review 

• What do we know about graphs?   
Directed graphs? 
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Review 

• What do we know about graphs? 
Ø Space 
Ø Connectivity 

•  BFS, DFS 
Ø Bipartite graphs 

•  How to color? 
•  When know not colorable? 
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Review: Representing Directed Graphs 

•  Edge (u, v) goes from node u to node v 

 

•  For each node, keep track of 
Ø Out edges (where links go) 
Ø In edges (from where links come in) 
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DAGS AND  
TOPOLOGICAL ORDERING 
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Directed Acyclic Graphs 
•  Def.  A DAG is a directed graph that contains  

no directed cycles. 
•  Example.  Precedence constraints:  

edge (vi, vj) means vi must precede vj 
Ø Course prerequisite graph:  

course vi must be taken before vj 

Ø Compilation: module vi must be compiled before vj 

Ø Pipeline of computing jobs: output of job vi needed to 
determine input of job vj 
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a DAG:	
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Problem: Valid Ordering 

•  Given a set of tasks with dependencies,  
what is a valid order in which the tasks could 
be performed? 

•  Example: Getting dressed 
Ø What tasks are involved? 
Ø What tasks depend on other tasks? 

Jan 30, 2013 CSCI211 - Sprenkle 7 

v2 v3 

v6 v5 v4 

v7 v1 

Topological Ordering 
•  Problem: Given a set of tasks with 

dependencies, what is a valid order  
in which the tasks could be performed? 

•  Def.  A topological order of a directed graph  
G = (V, E) is an ordering of its nodes as v1, v2, 
…, vn so that for every edge (vi, vj) we have i < j. 
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a DAG	



a topological ordering	


All edges point “forward”	
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Coordinating labeling of nodes, but numbering is not known for just DAG	



Towards a Solution 

•  Start by showing that if G has a topological 
order, then G is a DAG 

•  Eventually, we’ll show the other direction:  
if G is a DAG, then G has a topological order 
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Directed Acyclic Graphs 

•  Lemma. If G has a topological order,  
then G is a DAG. 

•  Proof plan: Try to show that G has a 
topological order even though G has a cycle 
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v1	

 vi	

 vj	

 vn	



the supposed topological order: v1, …, vn	



the directed cycle C	



Why isn’t this valid?	



DAGs & Topological Orderings 
•  Lemma.  If G has a topological order, then G is a DAG. 
•  Pf.  (by contradiction) 

Ø  Suppose that G has a topological order v1, …, vn and  
that G also has a directed cycle C. 

Ø  Let vi be the lowest-indexed node in C, and let vj be the node 
on C just before vi; thus (vj, vi) is an edge 

Ø  By our choice of i (lowest-indexed node), i < j 
Ø  Since (vj, vi) is an edge and v1, …, vn is a topological order, 

we must have j < i 
•  a contradiction. ▪ 
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v1	

 vi	

 vj	

 vn	



the directed cycle C	



the supposed topological order: v1, …, vn	



Directed Acyclic Graphs 

•  Does every DAG have a  
topological ordering? 
Ø If so, how do we compute one? 
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Directed Acyclic Graphs 

•  Does every DAG have a  
topological ordering? 
Ø If so, how do we compute one? 

• What do we need to be able to create a 
topological ordering? 
Ø What are some characteristics of this graph? 
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v1 v2 v3 v4 v5 v6 v7 

Directed Acyclic Graphs 

•  Does every DAG have a  
topological ordering? 
Ø If so, how do we compute one? 

• What do we need to be able to create a 
topological ordering? 
Ø What are some characteristics of this graph? 
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v1 v2 v3 v4 v5 v6 v7 

Need someplace to start:	


a node with no incoming edges 

(no dependencies)	


Note that both v1 and v2 ���
have no incoming edges	



Towards a Topological Ordering 
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Do we know there is always a ���
node with no incoming edges?	



Goal: Find an algorithm for finding the TO	


Idea: 1st node is one with no incoming edges	



Towards a Topological Ordering 

•  Lemma. If G is a DAG,  
then G has a node with no incoming edges 
Ø This is our starting point of the topological 

ordering 
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How to prove?	



Towards a Topological Ordering 

•  Lemma. If G is a DAG,  
then G has a node with no incoming edges 

•  Proof idea: Consider if there is no node 
without incoming edges 
Ø What contradiction are we looking for? 
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Towards a Topological Ordering 
•  Lemma.  If G is a DAG, 

then G has a node with no incoming edges. 
•  Pf.  (by contradiction) 

Ø  Suppose that G is a DAG and every node has at least one incoming 
edge 

Ø  Pick any node v, and follow edges backward from v. 
•  Since v has at least one incoming edge (u, v), we can walk backward to 

u 
Ø  Since u has at least one incoming edge (t, u), we can walk backward 

to t 
Ø  Repeat until we visit a node, say w, twice 

•  Has to happen at least by n+1 steps (Why?) 
Ø  Let C denote the sequence of nodes encountered between 

successive visits to w.  C is a cycle, which is a contradiction to G is a 
DAG  ▪ 
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Putting it all together:  
Creating a topological order 
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Ideas?	



Topological Ordering Algorithm 
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Find a node v with no incoming edges	
Order v first	
Delete v from G	
Recursively compute a topological ordering of G-{v}	

	and append this order after v 

How do we know this works?	



Directed Acyclic Graphs 
•  Lemma.  If G is a DAG, then G has a topological 

ordering. 
•  Pf.  (by induction on n) 

Ø Base case:  true if n = 1 
Ø Given DAG on n > 1 nodes, find a node v with no 

incoming edges 
Ø G - { v } is a DAG because deleting v  

cannot create cycles 
Ø By inductive hypothesis,  

G - { v } has a topological ordering 
Ø Place v first in topological ordering;  
Ø Append nodes of G - { v } in topological order.  

•  valid since v has no incoming edges.   ▪ 
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DAG	


v	



Topological Ordering Algorithm 

•  Lemma.  If G is a DAG,  
then G has a topological ordering. 

•  Algorithm: 
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Find a node v with no incoming edges	
Order v first	
Delete v from G	
Recursively compute a topological ordering of G-{v}	

	and append this order after v 

Topological Ordering Algorithm:  
Example 

23 

v1 

Topological order:  	



v2 v3 

v6 v5 v4 

v7 v1 
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Topological Ordering Algorithm:  
Example 

24 

v2 

Topological order:  v1	



v2 v3 

v6 v5 v4 

v7 
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Topological Ordering Algorithm:  
Example 

25 

v3 

Topological order:  v1, v2	



v3 

v6 v5 v4 

v7 
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Topological Ordering Algorithm:  
Example 
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v4 

Topological order:  v1, v2, v3	



v6 v5 v4 

v7 
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Topological Ordering Algorithm:  
Example 
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v5 

Topological order:  v1, v2, v3, v4	



v6 v5 

v7 
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Topological Ordering Algorithm:  
Example 

28 

v6 

Topological order:  v1, v2, v3, v4, v5	



v6 

v7 
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Topological Ordering Algorithm:  
Example 
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v7 

Topological order:  v1, v2, v3, v4, v5, v6	



v7 
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Topological Ordering Algorithm:  
Example 

30 

Topological order:  v1, v2, v3, v4, v5, v6, v7.	



v2 v3 

v6 v5 v4 

v7 v1 

v1 v2 v3 v4 v5 v6 v7 
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Topological Order Runtime 

• Where are the costs? 
•  How would we implement? 
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Find a node v with no incoming edges	
Order v first	
Delete v from G	
Recursively compute a topological ordering of G-{v}	

	and append this order after v 

Topological Order Runtime 

•  Find a node without incoming edges and 
delete it: O(n) 

•  Repeat on all nodes 
 O(n2) 
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Can we do better?	



Find a node v with no incoming edges	
Order v first	
Delete v from G	
Recursively compute a topological ordering of G-{v}	

	and append this order after v 

O(n)	



O(n)	



Topological Sorting Algorithm: 
Running Time 
•  Theorem. Find a topological order in O(m + n) 

time 
•  Pf.   

Ø Maintain the following information: 
•  count[w] = remaining number of incoming edges 
•  S = set of remaining nodes with no incoming edges 

Ø  Initialization: O(m + n) via single scan through graph 
Ø Algorithm:  

•  Select a node v from S, remove v from S 
•  Decrement count[w] for all edges from v to w 

Ø  Add w to S if count[w] = 0 
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PS2 Feedback 

• When providing algorithms, make sure your 
input is clear 
Ø Examples: what is the name of your heap?  

What does n represent? 
Ø isHeap(H[1...n])  

•  Analyze runtime of all algorithms created 
•  Consider implementing solutions 

Ø Catch errors when try different test cases 
•  I write notes on your algorithms so that I can 

understand what is happening 
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Looking Ahead 

•  Problem Set 3 due Friday 
•  Exam 1 handed out on Friday 

Ø Different rules from problem set 
Ø No collaboration 
Ø Can access your notes, book, my lectures 
Ø Can ask me questions, but I’m limited in how 

much help I can give 
Ø Next Wednesday: work session 
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