
2/4/13	

1	

Objectives

• Wrapping up implementing BFS and DFS
•  Graph Application: Bipartite Graphs

Jan 25, 2013 1 CSCI211 - Sprenkle

Review: Comparing BFS vs DFS

• What do they do?
•  How are their outcomes different?
• When would we want to use one over the

other?

Jan 25, 2013 CSCI211 - Sprenkle 2

Review: Comparing BFS vs DFS
•  What do they do?

Ø Techniques for finding connected components
•  Create a tree of connected components

Ø Other uses as well
•  How are their outcomes different?

Ø BFS: shortest path; bushy tree
Ø DFS: spindly tree

•  When would we want to use one over the other?
Ø BFS: Shortest path
Ø DFS: what you’d do in a maze (can’t split)

Jan 25, 2013 CSCI211 - Sprenkle 3

Review: A General Algorithm for
Finding Connected Component

•  R will be the connected component
containing s

•  Algorithm is underspecified
Ø BFS and DFS say how to consider edges

Jan 23, 2013 CSCI211 - Sprenkle 4

R will consist of nodes to which s has a path	
R = {s}	
while there is an edge (u,v) where u∈R and v∉R	

	add v to R	

s	

u	
 v	

R	

it's safe to

add v	

Analysis of Connected Components

•  For any two nodes s and t in a graph, their
connected components are either identical or
disjoint

•  Proof?

Jan 25, 2013 CSCI211 - Sprenkle 5

Analysis of Connected Components

•  For any two nodes s and t in a graph, their
connected components are either identical or
disjoint

•  Proof sketch:
(i) There is a path between s and t à same set of

connected components
(ii) There is no path between s and t à disjoint set

of connected components

Jan 25, 2013 CSCI211 - Sprenkle 6

2/4/13	

2	

Set of All Connected Components

•  How can we find set of all connected
components of graph?

Jan 25, 2013 CSCI211 - Sprenkle 7

Set of All Connected Components

•  How can we find set of all connected
components of graph?

Jan 25, 2013 CSCI211 - Sprenkle

R* = set of connected components	
while there is a node that does not belong to R*	

		
	select s not in R*	

	
	R = {s}	

	
	while there is an edge (u,v) where u∈R and v∉R	
	 	add v to R	

	
	

	Add R to R*	

8

Find s’s connected
component	

IMPLEMENTATION &
ANALYSIS

Jan 25, 2013 CSCI211 - Sprenkle 9

Queues and Stacks

•  How are queues and stacks similar?
•  How are queues and stacks different?

Jan 25, 2013 CSCI211 - Sprenkle 10

Queues and Stacks

•  Both: doubly linked list
Ø Always take first on list
Ø Difference in where extracted
Ø Have first and last pointers
Ø Done in constant time

•  Queue: FIFO
Ø First in, first out

•  Stack: LIFO
Ø Last in, first out

Jan 25, 2013 CSCI211 - Sprenkle 11

Queue
Removes	

Stack
Removes	

Both add	
 Review: Breadth-First Search

•  Intuition. Explore outward from s in all
possible directions (edges), adding nodes
one "layer" at a time

•  Algorithm
Ø L0 = { s }
Ø L1 = all neighbors of L0

Ø L2 = all nodes that have an edge to a node in L1
and do not belong to L0 or L1

Ø Li+1 = all nodes that have an edge to a node in Li
and do not belong to an earlier layer

Jan 23, 2013 CSCI211 - Sprenkle 12

s	
 L1	
 L2	
 L n-1	

L0	

2/4/13	

3	

Implementing BFS

• What do we need as input?
• What do we need to model?

Ø How will we model that?

Jan 25, 2013 CSCI211 - Sprenkle 13

Implementing BFS
•  Input: Graph as an adjacency list
•  Discovered array
•  Maintain layers in separate lists, L[i]

Jan 25, 2013 CSCI211 - Sprenkle 14

Implementing BFS
•  Graph: Adjacency list
•  Discovered array
•  Maintain layers in separate lists, L[i]

Jan 25, 2013 CSCI211 - Sprenkle

BFS(s, G):	
	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	for each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] == false then	
	 	 	 	Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	

L[i]
representation?	

15

What does this
stopping condition

mean?	

Analysis

Jan 25, 2013 CSCI211 - Sprenkle 16

BFS(s, G):	
	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	For each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] == false then	
	 	 	 	Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	

•  L[i] representation? List, queue, or stack���
- Doesn’t matter because algorithm can consider nodes in any order	

What is the running time?	

BFS(s, G):	
	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	For each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] == false then	
	 	 	 	Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	

Analysis

Jan 25, 2013 CSCI211 - Sprenkle

A
t

m
os

t
n	

A
t

m
os

t
n-

1	

O(n3)	

n	

17

A
t

m
os

t
n-

1	

BFS(s, G):	
	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	For each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] == false then	
	 	 	 	Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	

Analysis: Tighter Bound

Jan 25, 2013 CSCI211 - Sprenkle

A
t

m
os

t
n	
O(n2)	

n	

18

A
t

m
os

t
n-

1	

Because we’re going to look at each node at most once	

2/4/13	

4	

BFS(s, G):	
	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	For each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] == false then	
	 	 	 	Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	

Analysis: Even Tighter Bound

Jan 25, 2013 CSCI211 - Sprenkle

O(deg(u))	

A
t

m
os

t
n	

n	

Σu∈V deg(u) = 2m	

	

à O(n+m)	

19

Implementing DFS

• What do we need as input?
• What do we need to model?

Ø How will we model that?

Ø Pseudo code

Jan 25, 2013 CSCI211 - Sprenkle 20

DFS(u):	
	Mark u as “Explored” and add u to R	
	For each edge (u, v) incident to u	
	 	If v is not marked “Explored” then	
	 	 	DFS(v)	

Implementing DFS

•  Keep nodes to be processed in a stack

Jan 25, 2013 CSCI211 - Sprenkle

DFS(s, G):	
	Initialize S to be a stack with one element s	
	Explored[v] = false, for all v	
	Parent[v] = 0, for all v	
	DFS tree T = {}	
	while S != {}	
	 	Take a node u from S	
	 	if Explored[u] = false	
	 	 	Explored[u] = true	
	 	 	Add edge (u, Parent[u]) to T (if u ≠ s)	
	 	 	for each edge (u, v) incident to u	
	 	 	 	Add v to the stack S	
	 	 	 	Parent[v] = u	

21

How many times is a node added/removed from the stack?	

DFS(s, G):	
	Initialize S to be a stack with one element s	
	Explored[v] = false, for all v	
	Parent[v] = 0, for all v	
	DFS tree T = {}	
	while S != {}	
	 	Take a node u from S	
	 	if Explored[u] = false	
	 	 	Explored[u] = true	
	 	 	Add edge (u, Parent[u]) to T (if u ≠ s)	
	 	 	for each edge (u, v) incident to u	
	 	 	 	Add v to the stack S	
	 	 	 	Parent[v] = u	

Analyzing DFS

Jan 25, 2013 CSCI211 - Sprenkle

deg(u)	

O(n+m)	

22

O(n)	

A node is added/removed from the stack 2m = O(m) times	

Looking Ahead

•  Reading Chapter 3
Ø 3.1-3.3

•  Problem Set 3 due before class on Friday

Jan 25, 2013 CSCI211 - Sprenkle 23

