
2/27/12	

1	

Objectives

•  Clustering
•  Encoding

Feb 27, 2012 1 CSCI211 - Sprenkle

Review: Our Problem Solving Process

1. Understand/identify problem
Ø  Simplify as appropriate

2. Design a solution
3. Analyze

Ø  Correctness, efficiency
Ø  May need to go back to step 2 and try again

4.  Implement
Ø  Within bounds shown in analysis

Feb 27, 2012 CSCI211 - Sprenkle 2

Review

• What is a minimum spanning tree?
• What are some algorithms to find an MST?

Feb 27, 2012 CSCI211 - Sprenkle 3

Review: Minimum Spanning Tree
•  Spanning tree: spans all nodes in graph
•  Given a connected graph G = (V, E) with

positive edge weights ce, an MST is a subset of
the edges T ⊆ E such that T is a spanning tree
whose sum of edge weights is minimized

Feb 27, 2012 CSCI211 - Sprenkle 4

 5	

23	

10 	

21	

 14	

24	

 16	

 6	

 4	

18	

9	

7	

11	

 8	

 5	

 6	

 4	

9	

7	

11	

 8	

G = (V, E)	
 T, Σe∈T ce = 50	

Review: Greedy Algorithms

•  Prim's algorithm. Start with some root node s and greedily
grow a tree T from s outward. At each step, add the
cheapest edge e to T that has exactly one endpoint in T.
Ø  Similar to Dijkstra’s (but simpler)

•  Kruskal's algorithm. Start with T = φ. Consider edges in
ascending order of cost. Insert edge e in T unless doing so
would create a cycle.

•  Reverse-Delete algorithm. Start with T = E. Consider
edges in descending order of cost. Delete edge e from T
unless doing so would disconnect T.

Feb 27, 2012 CSCI211 - Sprenkle 5

All three algorithms produce a MST	

CLUSTERING

Feb 27, 2012 CSCI211 - Sprenkle 6

Outbreak of cholera deaths in London in 1850s. ���
Reference: Nina Mishra, HP Labs	

Intersections with
polluted wells	

2/27/12	

2	

Clustering
•  Given a set U of n objects (or points) labeled

p1, …, pn, classify into coherent groups
Ø Problem: Divide objects into clusters so that

points in different clusters are far apart
•  Requires quantification of distance

•  Applications
Ø Routing in mobile ad hoc networks
Ø Identify patterns in gene expression
Ø Identifying patterns in web application use cases

•  Sets of URLs
Ø Similarity searching in medical image databases

Feb 27, 2012 CSCI211 - Sprenkle 7

Clustering: Distance Function

•  Numeric value specifying "closeness" of two
objects

•  Assume distance function satisfies several
natural properties
Ø d(pi, pj) = 0 iff pi = pj (identity of indiscernibles)
Ø d(pi, pj) ≥ 0 (nonnegativity)
Ø d(pi, pj) = d(pj, pi) (symmetry)

Feb 27, 2012 CSCI211 - Sprenkle 8

Our Problem:
k-Clustering of Maximum Spacing
•  k-clustering. Divide objects into k non-empty

groups
•  Spacing. Min distance between any pair of

points in different clusters
•  k-clustering of maximum spacing.

Given an integer k, find a k-clustering of
maximum spacing

Feb 27, 2012 CSCI211 - Sprenkle 9

spacing	

k = 4	

Ideas about solving?	

Greedy Clustering Algorithm

•  Single-link k-clustering algorithm
Ø Form a graph on the vertex set U, corresponding

to n clusters
Ø Find the closest pair of objects such that each

object is in a different cluster and add an edge
between them

Ø Repeat n-k times until there are exactly k
clusters

Feb 27, 2012 CSCI211 - Sprenkle 10

How is this related to the MST?	

Greedy Clustering Algorithm

•  Key observation. Same as Kruskal's
algorithm
Ø Except we stop when there are k connected

components
•  Remark. Equivalent to finding MST and

deleting the k-1 most expensive edges

Feb 27, 2012 CSCI211 - Sprenkle 11

 5	

 6	

 4	

9	

7	

11	

 8	

 5	

 6	

 4	

7	

 8	

k=3	

MST	

Greedy Clustering Algorithm: Analysis
•  Theorem. Let C denote the clustering C1, …, Ck formed

by deleting the k-1 most expensive edges of a MST.
C is a k-clustering of max spacing.

•  Pf Intuition:
Ø What can we say about C’s spacing?

•  Within clusters and between clusters
Ø What if C isn’t optimal?

•  What does that mean about C’s clusters vs (optimal) C*’s
clusters?

Feb 27, 2012 CSCI211 - Sprenkle 12

 5	

 6	

 4	

9	

7	

11	

 8	

 5	

 6	

 4	

7	

 8	

K=3	

MST	

2/27/12	

3	

Greedy Clustering Algorithm: Analysis
•  Theorem. Let C denote the clustering C1, …, Ck formed by

deleting the k-1 most expensive edges of a MST. C is a k-
clustering of maximum spacing.

•  Pf Sketch. Let C* denote some other clustering C*1, …, C*k.
C* and C must be different; otherwise we’re done.
Ø  The spacing of C is length d of (k-1)st most expensive edge
Ø  Let pi, pj be in the same cluster in Greedy solution C (say Cr)

but different clusters in other solution C*, say C*s and C*t
Ø  Some edge (p, q) on pi-pj path in Cr spans two different

clusters in C*

Feb 27, 2012 CSCI211 - Sprenkle 13

p	
 q	
pi	
 pj	

C*s	
 C*t	

Cr	

What do we know about (p, q)?	

Greedy	

Other
solution	

Greedy Clustering Algorithm: Analysis
•  Theorem. Let C denote the clustering C1, …, Ck formed by

deleting the k-1 most expensive edges of a MST. C is a k-
clustering of maximum spacing.

•  Pf. Let C* denote some other clustering C*1, …, C*k.
C* and C must be different; otherwise we’re done.
Ø  The spacing of C is length d of (k-1)st most expensive edge
Ø  Let pi, pj be in the same cluster in C (say Cr) but different

clusters in C*, say C*s and C*t
Ø  Some edge (p, q) on pi-pj path in Cr spans two different

clusters in C*
Ø  All edges on pi-pj path have length ≤ d

since Kruskal chose them
Ø  Spacing of C* is at most ≤ d since
 p and q are in different clusters

Feb 27, 2012 CSCI211 - Sprenkle 14

p	
 q	
pi	
 pj	

C*s	
 C*t	

Cr	

Greedy	

Other
solution	

IMPROVING
TRANSMISSION SPEEDS

Feb 27, 2012 CSCI211 - Sprenkle 15

Which Is Better?

Feb 27, 2012 CSCI211 - Sprenkle 16

Large
File	

Server	
 Client	
Internet	

Large
File	

Server	
 Client	
Internet	

Compressed	

File	

Large
File	

Large File	
Compressed	

File	

OR	

Discussion: Which Is Better?
•  Depends on your metrics, compression time/amount
•  Case 1 requires

Ø More network resources
Ø  Less CPU time (server: compress; client: uncompress)

•  Case 2 requires
Ø  Less network resources
Ø More CPU time (client and server)

•  Overall best
Ø Depends on file size, network speed, compression time/

amount
Ø Bigger files à Case 2

Feb 27, 2012 CSCI211 - Sprenkle 17

Problem: Encoding
•  Computers use bits: 0s and 1s
•  Need to represent what we (humans) know

to what computers know

Ø Map symbol à unique sequence of 0s and 1s
Ø Process is called encoding

Feb 27, 2012 CSCI211 - Sprenkle 18

decimal, strings	
 binary	
 decimal, strings	

2/27/12	

4	

Problem: Encoding

•  Let’s say we want to encode characters
using 0s and 1s
Ø Lower case letters (26)
Ø Space
Ø Punctuation (, . ? ! ')

Feb 27, 2012 CSCI211 - Sprenkle 19

What is the least number of bits we would
we need to encode these characters?	

Problem: Encoding Symbols

•  32 characters to encode
Ø log2(32) = 5 bits
Ø Can’t use fewer bits

•  Examples:
Ø a à 00000
Ø b à 00001

•  Actual mapping from character to encoding
doesn’t matter
Ø Easier if have a way to compare …

Feb 27, 2012 CSCI211 - Sprenkle 20

For Long Strings of Characters…
•  Do we need an average of 5 bits/character

always?
• What if we could use shorter encodings for

frequently used characters, like a, e, s, t?

•  A fundamental problem for data
compression
Ø Represent data as compactly as possible

Feb 27, 2012 CSCI211 - Sprenkle 21

Goal: Optimal encoding that takes advantage
of nonuniformity of letter frequencies	

Example: Morse Code

•  Used for encoding messages over telegraph
•  Example of variable-length encoding

Feb 27, 2012 CSCI211 - Sprenkle 22

How are letters encoded?	

How are letters differentiated?	

Example: Morse Code

•  Used for encoding messages over telegraph
•  Example of variable-length encoding
•  How are letters encoded?

Ø Dots, dashes
Ø Most frequent letters use shorter sequences

•  e à dot; t à dash; a à dot-dash

•  How are letters differentiated?
Ø Spaces in between letters

•  Otherwise, ambiguous

Feb 27, 2012 CSCI211 - Sprenkle 23

Ambiguity in Morse Code

•  Encoding:
Ø e à dot; t à dash; a à dot-dash

•  Example: dot-dash-dot-dash could
correspond to

Feb 27, 2012 CSCI211 - Sprenkle 24

2/27/12	

5	

Ambiguity in Morse Code

•  Encoding:
Ø e à dot; t à dash; a à dot-dash

•  Example: dot-dash-dot-dash could
correspond to
Ø etet
Ø aa
Ø eta
Ø aet

Feb 27, 2012 CSCI211 - Sprenkle 25

What’s the problem?	

Problem

•  Ambiguity caused by encoding of one
character is a prefix of encoding of another

Feb 27, 2012 CSCI211 - Sprenkle 26

Prefix Codes
•  Problem: Encoding of one character is a

prefix of encoding of another
•  Solution: Prefix Codes: map letters to bit

strings such that no encoding is a prefix of
any other
Ø Won’t need artificial devices like spaces to

separate characters
•  Example encodings:

Ø Verify that no encoding is
 a prefix of another
Ø What is 0010000011101?	

Feb 27, 2012 CSCI211 - Sprenkle 27

a: 11 	d: 10	
b: 01 	e: 000	
c: 001	

Optimal Prefix Codes

•  For typical English messages, this set of
prefix codes is not the optimal set

• Why not?

Feb 27, 2012 CSCI211 - Sprenkle 28

a: 11 	d: 10	
b: 01 	e: 000	
c: 001	

Optimal Prefix Codes

•  For typical English messages, this set of
prefix codes is not the optimal set

• Why not?
Ø ‘e’ is more commonly used than other letters and

should therefore have a shorter encoding

Feb 27, 2012 CSCI211 - Sprenkle 29

a: 11 	d: 10	
b: 01 	e: 000	
c: 001	

Optimal Prefix Codes

•  Goal: minimize Average number of Bits
per Letter (ABL):

 Σx∈Sfrequency of x * length of encoding of x

•  fx: frequency that letter x occurs
•  γ(x): encoding of x

Ø |γ(x)|: length of encoding of x

•  Minimize ABL = Σx∈Sfx |γ(x)|
 Feb 27, 2012 CSCI211 - Sprenkle 30

For all characters in our alphabet	

2/27/12	

6	

Example: Calculating ABL

•  ABL = Σx∈Sfx |γ(x)| = ?

Feb 27, 2012 CSCI211 - Sprenkle 31

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

a: 11	
b: 01	
c: 001	
d: 10	
e: 000	

handout	

Example: Calculating ABL

•  ABL = Σx∈Sfx |γ(x)| = ?
•  = .32 * 2 + .25 * 2 + .20 * 3 + .18 * 2 + .05 * 2
•  = 2.25

Feb 27, 2012 CSCI211 - Sprenkle 32

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

a: 11	
b: 01	
c: 001	
d: 10	
e: 000	

Consider a fixed-length encoding:	

Is it a prefix code? What is its ABL? 	

Fixed-Length Encodings

•  Is it a prefix code?
Ø Yes. Always look at fixed number of characters

• What is its ABL?
Ø ABL is the length of the encoding

•  For 5 characters, ABL is 3
•  Variable-length prefix code’s ABL (2.25) is an

improvement

Feb 27, 2012 CSCI211 - Sprenkle 33

Can We Improve the ABL?

Feb 27, 2012 CSCI211 - Sprenkle 34

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

a: 11	
b: 01	
c: 001	
d: 10	
e: 000	

Can We Improve the ABL?

•  ABL = Σx∈Sfx |γ(x)| = 2.23

Feb 27, 2012 CSCI211 - Sprenkle 35

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

a: 11	
b: 01	
c: 001	
d: 10	
e: 000	

Swap these because c
occurs more frequently
than d.	

Give c the shorter
encoding	

Problem Statement

•  Given an alphabet and a set of frequencies
for the letters, produce optimal (most
efficient) prefix code
Ø Minimizes average # of bits per letter (ABL)

Feb 27, 2012 CSCI211 - Sprenkle 36

2/27/12	

7	

Approaches to Solution

•  Brute force
Ø Search space is complicated à all ways to map

letters to bit strings that adhere to prefix code
property

•  Build towards greedy approach
Ø Start: representing prefix codes

•  Given we know the codes, how do we represent
them?

Feb 27, 2012 CSCI211 - Sprenkle 37

Binary Trees to Represent Prefix Codes

•  Exposes structure better than list of
mappings
Ø Each leaf node is a letter
Ø Follow path to the letter

•  Going left: 0
•  Going right: 1

Feb 27, 2012 CSCI211 - Sprenkle 38

Are these really prefix codes?	

How could we show they weren’t?	

Binary Trees to Represent Prefix Codes

•  Proof. If it weren’t: a letter’s encoding is a
prefix of another letter
Ø Letter is in the path of another letter
Ø But, all letters are leaf nodes

•  Contradiction

Feb 27, 2012 CSCI211 - Sprenkle 39

Building the Binary Tree

•  How do we build the binary tree for this
mapping?

•  Tree Rules:
Ø Each leaf node is a letter
Ø Follow path to the letter

•  Going left: 0
•  Going right: 1

Feb 27, 2012 CSCI211 - Sprenkle 40

Recursively Generate Tree

•  All letters are in root node
•  For all letters in node

Ø If encoding begins with 0, letter belongs in left
subtree

Ø Otherwise (encoding begins with 1), letter
belongs in right subtree

Ø If last bit of encoding, make the letter a leaf node
of that subtree

Ø Shift encoding one bit
Ø Process left and right children

Feb 27, 2012 CSCI211 - Sprenkle 41

Exam Feedback

•  Median: 82; Average: 84
•  Systematic write up

Ø One student had subsections: Problem, Solution,
Efficiency Analysis, Why it works

Feb 27, 2012 CSCI211 - Sprenkle 42

2/27/12	

8	

Assignments

• Wiki due Wed night
Ø Beginning of Chapter 4 (before 4.1)
Ø 4.1 – 4.6, excluding 4.3

•  PS 5 due next Monday in class
Ø Sheet says Friday

Feb 27, 2012 CSCI211 - Sprenkle 43

