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Objectives 

•  Continue Minimum Spanning Tree 
•  Union-Find data structure 
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Review 

• When we have a problem about finding the 
shortest path, what algorithm should we think 
about applying? 

 
•  BFS or Dijkstra’s 

Ø Difference: Dijkstra’s when edges have positive 
(and different) weights 

• What kind of proof did we use to prove that 
Dijkstra’s algorithm was optimal? 
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Review: Laying Cable 
•  Comcast wants to lay cable in a neighborhood 

Ø  Reach all houses 
Ø  Least cost 
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Neighborhood Layout	

 Cost of laying cable btw 
houses depends on amount of 
cable, landscaping, obstacles, 

etc.	
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Minimum Spanning Tree (MST) 
•  Spanning tree: spans all nodes in graph 
•  Given a connected graph G = (V, E) with 

positive edge weights ce, an MST is a subset of 
the edges T ⊆ E such that T is a spanning tree 
whose sum of edge weights is minimized 
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G = (V, E)	


T,  Σe∈T ce = 50	



Examples 
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Identify spanning trees and which is the minimal spanning tree.	



Examples 
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MST: 	



Other Spanning Trees: 	



Identify spanning trees and which is the minimal spanning tree.	
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MST Applications 
•  Network design 

Ø  telephone, electrical, hydraulic, TV cable, computer, road 
•  Approximation algorithms for NP-hard problems 

Ø  traveling salesperson problem, Steiner tree 
•  Indirect applications 

Ø max bottleneck paths 
Ø  image registration with Renyi entropy 
Ø  learning salient features for real-time face verification 
Ø  reducing data storage in sequencing amino acids in a 

protein 
Ø model locality of particle interactions in turbulent fluid 

flows 
•  Cluster analysis 
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http://www.ics.uci.edu/	
	~eppstein/gina/mst.html	

Minimum Spanning Tree 
•  Given a connected graph G = (V, E) with 

positive edge weights ce, an MST is a subset of 
the edges T ⊆ E such that T is a spanning tree 
whose sum of edge weights is minimized 
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Why must the solution be a tree?	
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G = (V, E)	


T,  Σe∈T ce = 50	



Minimum Spanning Tree 

•  Assume have a minimal solution that is not a 
tree, i.e., it has a cycle 

• What could we do? 
Ø What do we know about the edges? 
Ø How does that change the cost of the solution? 
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Minimal Spanning Tree 

•  Proof by Contradiction. 
•  Assume have a minimal solution V that is not 

a tree, i.e., it has a cycle 
•  Contains edges to all nodes because 

solution must be connected (spanning) 
•  Remove an edge from the cycle 

Ø Can still reach all nodes (could go “long way 
around”) 

Ø But at lower total cost 
Ø Contradiction to our minimal solution 
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Ideas for Solutions? 

•  Cayley's Theorem.  There are nn-2 spanning 
trees  

•  Towards a solution… 
Ø Where to start?   
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can't solve by 
brute force	
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G = (V, E)	



Greedy Algorithms 

•  Prim's algorithm.   
Ø  Start with some root node s and greedily grow a tree T from s outward 
Ø  At each step, add cheapest edge e to T that has exactly one endpoint in 

T 
Ø  Similar to Dijkstra’s (but simpler) 

•  Kruskal's algorithm.   
Ø  Start with T = φ 
Ø  Consider edges in ascending order of cost 
Ø  Insert edge e in T unless doing so would create a cycle 

•  Reverse-Delete algorithm.   
Ø  Start with T = E 
Ø  Consider edges in descending order of cost 
Ø  Delete edge e from T unless doing so would disconnect T 
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What do these algorithms have/do/check in common?	



All three algorithms produce a MST	
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What Do These Algorithms Have in 
Common? 

• When is it safe to include an edge in the 
minimum spanning tree? 

• When is it safe to eliminate an edge from the 
minimum spanning tree? 
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Cut Property 

Cycle Property 

Cut and Cycle Properties 
•  Simplifying assumption: All edge costs ce are distinct 
➜  MST is unique 

•  Cut property.  Let S be any subset of nodes, and  
let e be the min cost edge with exactly one endpoint 
in S.  Then MST contains e. 

•  Cycle property.  Let C be any cycle, and  
let f be the max cost edge belonging to C.   
Then MST does not contain f. 
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Cut Property: e is in MST	
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Cycle Property: f is not in MST	



Let’s try to prove these … 	



Cycles and Cuts 

•  Cycle.  Set of edges in the form  
  a-b, b-c, c-d, …, y-z, z-a  
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Cycle C  =  1-2, 2-3, 3-4,	


	

  4-5, 5-6, 6-1	
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Cycles and Cuts 
•  Cycle.  Set of edges in the form a-b, b-c, c-d, …, 

y-z, z-a  
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Cycle C  =  1-2, 2-3, 3-4,	


	

  4-5, 5-6, 6-1	
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Cut S      = { 4, 5, 8 }	


Cutset D = 5-6, 5-7, 3-4,	


	

 	

     3-5, 7-8	
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•  Cutset.  A cut is a subset of nodes S.   
The corresponding cutset D is the subset of 
edges with exactly one endpoint in S. 

Cycle-Cut Intersection 

•  Claim.  A cycle and a cutset intersect in an 
even number of edges 
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Cycle C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1	


Cut S = { 4, 5, 8 }���
Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8 ���
Intersection = 3-4, 5-6	



What are the possibilities 
for the cycle?	



Cycle-Cut Intersection 

•  Claim.  A cycle and a cutset intersect in an 
even number of edges 

•  Proof sketch 
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Cycle C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1	


Cut S = { 4, 5, 8 }���
Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8 ���
Intersection = 3-4, 5-6	



(Cut)	

 Edges link to not-Cut	



1.  Cycle all in S	


2.  Cycle not in S	


3.  Cycle has to go from ���

SàV-S and back	



V - S	
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Proving Cut Property: OK to Include Edge 

•  Simplifying assumption.  All edge costs ce 
are distinct. 

•  Cut property.  Let S be any subset of nodes, 
and let e be the min cost edge with exactly 
one endpoint in S.  
Then the MST T* contains e. 

•  Pf.? 
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Proving Cut Property: OK to Include Edge 

•  Simplifying assumption.  All edge costs ce 
are distinct. 

•  Cut property.  Let S be any subset of nodes, 
and let e be the min cost edge with exactly 
one endpoint in S.  
Then the MST T* contains e. 

•  Pf. (exchange argument) 
Ø Suppose there is an MST T* that does not 

contain e 
•  What do we know about T, by defn? 
•  What do we know about the nodes e connects? 
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Proving Cut Property: OK to Include Edge 

•  Cut property.  Let S be any subset of nodes, 
and let e be the min cost edge with exactly one 
endpoint in S. Then the MST T* contains e. 

•  Pf. (exchange argument) 
Ø Suppose there is an MST T* that does not 

contain e 
Ø Adding e to T* creates a cycle C in T* 
Ø Edge e is in cycle C and in cutset corresponding 

to S   
⇒ there exists another edge, say f, that is in both C and 

S’s cutset 
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Proving Cut Property: OK to Include Edge 
•  Cut property.  Let S be any subset of nodes, and let  

e be the min cost edge with exactly one endpoint in 
S. Then the MST T* contains e. 

•  Pf. (exchange argument) 
Ø Suppose there is an MST T* that does not contain e 
Ø Adding e to T* creates a cycle C in T* 
Ø Edge e is in cycle C and in cutset corresponding to 

S   
⇒ there exists another edge, say f, that is in both C and S’s 

cutset 
Ø T' = T* ∪ { e } - { f } is also a spanning tree 
Ø Since ce < cf, cost(T') < cost(T*) 
Ø This is a contradiction.   ▪ 
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Proving Cycle Property: OK to Remove 
Edge 
•  Simplifying assumption. All edge costs ce are 

distinct 
•  Cycle property. Let C be any cycle in G, and 

let f be the max cost edge belonging to C. 
Then the MST T* does not contain f. 
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Ideas about approach?	



Cycle Property: OK to Remove Edge 
•  Cycle property. Let C be any cycle in G, and  

let f be the max cost edge belonging to C.  
Then the MST T* does not contain f. 

•  Pf.  (exchange argument) 
Ø Suppose f belongs to T* 
Ø Deleting f from T* creates a cut S in T* 
Ø Edge f is both in the cycle C and in the cutset S 

⇒  there exists another edge, say e, that is in both C and S 
Ø T' = T* ∪ { e } - { f } is also a spanning tree 
Ø Since ce < cf, cost(T') < cost(T*) 
Ø This is a contradiction.   ▪ 
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Summary of What Just Proved 
•  Simplifying assumption: All edge costs ce are distinct 
➜  MST is unique 

•  Cut property.  Let S be any subset of nodes, and let e 
be the min cost edge with exactly one endpoint in S.  
Then MST contains e. 

•  Cycle property.  Let C be any cycle, and let f be the 
max cost edge belonging to C.   
Then MST does not contain f. 
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Cut Property: e is in MST	



e	



Cycle Property: f is not in MST	



Prim’s Algorithm 

•  Start with some root node s and greedily 
grow a tree T from s outward. 

•  At each step, add the cheapest edge e to T 
that has exactly one endpoint in T. 
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How can we prove its correctness?	



[Jarník 1930, Dijkstra 1957, Prim 1959]	



Prim's Algorithm: Proof of Correctness 

•  Initialize S to be any node 
•  Apply cut property to S 

Ø Add min cost edge (v, u) in cutset corresponding 
to S, and add one new explored node u to S 
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Ideas about 
implementation?	



Implementation: Prim's Algorithm 

•  Maintain set of explored nodes S 
•  For each unexplored node v, maintain 

attachment cost a[v] à cost of cheapest 
edge v to a node in S 

Feb 13, 2013 CSCI211 - Sprenkle 28 

foreach (v ∈ V) a[v] = ∞	
Initialize an empty priority queue Q	
foreach (v ∈ V) insert v onto Q	
Initialize set of explored nodes S = φ	
while (Q is not empty) 	
   u = delete min element from Q	
   S = S ∪ { u }	
   foreach (edge e = (u, v) incident to u)	
       if ((v ∉ S) and (ce < a[v]))	
           decrease priority a[v] to ce	

Similar to Dijkstra’s algorithm	



Running Time?	



Implementation: Prim's Algorithm 

•  Maintain set of explored nodes S 
•  For each unexplored node v, maintain 

attachment cost a[v] à cost of cheapest 
edge v to a node in S 
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foreach (v ∈ V) a[v] = ∞	
Initialize an empty priority queue Q	
foreach (v ∈ V) insert v onto Q	
Initialize set of explored nodes S = φ	
while (Q is not empty) 	
   u = delete min element from Q	
   S = S ∪ { u }	
   foreach (edge e = (u, v) incident to u)	
       if ((v ∉ S) and (ce < a[v]))	
           decrease priority a[v] to ce	

O(deg(u))	



O(n)	


O(log n)	



O(n logn)	



O(n)	



O(log n)	



O(m log n) with a heap	



Similar to Dijkstra’s algorithm	



Limitations to Applying MST? 

•  Motivating Example: Comcast laying cable 
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Neighborhood Layout	
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Looking ahead 

•  Problem Set 4 due Friday 
•  I have a meeting from 2-3 p.m. this afternoon 
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