
4/1/11	

1	

Objectives

•  Network Flow
 Max flow, Min cut
 Choosing good augmenting paths
 Applications

Apr 1, 2011 1 CSCI211 - Sprenkle

Review: Flow Network
•  Abstraction for material flowing through the edges
•  G = (V, E) = directed graph, no parallel edges
•  Two distinguished nodes: s = source, t = sink
•  c(e) = capacity of edge e, > 0

Apr 1, 2011 CSCI211 - Sprenkle 2

s

2

3

4

5

6

7

t

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	
 10	

 10	

 10	
 15	
 4	

 4	

capacity	

source	
 sink	

Review: Flows
•  An s-t flow is a function that satisfies

 Capacity condition: For each e ∈ E: 0 ≤ f(e) ≤ c(e)
 Conservation condition: For each v ∈ V – {s, t}:
∑e into y f(e) = ∑e out of y f(e)

Apr 1, 2011 CSCI211 - Sprenkle 3

Flow can’t exceed
capacity	

Flow in == Flow out	

4	

0	

0	

0	

0	
 0	

0	
 4	
 4	

0	

0	

0	

0	

capacity	

flow	

0	

4	

 15	

s

2

3

4

5

6

7

t

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	
 10	

 10	

 10	
 15	
 4	

 4	

source	
 sink	

Review: Flows

•  The value of a flow f is v(f) = ∑e out of s f(e)

Apr 1, 2011 CSCI211 - Sprenkle 4

4	

0	

0	

0	

0	
 0	

0	
 4	
 4	

0	

0	

0	

Value = 4	

0	

capacity	

flow	

0	

4	

s

2

3

4

5

6

7

t

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	
 10	

 10	

 10	
 15	
 4	

 4	

Review: Cuts

•  An s-t cut is a partition (A, B) of V with s ∈ A
and t ∈ B

•  The capacity of a cut (A, B) is

Apr 1, 2011 CSCI211 - Sprenkle 5

s

2

3

4

5

6

7

t

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	
 10	

 10	

 10	
 15	
 4	

 4	
 A	

!

cap(A, B) = c(e)
e out of A
"

 Capacity =���
	
9 + 15 + 8 + 30���
	
= 62	

 B	

Review: Minimum Cut Problem

•  Goal: Find an s-t cut of minimum capacity
 Puts upperbound on maximum flow

Apr 1, 2011 CSCI211 - Sprenkle 6

s

2

3

4

5

6

7

t

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	
 10	

 10	

 10	
 15	
 4	

 4	

 A	
 Capacity = 10 + 8 + 10���
 = 28	

 B	

4/1/11	

2	

Review: Flow Value Lemma

Apr 1, 2011 CSCI211 - Sprenkle 7

10	

6	

6	

1	
 10	

3	
 8	
 8	

0	

0	

0	

11	

s

2

3

4

5

6

7

t

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	
 10	

 10	

 10	
 15	
 4	

 4	
 0	

 Value = 6 + 0 + 8 - 1 + 11���
 = 24	

4	

11	

A	

B	

!

f (e)
e out of A
" # f (e)

e in to A
" = v(f)

•  Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal
to the amount leaving s.

Review: Weak Duality

•  Let f be any flow and let (A, B) be any s-t cut.
Then the value of the flow is at most the cut’s
capacity

Apr 1, 2011 CSCI211 - Sprenkle 8

Cut capacity = 30 ⇒ Flow value ≤ 30 	

s

2

3

4

5

6

7

t

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	
 10	

 10	

 10	
 15	
 4	

 4	

Capacity = 30	

A	

Review: Certificate of Optimality

•  Corollary. Let f be any flow, and let (A, B) be
any cut. If v(f) = cap(A, B), then f is a max
flow and (A, B) is a min cut.

Apr 1, 2011 CSCI211 - Sprenkle 9

Value of flow = 28���
Cut capacity = 28 ⇒���

	
Flow value ≤ 28	

10	

9	

9	

14	

4	
 10	

4	
 8	
 9	

1	

0	
 0	

0	

14	

s

2

3

4

5

6

7

t

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	
 10	

 10	

 10	
 15	
 4	

 4	
 0	
A	

B	

Review

• What is the Ford-Fulkerson algorithm?
 When does it stop?

Apr 1, 2011 CSCI211 - Sprenkle 10

Intuition Behind Correctness of
F-F Algorithm

•  Let A be set of vertices reachable from s in
residual graph at end of F-F alg execution

•  By definition of A, s ∈ A
•  By definition of the F-F algorithm’s resulting

flow, t ∉ A

Apr 1, 2011 CSCI211 - Sprenkle 11

Ford-Fulkerson Algorithm

Apr 1, 2011 CSCI211 - Sprenkle 12

s

2

3

4

5 t 10	

 10	

 9	

 8	

 4	

 10	

 10	
 6	
 2	

10	

3	

9	

9	
 9	
 10	

7	

0	

 G:	

s

2

3

4

5 t 1	
 9	

 1	

 1	
 6	
 2	

 Gf:	

 10	

 7	
 10	

6	

 9	

9	

 3	

 1	

Flow value = 19	
Cut capacity = 19	

A	

• What do we know about the flow out of A?	

• What do we know about the flow into A?	

A: nodes reachable from s 	

A	

4/1/11	

3	

Ford-Fulkerson Algorithm

Apr 1, 2011 CSCI211 - Sprenkle 13

s

2

3

4

5 t 10	

 10	

 9	

 8	

 4	

 10	

 10	
 6	
 2	

10	

3	

9	

9	
 9	
 10	

7	

0	

 G:	

s

2

3

4

5 t 1	
 9	

 1	

 1	
 6	
 2	

 Gf:	

 10	

 7	
 10	

6	

 9	

9	

 3	

 1	

Flow value = 19	
Cut capacity = 19	

• What do we know about the flow out of A?	

• What do we know about the flow into A?	

A	

• All edges out of A are completely saturated	

• All edges into A are completely unused	

A	

Max-Flow Min-Cut Theorem

•  Proof strategy. Prove both simultaneously by
showing the following are equivalent:
 (i) There exists a cut (A, B) such that v(f) = cap(A, B).
 (ii) Flow f is a max flow.
 (iii) There is no augmenting path relative to f.

14 Apr 1, 2011 CSCI211 - Sprenkle

Max-flow min-cut theorem. [Ford-Fulkerson 1956] ���
The value of the max flow is equal to the value of the min cut.	

Augmenting path theorem. Flow f is a max flow iff there
are no augmenting paths. 	

See formal proof in book	

Analyzing Augmenting Path Algorithm

Apr 1, 2011 CSCI211 - Sprenkle 15

Ford-Fulkerson(G, s, t, c)	
 foreach e ∈ E f(e) = 0 # initially no flow	
 Gf = residual graph	
	
 while there exists augmenting path P	
 f = Augment(f, c, P) # change the flow	
 update Gf 	 	# build a new residual graph	
	
 return f	

Augment(f, c, P)	
 b = bottleneck(P) # edge on P with least capacity	
 foreach e ∈ P	
 if (e ∈ E) f(e) = f(e) + b # forward edge, é flow	
 else f(eR) = f(e) - b # forward edge, ê flow 	
 return f	

Analyzing Augmenting Path Algorithm

Apr 1, 2011 CSCI211 - Sprenkle 16

Ford-Fulkerson(G, s, t, c)	
 foreach e ∈ E f(e) = 0 # initially no flow	
 Gf = residual graph	
	
 while there exists augmenting path P	
 f = Augment(f, c, P) # change the flow	
 update Gf 	 	# build a new residual graph	
	
 return f	

Augment(f, c, P)	
 b = bottleneck(P) # edge on P with least capacity	
 foreach e ∈ P	
 if (e ∈ E) f(e) = f(e) + b # forward edge, é flow	
 else f(eR) = f(e) - b # forward edge, ê flow 	
 return f	

O(m)	

O(m)	

O(m)	

O(m)	

O(n)	

O(n)	

O(1)	

O(1)	

Total: O(n) O(m), since n ≤ 2m

Total: O(Cm)

Find path: O(m); Iterations: O(C) iterations, where C = max capacity from s (and, therefore, flow)	

Running Time
•  Assumption. All capacities are integers between 1 and C.
•  Invariant. Every flow value f(e) and every residual

capacity’s cf(e) remains an integer throughout algorithm.

•  Theorem. The algorithm terminates in at most v(f*) ≤ nC
iterations.

•  Pf. Each augmentation increases value by at least 1.
•  Corollary. If C = 1, Ford-Fulkerson runs in O(mn) time.

•  Integrality theorem. If all capacities are integers, then
there exists a max flow f for which every flow value f(e) is
an integer.

•  Pf. Since algorithm terminates, theorem follows from
invariant.

17 Apr 1, 2011 CSCI211 - Sprenkle

CHOOSING GOOD
AUGMENTING PATHS

Apr 1, 2011 CSCI211 - Sprenkle 18

4/1/11	

4	

Ford-Fulkerson: Exponential Number
of Augmentations
•  Is generic Ford-Fulkerson algorithm

polynomial in input size?
 No. If max capacity is C, then algorithm can take

C iterations.

Apr 1, 2011 CSCI211 - Sprenkle 19

s

1

2

t

C	

C	

0	
 0	

0	
 0	

0	

C	

C	

1	
 s

1

2

t

C	

C	

1	

0	
 0	

0	
 0	

0	
X	
 1	

C	

C	

X	

X	

X	

1	

1	

1	

X	

X	

1	

1	
X	

X	

X	

1	

0	

1	

Choosing Good Augmenting Paths
•  Use care when selecting augmenting paths

 Some choices lead to exponential algorithms
 Clever choices lead to polynomial algorithms
  If capacities are irrational, algorithm not guaranteed

to terminate!
•  Goal: choose augmenting paths so that:

 Can find augmenting paths efficiently
 Few iterations

•  [Edmonds-Karp 1972, Dinitz 1970]
Choose augmenting paths with:
 Max bottleneck capacity
 Sufficiently large bottleneck capacity
 Fewest number of edges

Apr 1, 2011 CSCI211 - Sprenkle 20

Intuition for Capacity Scaling
•  Choosing path with highest bottleneck capacity

increases flow by max possible amount.
 Don't worry about finding exact highest bottleneck path
 Maintain scaling parameter Δ
  Let Gf (Δ) be the subgraph of the residual graph

consisting of only edges with capacity at least Δ

Apr 1, 2011 CSCI211 - Sprenkle 21

110	

s

4

2

t 1	

170	

102	

122	

Gf	

110	

s

4

2

t

170	

102	

122	

Gf (100)	

Capacity Scaling

Apr 1, 2011 CSCI211 - Sprenkle 22

Scaling-Max-Flow(G, s, t, c)	
 foreach e ∈ E, f(e) = 0	
 Δ = greatest power of 2 less than or equal to C	
 Gf = residual graph	
 Gf(Δ) = Δ-residual graph	
	
 while Δ ≥ 1:	

	while there exists augmenting path P in Gf(Δ) :	
 f = augment(f, c, P)	
 update Gf(Δ)	
 	Δ = Δ / 2 	
	
 return f	

• Why does this work?	

• What is its running time?	

Capacity Scaling

Apr 1, 2011 CSCI211 - Sprenkle 23

Scaling-Max-Flow(G, s, t, c)	
 foreach e ∈ E, f(e) = 0	
 Δ = greatest power of 2 less than or equal to C	
 Gf = residual graph	
 Gf(Δ) = Δ-residual graph	
	
 while Δ ≥ 1:	

	while there exists augmenting path P in Gf(Δ) :	
 f = augment(f, c, P)	
 update Gf(Δ)	
 	Δ = Δ / 2 	
	
 return f	

After Δ-scaling phase, pretty close
to max possible flow	

Capacity Scaling: Correctness
•  Assumption. All edge capacities are integers

between 1 and C.
•  Integrality invariant. All flow and residual

capacity values are integral.
•  Correctness. If the algorithm terminates, then

f is a max flow.
•  Pf.

 By integrality invariant, when Δ = 1 ⇒
Gf(Δ) = Gf

 Upon termination of Δ = 1 phase, there are no
augmenting paths. ▪

Apr 1, 2011 CSCI211 - Sprenkle 24

4/1/11	

5	

Capacity Scaling: Running Time

•  Lemma 1. The outer while loop repeats
O(log2 C) times.

•  Proof. Initially Δ ≤ C. Δ decreases by a factor
of 2 each iteration. ▪

Apr 1, 2011 CSCI211 - Sprenkle 25

Capacity Scaling: Running Time

•  Lemma 2. Let f be the flow at the end of a Δ-
scaling phase. Then value of the maximum
flow is at most v(f) + m Δ.

Apr 1, 2011 CSCI211 - Sprenkle 26

What happens to the flow’s value
at each iteration of the loop?	

Capacity Scaling: Running Time
•  Lemma 2. Let f be the flow at the end of a Δ-scaling

phase. Then value of the maximum flow is at most v(f) +
m Δ.

•  Proof. (similar to proof of max-flow min-cut theorem)
  Show that at the end of a Δ-phase, there exists a cut (A, B)

such that cap(A, B) ≤ v(f) + m Δ.
  Choose A to be the set of nodes reachable from s in Gf(Δ).
  By definition of A, s ∈ A.
  By definition of f, t ∉ A.

Apr 1, 2011 CSCI211 - Sprenkle 27

!

v(f) = f (e)
e out of A
" # f (e)

e in to A
"

$ (c(e)
e out of A
" #%) # %

e in to A
"

= c(e)
e out of A
" # %

e out of A
" # %

e in to A
"

$ cap(A, B) - m%
s

t

A	
 B	

Graph
contains
m edges

Bound on
flow values
across cut

Capacity Scaling: Running Time
•  Lemma 3. There are at most 2m

augmentations per scaling phase.
 Let f be the flow at the end of the previous

scaling phase.
 L2 ⇒ v(f*) ≤ v(f) + m (2Δ).
 Each augmentation in a Δ-phase increases v(f)

by at least Δ. ▪
•  Theorem. The scaling max-flow algorithm

finds a max flow in O(m log C)
augmentations.
 Can be implemented to run in O(m2 log C) time

Apr 1, 2011 CSCI211 - Sprenkle 28

Edge’s added capacity at
this stage is at most 2Δ	

BIPARTITE MATCHING

Apr 1, 2011 CSCI211 - Sprenkle 29

Bipartite Matching
•  Input: undirected, bipartite graph G = (L ∪ R, E)

  Edges: one end in L, one end in R
•  Matching M ⊆ E such that each node appears in at most

1 edge in M.

Apr 1, 2011 CSCI211 - Sprenkle 30

1

3

5

1'

3'

5'

2

4

2'

4'

matching	

1-2', 3-1', 4-5' 	

R	
L	

V	

Problem: find matching of largest possible size	

Can we do better?	

4/1/11	

6	

Bipartite Matching
•  Input: undirected, bipartite graph G = (L ∪ R, E)

  Edges: one end in L, one end in R
•  Matching M ⊆ E such that each node appears in at most

1 edge in M.

Apr 1, 2011 CSCI211 - Sprenkle 31

V	

1

3

5

1'

3'

5'

2

4

2'

4'

R	
L	

max matching

1-1', 2-2', 3-3' 4-4'

Max Flow Formulation
1.  Create digraph G' = (L ∪ R ∪ {s, t}, E')
2.  Direct all edges from L to R, and assign unit capacity
3.  Add source s, and unit capacity edges from s to each node in L
4.  Add sink t, and unit capacity edges from each node in R to t

Apr 1, 2011 CSCI211 - Sprenkle 32

1

3

5

2

4

s

1	

1'

3'

5'

2'

4'

t

1	

1	

R	
L	

G'	

Why does
this work?	

Bipartite Matching: Proof of Correctness

•  Theorem. Max cardinality matching in G =
value of max flow in G'.

•  Proof: Need to show in both directions

Apr 1, 2011 CSCI211 - Sprenkle 33

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1	
 1	

1	
1

3

5

1'

3'

5'

2

4

2'

4'

G'	
G	

Next Week

• Wiki - Wednesday
 Finish reading Chapter 6 (6.9)
 Up through 7.3

•  Problem Set 9 due Friday
 Network flow problems

Apr 1, 2011 CSCI211 - Sprenkle 34

