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Objectives 

•  Network Flow Apps 
Ø Capacity Scaling 

•  Computational intractability  
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Review: Ford-Fulkerson:  
Exponential Number of Augmentations 
•  Is generic Ford-Fulkerson algorithm 

polynomial in input size? 
Ø No. If max capacity is C, then algorithm can take 

C iterations.   
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Review:  
Choosing Good Augmenting Paths 
•  Use care when selecting augmenting paths 

Ø Some choices lead to exponential algorithms 
Ø Clever choices lead to polynomial algorithms 
Ø  If capacities are irrational, algorithm not guaranteed 

to terminate! 
•  Goal: choose augmenting paths so that: 

Ø Can find augmenting paths efficiently 
Ø Few iterations 

•  [Edmonds-Karp 1972, Dinitz 1970]  
Choose augmenting paths with: 
Ø Max bottleneck capacity 
Ø Fewest number of edges 
Ø Sufficiently large bottleneck capacity 
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Review: Intuition for Capacity Scaling 
•  Choosing path with highest bottleneck capacity 

increases flow by max possible amount. 
Ø Don't worry about finding exact highest bottleneck path 
Ø Maintain scaling parameter Δ 
Ø  Let Gf (Δ) be the subgraph of the residual graph 

consisting of only edges with capacity at least Δ 
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Review: Capacity Scaling 
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Scaling-Max-Flow(G, s, t, c)	
   foreach e ∈ E,  f(e) = 0	
   Δ = greatest power of 2 less than or equal to C	
   Gf = residual graph	
   Gf(Δ) = Δ-residual graph	
	
   while Δ ≥ 1:	

	while there exists augmenting path P in Gf(Δ) :	
          f = augment(f, c, P)	
          update Gf(Δ)	
      	Δ = Δ / 2 	
	
   return f	

• Why does this work?	


• What is its running time?	



Capacity Scaling 
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Scaling-Max-Flow(G, s, t, c)	
   foreach e ∈ E,  f(e) = 0	
   Δ = greatest power of 2 less than or equal to C	
   Gf = residual graph	
   Gf(Δ) = Δ-residual graph	
	
   while Δ ≥ 1:	

	while there exists augmenting path P in Gf(Δ) :	
          f = augment(f, c, P)	
          update Gf(Δ)	
      	Δ = Δ / 2 	
	
   return f	

O(log C)	
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Capacity Scaling: Correctness 
•  Assumption. All edge capacities are integers 

between 1 and C.  
•  Integrality invariant. All flow and residual 

capacity values are integral. 
•  Correctness. If the algorithm terminates, then 

f is a max flow. 
•  Pf. 

Ø By integrality invariant, when Δ = 1  ⇒   
Gf(Δ)  = Gf 

Ø Upon termination of Δ = 1 phase, there are no 
augmenting paths.  ▪ 
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Capacity Scaling: Running Time 

•  Lemma 1. The outer while loop repeats  
O(log2 C) times. 

•  Proof. Initially Δ ≤ C.  Δ decreases by a factor 
of 2 each iteration. ▪ 
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Capacity Scaling: Running Time 

•  Lemma 2. Let f be the flow at the end of a Δ-
scaling phase. Then value of the maximum 
flow is at most v(f) + m Δ. 
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What happens to the flow’s value 
at each iteration of the loop?	



Proof and further analysis���
in the book	



Objectives 

•  Oh, the places you’ve been! 

•  Oh, the places you’ll go! 
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 Now, everything comes down to expert knowledge of 
algorithms and data structures.  If you don't speak 
fluent O-notation, you may have trouble getting your 
next job at the technology companies in the forefront.	



    — Larry Freeman	



Algorithm Design Patterns 

• What are some approaches to solving 
problems? 

•  How do they compare in terms of difficulty?  
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Algorithm Design Patterns 
•  Greedy   
•  Divide-and-conquer 
•  Dynamic programming 
•  Duality/network flow 
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Course Objectives: Given a problem…	



You’ll recognize when to try an approach	


-  AND, when to bail out and try something different	



Know the steps to solve the problem using the approach	


- e.g., breaking it into subproblems, sorting possibilities 
in some order	



Know how to analyze the run time of the solution	


	

- e.g., solving recurrence relation	
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Algorithm Design Patterns 

•  Greedy  
•  Divide-and-conquer 
•  Dynamic programming 
•  Duality/network flow 
•  Reductions – Chapter 8 
•  Local search – Chapter 12 
•  Randomization – Chapter 13 

Apr 4, 2012 Sprenkle - CSCI211 13 

What Was Our Goal In Finding a 
Solution? 
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Polynomial Time à Efficient	



POLYNOMIAL-TIME 
REDUCTIONS 
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Classify Problems According to 
Computational Requirements 
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Fundamental Question: ���
Which problems will we be able 

to solve in practice?	



Classify Problems According to 
Computational Requirements 

•  Working definition. [Cobham 1964, Edmonds 1965, 
Rabin 1966]  Those with polynomial-time algorithms. 
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Yes Probably no 
Shortest path Longest path 

Min cut Max cut 

2-SAT 3-SAT 

Matching 3D-matching 

Primality testing Factoring 

Planar 4-color Planar 3-color 

Bipartite vertex cover Vertex cover 

Which problems will we be able 
to solve in practice?	



Classify Problems 
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Polynomial	

 Exponential	



Examples:	


•  Given a Turing machine, does it halt in 

at most k steps?	


•  Given a board position in an n-by-n 

generalization of chess, can black 
guarantee a win?	



? 

Frustrating news:  Many problems have 
defied classification.	


Chapter 8.  Show that problems are 
"computationally equivalent" and appear to be 
manifestations of one really hard problem.	



Classify problems according to those that can be 
solved in polynomial-time and those that cannot.	
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Polynomial-Time Reduction 
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Suppose we could solve Y in polynomial time. ���
What else could we solve in polynomial time?	



Polynomial-Time Reduction 

•  Reduction. Problem X polynomial reduces to problem Y 
if arbitrary instances of problem X can be solved using: 
Ø  Polynomial number of standard computational steps, plus 
Ø  Polynomial number of calls to oracle that solves problem Y 

•  Assume have a black box that can solve Y 

•  Notation: X ≤P Y 
Ø  “X is polynomial-time reducible to Y” 

•  Conclusion: If Y can be solved in polynomial time and 
X ≤P Y, then X can be solved in polynomial time. 
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Suppose we could solve Y in polynomial-time. ���
What else could we solve in polynomial time?	



Y For X + 

NP-Complete Problems 
•  Problems from many different domains whose 

complexity is unknown 

•  NP-completeness and proof that all problems are 
equivalent is POWERFUL! 
Ø All open complexity questions è ONE open question! 

•  What does this mean? 
Ø  “Computationally hard for practical purposes, but we 

can’t prove it” 
Ø  If you find an NP-Complete problem, you can stop 

looking for an efficient solution 
•  Or figure out efficient solution for ALL NP-complete 

problems 
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Polynomial-Time Reduction 

•  Purpose.  Classify problems according to 
relative difficulty. 

•  Design algorithms.  If X ≤P Y and Y can be 
solved in polynomial-time, then X can also be 
solved in polynomial time. 

•  Establish intractability.  If X ≤P Y and X 
cannot be solved in polynomial-time, then Y 
cannot be solved in polynomial time. 

•  Establish equivalence.  If X ≤P Y and Y ≤P X, 
we use notation X ≡P Y. 

Apr 4, 2012 Sprenkle - CSCI211 22 

Basic Reduction Strategies 

•  Reduction by simple equivalence 
•  Reduction from special case to general case 
•  Reduction by encoding with gadgets 
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Independent Set 
•  Given a graph G = (V, E) and an integer k, is there a 

subset of vertices S ⊆ V such that |S| ≥ k and for 
each edge at most one of its endpoints is in S? 
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Ex.  Is there an independent set of 
size ≥ 6?	



Ex.  Is there an independent set of 
size ≥ 7? 	



How is this different from 
the network flow problem?	
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Independent Set 
•  Given a graph G = (V, E) and an integer k, is there a 

subset of vertices S ⊆ V such that |S| ≥ k and for 
each edge at most one of its endpoints is in S? 
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Ex.  Is there an independent set of 
size ≥ 6? Yes	



Ex.  Is there an independent set of 
size ≥ 7? No 	



Vertex Cover 
•  Given a graph G = (V, E) and an integer k, is there a 

subset of vertices S ⊆ V such that |S| ≤ k and for 
each edge, at least one of its endpoints is in S? 
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Ex.  Is there a vertex cover of 

size ≤ 4?	


Ex.  Is there a vertex cover of 

size ≤ 3?	



A vertex covers an edge.	


	


Application: place guards within an 
art gallery so that all corridors are 
visible at any time 	



Vertex Cover 
•  Given a graph G = (V, E) and an integer k, is there a 

subset of vertices S ⊆ V such that |S| ≤ k and for 
each edge, at least one of its endpoints is in S? 
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Ex.  Is there a vertex cover of 
size ≤ 4? Yes	



Ex.  Is there a vertex cover of 
size ≤ 3? No	



Problem 

•  Not known if finding Independent Set or 
Vertex Cover can be solved in polynomial 
time 

•  BUT, what can we say about their relative 
difficulty?  
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Vertex Cover and Independent Set 

•  Claim. VERTEX-COVER ≡P INDEPENDENT-SET 
•  Pf.  We show S is an independent set iff  

V - S is a vertex cover 
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vertex cover	



independent set	



Vertex Cover and Independent Set 
•  Claim. VERTEX-COVER ≡P INDEPENDENT-

SET 
•  Pf.  We show S is an independent set iff  

V - S is a vertex cover 
•  ⇒ 

Ø Let S be an independent set 
Ø Consider an arbitrary edge (u, v) 
Ø Since S is an independent set ⇒ u ∉ S or v ∉ S or 

both ∉ S   ⇒  u ∈ V - S or v ∈ V - S or both ∈ V - S 
Ø Thus, V - S covers (u, v) 

•  Every edge has at least one end in V-S 
Ø V-S is a vertex cover 
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Vertex Cover and Independent Set 
•  Claim. VERTEX-COVER ≡P INDEPENDENT-

SET 
•  Pf.  We show S is an independent set iff  

V - S is a vertex cover 
• ⇐  

Ø Let V - S be any vertex cover 
Ø Consider two nodes u ∈ S and v ∈ S 
Ø Observe that (u, v) ∉ E since V - S is a vertex 

cover 
Ø Thus, no two nodes in S are joined by an edge  
⇒ S independent set 
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Using the Previous Result 
•  Problem X polynomial reduces to problem Y if 

arbitrary instances of problem X can be solved 
using: 
Ø Polynomial number of standard computational steps, 

plus 
Ø Polynomial number of calls to oracle that solves 

problem Y 
•  Assume have a black box that can solve Y 
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How do we show polynomial reduction ���
for the independent set and vertex cover?	



Summary 

•  If we have a block box to solve Vertex Cover, 
can decide whether G has an independent 
set of size at least k by asking the black box 
whether G has a vertex cover of size at most 
n – k 

•  If we have a block box to solve Independent 
Set, can decide whether G has a vertex 
cover of size at most k by asking the block 
box whether G has an independent set of 
size at least n - k 
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Planning 

•  For Friday 
Ø Problem set – DP notes 

•  Total problem set points for semester: 201 
Ø Fill out course evaluations on Sakai 
Ø If 60% fill out, 1% EC on problem sets 

•  Additional 1% for every additional 12.5% who 
complete 

Ø Due Monday at midnight 
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