
1/28/13	

1	

Objectives

• Wrapping up implementing BFS and DFS
•  Graph Application: Bipartite Graphs
•  Directed Graphs

Jan 28, 2013 1 CSCI211 - Sprenkle

Review: Comparing BFS vs DFS

• What do they do?
•  How are their outcomes different?
• What is the runtime of BFS? DFS?

Jan 28, 2013 CSCI211 - Sprenkle 2

Implementing DFS

•  Keep nodes to be processed in a stack

Jan 28, 2013 CSCI211 - Sprenkle

DFS(s):	
	Initialize S to be a stack with one element s	
	Explored[v] = false, for all v	
	Parent[v] = 0, for all v	
	DFS tree T = {}	
	while S != {}	
	 	Take a node u from S	
	 	if Explored[u] = false	
	 	 	Explored[u] = true	
	 	 	Add edge (u, Parent[u]) to T (if u ≠ s)	
	 	 	for each edge (u, v) incident to u	
	 	 	 	Add v to the stack S	
	 	 	 	Parent[v] = u	

3

How many times is a node added/removed from the stack?	

O(n)	

DFS(s):	
	Initialize S to be a stack with one element s	
	Explored[v] = false, for all v	
	Parent[v] = 0, for all v	
	DFS tree T = {}	
	while S != {}	
	 	Take a node u from S	
	 	if Explored[u] = false	
	 	 	Explored[u] = true	
	 	 	Add edge (u, Parent[u]) to T (if u ≠ s)	
	 	 	for each edge (u, v) incident to u	
	 	 	 	Add v to the stack S	
	 	 	 	Parent[v] = u	

Analyzing DFS

Jan 28, 2013 CSCI211 - Sprenkle

deg(u)	

O(n+m)	

4

O(n)	

A node is added/removed from the stack 2m = O(m) times	

Analyzing Finding
All Connected Components
•  How can we find set of all connected

components of graph?

Jan 28, 2013 CSCI211 - Sprenkle

Running time: O(m+n)	

5

R* = set of connected components (a set of sets)	
	
while there is a node that does not belong to R*	

		
	select s not in R*	

	
	R = {s}	

	
	while there is an edge (u,v) where u∈R and v∉R	
	 	add v to R	

	
	

	Add R to R*	

But the inner loop is O(m+n)!	

How can this RT be possible?	

Set of All Connected Components

•  How can we find set of all connected
components of graph?

Jan 28, 2013 CSCI211 - Sprenkle 6

Where i is the subscript of the
connected component	

R* = set of connected components (a set of sets)	
	
while there is a node that does not belong to R*	

		
	select s not in R*	

	
	R = {s}	

	
	while there is an edge (u,v) where u∈R and v∉R	
	 	add v to R	

	
	

	Add R to R*	

Imprecision in the running time
of inner loop: O(m+n)	

But that’s m and n of the
connected component, ���
let’s say mi and ni .	

Σi O(mi+ ni) = O(m+n)	

1/28/13	

2	

BIPARTITE GRAPHS

7 Jan 28, 2013 CSCI211 - Sprenkle

Bipartite Graphs

•  Def. An undirected graph G = (V, E) is
bipartite if the nodes can be colored red or
blue such that every edge has one red and
one blue end
Ø Generally: vertices divided into sets X and Y

•  Applications:
Ø Stable marriage:

•  men = red, women = blue
Ø Scheduling:

•  machines = red, jobs = blue
Jan 28, 2013 CSCI211 - Sprenkle 8

a bipartite graph	

Testing Bipartiteness
•  Given a graph G, is it bipartite?
•  Many graph problems become:

Ø Easier if underlying graph is bipartite (e.g., matching)
Ø Tractable if underlying graph is bipartite (e.g.,

independent set)
•  Before designing an algorithm, need to understand

structure of bipartite graphs

Jan 28, 2013 CSCI211 - Sprenkle 9

v1	

v2	

 v3	

v6	

 v5	

 v4	

v7	

v2	

v4	

v5	

v7	

v1	

v3	

v6	

a bipartite
graph G:	

another
drawing of G:	

How Can We Determine if a Graph is
Bipartite?

•  Given a connected graph
1.  Color one node red

•  Doesn’t matter which color (Why?)
Ø What should we do next?

Jan 28, 2013 CSCI211 - Sprenkle 10

Why connected?	

v1	

v2	

 v3	

v6	

 v5	

 v4	

v7	

•  How will we know when we’re finished?	

•  What does this process sound like?	

An Obstruction to Bipartiteness

•  Lemma. If a graph G is bipartite,
it cannot contain an odd-length cycle.

Jan 28, 2013 CSCI211 - Sprenkle 11

bipartite ���
(2-colorable)	

not bipartite ���
(not 2-colorable)	

An Obstruction to Bipartiteness

•  Lemma. If a graph G is bipartite,
it cannot contain an odd-length cycle.

•  Pf. Not possible to 2-color the odd cycle, let
alone G.

Jan 28, 2013 CSCI211 - Sprenkle 12

bipartite ���
(2-colorable)	

not bipartite ���
(not 2-colorable)	

If find an odd cycle, 	

graph is NOT bipartite	

1/28/13	

3	

How Can We Determine if a Graph is
Bipartite?
•  Given a connected graph

Ø Color one node red
•  Doesn’t matter which color (Why?)

Ø What should we do next?
•  How will we know that we’re finished?
• What does this process sound like?

Ø BFS: alternating colors, layers

Jan 28, 2013 CSCI211 - Sprenkle 13

L1	

 L2	

 L3	

How can we implement the algorithm?	

Review: BFS Implementation

Jan 28, 2013 CSCI211 - Sprenkle 14

BFS(s):	
	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	For each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] == false then	
	 	 	 	Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	

Implementing Algorithm

•  Modify BFS to have a Color array
• When add v to list L[i+1]

Ø Color[v] = red if i+1 is even
Ø Color[v] = blue if i+1 is odd

Jan 28, 2013 CSCI211 - Sprenkle 15

L1	

 L2	

 L3	

What is the running time of this algorithm?	

What is the running time of this algorithm? O(n+m)	

Marks a change in how we think about algorithms	

Starting to apply known algorithms to solve new problems	

Analyzing Algorithm’s Correctness
•  Lemma. Let G be a connected graph, and let

L0, …, Lk be the layers produced by BFS
starting at node s.
Exactly one of the following holds:
Ø (i) No edge of G joins two nodes of the same layer

•  G is bipartite
Ø (ii) An edge of G joins two nodes of the same layer

•  G contains an odd-length cycle and hence is not
bipartite

Jan 28, 2013 CSCI211 - Sprenkle 16

Case (i):	

L1	

 L2	

 L3	

Case (ii):	

L1	

 L2	

 L3	

Analyzing Algorithm’s Correctness
•  Lemma. Let G be a connected graph, and let

L0, …, Lk be the layers produced by BFS
starting at node s. Exactly one of the following
holds:
Ø (i) No edge of G joins two nodes of the same layer

•  G is bipartite
•  Pf. (i)

Ø No edge joins two nodes in the same layer
Ø  Implies all edges join nodes on adjacent level
Ø Bipartition

Ø red = nodes on odd levels
Ø blue = nodes on even levels

Jan 28, 2013 CSCI211 - Sprenkle 17
L1	

 L2	

 L3	

Analyzing Algorithm’s Correctness
•  Lemma. Let G be a connected graph, and let

L0, …, Lk be the layers produced by BFS starting at
node s. Exactly one of the following holds:
Ø  (ii) An edge of G joins two nodes of the same layer à

G contains an odd-length cycle and hence is not bipartite

Jan 28, 2013 CSCI211 - Sprenkle 18 18	

z = lca(x, y)	

•  Pf. (ii)
Ø Suppose (x, y) is an edge with x, y in same

level Lj.
Ø  Let z = lca(x, y) = lowest common ancestor
Ø  Let Li be level containing z
Ø Consider cycle that takes edge from x to y,

then path y àz, then path from z à x

1/28/13	

4	

Analyzing Algorithm’s Correctness
•  Lemma. Let G be a connected graph, and let

L0, …, Lk be the layers produced by BFS starting at
node s. Exactly one of the following holds:
Ø  (ii) An edge of G joins two nodes of the same layer à

G contains an odd-length cycle and hence is not bipartite

Jan 28, 2013 CSCI211 - Sprenkle 19

•  Pf. (ii)
Ø  Suppose (x, y) is an edge with x, y in same

level Lj.
Ø  Let z = lca(x, y)=lowest common ancestor
Ø  Let Li be level containing z
Ø  Consider cycle that takes edge from x to y,

then path y à z, then path z à x
Ø  Its length is 1 + (j-i) + (j-i), which is odd

(x, y)	

 path from���
y to z	

path from���
z to x	

z = lca(x, y)	

An Obstruction to Bipartiteness

•  Corollary. A graph G is bipartite
iff it contains no odd length cycle.

Jan 28, 2013 CSCI211 - Sprenkle 20

5-cycle C	

bipartite ���
(2-colorable)	

not bipartite ���
(not 2-colorable)	

DIRECTED GRAPHS

21 Jan 28, 2013 CSCI211 - Sprenkle

Directed Graphs G = (V, E)

•  Edge (u, v) goes from node u to node v

•  Example: Web graph - hyperlink points from
one web page to another
Ø Directedness of graph is crucial
Ø Modern web search engines exploit hyperlink

structure to rank web pages by importance
Jan 28, 2013 CSCI211 - Sprenkle 22

Representing Directed Graphs

•  For each node, keep track of
Ø Out edges (where links go)
Ø In edges (from where links come in)

•  Could only store out edges
Ø Figure out in edges with increased computation/

time
Ø Useful to have both in and out edges

Jan 28, 2013 CSCI211 - Sprenkle 23

Rock Paper Scissors Lizard Spock

Jan 28, 2013 CSCI211 - Sprenkle 24

1/28/13	

5	

CONNECTIVITY IN
DIRECTED GRAPHS

25 Jan 28, 2013 CSCI211 - Sprenkle

Graph Search

•  How does reachability change with
directed graphs?

•  Example: Web crawler

1.  Start from web page s.
2.  Find all web pages linked from s, either directly

or indirectly.
Jan 28, 2013 CSCI211 - Sprenkle 26

1	

 2	

5	

4	

7	

3	

6	

1	

 2	

5	

4	

7	

3	

6	

Graph Search

•  Directed reachability. Given a node s, find all
nodes reachable from s.

•  Directed s-t shortest path problem. Given
two nodes s and t, what is the length of the
shortest path between s and t?
Ø Not necessarily the same as tàs shortest path

•  Graph search. BFS and DFS extend
naturally to directed graphs
Ø Trace through out edges
Ø Run in O(m+n) time

Jan 28, 2013 CSCI211 - Sprenkle 27

1	

 2	

5	

4	

7	

3	

6	

Problem

•  Find all nodes with paths to s
Ø Rather than paths from s to other nodes

Jan 28, 2013 CSCI211 - Sprenkle 28

Problem/Solution

•  Problem. Find all nodes with paths to s
•  Solution. Run BFS on in edges instead of

out edges

Jan 28, 2013 CSCI211 - Sprenkle 29

Strong Connectivity

•  Def. Node u and v are mutually reachable
if there is a path from u à v and also a path
from v à u

•  Def. A graph is strongly connected if every
pair of nodes is mutually reachable

•  Lemma. Let s be any node. G is strongly
connected iff every node is reachable from s
and s is reachable from every node

Jan 28, 2013 CSCI211 - Sprenkle 30

s	

v	

u	

(not necessarily a direct edge)	

1/28/13	

6	

Strong Connectivity

•  If u and v are mutually reachable and v and
w are mutually reachable, then u and w are
mutually reachable

Jan 28, 2013 CSCI211 - Sprenkle 31

Strong Connectivity
•  If u and v are mutually reachable and v and

w are mutually reachable, then u and w are
mutually reachable.

•  Proof. We need to show that there is a path
from u à w and from w à u.
Ø By defn of mutually reachable

•  There is a path u à v & a path v à u
•  There is a path v à w, and a path w à v

Ø Take path uàv and then from v à w
•  Path from uàw

Ø Similarly for wàu
Jan 28, 2013 CSCI211 - Sprenkle 32

Strong Connectivity

•  Def. A graph is strongly connected if every
pair of nodes is mutually reachable

•  Lemma. Let s be any node. G is strongly
connected iff every node is reachable from s
and s is reachable from every node.
Ø 1st prove ⇒
Ø 2nd prove ⇐

•  for any nodes u and v, is there a path uàv and
vàu ?

Jan 28, 2013 CSCI211 - Sprenkle 33

Strong Connectivity
•  Def. A graph is strongly connected if every pair

of nodes is mutually reachable
•  Lemma. Let s be any node. G is strongly

connected iff every node is reachable from s,
and s is reachable from every node.

•  Pf. ⇒ Follows from definition of strongly
connected

•  Pf. ⇐ For any nodes u and v, make path uàv
and vàu
Ø  uàv : concatenating uàs with sàv
Ø  v àu: concatenate vàs with sàu

Jan 28, 2013 CSCI211 - Sprenkle 34

s	

v	

u	

Strong Connectivity Problem

•  Determine if G is strongly connected in
O(m + n) time

Jan 28, 2013 CSCI211 - Sprenkle 35

strongly connected	

 not strongly connected	

Hint: Can we leverage any algorithms ���
we know have O(m+n) time?	

Strong Connectivity: Algorithm
•  Theorem. Can determine if G is strongly

connected in O(m + n) time.
•  Pf.

Ø Pick any node s
Ø Run BFS from s in G
Ø Run BFS from s in Grev
Ø Return true iff all nodes reached in both BFS

executions
Ø Correctness follows immediately from previous

lemma
•  All reachable from one node, s is reached by all

Jan 28, 2013 CSCI211 - Sprenkle 36

reverse orientation of every edge in G	

Or, the BFS using the in edges	

1/28/13	

7	

Strong Components

•  For any two nodes s and t in a directed
graph, their strong components are either
identical or disjoint

Jan 28, 2013 CSCI211 - Sprenkle 37

Hint: Consider a node in common…	

Strong Components
•  For any two nodes s and t in a directed graph,

their strong components are either identical or
disjoint

•  Proof.
Ø Consider v in both strong components

•  sà v; v à s; vàt; tàv è tàs, sàt (mutually
reachable)

•  As soon as there is one common node, then have
identical strong components

Ø On the other hand, consider s and t are not mutually
reachable
•  No node v that is in the strong component of each

Ø  What would it mean if there were?

Jan 28, 2013 CSCI211 - Sprenkle 38

Looking Ahead

•  Summaries of readings associated with last
week’s lectures are due Tuesday night

•  Problem Set 3 due Friday by class

Jan 28, 2013 CSCI211 - Sprenkle 39

