Objectives

Dynamic Programming
~ Improving Shortest Path

Network Flow
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Shortest Paths: Failed Attempts

Dijkstra. Can fail if negative edge costs
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Shortest Paths

Problem: Given a directed graph G = (V, E),
with edge weights c,,,, find shortest path from
node s to node t

allow negative weights
Allows modeling other phenomena
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Shortest Paths: Negative Cost Cycles
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If some path from s to f contains a negative
cost cycle, there does not exist a shortest s-f
path
Otherwise, there exists one that is simple
(i.e., does not repeat nodes)
» Path has at most n-1 edges, where n is # of
nodes in graph

Mar 28, 2011 CSCI211 - Sprenkle

Towards a Recurrence

OPT(i,v): minimum cost of a v-t path P using
at most i edges
» This formulation eases later discussion

Original problem is OPT(n-1, s)

Break down into subproblems based on iand v

CVW

Costs on all edges

Shortest Paths: Dynamic Programming

OPT(i, v) = minimum cost of a v-t path P
using at most i edges
» Case 1: P uses at most i-1 edges
OPT(i, v) = OPT(i-1, v)
» Case 2: P uses exactly j edges

if (v, w) is first edge, then OPT uses (v, w), and
then selects best w-t path using at most /-1 edges

Cost: cost of chosen edge
0 if i=0

@) = { min{ OPT(i-1,v), min {OPT(i-1, w)+c,, }} otherwise
vWEE

Mar 28, 2011 CSCI211 - Sprenkle

Mar 28, 2011 CSCI211 - Sprenkle 5




Shortest Paths: Analysis

Shortest-Path(G, t)
n = number of nodes in G
foreach node v € V
M0, v] = » # infinite cost to reach all nodes
MO, t] =0 # no cost to reach destination from dest

for i =1 to n-1 O(n)
foreach node v € V
M[i, v] = M[i-1, v] # at most cost of 1 less O(m)
foreach edge (v, w) € E
M[i, v] = min(M[i, v], M[i-1, W] + c, )

Time: O(n?), ®(mn)
Space: 8(n2)

Example

Number of edges in path

0 | 1|2 |3 ] 4|5
t 0 0 0 0 0
a

b | «

c LY

d | «

e 0
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Exam ple Number of edges in path
0 1 2 3 4 5

t 0 0 0 0 0 0

a

b )

c )

d )

e )

‘ What edges do we need to look at for each node?

Example
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Number of edges in path

0 | 1 [ 2] 3] 4
t 0 0 0 0 0
a
b | «
c L)
d |
e 0
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Exam ple Number of edges in path
0 1 2 3 4 5
t 0 0 0 0 0
a o | -3
b 3 )
c i 3
d © | 4
e ° 2
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Example
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Number of edges in path

0 1 2 3 4
t 0 0 0 0 0
a -3 | -3
b = = 0
c ° 3 3
d = 4 3
e ° 2 0
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Example Number of edges in path
0 1 2 3 4 5
t 0 0 0 0 0 0
a © | -3[-3] 4
b | w| | 0] -2
c s 3 3 3
d il 4 3 3
e s 2 0 0
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Example Number of edges in path
0 1 2 3 4 5

t 0 0 0 0 0
a 3| 3| 4] -6
b il il 0| -2 | -2
c s 3 3 3 3
d il 4 3 3

e i 2 0 0 0
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Example Number of edges in path

0 1 2 3 4
t 0 0 0 0 0
a © | -3|-3|4]|6]|-6
b il @ 0|-2]-2]-2
c I 3 3 3 3 3
d @ 4 3 3 2 0
e s 2 0 0 0 0
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Shortest Paths: Implementation

Shortest-Path(G, t)
n = number of nodes in G
foreach node v € V
M[@, v] = # infinite cost to reach all nodes
M@, t] =0 # no cost to reach destination from dest

for i =1 to n-1
foreach node v € V
M[i, v] = M[i-1, v] # at most cost of 1 less
foreach edge (v, w) € E
M[i, v] = min(M[i, v], M[i-1, w] + c,, )

Shortest path length is M[n-1, s]

Mar 28, 2011 CSCI211 - Sprenkle 16

Discussion
How can we find the shortest path?

What information do we need?

Based on experience from example, what
could we do to improve the algorithm’s
runtime and space requirements?
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Shortest Paths: Practical Improvements

To find the shortest paths, maintain a
successor for each node
Practical improvements
Maintain only one array M[v] = shortest v-t path
length that we have found so far
No need to check edges of the form (v, w)
unless M[w] changed in previous iteration
Theorem. Throughout algorithm, M[v] is
length of some v-t path.
After i rounds of updates, the value M[v] is no

larger than the length of shortest v-t path using <
i edges
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Bellman-Ford: Efficient Implementation

Push-Based-Shortest-Path(G, s, t)
foreach node v € V
M[V] = =
successor[v] = ¢

M[t] =
for i =1 to n-1
foreach node w € V
if M[w] has been updated in previous iteration
foreach node v such that (v, w) € E
if M[v] > M[w] + c,,
M[v] = M[w] + c,,
successor[v] = w

if no M[w] value changed in iteration i, stop.

Analysis of running time, space?
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Bellman-Ford: Efficient Implementation

Push-Based-Shortest-Path(G, s, t)
foreach node v € V
Mv] = ©
successor[v] = ¢

M[t] = 0
for i =1 to n-1
foreach node w € V
if M[w] has been updated in previous iteration
foreach node v such that (v, w) € E
if M[v] > M[w] + c,,
M[v] = M[w] + c,,
successor[v] = w

if no M[w] value changed in iteration i, stop.

Space: O(m + n)
Running time: O(mn) worst case but substantially faster in practice
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Bellman-Ford: Efficient Implementation

Push-Based-Shortest-Path(G, s, t)
foreach node v € V
MIV] =
successor[v] = ¢

M[t] =
for i =1 to n-1
foreach node w € V
if M[w] has been updated in previous iteration
foreach node v such that (v, w) € E
if M[v] > M[w] + c,,,
MLv] = M[w] + c,,
successor[v] = w

if no M[w] value changed in iteration i, stop.

How do we get the solution if only have O(m+n) space? ‘
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DISTANCE VECTOR
PROTOCOL
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Application of Shortest-Path Problem

Routers in communication network need to
find most efficient path to destination
Model of communication network

Nodes = routers

Edge = direct communication link

Cost of edge = delay on link

Possible solution: Dijkstra’s algorithm
Why?
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Distance Vector Protocol

Model of communication network
Nodes = routers
Edge = direct communication link
Cost of edge = delay on link +—— Naturally non-negative

However, Dijkstra's algorithm requires global
information of network
Create whole paths from node

Better: use only local information
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Distance Vector Protocol

Model of communication network
~» Nodes = routers
» Edge = direct communication link
» Cost of edge = delay on link «—— Naturally non-negative

Bellman-Ford uses only local knowledge of
neighboring nodes

» Distribute algorithm: each node v maintains its
value M[v]

» Updates its value after getting neighbor’s values:

rninwEV (va + M[W])
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Distance Vector Protocol

Each router maintains vector

Algorithm: each router performs n computations,
1 for each potential destination node

» Periodically gets updates from neighbors
Synchronization issues

» Routers don’t run in lockstep

» Order foreach loop executes is not important

» Algorithm still converges even if updates are
asynchronous

"Routing by rumor”
» Reliance on neighbors
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Issues with Distance Vector Protocol

Original algorithm developed for one central
machine

» Costs known in advance, didn’t change

Edge costs may change during algorithm (or
fail completely)

e
S b= |>V | t "counting to infinity"
2 |

deleted
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Path Vector Protocols

Link state routing
» Each router stores entire path

Not just the distance and the first hop
» Based on Dijkstra's algorithm

» Avoids "counting-to-infinity" problem and related
difficulties

» Tradeoff: requires significantly more storage
Ex. Border Gateway Protocol (BGP), Open
Shortest Path First (OSPF)

Milestone: Page 300 in book
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Next Week

Wiki - Wednesday

~ Finish reading Chapter 6: 6.4-6.8
Problem Set 8 due Friday

» Implementing pretty printing
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