
2/8/13	

1	

Objectives

• Wrap Up: Minimizing Lateness
Ø Greedy exchange

•  Problem: Shortest Path

Feb 8, 2013 1 CSCI211 - Sprenkle

Review: Scheduling to Minimizing Lateness

•  Single resource processes one job at a time
•  Job j requires tj units of processing time and is due at

time dj (its deadline)
•  If j starts at time sj, it finishes at time fj = sj + tj
•  Lateness: j = max { 0, fj - dj }
•  Goal: schedule all jobs to minimize maximum

lateness L = max j

Feb 8, 2013 CSCI211 - Sprenkle 2

0	

 1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

 12	

 13	

 14	

 15	

d5 = 14	

d2 = 8	

 d6 = 15	

 d1 = 6	

 d4 = 9	

d3 = 9	

lateness = 0	

lateness = 2	

dj	

 6	

tj	

 3	

1	

8	

2	

2	

9	

1	

3	

9	

4	

4	

14	

3	

5	

15	

2	

6	

max lateness = 6	

Note: not a sum total	

Minimizing Lateness: Inversions

•  Claim. Swapping two adjacent, inverted jobs
reduces the number of inversions by one and
does not increase the max lateness.

•  How to prove?

Feb 8, 2013 CSCI211 - Sprenkle 3

i	

j	

i	

 j	

before	

after	

f'j	

fi	

inversion	

di <dj	

Minimizing Lateness: Inversions

•  Claim. Swapping two adjacent, inverted jobs
reduces the number of inversions by one and
does not increase the max lateness.

•  Pf. Let  be the lateness before the swap,
and let ' be it afterwards

Feb 8, 2013 CSCI211 - Sprenkle 4

i	

j	

i	

 j	

before	

after	

f'j	

fi	

inversion	

di <dj	

Minimizing Lateness: Inversions
•  Claim. Swapping two adjacent jobs with the same

deadline does not increase the max lateness
•  Pf. Let  be the lateness before the swap,

and let ’ be it afterwards
Ø  Lateness remains the same for all other jobs:

•  'k = k for all k ≠ i, j
Ø  j ≤ i because di < dj
Ø Lateness of i before is i = fi - di = Ti-1 + ti + tj - di
Ø Lateness of j after is 'j =fj’ - dj = Ti-1 + ti + tj - dj

•  But di < dj

Feb 8, 2013 CSCI211 - Sprenkle 5

i	

j	

i	

 j	

before swap	

after swap	

f'j	

fi	

 Put in terms of i

Minimizing Lateness: Inversions

•  Claim. Swapping two adjacent, inverted jobs
reduces the number of inversions by one and
does not increase the max lateness.

•  Pf. Let  be the lateness before the swap,
and let ' be it afterwards
Ø 'k = k for all k ≠ i, j
Ø j ≤ i , 'i ≤ i
Ø If job j is late:

Feb 8, 2013 CSCI211 - Sprenkle 6

€

"  j = " f j − d j (definition)
= fi − d j (j finishes at time f i)
≤ fi − di (i < j)
≤  i (definition)

Shows that the maximum lateness of jobs does not increase after swap	

i	

j	

i	

 j	

before	

after	

f'j	

fi	

inversion	

di <dj	

2/8/13	

2	

Greedy Exchange Proofs
1.  Label your algorithm’s solution and a general solution.

Ø  Example: let A = {a1, a2, ..., ak} be the solution generated by your algorithm,
and let O = {o1, o2, ..., om} be an optimal feasible solution.

2.  Compare greedy with other solution.
Ø  Assume that the arbitrary/optimal solution is not the same as

your greedy solution (since otherwise, you are done).
Ø  Typically, can isolate a simple example of this difference, such as:
①  There is an element e ∈ O that ∉ A and an element f ∈ A that ∉ O
②  2 consecutive elements in O are in a different order than in A

Ø  i.e., there is an inversion

3.  Exchange.
Ø  Swap the elements in question in O (either ➀ swap one element out and

another in or ➁ swap the order of the elements) and argue that solution is no
worse than before.

Ø  Argue that if you continue swapping, you eliminate all differences between O
and A in a finite # of steps without worsening the solution’s quality.

Ø  Thus, the greedy solution produced is just as good as any optimal solution, and
hence is optimal itself.

Feb 8, 2013 CSCI211 - Sprenkle 7

Minimizing Lateness:
Analysis of Greedy Algorithm
•  Theorem. Greedy schedule S is optimal
•  Pf idea. Convert Opt to Greedy

Ø Does opt schedule have idle time?
Ø What if opt schedule has no inversions?
Ø What if opt schedule has inversions?

Feb 8, 2013 CSCI211 - Sprenkle 8

Minimizing Lateness:
Analysis of Greedy Algorithm
•  Theorem. Greedy schedule S is optimal
•  Pf. Define S* to be an optimal schedule that

has the fewest number of inversions,
and let's see what happens
Ø Can assume S* has no idle time
Ø  If S* has no inversions (and no idle time), then S = S*
Ø  If S* has an inversion, let i-j be an adjacent inversion

•  Swapping i and j does not increase the maximum
lateness and strictly decreases the number of
inversions

•  This contradicts definition of S* ▪

Feb 8, 2013 CSCI211 - Sprenkle 9

Analyzing Running Time

•  Earliest deadline first.

Feb 8, 2013 CSCI211 - Sprenkle 10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14 d2 = 8 d6 = 15 d1 = 6 d4 = 9 d3 = 9

Sort n jobs by deadline so that d1 ≤ d2 ≤ … ≤ dn	
t = 0	
for j = 1 to n	
 Assign job j to interval [t, t + tj]	
 sj = t	
 fj = t + tj	
 t = t + tj	
output intervals [sj, fj]	

What is the runtime of this algorithm?	

O(n logn)	

Greedy Analysis Strategies
•  Greedy algorithm stays ahead.

Show that after each step of the greedy
algorithm, its solution is at least as good as
any other algorithm's.

•  Exchange argument. Gradually transform
any solution to the one found by the greedy
algorithm without hurting its quality.

•  Structural. Discover a simple "structural"
bound asserting that every possible solution
must have a certain value. Then show that
your algorithm always achieves this bound.

Feb 8, 2013 CSCI211 - Sprenkle 11

SHORTEST PATH

Feb 8, 2013 CSCI211 - Sprenkle 12

2/8/13	

3	

Shortest Path Problem
•  Given

Ø Directed graph G = (V, E)
Ø Source s, destination t
Ø Length e = length of edge e (non-negative)

•  Shortest path problem: find shortest directed
path from s to t

Feb 8, 2013 CSCI211 - Sprenkle 13

Cost of path s-A-B-E-t���
 = 9 + 23 + 2 + 16���
 = 48	

s	

B	

t	

A	

C	

F	

D	

E	

 23	

18	

 2	

 9	

14	

15	

 5	

 30	

 20	

 44	

16	

11	

 6	

19	

 6	

cost of path = ���
sum of edge costs in path	

www.wlu.edu	

www.cnn.com	

Shortest Path Problem
•  Shortest path problem: find shortest directed

path from s to t
•  Brainstorming on solution …

Feb 8, 2013 CSCI211 - Sprenkle 14

s	

B	

t	

A	

C	

F	

D	

E	

 23	

18	

 2	

 9	

14	

15	

 5	

 30	

 20	

 44	

16	

11	

 6	

19	

 6	

www.wlu.edu	

www.cnn.com	

Dijkstra’s Algorithm

1. Maintain a set of explored nodes S
Ø Keep the shortest path distance d(u) from s to u

2.  Initialize S={s}, d(s)=0, ∀u≠s, d(u)=∞
3. Repeatedly choose unexplored node v

which minimizes
Ø  Add v to S and set d(v) = π(v)

,)(min)(
:),(eSuvue

udv +=
∈=

π

s	

v	

u	

d(u)	

S	

e	

shortest path to some u ���
in explored part���

followed by a single edge (u, v)	

Feb 8, 2013 15 CSCI211 - Sprenkle

Dijkstra's Algorithm

Feb 8, 2013 CSCI211 - Sprenkle 16

s	

v	

u	

d(u)	

S	

e	

Before	

After: Added node v	

s	

v	

u	

d(u)	

S	

e	

Dijkstra’s Algorithm

1. Maintain a set of explored nodes S
Ø Keep the shortest path distance d(u) from s to u

2.  Initialize S={s}, d(s)=0, ∀u≠s, d(u)=∞
3. Repeatedly choose unexplored node v

which minimizes
Ø  Add v to S and set d(v) = π(v)

,)(min)(
:),(eSuvue

udv +=
∈=

π

s	

v	

u	

d(u)	

S	

e	

Feb 8, 2013 17 CSCI211 - Sprenkle

How is algorithm Greedy?	

shortest path to some u ���
in explored part���

followed by a single edge (u, v)	

How is Algorithm Greedy?

• We always form shortest new s-v path from
a path in S followed by a single edge

•  Proof of optimality: Stays ahead of all other
solutions
Ø Each time selects a path to a node v, that path is

shorter than every other possible path to v

Feb 8, 2013 18 CSCI211 - Sprenkle

2/8/13	

4	

Dijkstra’s Algorithm

1. Maintain a set of explored nodes S
Ø Keep the shortest path distance d(u) from s to u

2.  Initialize S={s}, d(s)=0, ∀u≠s, d(u)=∞
3. Repeatedly choose unexplored node v

which minimizes
Ø  Add v to S and set d(v) = π(v)

,)(min)(
:),(eSuvue

udv +=
∈=

π

s	

v	

u	

d(u)	

S	

e	

Feb 8, 2013 19 CSCI211 - Sprenkle

Implementation Ideas	

•  What to represent?	

•  How to represent?	

shortest path to some u ���
in explored part���

followed by a single edge (u, v)	

Looking Ahead

•  Exam due today at 5 p.m.
• Wiki due Tuesday for sections 3.4-3.6;

chapter 4 (front matter), 4.1
Ø Directed graphs, topological order
Ø Greedy algorithms

•  PS4 due Friday

Feb 8, 2013 CSCI211 - Sprenkle 20

