Objectives

Dynamic Programming: shortest paths

Network Flow
» Max flow
» Min cut

CSCI211 - Sprenkle 1

Mar 27, 2013

Shortest Paths: Where we left off...

AT
S

7—> (W) <0

Dijkstra’s algorithm does not handle negative
edge costs

If some path from s to t contains a negative cost
cycle, there does not exist a shortest s-f path
Otherwise, there exists one that is simple (i.e.,
does not repeat nodes)

» Path has at most n-1 edges

where n is # of nodes in graph

Mar 27, 2013 CSCI211 - Sprenkle 2

3/27/13

Towards a Recurrence

OPT(i,v): minimum cost of a v-f path P using
at most i edges

» This formulation eases later discussion
Original problem is OPT(n-1, s)

Break down into subproblems based oniand v

cVW

Costs on all edges

Mar 27, 2013 CSCI211 - Sprenkle 3

Shortest Paths: Dynamic Programming

OPT(i, v) = minimum cost of a v-t path P
using at most i edges
» Case 1: P uses at most i-1 edges
OPT(i, v) = OPT(i-1, v)
» Case 2: P uses exactly i edges

if (v, w) is first edge, then OPT uses (v, w), and
then selects best w-t path using at most /-1 edges

Cost: cost of chosen edge
0 if i=0
@) = min{OPT(i—l, V), min { OPT(i-1, w)+c,, }} otherwise
WwEE

Mar 27, 2013 CSCI211 - Sprenkle 4

Shortest Paths: Implementation

¥ Starting node
Shortest-Path(G, s)
n = number of nodes in G
foreach node v € V
M[O, v] =
M[0, s] =0

for i =1 to n-1
foreach node v € V
M[i, v] = M[i-1, v]
foreach edge (v, w) € E
M[i, v] = min(M[i, v], M[i-1, w] + c, D

Cost of
chosen edge

Shortest path length is M[n—1,’s]

Starting node

Mar 27, 2013 CSCI211 - Sprenkle 5

Shortest Paths: Implementation

¥ Starting node
Shortest-Path(G, s)
n = number of nodes in G
foreach node v € V
MO, v] = «
M[@, s] = @ # distance to yourself is @

for i =1 to n-1
foreach node v € V
M[i, v] = M[i-1, v]
foreach edge (v, w) € E
M[i, v] = min(M[i, v], M[i-1, w] + c,,)

Cost of
chosen edge

Shortest path length is M[n-1,’s]

Starting node

Mar 27, 2013 CSCI211 - Sprenkle 6

Shortest Paths: Runtime Analysis

¥ Starting node
Shortest-Path(G, s)
n = number of nodes in G
foreach node v € V o
MO, V] = = ()
M[@, s] = @ # distance to yourself is @

for i =1 to n-1 O(nm)
foreach node v € V
M[i, v] = M[i-1, v]
foreach edge (v, w) € E
M[i, v] = min(M[i, v], M[i-1, w] + ¢,)

Cost of
chosen edge

Shortest path length is M[n—1,’s]

Starting node

Dynamic Programming Wrapup

What we didn’t cover
» 6.5: RNA Secondary Structure: Dynamic
Programming Over Intervals
» 6.7: Sequence Alignment in Linear Space
Dynamic programming + Divide and Conquer >
oh my!
» 6.9: Shortest Paths and
Distance Vector Protocols
In practice in internet routing

Mar 27, 2013 CSCI211 - Sprenkle 8

Mar 27, 2013 CSCI211 - Sprenkle 7
Mar 27, 2013 CSCI211 - Sprenkle 9

Motivating Flow Network Problems

Modeling fransportation networks

» Edges: carry traffic

» Nodes: pass traffic between edges
Can represent many different types of
problems

» Instead of looking at all possibilities, formulate as
a flow problem

Mar 27, 2013 CSCI211 - Sprenkle 10

Flow Network

G = (V, E) = directed graph, no parallel
edges

Two distinguished nodes: s = source, f = sink
c(e) = capacity of edge e, > 0

AN
A N
N

T
wr— "]

30 ——— 7

/) S—
Mar 27, 2013 CSCI211 - Sprenkle "

source (s

10 —{t) sink

Flows: Definitions

Flow can’t exceed
capacity

An s-t flow is a function that satisfies
» Capacity condition: For each e € E: 0 <f(e) < c(e)
» Conservation condition: Foreachv € V — {s, t}:

Ze intoy f(e) = Ze out of y f(e) <+ Flow in == Flow out
0
9

5

I N

4 15 0 10

AN

2
4
—3 6 10 —{t) sink
4
4

source(s

/
.

-
150
capacity —» 15 0 6 10
flow — 0 o \l/
_—7
Mar 27, 2013 CSCI211 - Sprenkle 12

3/27/13

Flows: Definitions

The value of a flow fis v(f) = 3 outors f(€)
0

2
4/v|\ ,
10 i 4 |

5

0
5

s

capacity = |5

|
—_—3
|
4
flow = 0\1 0
4

Mar 27, 2013 CSCI211 - Sprenkle 13

Maximum Flow Problem

Make network most efficient
» Use most of available capacity

/IN

capacity = |5
flow = .4\

Mar 27, 2013 CSCI211 - Sprenkle 14

Towards a Max Flow Algorithm

Greedy algorithm
» Start all edges e € E atf(e) =0
» Find an s-t path P with the most capacity: f(e) < c(e)
» Augment flow along path P
» Repeat until you get stuck

0 \ 0 Flow value = 0
2

Mar 27, 2013 CSCI211 - Sprenkle 15

Towards a Max Flow Algorithm

Greedy algorithm
» Start alledgese € E atf(e) =0
» Find an s-t path P with the most capacity: f(e) < c(e)
» Augment flow along path P
» Repeat until you get stuck

20 X~ \ 0 Is this optimal?
20 |o\

s\ 30 X(20 t
10 20
0 \ X 20 Flow value = 20
2
Mar 27, 2013 CSCI211 - Sprenkle 16

Towards a Max Flow Algorithm

Greedy algorithm
~ Startalledgese €E atf(e) =0
» Find an s-t path P with the most capacity: f(e) < c(e)
» Augment flow along path P
» Repeat until you get stuck

locally optimality does not => global optimality

20/1\0 20/1\“1
s/20 |o\t s/zo |o\(
greedy=20\lo 3\020 20/' \IO 3‘0Io 20/’
0\2/20 \o\z/zo opt =30

Mar 27, 2013 CSCI211 - Sprenkle 17

Towards a solution...

RESIDUAL GRAPHS

Mar 27, 2013 CSCI211 - Sprenkle 18

Towards a Residual Graph

Original edge: e = (u,v) €E iy
» Flow f(e), capacity c(e) u At

6 «—flow

Mar 27, 2013 CSCI211 - Sprenkle 19

Towards a Residual Graph

Original edge: e = (u,v) €E Pty

> Flow f(e), capacity c(e) . 7

Residual edge

e = (u, v) w/ capacity c(e) - f(e)

» eR = (v, u) with capacity fle)
To undo flow ~ 6

6 «—flow

=V

N residual capacity

Mar 27, 2013 CSCI211 - Sprenkle 20

residual capacity

Residual Graph: G¢

Original edge: e = (u,v) €E ety
> Flow f(e), capacity c(e) - A
Residual edge
»e = (u, v) w/ capacity c(e) - f(e)
»eR = (v, u) with capacity f(e)

To undo flow S~ 6
Residual graph: G;= (V, E;) resdul cascy
» Residual edges with positive residual capacity
> E;= {le :f(e) < c(e)‘} u ;{eR - f(e) > 0‘}

T

6 «—flow

residual capacity
I'd

=V

l
Forward edges Backward edges
Mar 27, 2013 CSCI211 - Sprenkle 21

Applying Residual Graph

Used to find the maximum flow
» Use similar idea to greedy algorithm

Residual path: simple s-t path in G;
» Also known as augmenting path

Mar 27, 2013 CSCI211 - Sprenkle 22

c=capacity

Augmenting Path Algorithm

Ford-Fulkerson(G, s, t, c)
foreach e € E f(e) = # initially no flow
G¢ = residual graph
while there exists augmenting path P
f = Augment(f, c, P) # change the flow
update Ge # build a new residual graph

return f

Augment(f, c, P)
b = bottleneck(P) # edge on P with least capacity
foreach e € P
if (e € E) f(e) = f(e) + b # forward edge, A flow

else f(e®) = f(e) - b # forward edge, ¥ flow
return f
Mar 27, 2013 CSCI211 - Sprenkle 23

Ford-Fulkerson Algorithm

flow

—_—
I \ 0 “// capacity
60

10—t

Flow value = 0

Mar 27, 2013 CSCI211 - Sprenkle 24

3/27/13

Ford-Fulkerson Algorithm

flow
2 4————(4 e
G 0/|\0 I\O /capacty
10 20 8 60 10
/0 l 0\ o\
—— 0——(3———— g ——————{5—— g —{t

Flow value = 0

What does the residual graph look like?

Mar 27, 2013 CSCI211 - Sprenkle 25

Ford-Fulkerson Algorithm

2 4————(4 /
G 0/|\0]\0 /capaciq
10 20 8 60 10
/ 0 l o\ 0 \
— ——(3—— g ————5—— |0 —t
Flow value = 0
2 4
Gg
3 5 t
Mar 27, 2013 CSCI211 - Sprenkle 26

Ford-Fulkerson Algorithm

flow
2 4 ——(4 /
G: 0 capacity
0 0 /
10 20 8 60 10
/ 0 l 0 \| 0 \
— 03— g 5 —— o —t
Flow value = 0
Bottleneck
)2 4 4 residual capacity
G |] /
10 2 ° 6 IO\
10 ——(3 9 _ 5 10 t
Mar 27, 2013 CSCI211 - Sprenkle 27

Ford-Fulkerson Algorithm

2 4 —
G 10 x/|\ 8]\0
10 > & 8 60 10
2
0 X 2 0%
I —— (3 g ———— 5 —— g ——t
Flow value = 8
/-—'2 AT
G \ I\
/ 2 8\6 10
10——(3) 9 5 2 X
Mar 27, 2013 CSCI211 - Sprenkle 28

3/27/13

Ford-Fulkerson Algorithm

0
2 4—4
G \o/|\a I\xs
10 22 8 63 10
6
T N AN
— I — 33— g ——— 5 —— |0 —*{t

2
G /T\
/ ? [B\G ’
D; 10 (3) 7 5)«— |0 t
Mar 27, 2013 CSCI211 - Sprenkle 29

Ford-Fulkerson Algorithm

Mar 27, 2013 CSCI211 - Sprenkle 30

Ford-Fulkerson Algorithm

)
G \0/|\X 7 I\X ’
10 20 8 66 10
/x 9 l 2N| \0\
s 10——3——— g ——5 10—t
Flow value = 18
/— 2—\
2F 2 ‘44\
Gg /| I 8
/ ’ | s i 2 \
s 2 (3) ~5)«— 10 0
N— 8—/
Mar 27, 2013 CSCI211 - Sprenkle 31

Ford-Fulkerson Algorithm

SN

Mar 27, 2013 csci2 _SPJ How do we know we're done? ‘

Ford-Fulkerson Algorithm

What is reachable from s
Mar 27, 2013 CSCI211 - Sprenkle 33

Analyzing Augmenting Path Algorithm

Ford-Fulkerson(G, s, t, c

)
foreach e € E f(e) = # initially no flow
G; = residual graph

while there exists augmenting path P
f = Augment(f, c, P) # change the flow
update G¢ # build a new residual graph

return f

Augment(f, c, P)
b = bottleneck(P) # edge on P with least capacity
foreach e € P
if (e € E) f(e) = f(e) + b # forward edge, A flow

else f(eR) = f(e) - b # forward edge, ¥ flow
return f

Why does alg work? What is happening at each iteration?
What is the running time?

7,201 i
Mar 27, 2013 Need more analysis ...

This Week

Problem Set 8 due Friday
Start reading chapter 7

Mar 27, 2013 CSCI211 - Sprenkle 35

3/27/13

