
3/13/13	

1	

Objectives

•  Review: Closest Pair of Points
•  Introduction to Dynamic Programming

Ø Review: Fibonacci
Ø Weighted interval scheduling

Mar 13, 2013 1 CSCI211 - Sprenkle

Review

• What is the D&C algorithm for finding the
closest pair of points?

• What is the key insight that leads to an
O(n logn) algorithm?

Mar 13, 2013 CSCI211 - Sprenkle 2

Analyzing Cost of Combining

•  Def. Let si be the point in the
2δ-strip, with the ith smallest y-
coordinate

•  Claim. If |i – j| ≥ 12, then the
distance between si and sj is at
least δ
Ø What is the distance of the box?
Ø How many points can be in a

box?
Ø When do we know that points are

> δ apart?
Mar 6, 2013 CSCI211 - Sprenkle 3 δ	

27	

29	

30	

31	

28	

26	

25	

δ	

½δ	

½δ	

½δ	

39	

i	

j	

Prepare minds to be blown…	

Review

• What was the new problem-solving
technique we started to discuss on Monday?

Mar 13, 2013 CSCI211 - Sprenkle 4

Dynamic Programming
Memoization Process

•  Create a table with the possible inputs
•  If the value is in the table, return it, without

recomputing it
•  Otherwise, call function recursively

Ø Add value to table for future reference

Mar 13, 2013 CSCI211 - Sprenkle 5

How can we apply this template to our Fibonnaci problem?	

Memoization Example: Fibonacci

Mar 13, 2013 CSCI211 - Sprenkle 6

memoized_fibonacci(n):	
	for j = 1 to n:	
	 	results[i] = -1 # -1 means undefined	

	
	return memoized_fib_recurs(results, n)	

	
memoized_fib_recurs(results, n):	

	if results[n] != -1: # value is defined	
	 	return results[n]	
	if n == 1:	
	 	val = 1	
	elif n == 2:	
	 	val = 1	
	else:	
	 	val = memoized_fib_recurs(results, n-2)	
	 	val = val + memoized_fib_recurs(results, n-1)	
	results[n] = val	
	return val	

Runtime?	

O(n)	

3/13/13	

2	

Memoization Example: Fibonacci

Mar 13, 2013 CSCI211 - Sprenkle 7

memoized_fibonacci(n):	
	for j = 1 to n:	
	 	results[i] = -1 # -1 means undefined	
	results[1] = 1	
	results[2] = 1	

	
	return memoized_fib_recurs(results, n)	

	
memoized_fib_recurs(results, n):	

	if results[n] != -1: # value is defined	
	 	return results[n]	
		
	val = memoized_fib_recurs(results, n-2)	
	val = val + memoized_fib_recurs(results, n-1)	
	results[n] = val	
	return val	

Alternative version…	

WEIGHTED
INTERVAL SCHEDULING

Mar 13, 2013 8 CSCI211 - Sprenkle

Weighted Interval Scheduling
•  Job j starts at sj, finishes at fj, and has weight or value vj
•  Two jobs are compatible if they don't overlap
•  Goal: find maximum weight subset of mutually

compatible jobs

Mar 13, 2013 CSCI211 - Sprenkle 9

Time	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	

f

g

h

e

a

b

c

d

Unweighted Interval Scheduling Review

•  Recall. Greedy algorithm works if all weights
are 1 (or equivalent).
Ø Consider jobs in ascending order of finish time
Ø Add job to subset if it is compatible with

previously chosen jobs

Mar 13, 2013 CSCI211 - Sprenkle 10

What happens to Greedy algorithm
if we add weights to the problem?	

Limitation of Greedy Algorithm

•  Recall. Greedy algorithm works if all weights
are 1.
Ø Consider jobs in ascending order of finish time
Ø Add job to subset if it is compatible with

previously chosen jobs
•  Observation. Greedy algorithm can fail

spectacularly if arbitrary weights are allowed

Mar 13, 2013 CSCI211 - Sprenkle 11

Time	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	

a

weight = 999	

weight = 1	

b

Any other greedy approaches?	

Limitations of Greedy Algorithms

•  Need to consider weight
Ø No greedy algorithm works

•  Need a more complex algorithm to solve
problem

Mar 13, 2013 CSCI211 - Sprenkle 12

3/13/13	

3	

Weighted Interval Scheduling
Notation. Label jobs by finishing time: f1 ≤ f2 ≤ . . . ≤ fn
Def. p(j) = largest index i < j such that job i is compatible

with j
Ex: p(8) = 5, p(7) = 3, p(2) = 0

Mar 13, 2013 CSCI211 - Sprenkle 13

Time	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	

6

7

8

4

3

1

2

5

Why is ordering by
finish time useful in

this problem?	

Dynamic Programming

•  Assume we have an optimal solution
•  OPT(j) = value of optimal solution to the

problem consisting of job requests 1, 2, ..., j

Mar 13, 2013 CSCI211 - Sprenkle 14

What is something obvious we can we say about
the optimal solution with respect to job j?	

Dynamic Programming: Binary Choice

•  OPT(j) = value of optimal solution to the
problem consisting of job requests 1, 2, ..., j
Ø Case 1: OPT selects job j

Ø Case 2: OPT does not select job j

Mar 13, 2013 CSCI211 - Sprenkle 15

Explore both of these cases…	

• What jobs are in OPT? Which are not?	

Keep in mind our definition of p 	

Weighted Interval Scheduling
Notation. Label jobs by finishing time: f1 ≤ f2 ≤ . . . ≤ fn
Def. p(j) = largest index i < j such that job i is compatible

with j
Ex: p(8) = 5, p(7) = 3, p(2) = 0

Mar 13, 2013 CSCI211 - Sprenkle 16

Time	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	

6

7

8

4

3

1

2

5

Dynamic Programming: Binary Choice
•  OPT(j) = value of optimal solution to the

problem consisting of job requests 1, 2, ..., j
Ø Case 1: OPT selects job j

•  can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }
•  must include optimal solution to problem consisting of

remaining compatible jobs 1, 2, ..., p(j)
Ø Case 2: OPT does not select job j

•  must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., j-1

Mar 13, 2013 CSCI211 - Sprenkle 17

optimal substructure	

Formulate OPT(j) as a recurrence relation	

Dynamic Programming: Binary Choice
•  OPT(j) = value of optimal solution to the

problem consisting of job requests 1, 2, ..., j
Ø Case 1: OPT selects job j

•  can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }
•  must include optimal solution to problem consisting of

remaining compatible jobs 1, 2, ..., p(j)
Ø Case 2: OPT does not select job j

•  must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., j-1

Mar 13, 2013 CSCI211 - Sprenkle 18

Formulate OPT(j) in terms
of smaller subproblems	

Which should we choose?	

Two options: Opt(j) = vj + Opt(p(j))	

	
 	
 Opt(j) = Opt(j-1) 	

optimal substructure	

3/13/13	

4	

Dynamic Programming: Binary Choice
•  OPT(j) = value of optimal solution to the

problem consisting of job requests 1, 2, ..., j
Ø Case 1: OPT selects job j

•  can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }
•  must include optimal solution to problem consisting of

remaining compatible jobs 1, 2, ..., p(j)
Ø Case 2: OPT does not select job j

•  must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., j-1

Mar 13, 2013 CSCI211 - Sprenkle 19

Choose the “better” ���
of the two solutions	

Basecase	
Opt(j) = 0 	
 	
 	
 	
 	
 j=0	

	
 max{ vj + Opt(p(j)), Opt(j-1) } Otherwise	

Weighted Interval Scheduling:
Recursive Algorithm

Mar 13, 2013 CSCI211 - Sprenkle 20

Input: n jobs (associated start time sj, finish time fj, and value vj)	
	
Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn	
	
Compute p(1), p(2), …, p(n)	
	
Compute-Opt(j):	
 if j = 0	
 return 0	
 else	
 return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))	

What is the runtime?	

(Trace for n = 5)	
 5

1

2
3

4

Picks j	
 Doesn’t pick j	

Closest compatible job	

Weighted Interval Scheduling:
Brute Force
•  Observation. Redundant sub-problems ⇒

exponential algorithms
•  Ex. Number of recursive calls for family of

"layered" instances grows like Fibonacci
sequence.

Mar 13, 2013 CSCI211 - Sprenkle 21

5

1

2

p(1) = 0, p(j) = j-2	

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0
3

4

Weighted Interval Scheduling:
 Memoization

•  Store results of each sub-problem in a
cache; lookup as needed.

Mar 13, 2013 CSCI211 - Sprenkle 22

Input: n jobs (associated start time sj, finish time fj, and value vj)	
	
Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn	
Compute p(1), p(2), …, p(n)	
	
for j = 1 to n	
 M[j] = empty	
M[0] = 0	
	
M-Compute-Opt(n)	
	
M-Compute-Opt(j):	
 if M[j] is empty:	
 M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))	
 return M[j]	

global array	

Call function with initial input	

Looking Ahead

•  PS7 due Friday
•  SSA EC soon
•  Exam 2 handed out Friday

Mar 13, 2013 CSCI211 - Sprenkle 23

