
CSCI211: Problem Set 2

Due Friday, January 27
Points Possible: 25

1. 4 pts. (2.4) Take the following list of functions and arrange them in ascending order of growth
rate. That is, if function g(n) immediately follows function f(n) in your list, then it should be the
case that f(n) is O(g(n)).

f1(n) = 2
√

logn f2(n) = 2n f3(n) = n4/3 f4(n) = n(logn)3

f5(n) = nlogn f6(n) = 22n

f7(n) = 2n2

2. 8 pts. Do chapter 2, exercise 6. You may want to implement your algorithm to verify its correctness.
Some Python code is available on the course web site to get you started.

3. 9 pts. (Levitan, 6.4.1)

(a) Construct a heap for the keys 1, 8, 6, 5, 3, 7, 4 by successive key insertions (top-down
algorithm, i.e., Heapify-Up). You can draw your heap as an array or a tree. Tree will probably
be easier. Show your work to ensure the possibility of partial credit.

(b) Construct a heap for the same keys (stored in an array) using the following bottom-up
algorithm:

Algorithm 1 HeapBottomUp(H[1...n])
for i = bn/2c downto 1 do

k = i
v = H[k]
heap = false
while not heap and 2 ∗ k ≤ n do

j = 2 ∗ k
if j < n then

if H[j] > H[j + 1] then
j = j + 1

end if
end if
if v ≤ H[j] then

heap = true
else

H[k] = H[j]
k = j

end if
end while
H[k] = v

end for

1



CSCI 211 Problem Set 2

(c) Compare the algorithms in terms of runtime and conceptual complexity.

(d) Will the successive-key insertions and bottom-up algorithms always yield the same heap for
the same insertions?

4. 4 pts. (Levitan, 6.4.2) Design an algorithm for checking whether an array H[1...n] is a heap and
determine its runtime efficiency.

2


