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Objectives 

•  Network Flow 
 Max flow, Min cut 
 Choosing good augmenting paths 
 Applications 
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Review: Flow Network 
•  Abstraction for material flowing through the edges 
•  G = (V, E) = directed graph, no parallel edges 
•  Two distinguished nodes:  s = source, t = sink 
•  c(e) = capacity of edge e, > 0 
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Review: Flows 
•  An s-t flow is a function that satisfies 

 Capacity condition: For each e ∈ E: 0 ≤ f(e) ≤ c(e) 
 Conservation condition: For each v ∈ V – {s, t}:         
∑e into y  f(e) =  ∑e out of y  f(e) 
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Flow can’t exceed 
capacity	


Flow in == Flow out	
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Review: Flows 

•  The value of a flow f is v(f) = ∑e out of s  f(e)         
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Review: Cuts 

•  An s-t cut is a partition (A, B) of V with s ∈ A 
and t ∈ B 

•  The capacity of a cut (A, B) is 
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cap( A, B)  =  c(e)
e out of A
"

 Capacity =���
	
9 + 15 + 8 + 30���
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Review: Minimum Cut Problem 

•  Goal: Find an s-t cut of minimum capacity 
 Puts upperbound on maximum flow 
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Review: Flow Value Lemma 
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f (e)
e out of A
" # f (e)

e in to A
"  =  v( f )

•  Let f be any flow, and let (A, B) be any s-t cut.  
Then, the net flow sent across the cut is equal 
to the amount leaving s. 

Review: Weak Duality 

•  Let f be any flow and let (A, B) be any s-t cut.  
Then the value of the flow is at most the cut’s 
capacity 
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Cut capacity = 30   ⇒    Flow value ≤ 30 	
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Capacity = 30	
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Review: Certificate of Optimality 

•  Corollary.  Let f be any flow, and let (A, B) be 
any cut.  If v(f) = cap(A, B), then f is a max 
flow and (A, B) is a min cut. 
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Value of flow = 28���
Cut capacity  = 28   ⇒���

	
Flow value ≤ 28	
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Review 

• What is the Ford-Fulkerson algorithm? 
 When does it stop? 
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Intuition Behind Correctness of  
F-F Algorithm 

•  Let A be set of vertices reachable from s in 
residual graph at end of F-F alg execution 

•  By definition of A, s ∈ A 
•  By definition of the F-F algorithm’s resulting 

flow, t ∉ A 
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Ford-Fulkerson Algorithm 
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Flow value = 19	
Cut capacity = 19	


A	


• What do we know about the flow out of A?	

• What do we know about the flow into A?	


A: nodes reachable from s 	


A	
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Ford-Fulkerson Algorithm 
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Flow value = 19	
Cut capacity = 19	


• What do we know about the flow out of A?	

• What do we know about the flow into A?	


A	


• All edges out of A are completely saturated	

• All edges into A are completely unused	


A	


Max-Flow Min-Cut Theorem 

•  Proof strategy.  Prove both simultaneously by 
showing the following are equivalent: 
   (i) There exists a cut (A, B) such that v(f) = cap(A, B). 
   (ii) Flow f is a max flow. 
  (iii) There is no augmenting path relative to f. 
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Max-flow min-cut theorem.  [Ford-Fulkerson 1956] ���
The value of the max flow is equal to the value of the min cut.	


Augmenting path theorem.  Flow f is a max flow iff there 
are no augmenting paths. 	


See formal proof in book	


Analyzing Augmenting Path Algorithm 

Apr 1, 2011 CSCI211 - Sprenkle 15 

Ford-Fulkerson(G, s, t, c)	
   foreach e ∈ E  f(e) = 0  # initially no flow	
   Gf = residual graph	
	
   while there exists augmenting path P	
      f = Augment(f, c, P)     # change the flow	
      update Gf   	 	# build a new residual graph	
	
   return f	

Augment(f, c, P)	
   b = bottleneck(P) # edge on P with least capacity	
   foreach e ∈ P	
      if (e ∈ E) f(e) = f(e) + b  # forward edge, é flow	
      else       f(eR) = f(e) - b  # forward edge, ê flow 	
   return f	

Analyzing Augmenting Path Algorithm 
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Ford-Fulkerson(G, s, t, c)	
   foreach e ∈ E  f(e) = 0  # initially no flow	
   Gf = residual graph	
	
   while there exists augmenting path P	
      f = Augment(f, c, P)     # change the flow	
      update Gf   	 	# build a new residual graph	
	
   return f	

Augment(f, c, P)	
   b = bottleneck(P) # edge on P with least capacity	
   foreach e ∈ P	
      if (e ∈ E) f(e) = f(e) + b  # forward edge, é flow	
      else       f(eR) = f(e) - b  # forward edge, ê flow 	
   return f	

O(m)	


O(m)	


O(m)	


O(m)	


O(n)	

O(n)	


O(1)	

O(1)	


Total: O(n)  O(m), since n ≤ 2m 

Total: O(Cm) 

Find path: O(m);  Iterations: O(C) iterations, where C = max capacity from s (and, therefore, flow)	


Running Time 
•  Assumption.  All capacities are integers between 1 and C. 
•  Invariant.  Every flow value f(e) and every residual 

capacity’s cf(e) remains an integer throughout algorithm. 

•  Theorem.  The algorithm terminates in at most v(f*) ≤ nC 
iterations. 

•  Pf.  Each augmentation increases value by at least 1. 
•  Corollary.  If C = 1, Ford-Fulkerson runs in O(mn) time. 

•  Integrality theorem.  If all capacities are integers, then 
there exists a max flow f for which every flow value f(e) is 
an integer. 

•  Pf.  Since algorithm terminates, theorem follows from 
invariant.  
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CHOOSING GOOD 
AUGMENTING PATHS 
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Ford-Fulkerson: Exponential Number 
of Augmentations 
•  Is generic Ford-Fulkerson algorithm 

polynomial in input size? 
 No. If max capacity is C, then algorithm can take 

C iterations.   
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Choosing Good Augmenting Paths 
•  Use care when selecting augmenting paths 

 Some choices lead to exponential algorithms 
 Clever choices lead to polynomial algorithms 
  If capacities are irrational, algorithm not guaranteed 

to terminate! 
•  Goal: choose augmenting paths so that: 

 Can find augmenting paths efficiently 
 Few iterations 

•  [Edmonds-Karp 1972, Dinitz 1970]  
Choose augmenting paths with: 
 Max bottleneck capacity 
 Sufficiently large bottleneck capacity 
 Fewest number of edges 
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Intuition for Capacity Scaling 
•  Choosing path with highest bottleneck capacity 

increases flow by max possible amount. 
 Don't worry about finding exact highest bottleneck path 
 Maintain scaling parameter Δ 
  Let Gf (Δ) be the subgraph of the residual graph 

consisting of only edges with capacity at least Δ 
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Capacity Scaling 

Apr 1, 2011 CSCI211 - Sprenkle 22 

Scaling-Max-Flow(G, s, t, c)	
   foreach e ∈ E,  f(e) = 0	
   Δ = greatest power of 2 less than or equal to C	
   Gf = residual graph	
   Gf(Δ) = Δ-residual graph	
	
   while Δ ≥ 1:	

	while there exists augmenting path P in Gf(Δ) :	
          f = augment(f, c, P)	
          update Gf(Δ)	
      	Δ = Δ / 2 	
	
   return f	

• Why does this work?	

• What is its running time?	


Capacity Scaling 
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Scaling-Max-Flow(G, s, t, c)	
   foreach e ∈ E,  f(e) = 0	
   Δ = greatest power of 2 less than or equal to C	
   Gf = residual graph	
   Gf(Δ) = Δ-residual graph	
	
   while Δ ≥ 1:	

	while there exists augmenting path P in Gf(Δ) :	
          f = augment(f, c, P)	
          update Gf(Δ)	
      	Δ = Δ / 2 	
	
   return f	

After Δ-scaling phase, pretty close 
to max possible flow	


Capacity Scaling: Correctness 
•  Assumption. All edge capacities are integers 

between 1 and C.  
•  Integrality invariant. All flow and residual 

capacity values are integral. 
•  Correctness. If the algorithm terminates, then 

f is a max flow. 
•  Pf. 

 By integrality invariant, when Δ = 1  ⇒   
Gf(Δ)  = Gf 

 Upon termination of Δ = 1 phase, there are no 
augmenting paths.  ▪ 
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Capacity Scaling: Running Time 

•  Lemma 1. The outer while loop repeats  
O(log2 C) times. 

•  Proof. Initially Δ ≤ C.  Δ decreases by a factor 
of 2 each iteration. ▪ 
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Capacity Scaling: Running Time 

•  Lemma 2. Let f be the flow at the end of a Δ-
scaling phase. Then value of the maximum 
flow is at most v(f) + m Δ. 
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What happens to the flow’s value 
at each iteration of the loop?	


Capacity Scaling: Running Time 
•  Lemma 2. Let f be the flow at the end of a Δ-scaling 

phase. Then value of the maximum flow is at most v(f) + 
m Δ. 

•  Proof. (similar to proof of max-flow min-cut theorem) 
  Show that at the end of a Δ-phase, there exists a cut (A, B) 

such that cap(A, B)  ≤  v(f) + m Δ. 
  Choose A to be the set of nodes reachable from s in Gf(Δ). 
  By definition of A, s ∈ A. 
  By definition of f, t ∉ A. 
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Capacity Scaling: Running Time 
•  Lemma 3. There are at most 2m 

augmentations per scaling phase. 
 Let f be the flow at the end of the previous 

scaling phase. 
 L2  ⇒   v(f*)  ≤  v(f) + m (2Δ). 
 Each augmentation in a Δ-phase increases v(f) 

by at least Δ.  ▪ 
•  Theorem. The scaling max-flow algorithm 

finds a max flow in O(m log C) 
augmentations. 
 Can be implemented to run in O(m2 log C) time 
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Edge’s added capacity at 
this stage is at most 2Δ	


BIPARTITE MATCHING 

Apr 1, 2011 CSCI211 - Sprenkle 29 

Bipartite Matching 
•  Input: undirected, bipartite graph G = (L ∪ R, E) 

  Edges: one end in L, one end in R 
•  Matching M ⊆ E such that each node appears in at most 

1 edge in M. 
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Problem: find matching of largest possible size	


Can we do better?	
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Bipartite Matching 
•  Input: undirected, bipartite graph G = (L ∪ R, E) 

  Edges: one end in L, one end in R 
•  Matching M ⊆ E such that each node appears in at most 

1 edge in M. 
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Max Flow Formulation 
1.  Create digraph G' = (L ∪ R ∪ {s, t},  E' ) 
2.  Direct all edges from L to R, and assign unit capacity 
3.  Add source s, and unit capacity edges from s to each node in L 
4.  Add sink t, and unit capacity edges from each node in R to t 

Apr 1, 2011 CSCI211 - Sprenkle 32 

1 

3 

5 

2 

4 

s 

1	


1' 

3' 

5' 

2' 

4' 

t 

1	


1	


R	
L	


G'	


Why does 
this work?	


Bipartite Matching: Proof of Correctness 

•  Theorem. Max cardinality matching in G = 
value of max flow in G'. 

•  Proof: Need to show in both directions 
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Next Week 

• Wiki - Wednesday 
 Finish reading Chapter 6 (6.9) 
 Up through 7.3 

•  Problem Set 9 due Friday 
 Network flow problems 
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