
2/27/13	

1	

Objectives

• Wrap up Huffman Codes
•  Divide and Conquer Algorithms

Feb 27, 2013 1 CSCI211 - Sprenkle

Review

• What was the problem we were trying to
solve on Monday?
Ø What was our optimization goal?

• What was our solution to the problem?

Feb 27, 2013 CSCI211 - Sprenkle 2

Review: Problem and Goal
•  Do we need an average of 5 bits/character

always?
• What if we could use shorter encodings for

frequently used characters, like a, e, s, t?

•  A fundamental problem for data
compression
Ø Represent data as compactly as possible

Feb 27, 2013 CSCI211 - Sprenkle 3

Goal: Optimal encoding that takes advantage
of nonuniformity of letter frequencies	

Review: Combining Our Conclusions

•  The binary tree corresponding to the optimal
prefix code is full, i.e., each internal node has
two children

• We want to label the leaf nodes of the binary
tree corresponding to the optimal prefix code
such that nodes with greatest depth have
least frequency

Feb 27, 2013 CSCI211 - Sprenkle 4

What does this mean the ���
bottom of our tree looks like?	

Review: Combining Our Conclusions

•  The binary tree corresponding to the optimal
prefix code is full, i.e., each internal node has
two children

• We want to label the leaf nodes of the binary
tree corresponding to the optimal prefix code
such that nodes with greatest depth have
least frequency

Feb 27, 2013 CSCI211 - Sprenkle 5

What does this mean the bottom
of our tree looks like?	

fn-1	

fn	

2 letters with least

frequency:	

Could be flipped	

Review: How Can We Use This?

•  Two letters with least frequency are definitely
going to be siblings
Ø Tie them together
Ø Their parent is a “meta-letter”

•  Frequency is sum of fn + fn-1

Feb 27, 2013 CSCI211 - Sprenkle 6

fn + fn-1	

fn-1	

fn	

2 letters with
least frequency:	

Could be flipped	

Meta-letter:	

2/27/13	

2	

Review: Huffman Coding Algorithm

1. Create a leaf node for each symbol, labeled
by its frequency, and add to a queue

2. While there is more than one node in the
queue
a)  Remove the two nodes of lowest frequency
b)  Create a new internal node with these two

nodes as children and with frequency equal to
the sum of the two nodes' probabilities

c)  Add the new node to the queue
3. The remaining node is the tree’s root node

Feb 27, 2013 CSCI211 - Sprenkle 7

Creating the Optimal Prefix Code

Feb 27, 2013 CSCI211 - Sprenkle 8

fab = .57
fcde = .43

e	

d	

c	

a	

 b	

de=	

.23	

Lowest frequencies	

Merge	

cde=	

.43	

ab=	

.57	

abcde
=1	

What are the resulting encodings?	

What is the ABL?	

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

Creating the Optimal Prefix Code

Feb 27, 2013 CSCI211 - Sprenkle 9

e	

d	

c	

a	

 b	

de=	

.23	

cde=	

.43	

ab=	

.57	

abcde
=1	

0	

0	

 0	

0	

1	

1	

 1	

1	

a: 00	
b: 01	
c: 10	
d: 110	
e: 111	

fa = .32
fb = .25
fc = .20
fd = .18
fe = .05

ABL=.32*2 + .25*2 + .20*2 + .18*3 + .05*3
 = .64 + .5 + .4 + .54 + .15
 = 2.23

I chose to build the tree this way.	

What if I had switched the order of the children?	

Implementing
Huffman Coding Algorithm
1. Create a leaf node for each symbol, labeled

by its frequency, and add to a queue
2. While there is more than one node in the

queue
a)  Remove the two nodes of lowest frequency
b)  Create a new internal node with these two

nodes as children and with frequency equal to
the sum of the two nodes' probabilities

c)  Add the new node to the queue
3. The remaining node is the tree’s root node

Feb 27, 2013 CSCI211 - Sprenkle 10

What data structures do we need?	

Implementation

• What data structures do we need?
Ø Binary tree for the prefix codes
Ø Priority queue for choosing the node with lowest

frequency

Feb 27, 2013 CSCI211 - Sprenkle 11

Analyzing Runtime of
Huffman Coding Algorithm
1. Create a leaf node for each symbol, labeled

by its frequency, and add to a queue
2. While there is more than one node in the

queue
a)  Remove the two nodes of lowest frequency
b)  Create a new internal node with these two

nodes as children and with frequency equal to
the sum of the two nodes' probabilities

c)  Add the new node to the queue
3. The remaining node is the tree’s root node

Feb 27, 2013 CSCI211 - Sprenkle 12

Where are the costs?	

2/27/13	

3	

Running Time

•  Costs
Ø Inserting and extracting node into PQ: O(log n)
Ø Number of insertions and extractions: O(n)

•  Total running time: O(n log n)

Feb 27, 2013 CSCI211 - Sprenkle 13

Analysis of Algorithm’s Optimality

•  2 page proof in book

Feb 27, 2013 CSCI211 - Sprenkle 14

Real-life Compression

•  Text can be compressed well because of
known frequencies

•  Algorithms can be optimized to languages
Ø More than just “z doesn’t happen very often”

•  “z doesn’t happen after q”

Feb 27, 2013 CSCI211 - Sprenkle 15

DIVIDE AND CONQUER
ALGORITHMS

Feb 27, 2013 CSCI211 - Sprenkle 16

Divide-and-Conquer

•  Divide-and-conquer process
Ø Break up problem into several parts
Ø Solve each part recursively
Ø Combine solutions to sub-problems into overall

solution
•  Most common usage:

Ø Break up problem of size n into two equal parts
of size ½n

Ø Solve two parts recursively
Ø Combine two solutions into overall solution

Feb 27, 2013 CSCI211 - Sprenkle 17

Divide et impera.	

Veni, vidi, vici.	

 - Julius Caesar	

Discussion

• What is a well-known divide and conquer
algorithm?

Feb 27, 2013 CSCI211 - Sprenkle 18

Merge Sort	

2/27/13	

4	

Merge Sort

•  How does Merge Sort work?

• When do we stop?

Feb 27, 2013 CSCI211 - Sprenkle 19

Merge Sort

Feb 27, 2013 CSCI211 - Sprenkle 20

Divide list
into two lists	

Until only 2
elements	

Sort elements	

Combine sorted
lists (how?)	

RECURRENCE RELATIONS

Feb 27, 2013 CSCI211 - Sprenkle 21

Analyzing Merge Sort

•  Def. T(n) = number of comparisons to
mergesort an input of size n

• Want to say a bit more about what T(n) is
Ø Break it down more…

Feb 27, 2013 CSCI211 - Sprenkle 22

General Template	

• Break up problem of size n into two equal parts of

size ½n	

• Solve two parts recursively	

• Combine two solutions into overall solution	

What can we say about the running time w.r.t. to
the different parts of the above template?	

Analyzing Merge Sort

•  Def. T(n) = number of comparisons to
mergesort an input of size n

• Want to say a bit more about what T(n) is
Ø Break it down more…

Feb 27, 2013 CSCI211 - Sprenkle 23

General Template	

• Break up problem of size n into two equal parts of

size ½n	

• Solve two parts recursively	

• Combine two solutions into overall solution	

 O(n)	

T(n/2) + T(n/2)	

O(1)	

What is the base case? Its running time?	

Merge Sort’s Recurrence Relation

•  Put an upperbound on T(n):

Feb 27, 2013 CSCI211 - Sprenkle 24

For some constant c,
 T(n) ≤ 2 T(n/2) + cn when n > 2,
 T(2) ≤ c

O(n)	

Solve T(n) to come up with explicit bound	

2/27/13	

5	

Approaches to Solving Recurrences

1. Unroll recursion
Ø Look for patterns in runtime at each level
Ø Sum up running times over all levels

2. Substitute guess solution into recurrence
Ø Check that it works
Ø Induction on n

Feb 27, 2013 CSCI211 - Sprenkle 25

Unrolling Recurrence: T(n)

Feb 27, 2013 CSCI211 - Sprenkle 26

T(n) = 2 T(n/2) + cn

Unrolling Recurrence: 2 T(n/2) + cn

•  First level: 2 T(n/2) + cn

Feb 27, 2013 CSCI211 - Sprenkle 27

cn	

T(n/2)	

T(n/2)	

How does the next level break down?	

Unrolling Recurrence: 2 T(n/2) + cn

•  Next level:

Each one is 2 T(n/4) + c(n/2)

Feb 27, 2013 CSCI211 - Sprenkle 28

cn	

c n/2	

c n/2	

T(n/4)	

 T(n/4)	

 T(n/4)	

 T(n/4)	

Next level?	

Unrolling Recurrence

•  Next level:
Each one is 2 T(n/8) + c(n/4)

Feb 27, 2013 CSCI211 - Sprenkle 29

cn	

c n/2	

c n/2	

c n/4	

 c n/4	

 c n/4	

 c n/4	

And so on…	

T(n/8)	

 T(n/8)	

… T(n/8)	

 T(n/8)	

What does the final level look like?	

Unrolling Recurrence
•  How much does each level cost, in terms of the level?
•  How many levels are there (assuming n is a power of

2)?
•  What is the total run time?

Feb 27, 2013 CSCI211 - Sprenkle 30

cn	

c n/2	

c n/2	

c n/4	

c n/4	

c n/4	

 c n/4	

c	

 c	

 c	

 c	

 c	

 c	

 c	

 c	

T(n / 2k)	

T(n)	

T(2)	

0	

1	

2	

2/27/13	

6	

Unrolling Recurrence
•  How many levels are there (assuming n is a power of 2)?
•  How much does each level cost, in terms of the level?
•  What is the total run time?

Feb 27, 2013 CSCI211 - Sprenkle 31

cn	

c n/2	

c n/2	

c n/4	

c n/4	

c n/4	

 c n/4	

c	

 c	

 c	

 c	

 c	

 c	

 c	

 c	

T(n / 2k)	

T(n)	

T(2)	

0	

1	

2	

2k problems���
Size: n/2k	

Each level takes 	

2k * c * (n/2k) = cn 	

Number of levels: log2n	

O(n log n)	

Alternative: Proof by Induction

•  Claim. If T(n) satisfies this recurrence, then
T(n) = n log2 n.
Ø Recall: T(n) = 2 T(n/2) + cn

•  Pf. (by induction on n)
Ø Base case: n = 2
Ø Inductive hypothesis: T(n) ≤ cn log2 n
Ø Goal: show that T(2n) = 2cn log2 (2n)

Feb 27, 2013 CSCI211 - Sprenkle 32

Why doubling n?	

Proof by Induction

•  Claim. If T(n) satisfies this recurrence, then
T(n) = n log2 n.
Ø Recall: T(n) = 2 T(n/2) + cn

•  Pf. (by induction on n)
Ø Inductive hypothesis: T(n) ≤ cn log2 n
Ø Goal: show that T(2n) = 2cn log2 (2n)

Feb 27, 2013 CSCI211 - Sprenkle 33

T(2n) 	

= 2T(n) + c2n	

	

= 2cn log2n + 2cn	

	

= 2cn (log2(2n)-1) + 2cn	

	

= 2cn log2(2n) - 2cn + 2cn	

	

= 2cn log2(2n) ✔	

Replace	
 w/	
 induc.on	
 hypothesis	

Another Recurrence Relation

•  Instead of recursively solving 2 problems,
solve q problems
Ø Size of problems is still n/2

•  Combining solutions is still O(n)

Feb 27, 2013 CSCI211 - Sprenkle 34

What is the recurrence relation?	

n	

n/2	

 n/2	

n/2	

Example: q=3:	

Another Recurrence Relation

•  Instead of recursively solving 2 problems,
solve q problems
Ø Size of problems is still n/2

•  Combining solutions is still O(n)
•  Recurrence relation:

Ø For some constant c,
T(n) ≤ q T(n/2) + cn when n > 2
T(2) ≤ c

Feb 27, 2013 CSCI211 - Sprenkle 35

Intuition about running time?	

Looking Ahead

•  Problem Set 5 due Friday

Feb 27, 2013 CSCI211 - Sprenkle 36

