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Objectives 

•  Introduction to Greedy Algorithms 
•  Interval Scheduling 
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Greedy Algorithms 

 
•  Need a proof to show that the algorithm finds 

an optimal solution 
•  A counter example shows that a greedy 

algorithm does not provide an optimal 
solution 
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At each step, take as much as you can get 
 à “local” optimizations 

Example of Greedy Algorithm 

•  How do you make change to give out the 
fewest coins? 

•  Determine for 34¢ 
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Example of Greedy Algorithm 

•  How do you make change to give out the 
fewest coins? 

•  Ex:  34¢. 
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while change > 0:	
	if change >= 25:	
	 	print “Quarter”	
	 	change -= 25	
	elif change >= 10:	
	 	print “Dime”	
	 	change -= 10	
	…	 Let’s generalize …	



Coin Changing 
•  Goal.  Given currency denominations: 1, 5, 10, 25, 

100, devise a method to pay amount to customer 
using fewest number of coins. 

•  Ex:  34¢. 
 
 

•  Cashier's algorithm.  At each iteration, add coin of the 
largest value that does not take us past the amount to 
be paid. 

•  Ex:  $2.89. 
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Coin-Changing: Greedy Algorithm 

•  Cashier's algorithm.  At each iteration, add 
coin of the largest value that does not take 
us past the amount to be paid. 
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Sort coins’ denominations by value: c1 < c2 < … < cn.	
	
	
S = φ 	
while x ≠ 0	
   let k be largest integer such that ck ≤ x	
   if k = 0	
      return "no solution found"	
   x = x - ck	
   S = S ∪ {k}	
return S	

coins selected 	



How could this happen?	



Is cashier's algorithm optimal?	
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Coin-Changing: 
Analysis of Greedy Algorithm 
•  Theorem.  Greedy is optimal for U.S. coinage: 1, 5, 10, 25, 100 
•  Pf. (by induction on x) 

Ø  Consider optimal way to change ck ≤ x < ck+1 
•  Greedy takes coin k 

Ø  Any optimal solution must also take coin k 
•  If not, it needs enough coins of type c1, …, ck-1  to add up to x 
•  Table below indicates no optimal solution can do this 

Ø  Problem reduces to coin-changing x - ck cents, which, by induction, 
is optimally solved by greedy algorithm.  ▪ 

Feb 1, 2013 CSCI211 - Sprenkle 7 

1	



ck	



10	



25	



100	



P ≤ 4	



All optimal solutions���
must satisfy	



N + D ≤ 2	



Q ≤ 3	



5	

 N ≤ 1	



no limit	



k	



1	



3	



4	



5	



2	



-	



Max value of coins���
1, 2, …, k-1 in any OPT	



4 + 5 = 9	



20 + 4 = 24	



4	



75 + 24 = 99	



If don’t take c
k  	



W
hi

ch
 c

oi
n	



C
oi

n 
va

lu
e	



8 

Coin-Changing: 
Analysis of Greedy Algorithm 
•  Observation.  Greedy algorithm is sub-optimal 

for US postal denominations: 
Ø 500 300 200 100 86 85 79 78 66 65 46 44 33 32 20 

4 3 2 1 
•  Counterexample.  158¢. 

Ø Greedy:  100, 44, 4, 4, 4, 2. 
Ø Optimal:  79, 79. 
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Proving Greedy Algorithms Work 

•  Specifically, produce an optimal solution 

•  Approaches: 
Ø Greedy algorithm stays ahead 

•  Does better than any other algorithm at each step 
Ø Exchange argument 

•  Transform any solution into a greedy solution 
Ø Structural argument 

•  Figure out some structural bound that all solutions 
must meet 
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INTERVAL SCHEDULING 
Greedy algorithm stays ahead 
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Interval Scheduling 
•  Job j starts at sj and finishes at fj 
•  Two jobs are compatible if they don't overlap 
•  Goal: find maximum subset of mutually 

compatible jobs 

Feb 1, 2013 CSCI211 - Sprenkle 11 

Time	


0	

 1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	



f	



g	



h	



e	



a	



b	



c	



d	



•  Every job is worth equal 
money.	



• To earn the most money à 
schedule the most jobs	



Greedy Algorithm Template 

•  Consider jobs (or whatever) in some order 
Ø Decision: What order is best? 

•  Take each job provided it's compatible with 
the ones already taken 
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What are options for orders? (rhetorical for now)	



What is our goal?	


What are we trying to minimize/maximize?	



What is the worst case?	
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Greedy Algorithm Pseudo-Code 
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Set Greedy (Set candidate){	
	solution = new Set( );	
	while candidate.isNotEmpty()	
	 	next = candidate.select() //use selection criteria,	
	 	//remove from candidate and return value	
	 	if solution.isFeasible(next) //constraints satisfied	
	 	 	solution.union(next)	
	 	if solution.solves()	
	 	 	return solution	
		
	//No more candidates and no solution	
	return null	

}	

In some specified order	



Interval Scheduling 
•  Earliest start time.  Consider jobs in ascending 

order of start time sj 
Ø Utilize CPU as soon as possible 

•  Earliest finish time.  Consider jobs in ascending 
order of finish time fj 
Ø Resource becomes free ASAP 
Ø Maximize time left for other requests 

•  Shortest interval.  Consider jobs in ascending order 
of interval length  fj – sj 

•  Fewest conflicts.  For each job, count the number of 
conflicting jobs cj. Schedule in ascending order of 
conflicts cj 
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Can we “break” any of these?	


i.e., prove they’re not optimal?	



Counterexamples to Optimality of  
Various Job Orders 
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breaks earliest start time	



breaks shortest length	



breaks fewest conflicts	



Not optimal when …	



Interval Scheduling: Greedy Algorithm 

•  Consider jobs in increasing order of finish time 
•  Take each job provided it's compatible with the 

ones already taken 
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Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn	
	
G = {}	
for j = 1 to n 	
   if job j compatible with G	
      G = G ∪ {j}	
return G  	

jobs 
selected 	
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Interval Scheduling 
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Interval Scheduling 
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Interval Scheduling 
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Interval Scheduling 
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Interval Scheduling 
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Interval Scheduling 
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Interval Scheduling 
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Interval Scheduling 
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Interval Scheduling: Greedy Algorithm 

•  Consider jobs in increasing order of finish time 
•  Take each job provided it's compatible with the 

ones already taken 
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Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn	
	
G = {}	
for j = 1 to n 	
   if job j compatible with G	
      G = G ∪ {j}	
return G 	

jobs 
selected 	



Runtime of algorithm?	


•  Where/what are the costs?	



Interval Scheduling: Greedy Algorithm 

•  Consider jobs in increasing order of finish time. 
Take each job provided it's compatible with the 
ones already taken. 

•  Implementation.  O(n log n) 
Ø Remember job j* that was added last to A 
Ø Job j is compatible with A if sj ≥ fj* 
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Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn	
	
G = {}	
for j = 1 to n 	
   if job j compatible with G	
      G = G ∪ {j}	
return G  	

jobs 
selected 	



O(1)	

 O(n)	



O(n logn)	



Analyzing Interval Scheduling 

•  Know that the intervals are compatible 
Ø Handled by the if statement 

•  But is it optimal? 
Ø What does it mean to be optimal? 
Ø Recall our goal for maximization 
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Greedy Stays Ahead Proofs 
1.  Define your solutions 

Ø  Describe the form of your greedy solution (A) and of some other 
solution (possibly the optimal solution, O) 

2.  Find a measure 
Ø  Find a measure by which greedy stays ahead of the optimal solution 

•  Ex: Let a1, . . . , ak be the first k measures of greedy algorithm and 
o1 , . . . , om be the first m measures of other solution (sometimes m = k ) 

3.  Prove greedy stays ahead 
Ø  Show that greedy’s partial solutions constructed are always just as 

good as the optimal solution’s initial segments based on the measure  
•  Ex: for all indices r ≤ min(k,m), prove by induction that ar ≥ or or ar ≤ or 

Ø  Use the greedy algorithm to help you argue the inductive step 

4.  Prove optimality 
Ø  Prove that since greedy stays ahead of the other solution with respect 

to the measure, then the greedy solution is optimal 
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Interval Scheduling: Analysis 
•  Theorem.  Greedy algorithm is optimal. 
•  Pf.  (by contradiction) 

Ø  Assume greedy is not optimal 
Ø  Let a1, a2, ..., ak denote set of jobs selected by greedy (k jobs) 
Ø  Let o1, o2, ..., om  denote set of jobs in optimal solution (m jobs) 
Ø  Both sets ordered by finish time for comparison ordering 
 Want to show that k = m 
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What can we say about a1 and o1? 	

 f(a1) ≤ f(o1)	
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Interval Scheduling: Analysis 
•  Theorem.  Greedy algorithm is optimal. 
•  Pf.  (by contradiction) 

Ø  Since we picked the first job to have the first finishing time, we 
know that f(a1) <= f(o1)	



Ø Want to show that Greedy “stays ahead” 
Ø Each interval finishes at least as soon as Optimal’s 
Ø  Induction hypothesis: for all indices r <= k, f(ar) <= f(or)	
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Prove for r+1	



Interval Scheduling: Analysis 
•  Theorem.  Greedy algorithm is optimal. 
•  Pf.  (by contradiction) 

Ø  Since we picked the first job to have the first finishing time, we 
know that f(a1) <= f(o1)	



Ø Want to show that Greedy “stays ahead” 
Ø Each interval finishes at least as soon as Optimal’s 
Ø  Induction hypothesis: for all indices r <= k, f(ar) <= f(or)	
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OPT:	

 or+1	



why not replace job ar+1 with job or+1?	



Job ar+1 finishes after or+1	



How Greedy stays ahead	
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Interval Scheduling: Analysis 
•  Theorem.  Greedy algorithm is optimal. 
•  Pf.  (by contradiction) 

Ø  Assume Greedy is not optimal (i.e., m > k) 
•  Optimal solution has more jobs than Greedy 

Ø  We already showed that for all indices r ≤ k, f(ar) ≤ f(or) 
Ø  Since m > k, there is a request ok+1 in Optimal 
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ok+1	
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Interval Scheduling: Analysis 
•  Theorem.  Greedy algorithm is optimal. 
•  Pf.  (by contradiction) 

Ø  Assume Greedy is not optimal (i.e., m > k) 
Ø  We already showed that for all indices r ≤ k, f(ir) ≤ f(jr) 
Ø  Since m > k, there is a request ok+1 in Optimal 

•  Starts after ok ends à after ak ends 
Ø So, Greedy could also add ok 

•  Contradiction because now Greedy has another job 
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Greedy Algorithm Pseudo-Code 
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Set Greedy (Set candidate){	
	solution = new Set( );	
	while candidate.isNotEmpty()	
	 	next = candidate.select() //use selection criteria,	
	 	//remove from candidate and return value	
	 	if solution.isFeasible(next) //constraints satisfied	
	 	 	solution.union(next)	
	 	if solution.solves()	
	 	 	return solution	
		
	//No more candidates and no solution	
	return null	

}	

In some specified order	



Problem Assumptions 

•  All requests were known to scheduling 
algorithm 
Ø Online algorithms: make decisions without 

knowledge of future input 
•  Each job was worth the same amount 

Ø What if jobs had different values? 
•  E.g., scaled with size 

•  Single resource requested 
Ø Rejected requests that didn’t fit 
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Assignments 

•  Exam 1 
Ø Can use book, lecture notes, your notes 
Ø Covers chapters 1-3 
Ø No “outside” resources 
Ø Limited access to me 
Ø Consider typing up answers 
Ø Due Friday at 5 p.m. 

•  No journal for Tuesday 
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