Objectives

Network Flow
» Wrap up Max flow, Min cut
» Applications
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Review: Flow Network

Abstraction for material flowing through the edges
G = (V, E) = directed graph, no parallel edges
Two distinguished nodes: s = source, t = sink
c(e) = capacity of edge e, > 0
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Review: Flows

An s-t flow is a function that satisfies
» Capacity condition: For each e € E: 0 <f(e) < c(e)
» Conservation condition: Foreachv € V —{s, t}:
Yo intoy fle) = Yeou ofy fle) ¥—— Flow in == Flow out
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Review: Flows

The value of a flow fis v(f) = >, qutors f(€)
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Review: Cuts

An s-t cut is a partition (A, B) of V withs € A
andteB
The capacity of a cut (A, B) is

cap(4,B) = 3 c(e)
coutof 4
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Review: Minimum Cut Problem

Goal: Find an s-t cut of minimum capacity
» Puts upperbound on maximum flow

N
\6
\5

|
|

l/Capamy |o+s+|o

—7

N
/

/

IS
oy

|

|

v

Mar 30, 2012 CSCI211 - Sprenkle 6




Review: Flow Value Lemma

Let fbe any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal
to the amount leaving s. 30 - 370 = )
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Review: Weak Duality

Let fbe any flow and let (A, B) be any s-t cut.
Then the value of the flow is at most the cut’s
capacity

Cut capacity =30 = Flow value = 30
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Review: Certificate of Optimality

Corollary. Let fbe any flow, and let (A, B) be
any cut. If v(f) = cap(A, B), then fis a max
flow and (A, B) is a min cut.

Value of flow = 28
Cut capacity =28 =
9 Flow value < 28

9
10 40 15 15 0 10 B
/4 l e\l 9\
s 5 —(3 8 6 10—t
\ |\ . | I0/'
A s 40 6 150 0
I4\l ) \l/
4 30 ———7
Mar 30, 2012 . . 9

Review

What is the Ford-Fulkerson algorithm?
» When does it stop?
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Analyzing Augmenting Path Algorithm

Ford-Fulkerson(G, s, t, c)
foreach e € E f(e) = # initially no flow
G¢ = residual graph

while there exists augmenting path P
f = Augment(f, c, P) # change the flow
update Ge # build a new residual graph

return f

Augment(f, c, P)
b = bottleneck(P) # edge on P with least capacity
foreach e € P
if (e € E) f(e) = f(e) + b # forward edge, A flow
else f(e®) = f(e) - b # forward edge, ¥ flow
return f
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Intuition Behind Correctness of

F-F Algorithm
Let A be set of vertices reachable from s in
residual graph at end of F-F alg execution
By definition of A, s €A

By definition of the F-F algorithm’s resulting
flow, t& A
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Ford'FU"(erS * What do we know about the flow out of A?

* What do we know about the flow into A?
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FOfd‘FUIkers * What do we know about the flow out of A?
* What do we know about the flow into A?

* All edges out of A are completely saturated

« All edges into A are completely unused

Max-Flow Min-Cut Theorem

Flow f'is a max flow iff there are no augmenting paths.
The value of the max flow is equal to the value of the min cut.

Proof strategy. Prove both simultaneously by
showing the following are equivalent:
(i) There exists a cut (A, B) such that v(f) = cap(A, B).
(i) Flow f is a max flow.
(iii) There is no augmenting path relative to f.

See formal proof in I?sook
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Analyzing Augmenting Path Algorithm

Ford-Fulkerson(G, s, t, c)
foreach e € E f(e) = # initially no flow
G¢ = residual graph

while there exists augmenting path P
f = Augment(f, c, P) # change the flow
update Ge # build a new residual graph

return f

Augment(f c, P
bottleneck(P) # edge on P with least capacity
for'each ecpP

if (e € E) f(e) = f(e) + b # forward edge, A flow

else f(e“)_= f(e) - b # forward edge, ¥ flow
return f
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Analyzing Augmenting Path Algorithm

Ford-Fulkerson(G, s, t, c)

Om)  foreach e € E f(e) = # initially no flow

Om)  Gf = residual graph

Find jpath: O(m); Iterations: O(F) iterations, where F = max flow

while there exists augmenting path P

O(m) f = Augment(f, c, P) # change the flow

O(m) update G¢ # build a new residual graph

turn f
recurn Total: O(Fm)

Augment(f, c, P)
an b = bott'leneck(P) # edge on P with least capacity
O foreach e € P
[o10) if (e € E) f(e) = f(e) + b # forward edge, A flow
() else f(e®) = f(e) - b # forward edge, ¥ flow
return f
l Total: O(n) > O(m), since n < 2m
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Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual
capacity’s c,(e) remains an integer throughout algorithm.

Theorem. The algorithm terminates in at most v(f*) = nC
iterations.

Pf. Each augmentation increases value by at least 1.
Corollary. If C =1, Ford-Fulkerson runs in O(mn) time.

Integrality theorem. If all capacities are integers, then
there exists a max flow f for which every flow value f(e) is
an integer.

Pf. Since algorithm terminates, theorem follows from
invariant.
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Power of Max Flow Problem
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BIPARTITE MATCHING
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Bipartite Matching v

Input: undirected, bipartite graph G = (L U R, E)
» Edges: one endinL, oneendinR
Matching M C E such that each node appears in at most
1 edge in M.
Problem: find matching of largest possible size
%

matching
=
12,31, 4-5'
& Can we do better?
L = R
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Bipartite Matching v

Input: undirected, bipartite graph G = (L U R, E)
» Edges: one endin L, one end in R

Matching M C E such that each node appears in at most
1 edge in M.

max matching
1-1', 2-2', 3-3' 4-4'
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Max Flow Formulation

Create digraph G'= (LURU {s, t}, E')

Direct all edges from L to R, and assign unit capacity

Add source s, and unit capacity edges from s to each node in L
Add sink t, and unit capacity edges from each node in R to t

Why does

What is cost of [
generating /0 \ this work?
model? | ) 2‘\\‘
s © //'3 t
(4] 4‘/
What is C
in this model? L @ £ R
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Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G =
value of max flow in G'.

Proof: Need to show in both directions

© ©6 ®© © ©
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Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of
max flow in G'.
Pf. >

» Given max matching M of cardinality k.

» Consider flow f that sends 1 unit along each of k paths.

» fis a flow and has cardinality k. =

o 0

(5
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Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of max flow in G'.

Pf. €«
» Let fbe a max flow in G' of value k.
~ Integrality theorem = k is integral and can assume f is 0-1.
~ Consider M = set of edges from L to R with f(e) = 1.
each node in Land R participates in at most one edge in M
IM| =k: considercut (LUs, RUt) =

o T \
G ) > \'\ G
O 3 s ) ——i t
) G ‘ 7
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Summary of Approach

Model problem as a flow network
Run Ford-Fulkerson algorithm
Analyze running time

» Creating model

» FF algorithm
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EXTENSIONS TO MAX FLOW
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Circulation with Demands

Directed graph G = (V, E)

Edge capacities c(e), e € E

Node supply and demands d(v), ve V
* d(v) > 0 > demand

* d(v) <0 -> supply
* d(v) = 0 - transshipment
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Example Graph:
Circulation with Demands
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Circulation with Demands

Circulation with demands

~ Directed graph G = (V, E)

~ Edge capacities c(e), e €E

» Node supply and demands d(v), vE V

demand if d(v) > 0; supply if d(v) < 0; transshipment if d(v) = 0

Def. A circulation is a function that satisfies:
» Foreache €E: 0=<f(e)=<c(e) (capacity)

» ForeachveV: 2fe- 3/ - dv) (conservation)

Circulation problem:
given (V,E, ¢, d), does a circulation exist?
(Can we satisfy demand with supply?)
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Circulation with Demands

Necessary condition:

sum of supplies = sum of demands
Yd(v)y = 3 -d(v) = D

vid(v)>0 vid(v)< 0
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Circulation with Demands:
Towards Max Flow Formulation

‘ Ideas about how we can formulate this as a max flow problem? ‘
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Circulation with Demands:
Max Flow Formulation

Add new source s and sink t

For each v with d(v) < 0, add edge (s, v) with capacity -d(v)
For each v with d(v) > 0, add edge (v, t) with capacity d(v)
Claim: G has circulation iff G' has max flow of value D

/— \ saturates all edges

7 8/ R leaving s and entering t
G" / \
e ~ " | \
10 4 9
= |

|
f
~

\l/

49—
0
m\ /‘I'\ demand
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Circulation with Demands:
Characterization
Given (V, E, c, d), there does not exist a
circulation iff there exists a node partition
(A, B) such that
ZVEB dv > Cap(A1 B)

e

demand by exceeds supply of nodes in B +
nodes in B max capacity of edges going fromA > B

Pf?
» What can we use to prove this?
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Circulation with Demands:
Characterization
Given (V, E, c, d), there does not exist a
circulation iff there exists a node partition
(A, B) such that
Z:VEB dv > Cap(A1 B)

e

demand by exceeds  SuPPly of nodes in B +
nodes in B max capacity of edges going fromA > B

Pfidea. Look at min cutin G'.
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ANOTHER EXTENSION:
LOWER BOUNDS
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Circulation with Demands and
Lower Bounds Force flow to use
Feasible circulation certain edges
~ Directed graph G = (V, E)
~ Edge capacities c(e) and lower bounds 7 (e), e € E
~» Node supply and demands d(v), ve V

Def. A circulation is a function that satisfies:
» Foreache€E: 0=/ (e)=f(e)=<c(e) (capacity)
» Foreachv EV: mEm.{@ -"MEofffe) = dv) (conservation)

Circulation problem with lower bounds.
Given (V,E, /, ¢, d), does a circulation exist?
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Circulation with Demands and
Lower Bounds

Model lower bounds with demands
» Send /(e) units of flow along edge e
» Update demands of both endpoints

capacity

lower upper
bound } § bound
V. [2,9] —w v 7 —w
d(v) G d(w) d(v) +2 G d(w) -2
Supply and demand decrease
Proof in book
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7.8 SURVEY DESIGN
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Survey Design

Design survey asking consumers about
products
Can only survey a consumer about a product
if they own it

Consumer can own multiple products
Ask consumer i between ¢, and ¢, questions
Ask between p; and p; consumers about
product j

Goal: Design a survey that meets these specs, if possible.

‘ How can we model this problem?
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Bipartite Graph

Nodes: customers and products

Edge between customer and product means
customer owns product

For each customer, range of # of products
asked about

For each product, range of # of customers
asked about it

‘ What does the flow represent? ‘
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Next Week

Wiki - Tuesday
Skip the rest of Chapter 6 (unless you want to)
Chapter 7 up through 7.2, 7.5, 7.7
Problem Set 9 due Friday
Implementing pretty print
Network flow problems

As usual, check out the solved exercises at end
of chapter
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