
3/27/13	



1	



Objectives 

•  Dynamic Programming: shortest paths 
•  Network Flow 

Ø Max flow 
Ø Min cut 

Mar 27, 2013 1 CSCI211 - Sprenkle 

Shortest Paths: Where we left off… 

 
•  Dijkstra’s algorithm does not handle negative 

edge costs 
•  If some path from s to t contains a negative cost 

cycle, there does not exist a shortest s-t path 
•  Otherwise, there exists one that is simple (i.e., 

does not repeat nodes) 
Ø Path has at most n-1 edges 

•  where n is # of nodes in graph 
Mar 27, 2013 CSCI211 - Sprenkle 2 

s t 
W	



c(W) < 0	



 -6	


 -4	



 7	



Towards a Recurrence 

•  OPT(i,v): minimum cost of a v-t path P using 
at most i edges 
Ø This formulation eases later discussion 

•  Original problem is OPT(n-1, s) 

Mar 27, 2013 CSCI211 - Sprenkle 3 

v	

 t	



Costs on all edges	



Break down into subproblems based on i and v	



w	

cvw	



Shortest Paths: Dynamic Programming 

•  OPT(i, v) = minimum cost of a v-t path P 
using at most i edges 
Ø Case 1: P uses at most i-1 edges 

•  OPT(i, v) = OPT(i-1, v) 
Ø Case 2: P uses exactly i edges 

•  if (v, w) is first edge, then OPT uses (v, w), and 
then selects best w-t path using at most i-1 edges 

•  Cost: cost of chosen edge 
 

 

Mar 27, 2013 CSCI211 - Sprenkle 4 

  

€ 

OPT(i, v) =
 0 if  i = 0

  min OPT(i −1, v) ,
(v, w)∈ E

min OPT(i −1, w)+ cvw{ }
$ 
% 
& 

' 
( 
) 

otherwise

$ 

% 
* 

& * 

Shortest Paths: Implementation 

•  Shortest path length is M[n-1, s] 

•  Analysis.  Θ(mn) time, Θ(n2) space. 

•  Finding the shortest paths.  Maintain a 
"successor" for each table entry. 

Mar 27, 2013 CSCI211 - Sprenkle 5 

Shortest-Path(G, s) 	
   n = number of nodes in G	
   foreach node v ∈ V	
      M[0, v] = ∞ 	
   M[0, s] = 0	
	
   for i = 1 to n-1	
      foreach node v ∈ V	
         M[i, v] = M[i-1, v]	
         foreach edge (v, w) ∈ E	
             M[i, v] = min(M[i, v], M[i-1, w] + cvw )	

Starting node	



Cost of 
chosen edge	



Starting node	



Shortest Paths: Implementation 

•  Shortest path length is M[n-1, s] 

•  Analysis.  Θ(mn) time, Θ(n2) space. 

•  Finding the shortest paths.  Maintain a 
"successor" for each table entry. 

Mar 27, 2013 CSCI211 - Sprenkle 6 

Shortest-Path(G, s) 	
   n = number of nodes in G	
   foreach node v ∈ V	
      M[0, v] = ∞ 	
   M[0, s] = 0  # distance to yourself is 0	
	
   for i = 1 to n-1	
      foreach node v ∈ V	
         M[i, v] = M[i-1, v]	
         foreach edge (v, w) ∈ E	
             M[i, v] = min(M[i, v], M[i-1, w] + cvw )	

Starting node	



Cost of 
chosen edge	



Starting node	


Costs?	





3/27/13	



2	



Shortest Paths: Runtime Analysis 

•  Shortest path length is M[n-1, s] 

•  Analysis.  Θ(mn) time, Θ(n2) space. 

•  Finding the shortest paths.  Maintain a 
"successor" for each table entry. 

Mar 27, 2013 CSCI211 - Sprenkle 7 

Shortest-Path(G, s) 	
   n = number of nodes in G	
   foreach node v ∈ V	
      M[0, v] = ∞ 	
   M[0, s] = 0  # distance to yourself is 0	
	
   for i = 1 to n-1	
      foreach node v ∈ V	
         M[i, v] = M[i-1, v]	
         foreach edge (v, w) ∈ E	
             M[i, v] = min(M[i, v], M[i-1, w] + cvw )	

Starting node	



Cost of 
chosen edge	



Starting node	



O(n)	



O(nm)	



Dynamic Programming Wrapup 

• What we didn’t cover 
Ø 6.5: RNA Secondary Structure: Dynamic 

Programming Over Intervals 
Ø 6.7: Sequence Alignment in Linear Space 

•  Dynamic programming + Divide and Conquer à 
oh my! 

Ø 6.9: Shortest Paths and  
Distance Vector Protocols 
•  In practice in internet routing 

Mar 27, 2013 CSCI211 - Sprenkle 8 

NETWORK FLOW 

Mar 27, 2013 CSCI211 - Sprenkle 9 

Motivating Flow Network Problems 

•  Modeling transportation networks 
Ø Edges: carry traffic 
Ø Nodes: pass traffic between edges 

•  Can represent many different types of 
problems 
Ø Instead of looking at all possibilities, formulate as 

a flow problem 

Mar 27, 2013 CSCI211 - Sprenkle 10 

Flow Network 
•  G = (V, E) = directed graph, no parallel 

edges 
•  Two distinguished nodes: s = source, t = sink 
•  c(e) = capacity of edge e, > 0 

Mar 27, 2013 CSCI211 - Sprenkle 11 

s 

2 

3 

4 

5 

6 

7 

t 

 15	



 5	



 30	



 15	



   10	



 8	



 15	



 9	



 6	

  10	



 10	



   10	

 15	

 4	



 4	



capacity	



source	

 sink	



Flows: Definitions 
•  An s-t flow is a function that satisfies 

Ø Capacity condition: For each e ∈ E: 0 ≤ f(e) ≤ c(e) 
Ø Conservation condition: For each v ∈ V – {s, t}:         
∑e into y  f(e) =  ∑e out of y  f(e) 

Mar 27, 2013 CSCI211 - Sprenkle 12 

Flow can’t exceed 
capacity	



Flow in == Flow out	



4	



0	



0	



0	



0	

 0	



0	

 4	

 4	



0	


0	



0	



0	



capacity	


flow	



0	



4	



 15	



s 

2 

3 

4 

5 

6 

7 

t 

 15	



 5	



 30	



 15	



   10	



 8	



 15	



 9	



 6	

  10	



 10	



   10	

 15	

 4	



 4	



source	

 sink	





3/27/13	



3	



Flows: Definitions 

•  The value of a flow f is v(f) = ∑e out of s  f(e)         

Mar 27, 2013 CSCI211 - Sprenkle 13 

4	



0	



0	



0	



0	

 0	



0	

 4	

 4	



0	


0	



0	



Value = 4	


0	



capacity	


flow	



0	



4	



s 

2 

3 

4 

5 

6 

7 

t 

 15	



 5	



 30	



 15	



   10	



 8	



 15	



 9	



 6	

  10	



 10	



   10	

 15	

 4	



 4	



Maximum Flow Problem 

•  Make network most efficient 
Ø Use most of available capacity 

Mar 27, 2013 CSCI211 - Sprenkle 14 

10	



9	



9	



14	



4	

 10	



4	

 8	

 9	



1	



0	

 0	



0	



14	



capacity	


flow	



s 

2 

3 

4 

5 

6 

7 

t 

 15	



 5	



 30	



 15	



   10	



 8	



 15	



 9	



 6	

  10	



 10	



   10	

 15	

 4	



 4	

 0	



Value = 28	



Goal: Find s-t flow of maximum value 

Towards a Max Flow Algorithm 
•  Greedy algorithm 

Ø Start all edges e ∈ E at f(e) = 0 
Ø Find an s-t path P with the most capacity: f(e) < c(e) 
Ø Augment flow along path P 
Ø Repeat until you get stuck 

Mar 27, 2013 CSCI211 - Sprenkle 15 

s 

1 

2 

t 

10	



10	



0	

 0	



0	

 0	



0	



20	



20	



30	



Flow value = 0	



Towards a Max Flow Algorithm 
•  Greedy algorithm 

Ø Start all edges e ∈ E at f(e) = 0 
Ø Find an s-t path P with the most capacity: f(e) < c(e) 
Ø Augment flow along path P 
Ø Repeat until you get stuck 

Mar 27, 2013 CSCI211 - Sprenkle 16 

s 

1 

2 

t 

10	



10	



0	

 0	



0	

 0	



0	



20	



20	



30	



X	



X	



X	



20	



20	



20	



Is this optimal?	



Flow value = 20	



Towards a Max Flow Algorithm 
•  Greedy algorithm 

Ø  Start all edges e ∈ E at f(e) = 0 
Ø  Find an s-t path P with the most capacity: f(e) < c(e) 
Ø  Augment flow along path P 
Ø  Repeat until you get stuck 

Mar 27, 2013 CSCI211 - Sprenkle 17 

greedy = 20	



s 

1 

2 

t 

20	

 10	



10	

 20	



30	



20	

 0	



0	



20	



20	

 opt = 30	



s 

1 

2 

t 

20	

 10	



10	

 20	



30	



20	

 10	



10	



10	



20	



locally optimality does not ⇒ global optimality	



RESIDUAL GRAPHS 
Towards a solution… 

Mar 27, 2013 CSCI211 - Sprenkle 18 



3/27/13	



4	



Towards a Residual Graph 

•  Original edge: e = (u, v)  ∈ E 
Ø Flow f(e), capacity c(e) 

Mar 27, 2013 CSCI211 - Sprenkle 19 

u v  17	



6	



capacity	



flow	



Towards a Residual Graph 

•  Original edge: e = (u, v)  ∈ E 
Ø Flow f(e), capacity c(e) 

•  Residual edge 
Ø e = (u, v) w/ capacity c(e) - f(e) 
Ø eR = (v, u) with capacity f(e)  

•  To undo flow 

Mar 27, 2013 CSCI211 - Sprenkle 20 

u v  11	



residual capacity	



 6	



residual capacity	



u v  17	



6	



capacity	



flow	



Residual Graph: Gf 

•  Original edge: e = (u, v)  ∈ E 
Ø Flow f(e), capacity c(e) 

•  Residual edge 
Ø e = (u, v) w/ capacity c(e) - f(e) 
Ø eR = (v, u) with capacity f(e)  

•  To undo flow 

•  Residual graph:  Gf = (V, Ef ) 
Ø Residual edges with positive residual capacity 
Ø Ef = {e : f(e) < c(e)}  ∪  {eR : f(e) > 0} 

Mar 27, 2013 CSCI211 - Sprenkle 21 

u v  11	



residual capacity	



 6	



residual capacity	



Forward edges	

 Backward edges	



u v  17	



6	



capacity	



flow	



Applying Residual Graph 

•  Used to find the maximum flow 
Ø Use similar idea to greedy algorithm 

•  Residual path: simple s-t path in Gf 
Ø Also known as augmenting path 

Mar 27, 2013 CSCI211 - Sprenkle 22 

Augmenting Path Algorithm 

Mar 27, 2013 CSCI211 - Sprenkle 23 

Ford-Fulkerson(G, s, t, c)	
   foreach e ∈ E  f(e) = 0  # initially no flow	
   Gf = residual graph	
	
   while there exists augmenting path P	
      f = Augment(f, c, P)     # change the flow	
      update Gf   	 	# build a new residual graph	
	
   return f	

Augment(f, c, P)	
   b = bottleneck(P) # edge on P with least capacity	
   foreach e ∈ P	
      if (e ∈ E) f(e) = f(e) + b  # forward edge,  flow	
      else       f(eR) = f(e) - b  # forward edge,  flow 	
   return f	

c=capacity	

 Ford-Fulkerson Algorithm 

Mar 27, 2013 CSCI211 - Sprenkle 24 

s 

2 

3 

4 

5 t  10	



   10	



 9	



 8	



 4	



 10	



   10	

 6	

 2	



0	



0	



0	



0	

 0	

 0	



0	



0	



 G:	



Flow value = 0	



0	



flow	



capacity	





3/27/13	



5	



Ford-Fulkerson Algorithm 

Mar 27, 2013 CSCI211 - Sprenkle 25 

s 

2 

3 

4 

5 t  10	



   10	



 9	



 8	



 4	



 10	



   10	

 6	

 2	



0	



0	



0	



0	

 0	

 0	



0	



0	



 G:	



Flow value = 0	



0	



flow	



What does the residual graph look like?	



capacity	



Ford-Fulkerson Algorithm 

Mar 27, 2013 CSCI211 - Sprenkle 26 

s 

2 

3 

4 

5 t  10	



   10	



 9	



 8	



 4	



 10	



   10	

 6	

 2	



0	



0	



0	



0	

 0	

 0	



0	



0	



 G:	



Flow value = 0	



0	



flow	



s 

2 

3 

4 

5 t 

 Gf:	



capacity	



Ford-Fulkerson Algorithm 

Mar 27, 2013 CSCI211 - Sprenkle 27 

s 

2 

3 

4 

5 t  10	



   10	



 9	



 8	



 4	



 10	



   10	

 6	

 2	



0	



0	



0	



0	

 0	

 0	



0	



0	



 G:	



Flow value = 0	



0	



flow	



s 

2 

3 

4 

5 t  10	

  9	



 4	



   10	

 6	

 2	



 Gf:	



10	

  8	



 10	



residual capacity	



Bottleneck	



capacity	



Ford-Fulkerson Algorithm 

Mar 27, 2013 CSCI211 - Sprenkle 28 

s 

2 

3 

4 

5 t  10	



   10	



 9	



 8	



 4	



 10	



   10	

 6	

 2	



8	



0	



0	



0	

 0	

 8	



8	



0	

 0	



 G:	



s 

2 

3 

4 

5 t  10	



 4	



   10	

 6	



 Gf:	



 8	



 8	



 8	



 9	



 2	

2	



 2	



10	



2	


10	



X	



X	



X	

2	

X	



Flow value = 8	



Ford-Fulkerson Algorithm 

Mar 27, 2013 CSCI211 - Sprenkle 29 

0	



s 

2 

3 

4 

5 t  10	



   10	



 9	



 8	



 4	



 10	



   10	

 6	

 2	



10	



0	



0	



0	

 2	

 10	



8	



2	



 G:	



s 

2 

3 

4 

5 t 

 4	



 2	



 Gf:	



 10	



 8	

10	



2	



 10	

 7	



   10	

 6	



X	



6	


6	



6	



X	



X	



8	

X	



Flow value = 10	



Ford-Fulkerson Algorithm 

Mar 27, 2013 CSCI211 - Sprenkle 30 

s 

2 

3 

4 

5 t  10	



   10	



 9	



 8	



 4	



 10	



   10	

 6	

 2	



10	



0	



6	



6	

 8	

 10	



8	



2	



 G:	



s 

2 

3 

4 

5 t 1	



 6	



 Gf:	



 10	



 8	

 10	



8	



6	



6	



 6	



 4	



 4	



 4	



 2	



X	



8	



2	



8	



X	



X	



0	


X	



Flow value = 16	





3/27/13	



6	



Ford-Fulkerson Algorithm 

Mar 27, 2013 CSCI211 - Sprenkle 31 

s 

2 

3 

4 

5 t  10	



   10	



 9	



 8	



 4	



 10	



   10	

 6	

 2	



10	



2	



8	



8	

 8	

 10	



8	



0	



 G:	



s 

2 

3 

4 

5 t 

 6	

 2	



 Gf:	



 10	



 10	



8	



6	



 8	



8	



 2	



 2	

 1	



 2	



 8	

  2	



X	



9	



7	

 9	



X	



X	



9	

X	



X	

 3	



Flow value = 18	



Ford-Fulkerson Algorithm 

Mar 27, 2013 CSCI211 - Sprenkle 32 

s 

2 

3 

4 

5 t  10	



   10	



 9	



 8	



 4	



 10	



   10	

 6	

 2	



10	



3	



9	



9	

 9	

 10	



7	



0	



 G:	



s 

2 

3 

4 

5 t  1	

 9	



 1	



  1	

 6	

 2	



 Gf:	



 10	



 7	

 10	



6	



 9	



9	



 3	



 1	



Flow value = 19	



How do we know we’re done?	



Ford-Fulkerson Algorithm 

Mar 27, 2013 CSCI211 - Sprenkle 33 

s 

2 

3 

4 

5 t  10	



   10	



 9	



 8	



 4	



 10	



   10	

 6	

 2	



10	



3	



9	



9	

 9	

 10	



7	



0	



 G:	



s 

2 

3 

4 

5 t  1	

 9	



 1	



  1	

 6	

 2	



 Gf:	



 10	



 7	

 10	



6	



 9	



9	



 3	



 1	



What is reachable from s	



Flow value = 19	

Cut capacity = 19	



Analyzing Augmenting Path Algorithm 

Mar 27, 2013 CSCI211 - Sprenkle 34 

Ford-Fulkerson(G, s, t, c)	
   foreach e ∈ E  f(e) = 0  # initially no flow	
   Gf = residual graph	
	
   while there exists augmenting path P	
      f = Augment(f, c, P)     # change the flow	
      update Gf   	 	# build a new residual graph	
	
   return f	

Augment(f, c, P)	
   b = bottleneck(P) # edge on P with least capacity	
   foreach e ∈ P	
      if (e ∈ E) f(e) = f(e) + b  # forward edge,  flow	
      else       f(eR) = f(e) - b  # forward edge,  flow 	
   return f	

Why does alg work? 	

What is happening at each iteration?	


What is the running time?	

 Need more analysis …	



This Week 

•  Problem Set 8 due Friday 
•  Start reading chapter 7 

Mar 27, 2013 CSCI211 - Sprenkle 35 


