
2/1/13	

1	

Objectives

•  Introduction to Greedy Algorithms
•  Interval Scheduling

Feb 1, 2013 1 CSCI211 - Sprenkle

Greedy Algorithms

•  Need a proof to show that the algorithm finds

an optimal solution
•  A counter example shows that a greedy

algorithm does not provide an optimal
solution

Feb 1, 2013 CSCI211 - Sprenkle 2

At each step, take as much as you can get
 à “local” optimizations

Example of Greedy Algorithm

•  How do you make change to give out the
fewest coins?

•  Determine for 34¢

Feb 1, 2013 CSCI211 - Sprenkle 3

Example of Greedy Algorithm

•  How do you make change to give out the
fewest coins?

•  Ex: 34¢.

Feb 1, 2013 CSCI211 - Sprenkle 4

while change > 0:	
	if change >= 25:	
	 	print “Quarter”	
	 	change -= 25	
	elif change >= 10:	
	 	print “Dime”	
	 	change -= 10	
	…	 Let’s generalize …	

Coin Changing
•  Goal. Given currency denominations: 1, 5, 10, 25,

100, devise a method to pay amount to customer
using fewest number of coins.

•  Ex: 34¢.

•  Cashier's algorithm. At each iteration, add coin of the
largest value that does not take us past the amount to
be paid.

•  Ex: $2.89.

Feb 1, 2013 CSCI211 - Sprenkle 5

Coin-Changing: Greedy Algorithm

•  Cashier's algorithm. At each iteration, add
coin of the largest value that does not take
us past the amount to be paid.

Feb 1, 2013 CSCI211 - Sprenkle 6

Sort coins’ denominations by value: c1 < c2 < … < cn.	
	
	
S = φ 	
while x ≠ 0	
 let k be largest integer such that ck ≤ x	
 if k = 0	
 return "no solution found"	
 x = x - ck	
 S = S ∪ {k}	
return S	

coins selected 	

How could this happen?	

Is cashier's algorithm optimal?	

2/1/13	

2	

Coin-Changing:
Analysis of Greedy Algorithm
•  Theorem. Greedy is optimal for U.S. coinage: 1, 5, 10, 25, 100
•  Pf. (by induction on x)

Ø  Consider optimal way to change ck ≤ x < ck+1
•  Greedy takes coin k

Ø  Any optimal solution must also take coin k
•  If not, it needs enough coins of type c1, …, ck-1 to add up to x
•  Table below indicates no optimal solution can do this

Ø  Problem reduces to coin-changing x - ck cents, which, by induction,
is optimally solved by greedy algorithm. ▪

Feb 1, 2013 CSCI211 - Sprenkle 7

1	

ck	

10	

25	

100	

P ≤ 4	

All optimal solutions���
must satisfy	

N + D ≤ 2	

Q ≤ 3	

5	

 N ≤ 1	

no limit	

k	

1	

3	

4	

5	

2	

-	

Max value of coins���
1, 2, …, k-1 in any OPT	

4 + 5 = 9	

20 + 4 = 24	

4	

75 + 24 = 99	

If don’t take c
k 	

W
hi

ch
 c

oi
n	

C
oi

n
va

lu
e	

8

Coin-Changing:
Analysis of Greedy Algorithm
•  Observation. Greedy algorithm is sub-optimal

for US postal denominations:
Ø 500 300 200 100 86 85 79 78 66 65 46 44 33 32 20

4 3 2 1
•  Counterexample. 158¢.

Ø Greedy: 100, 44, 4, 4, 4, 2.
Ø Optimal: 79, 79.

Feb 1, 2013
CSCI211 - Sprenkle

Proving Greedy Algorithms Work

•  Specifically, produce an optimal solution

•  Approaches:
Ø Greedy algorithm stays ahead

•  Does better than any other algorithm at each step
Ø Exchange argument

•  Transform any solution into a greedy solution
Ø Structural argument

•  Figure out some structural bound that all solutions
must meet

Feb 1, 2013 CSCI211 - Sprenkle 9

INTERVAL SCHEDULING
Greedy algorithm stays ahead

Feb 1, 2013 10 CSCI211 - Sprenkle

Interval Scheduling
•  Job j starts at sj and finishes at fj
•  Two jobs are compatible if they don't overlap
•  Goal: find maximum subset of mutually

compatible jobs

Feb 1, 2013 CSCI211 - Sprenkle 11

Time	

0	

 1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

f	

g	

h	

e	

a	

b	

c	

d	

•  Every job is worth equal
money.	

• To earn the most money à
schedule the most jobs	

Greedy Algorithm Template

•  Consider jobs (or whatever) in some order
Ø Decision: What order is best?

•  Take each job provided it's compatible with
the ones already taken

Feb 1, 2013 CSCI211 - Sprenkle 12

What are options for orders? (rhetorical for now)	

What is our goal?	

What are we trying to minimize/maximize?	

What is the worst case?	

2/1/13	

3	

Greedy Algorithm Pseudo-Code

Feb 1, 2013 CSCI211 - Sprenkle 13

Set Greedy (Set candidate){	
	solution = new Set();	
	while candidate.isNotEmpty()	
	 	next = candidate.select() //use selection criteria,	
	 	//remove from candidate and return value	
	 	if solution.isFeasible(next) //constraints satisfied	
	 	 	solution.union(next)	
	 	if solution.solves()	
	 	 	return solution	
		
	//No more candidates and no solution	
	return null	

}	

In some specified order	

Interval Scheduling
•  Earliest start time. Consider jobs in ascending

order of start time sj
Ø Utilize CPU as soon as possible

•  Earliest finish time. Consider jobs in ascending
order of finish time fj
Ø Resource becomes free ASAP
Ø Maximize time left for other requests

•  Shortest interval. Consider jobs in ascending order
of interval length fj – sj

•  Fewest conflicts. For each job, count the number of
conflicting jobs cj. Schedule in ascending order of
conflicts cj

Feb 1, 2013 CSCI211 - Sprenkle 14

Can we “break” any of these?	

i.e., prove they’re not optimal?	

Counterexamples to Optimality of
Various Job Orders

Feb 1, 2013 CSCI211 - Sprenkle 15

breaks earliest start time	

breaks shortest length	

breaks fewest conflicts	

Not optimal when …	

Interval Scheduling: Greedy Algorithm

•  Consider jobs in increasing order of finish time
•  Take each job provided it's compatible with the

ones already taken

Feb 1, 2013 CSCI211 - Sprenkle 16

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn	
	
G = {}	
for j = 1 to n 	
 if job j compatible with G	
 G = G ∪ {j}	
return G 	

jobs
selected 	

Interval Scheduling

Time	

0	

A 	

C	

F	

B	

D	

G	

E	

1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

H	

0	

 1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

Feb 1, 2013 17 CSCI211 - Sprenkle

Interval Scheduling

0	

 1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

B	

Time	

0	

A 	

C	

F	

B	

D	

G	

E	

1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

H	

Feb 1, 2013 18 CSCI211 - Sprenkle

2/1/13	

4	

Interval Scheduling

0	

 1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

B	

 C	

Time	

0	

A 	

C	

F	

B	

D	

G	

E	

1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

H	

Feb 1, 2013 19 CSCI211 - Sprenkle

Interval Scheduling

0	

 1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

B	

 A	

Time	

0	

A 	

C	

F	

B	

D	

G	

E	

1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

H	

Feb 1, 2013 20 CSCI211 - Sprenkle

Interval Scheduling

0	

 1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

B	

 E	

Time	

0	

A 	

C	

F	

B	

D	

G	

E	

1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

H	

Feb 1, 2013 21 CSCI211 - Sprenkle

Interval Scheduling

0	

 1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

B	

 E	

D	

Time	

0	

A 	

C	

F	

B	

D	

G	

E	

1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

H	

Feb 1, 2013 22 CSCI211 - Sprenkle

Interval Scheduling

0	

 1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

B	

 E	

 F	

Time	

0	

A 	

C	

F	

B	

D	

G	

E	

1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

H	

Feb 1, 2013 23 CSCI211 - Sprenkle

Interval Scheduling

0	

 1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

B	

 E	

 G	

Time	

0	

A 	

C	

F	

B	

D	

G	

E	

1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

H	

Feb 1, 2013 24 CSCI211 - Sprenkle

2/1/13	

5	

Interval Scheduling

0	

 1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

B	

 E	

 H	

Time	

0	

A 	

C	

F	

B	

D	

G	

E	

1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

 9	

 10	

 11	

H	

Feb 1, 2013 25 CSCI211 - Sprenkle

Interval Scheduling: Greedy Algorithm

•  Consider jobs in increasing order of finish time
•  Take each job provided it's compatible with the

ones already taken

Feb 1, 2013 CSCI211 - Sprenkle 26

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn	
	
G = {}	
for j = 1 to n 	
 if job j compatible with G	
 G = G ∪ {j}	
return G 	

jobs
selected 	

Runtime of algorithm?	

•  Where/what are the costs?	

Interval Scheduling: Greedy Algorithm

•  Consider jobs in increasing order of finish time.
Take each job provided it's compatible with the
ones already taken.

•  Implementation. O(n log n)
Ø Remember job j* that was added last to A
Ø Job j is compatible with A if sj ≥ fj*

Feb 1, 2013 CSCI211 - Sprenkle 27

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn	
	
G = {}	
for j = 1 to n 	
 if job j compatible with G	
 G = G ∪ {j}	
return G 	

jobs
selected 	

O(1)	

 O(n)	

O(n logn)	

Analyzing Interval Scheduling

•  Know that the intervals are compatible
Ø Handled by the if statement

•  But is it optimal?
Ø What does it mean to be optimal?
Ø Recall our goal for maximization

Feb 1, 2013 28 CSCI211 - Sprenkle

Greedy Stays Ahead Proofs
1.  Define your solutions

Ø  Describe the form of your greedy solution (A) and of some other
solution (possibly the optimal solution, O)

2.  Find a measure
Ø  Find a measure by which greedy stays ahead of the optimal solution

•  Ex: Let a1, . . . , ak be the first k measures of greedy algorithm and
o1 , . . . , om be the first m measures of other solution (sometimes m = k)

3.  Prove greedy stays ahead
Ø  Show that greedy’s partial solutions constructed are always just as

good as the optimal solution’s initial segments based on the measure
•  Ex: for all indices r ≤ min(k,m), prove by induction that ar ≥ or or ar ≤ or

Ø  Use the greedy algorithm to help you argue the inductive step

4.  Prove optimality
Ø  Prove that since greedy stays ahead of the other solution with respect

to the measure, then the greedy solution is optimal

Feb 1, 2013 CSCI211 - Sprenkle 29

Interval Scheduling: Analysis
•  Theorem. Greedy algorithm is optimal.
•  Pf. (by contradiction)

Ø  Assume greedy is not optimal
Ø  Let a1, a2, ..., ak denote set of jobs selected by greedy (k jobs)
Ø  Let o1, o2, ..., om denote set of jobs in optimal solution (m jobs)
Ø  Both sets ordered by finish time for comparison ordering
 Want to show that k = m

Feb 1, 2013 CSCI211 - Sprenkle 30

o1	

 o2	

 or	

a1	

 a2	

 ar	

Greedy:	

OPT:	

What can we say about a1 and o1? 	

 f(a1) ≤ f(o1)	

2/1/13	

6	

Interval Scheduling: Analysis
•  Theorem. Greedy algorithm is optimal.
•  Pf. (by contradiction)

Ø  Since we picked the first job to have the first finishing time, we
know that f(a1) <= f(o1)	

Ø Want to show that Greedy “stays ahead”
Ø Each interval finishes at least as soon as Optimal’s
Ø  Induction hypothesis: for all indices r <= k, f(ar) <= f(or)	

Feb 1, 2013 CSCI211 - Sprenkle 31

o1	

 o2	

 or	

a1	

 a2	

 ar	

Greedy:	

OPT:	

Prove for r+1	

Interval Scheduling: Analysis
•  Theorem. Greedy algorithm is optimal.
•  Pf. (by contradiction)

Ø  Since we picked the first job to have the first finishing time, we
know that f(a1) <= f(o1)	

Ø Want to show that Greedy “stays ahead”
Ø Each interval finishes at least as soon as Optimal’s
Ø  Induction hypothesis: for all indices r <= k, f(ar) <= f(or)	

Feb 1, 2013 CSCI211 - Sprenkle 32

o1	

 o2	

 or	

a1	

 a2	

 ar	

 ar+1	

. . .	

Greedy:	

OPT:	

 or+1	

why not replace job ar+1 with job or+1?	

Job ar+1 finishes after or+1	

How Greedy stays ahead	

33

Interval Scheduling: Analysis
•  Theorem. Greedy algorithm is optimal.
•  Pf. (by contradiction)

Ø  Assume Greedy is not optimal (i.e., m > k)
•  Optimal solution has more jobs than Greedy

Ø  We already showed that for all indices r ≤ k, f(ar) ≤ f(or)
Ø  Since m > k, there is a request ok+1 in Optimal

Feb 1, 2013 CSCI211 - Sprenkle 33

ok+1	

ok	

Why wouldn't
Greedy have ok+1?	

o1	

 o2	

 or	

a1	

 a2	

 ar	

 ak	

Greedy:	

OPT:	

34

Interval Scheduling: Analysis
•  Theorem. Greedy algorithm is optimal.
•  Pf. (by contradiction)

Ø  Assume Greedy is not optimal (i.e., m > k)
Ø  We already showed that for all indices r ≤ k, f(ir) ≤ f(jr)
Ø  Since m > k, there is a request ok+1 in Optimal

•  Starts after ok ends à after ak ends
Ø So, Greedy could also add ok

•  Contradiction because now Greedy has another job

Feb 1, 2013 CSCI211 - Sprenkle 34

ok+1	

ok	

Why wouldn't
Greedy have ok+1?	

o1	

 o2	

 or	

a1	

 a2	

 ar	

 ak	

Greedy:	

OPT:	

Greedy Algorithm Pseudo-Code

Feb 1, 2013 CSCI211 - Sprenkle 35

Set Greedy (Set candidate){	
	solution = new Set();	
	while candidate.isNotEmpty()	
	 	next = candidate.select() //use selection criteria,	
	 	//remove from candidate and return value	
	 	if solution.isFeasible(next) //constraints satisfied	
	 	 	solution.union(next)	
	 	if solution.solves()	
	 	 	return solution	
		
	//No more candidates and no solution	
	return null	

}	

In some specified order	

Problem Assumptions

•  All requests were known to scheduling
algorithm
Ø Online algorithms: make decisions without

knowledge of future input
•  Each job was worth the same amount

Ø What if jobs had different values?
•  E.g., scaled with size

•  Single resource requested
Ø Rejected requests that didn’t fit

Feb 1, 2013 CSCI211 - Sprenkle 36

2/1/13	

7	

Assignments

•  Exam 1
Ø Can use book, lecture notes, your notes
Ø Covers chapters 1-3
Ø No “outside” resources
Ø Limited access to me
Ø Consider typing up answers
Ø Due Friday at 5 p.m.

•  No journal for Tuesday

Feb 1, 2013 CSCI211 - Sprenkle 37

