
3/29/13	

1	

Objectives

•  Network Flow
Ø Max flow
Ø Min cut
Ø Application: Bipartite Matching

Mar 29, 2013 1 CSCI211 - Sprenkle

Review

• What are the characteristics of the network
flow graph we’re dealing with?

• What was the problem we were trying to
solve?

•  Describe our algorithm to solve the problem

Mar 29, 2013 CSCI211 - Sprenkle 2

Review: Flows: Definitions
•  An s-t flow is a function that satisfies

Ø Capacity condition: For each e ∈ E: 0 ≤ f(e) ≤ c(e)
Ø Conservation condition: For each v ∈ V – {s, t}:
∑e into y f(e) = ∑e out of y f(e)

Mar 29, 2013 CSCI211 - Sprenkle 3

Flow can’t exceed
capacity	

Flow in == Flow out	

4	

0	

0	

0	

0	

 0	

0	

 4	

 4	

0	

0	

0	

0	

capacity	

flow	

0	

4	

 15	

s

2

3

4

5

6

7

t

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	

 10	

 10	

 10	

 15	

 4	

 4	

source	

 sink	

Maximum Flow Problem

•  Make network most efficient
Ø Use most of available capacity

Mar 29, 2013 CSCI211 - Sprenkle 4

10	

9	

9	

14	

4	

 10	

4	

 8	

 9	

1	

0	

 0	

0	

14	

capacity	

flow	

s

2

3

4

5

6

7

t

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	

 10	

 10	

 10	

 15	

 4	

 4	

 0	

Value = 28	

Goal: Find s-t flow of maximum value

Augmenting Path Algorithm

Mar 29, 2013 CSCI211 - Sprenkle 5

Ford-Fulkerson(G, s, t, c)	
 foreach e ∈ E f(e) = 0 # initially no flow	
 Gf = residual graph	
	
 while there exists augmenting path P	
 f = Augment(f, c, P) # change the flow	
 update Gf 	 	# build a new residual graph	
	
 return f	

Augment(f, c, P)	
 b = bottleneck(P) # edge on P with least capacity	
 foreach e ∈ P	
 if (e ∈ E) f(e) = f(e) + b # forward edge,  flow	
 else f(eR) = f(e) - b # forward edge,  flow 	
 return f	

c=capacity	

 Analyzing Augmenting Path Algorithm

Mar 29, 2013 CSCI211 - Sprenkle 6

Ford-Fulkerson(G, s, t, c)	
 foreach e ∈ E f(e) = 0 # initially no flow	
 Gf = residual graph	
	
 while there exists augmenting path P	
 f = Augment(f, c, P) # change the flow	
 update Gf 	 	# build a new residual graph	
	
 return f	

Augment(f, c, P)	
 b = bottleneck(P) # edge on P with least capacity	
 foreach e ∈ P	
 if (e ∈ E) f(e) = f(e) + b # forward edge,  flow	
 else f(eR) = f(e) - b # forward edge,  flow 	
 return f	

Why does alg work? 	

What is happening at each iteration?	

What is the running time?	

 Need more analysis …	

3/29/13	

2	

MINIMUM CUTS

Mar 29, 2013 CSCI211 - Sprenkle 7

Cuts

•  An s-t cut is a partition (A, B) of V with s ∈ A
and t ∈ B

•  The capacity of a cut (A, B) is

Mar 29, 2013 CSCI211 - Sprenkle 8

s

2

3

4

5

6

7

t

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	

 10	

 10	

 10	

 15	

 4	

 4	

 A	

€

cap(A, B) = c(e)
e out of A
∑

 Capacity = 9 + 15 + 8 + 30���
	

 = 62	

 B	

What is the capacity
of this cut?	

Minimum Cut Problem

•  Find an s-t cut of minimum capacity
Ø Puts upperbound on maximum flow

Mar 29, 2013 CSCI211 - Sprenkle 9

s

2

3

4

5

6

7

t

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	

 10	

 10	

 10	

 15	

 4	

 4	

 A	

 Capacity = 10 + 8 + 10���
 = 28	

 B	

Same graph,
different cut	

Recall

•  The value of a flow f is v(f) = ∑e out of s f(e)

Mar 29, 2013 CSCI211 - Sprenkle 10

4	

0	

0	

0	

0	

 0	

0	

 4	

 4	

0	

0	

0	

Value = 4	

0	

capacity	

flow	

0	

4	

s

2

3

4

5

6

7

t

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	

 10	

 10	

 10	

 15	

 4	

 4	

Flow Value Lemma
•  Let f be any flow, and let (A, B) be any s-t cut.

Then, the value of the flow is = fout(A) – fin(A).

Mar 29, 2013 CSCI211 - Sprenkle 11

10	

6	

6	

11	

1	

 10	

3	

 8	

 8	

0	

0	

0	

11	

s

2

3

4

5

6

7

t

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	

 10	

 10	

 10	

 15	

 4	

 4	

 0	

Value = 24	

€

f (e)
e out of A
∑ − f (e)

e in to A
∑ = v(f)

4	

A	

B	

What is the value
of this flow?	

Flow Value Lemma

Mar 29, 2013 CSCI211 - Sprenkle 12

10	

6	

6	

1	

 10	

3	

 8	

 8	

0	

0	

0	

11	

s

2

3

4

5

6

7

t

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	

 10	

 10	

 10	

 15	

 4	

 4	

 0	

 Value = 6 + 0 + 8 - 1 + 11���
 = 24	

4	

11	

A	

B	

•  Let f be any flow, and let (A, B) be any s-t cut.
Then, the value of the flow is = fout(A) – fin(A).

€

f (e)
e out of A
∑ − f (e)

e in to A
∑ = v(f)

3/29/13	

3	

CSCI211 - Sprenkle

Possibilities for edge e:	

•  Both ends in A (0)	

•  Points out from A (+)	

•  Points in to A (-)	

Flow Value Lemma (FVL)

•  Let f be any flow, and let (A, B) be any s-t cut.
•  Then
•  Pf.

Mar 29, 2013
13

by flow conservation, ���
all terms except v = s are 0	

By definition	

A	

 B	

Weak Duality

•  Let f be any flow and let (A, B) be any s-t cut.
➜ Then the value of the flow is at most the

cut’s capacity

Mar 29, 2013 CSCI211 - Sprenkle 14

Cut capacity = 30 ⇒ Flow value ≤ 30 	

s

2

3

4

5

6

7

t

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	

 10	

 10	

 10	

 15	

 4	

 4	

Capacity = 30	

A	

Weak Duality

•  Let f be any flow.
Then, for any s-t cut (A, B) v(f) ≤ cap(A, B).

•  Pf.

Mar 29, 2013 CSCI211 - Sprenkle 15

€

v(f) = f (e)
e out of A
∑ − f (e)

e in to A
∑

≤ f (e)
e out of A
∑

≤ c(e)
e out of A
∑

= cap(A,B) s

t

A	

 B	

 7	

6	

 8	

4	

By FVL	

Certificate of Optimality

•  Corollary. Let f be any flow, and
let (A, B) be any cut. If v(f) = cap(A, B),
then f is a max flow and (A, B) is a min cut.

Mar 29, 2013 CSCI211 - Sprenkle 16

Value of flow = 28���
Cut capacity = 28 ⇒���

	

Flow value ≤ 28	

10	

9	

9	

14	

4	

 10	

4	

 8	

 9	

1	

0	

 0	

0	

14	

s

2

3

4

5

6

7

t

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	

 10	

 10	

 10	

 15	

 4	

 4	

 0	

A	

B	

Recall: Residual Graph Gf

•  Original edge: e = (u, v) ∈ E
Ø Flow f(e), capacity c(e)

•  Residual edge
Ø e = (u, v) w/ capacity c(e) - f(e)
Ø eR = (v, u) with capacity f(e)

•  To undo flow

•  Residual graph: Gf = (V, Ef)
Ø Residual edges with positive residual capacity
Ø Ef = {e : f(e) < c(e)} ∪ {eR : f(e) > 0}

Mar 29, 2013 CSCI211 - Sprenkle 17

u v 11	

residual capacity	

 6	

residual capacity	

Forward edges	

 Backward edges	

u v 17	

6	

capacity	

flow	

Recall: Augmenting Path Algorithm

Mar 29, 2013 CSCI211 - Sprenkle 18

Ford-Fulkerson(G, s, t, c)	
 foreach e ∈ E f(e) = 0 # initially no flow	
 Gf = residual graph	
	
 while there exists augmenting path P	
 f = Augment(f, c, P) # change the flow	
 update Gf 	 	# build a new residual graph	
	
 return f	

Augment(f, c, P)	
 b = bottleneck(P) # edge on P with least capacity	
 foreach e ∈ P	
 if (e ∈ E) f(e) = f(e) + b # forward edge,  flow	
 else f(eR) = f(e) - b # forward edge,  flow 	
 return f	

3/29/13	

4	

Intuition Behind Correctness of
F-F Algorithm

•  Let A be set of vertices reachable from s in
residual graph at end of F-F alg execution

•  By definition of A, s ∈ A
•  By definition of the F-F algorithm’s resulting

flow, t ∉ A

Mar 29, 2013 CSCI211 - Sprenkle 19

Ford-Fulkerson Algorithm

Mar 29, 2013 CSCI211 - Sprenkle 20

s

2

3

4

5 t 10	

 10	

 9	

 8	

 4	

 10	

 10	

 6	

 2	

10	

3	

9	

9	

 9	

 10	

7	

0	

 G:	

s

2

3

4

5 t 1	

 9	

 1	

 1	

 6	

 2	

 Gf:	

 10	

 7	

 10	

6	

 9	

9	

 3	

 1	

Flow value = 19	

Cut capacity = 19	

A	

• What do we know about the flow out of A?	

• What do we know about the flow into A?	

A: nodes reachable from s 	

A	

Ford-Fulkerson Algorithm

Mar 29, 2013 CSCI211 - Sprenkle 21

s

2

3

4

5 t 10	

 10	

 9	

 8	

 4	

 10	

 10	

 6	

 2	

10	

3	

9	

9	

 9	

 10	

7	

0	

 G:	

s

2

3

4

5 t 1	

 9	

 1	

 1	

 6	

 2	

 Gf:	

 10	

 7	

 10	

6	

 9	

9	

 3	

 1	

Flow value = 19	

Cut capacity = 19	

• What do we know about the flow out of A?	

• What do we know about the flow into A?	

A	

• All edges out of A are completely saturated	

• All edges into A are completely unused	

➔ A is the min cut	

A	

Max-Flow Min-Cut Theorem

•  Proof strategy. Prove both simultaneously by
showing the following are equivalent:
 (i) There exists a cut (A, B) such that v(f) = cap(A, B).
 (ii) Flow f is a max flow.
 (iii) There is no augmenting path relative to f.

22 Mar 29, 2013 CSCI211 - Sprenkle

Max-flow min-cut theorem. [Ford-Fulkerson 1956] ���
The value of the max flow is equal to the value of the min cut.	

Augmenting path theorem. ���
Flow f is a max flow iff there are no augmenting paths. 	

See formal proof in book	

Analyzing Augmenting Path Algorithm

Mar 29, 2013 CSCI211 - Sprenkle 23

Ford-Fulkerson(G, s, t, c)	
 foreach e ∈ E f(e) = 0 # initially no flow	
 Gf = residual graph	
	
 while there exists augmenting path P	
 f = Augment(f, c, P) # change the flow	
 update Gf 	 	# build a new residual graph	
	
 return f	

Augment(f, c, P)	
 b = bottleneck(P) # edge on P with least capacity	
 foreach e ∈ P	
 if (e ∈ E) f(e) = f(e) + b # forward edge,  flow	
 else f(eR) = f(e) - b # forward edge,  flow 	
 return f	

Analyzing Augmenting Path Algorithm

Mar 29, 2013 CSCI211 - Sprenkle 24

Ford-Fulkerson(G, s, t, c)	
 foreach e ∈ E f(e) = 0 # initially no flow	
 Gf = residual graph	
	
 while there exists augmenting path P	
 f = Augment(f, c, P) # change the flow	
 update Gf 	 	# build a new residual graph	
	
 return f	

Augment(f, c, P)	
 b = bottleneck(P) # edge on P with least capacity	
 foreach e ∈ P	
 if (e ∈ E) f(e) = f(e) + b # forward edge,  flow	
 else f(eR) = f(e) - b # forward edge,  flow 	
 return f	

O(m)	

O(m)	

O(m)	

O(m)	

O(n)	

O(n)	

O(1)	

O(1)	

Total: O(n) à O(m), since n ≤ 2m

Total: O(Fm)

Find path: O(m); Iterations: O(F) iterations, where F = max flow	

3/29/13	

5	

Running Time
•  Assumption. All capacities are integers between 1 and F.
•  Invariant. Every flow value f(e) and every residual

capacity’s cf(e) remains an integer throughout algorithm.

•  Theorem. Algorithm terminates in at most v(f*) ≤ nF
iterations.

•  Pf. Each augmentation increases value by at least 1.
•  Corollary. If F = 1, Ford-Fulkerson runs in O(mn) time.

•  Integrality theorem. If all capacities are integers, then
there exists a max flow f for which every flow value f(e) is
an integer.

•  Pf. Since algorithm terminates, theorem follows from
invariant.

25 Mar 29, 2013 CSCI211 - Sprenkle

Discussion: Max Flow Problem

• What is the form of the solution to the max
flow problem?

•  Is there only one solution to a given max flow
problem?

Mar 29, 2013 CSCI211 - Sprenkle 26

Power of Max Flow Problem

Mar 29, 2013 CSCI211 - Sprenkle 27

Some problems with non-trivial combinatorial searches
can be formulated as max flow or���

 min cut in a directed graph	

BIPARTITE MATCHING

Mar 29, 2013 CSCI211 - Sprenkle 28

Bipartite Matching
•  Input: undirected, bipartite graph G = (L ∪ R, E)

Ø  Edges: one end in L, one end in R
•  Matching M ⊆ E such that each node appears in at most

1 edge in M.

Mar 29, 2013 CSCI211 - Sprenkle 29

1

3

5

1'

3'

5'

2

4

2'

4'

matching	

1-2', 3-1', 4-5' 	

R	

L	

V	

Problem: find matching of largest possible size	

Can we do better?	

Bipartite Matching
•  Input: undirected, bipartite graph G = (L ∪ R, E)

Ø  Edges: one end in L, one end in R
•  Matching M ⊆ E such that each node appears in at most

1 edge in M.

Mar 29, 2013 CSCI211 - Sprenkle 30

V	

1

3

5

1'

3'

5'

2

4

2'

4'

R	

L	

max matching

1-1', 2-2', 3-3’, 5-5’

3/29/13	

6	

Max Flow Formulation
1.  Create digraph G' = (L ∪ R ∪ {s, t}, E')
2.  Direct all edges from L to R, and assign unit capacity
3.  Add source s, and unit capacity edges from s to each node in L
4.  Add sink t, and unit capacity edges from each node in R to t

Mar 29, 2013 CSCI211 - Sprenkle 31

1

3

5

2

4

s

1	

1'

3'

5'

2'

4'

t

1	

1	

R	

L	

G'	

Given model,
now what?	

What is cost of
generating

model?	

What is C ���
in this model?	

Why does
this work?	

Bipartite Matching: Proof of Correctness

•  Theorem. Max cardinality matching in G =
value of max flow in G'.

•  Proof: Need to show in both directions

Mar 29, 2013 CSCI211 - Sprenkle 32

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1	

 1	

1	

1

3

5

1'

3'

5'

2

4

2'

4'

G'	

G	

Bipartite Matching: Proof of Correctness
•  Theorem. Max cardinality matching in G = value of

max flow in G'.
•  Pf. à

Ø Given max matching M of cardinality k.
Ø Consider flow f that sends 1 unit along each of k paths.
Ø  f is a flow and has cardinality k. ▪

Mar 29, 2013 CSCI211 - Sprenkle 33

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1	

 1	

1	

1

3

5

1'

3'

5'

2

4

2'

4'

G'	

G	

Bipartite Matching: Proof of Correctness
•  Theorem. Max cardinality matching in G = value of max flow in G'.
•  Pf. ß

Ø  Let f be a max flow in G' of value k.
Ø  Integrality theorem ⇒ k is integral and can assume f is 0-1.
Ø  Consider M = set of edges from L to R with f(e) = 1.

•  each node in L and R participates in at most one edge in M
•  |M| = k: consider cut (L ∪ s, R ∪ t) ▪

Mar 29, 2013 CSCI211 - Sprenkle 34

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1	

 1	

1	

1

3

5

1'

3'

5'

2

4

2'

4'

G'	

G	

Network Flow Solutions
1. Model problem as a flow network

Ø  Describe what nodes, edges, and capacity
represent

Ø  Describe what flow represents and how that maps
to your solution

Ø  Run Ford-Fulkerson algorithm
2. Prove that the solution found is correct/

feasible/optimal
3. Prove that you find all solutions
4. Analyze running time

Ø  Creating model
Ø  FF algorithm

Mar 29, 2013 CSCI211 - Sprenkle 35

This Week

•  Problem Set 9 due Friday
• Wiki Reading

Ø 7.1-7.2, 7.5, 7.7

Mar 29, 2013 CSCI211 - Sprenkle 36

