
2/13/13	

1	

Objectives

•  Continue Minimum Spanning Tree
•  Union-Find data structure

Feb 13, 2013 1 CSCI211 - Sprenkle

Review

• When we have a problem about finding the
shortest path, what algorithm should we think
about applying?

•  BFS or Dijkstra’s

Ø Difference: Dijkstra’s when edges have positive
(and different) weights

• What kind of proof did we use to prove that
Dijkstra’s algorithm was optimal?

Feb 13, 2013 CSCI211 - Sprenkle 2

Review: Laying Cable
•  Comcast wants to lay cable in a neighborhood

Ø  Reach all houses
Ø  Least cost

Feb 13, 2013 CSCI211 - Sprenkle 3

Neighborhood Layout	
 Cost of laying cable btw
houses depends on amount of
cable, landscaping, obstacles,

etc.	

8	

12	

2	

1	

15	

3	

7	

4	

13	

8	
15	

9	

Minimum Spanning Tree (MST)
•  Spanning tree: spans all nodes in graph
•  Given a connected graph G = (V, E) with

positive edge weights ce, an MST is a subset of
the edges T ⊆ E such that T is a spanning tree
whose sum of edge weights is minimized

Feb 13, 2013 CSCI211 - Sprenkle 4

 5	

23	

10 	

21	

14	

24	

16	

 6	

 4	

18	
 9	

7	

11	

 8	

 5	

 6	

 4	

9	

7	

11	

 8	

G = (V, E)	

T, Σe∈T ce = 50	

Examples

Feb 13, 2013 CSCI211 - Sprenkle 5

Graph	

A	

DC

B	

4	
 2	

3	

1	

Identify spanning trees and which is the minimal spanning tree.	

Examples

Feb 13, 2013 CSCI211 - Sprenkle 6

Graph	

A	

DC

B	

4	
 2	

3	

1	

A	

DC

B	

2	

3	

1	

A	

DC

B	

4	

3	

1	
A	

DC

B	

4	
 2	

1	

MST: 	

Other Spanning Trees: 	

Identify spanning trees and which is the minimal spanning tree.	

2/13/13	

2	

MST Applications
•  Network design

Ø  telephone, electrical, hydraulic, TV cable, computer, road
•  Approximation algorithms for NP-hard problems

Ø  traveling salesperson problem, Steiner tree
•  Indirect applications

Ø max bottleneck paths
Ø  image registration with Renyi entropy
Ø  learning salient features for real-time face verification
Ø  reducing data storage in sequencing amino acids in a

protein
Ø model locality of particle interactions in turbulent fluid

flows
•  Cluster analysis

Feb 13, 2013 CSCI211 - Sprenkle 7

http://www.ics.uci.edu/	
	~eppstein/gina/mst.html	

Minimum Spanning Tree
•  Given a connected graph G = (V, E) with

positive edge weights ce, an MST is a subset of
the edges T ⊆ E such that T is a spanning tree
whose sum of edge weights is minimized

Feb 13, 2013 CSCI211 - Sprenkle 8

Why must the solution be a tree?	

 5	

23	

10 	

21	

14	

24	

16	

 6	

 4	

18	
 9	

7	

11	

 8	

 5	

 6	

 4	

9	

7	

11	

 8	

G = (V, E)	

T, Σe∈T ce = 50	

Minimum Spanning Tree

•  Assume have a minimal solution that is not a
tree, i.e., it has a cycle

• What could we do?
Ø What do we know about the edges?
Ø How does that change the cost of the solution?

Feb 13, 2013 CSCI211 - Sprenkle 9

Minimal Spanning Tree

•  Proof by Contradiction.
•  Assume have a minimal solution V that is not

a tree, i.e., it has a cycle
•  Contains edges to all nodes because

solution must be connected (spanning)
•  Remove an edge from the cycle

Ø Can still reach all nodes (could go “long way
around”)

Ø But at lower total cost
Ø Contradiction to our minimal solution

Feb 13, 2013 CSCI211 - Sprenkle 10

Ideas for Solutions?

•  Cayley's Theorem. There are nn-2 spanning
trees

•  Towards a solution…
Ø Where to start?

Feb 13, 2013 CSCI211 - Sprenkle 11

can't solve by
brute force	

 5	

23	

10 	

21	

14	

24	

16	

 6	

 4	

18	
 9	

7	

11	

 8	

G = (V, E)	

Greedy Algorithms

•  Prim's algorithm.
Ø  Start with some root node s and greedily grow a tree T from s outward
Ø  At each step, add cheapest edge e to T that has exactly one endpoint in

T
Ø  Similar to Dijkstra’s (but simpler)

•  Kruskal's algorithm.
Ø  Start with T = φ
Ø  Consider edges in ascending order of cost
Ø  Insert edge e in T unless doing so would create a cycle

•  Reverse-Delete algorithm.
Ø  Start with T = E
Ø  Consider edges in descending order of cost
Ø  Delete edge e from T unless doing so would disconnect T

Feb 13, 2013 CSCI211 - Sprenkle 12

What do these algorithms have/do/check in common?	

All three algorithms produce a MST	

2/13/13	

3	

What Do These Algorithms Have in
Common?

• When is it safe to include an edge in the
minimum spanning tree?

• When is it safe to eliminate an edge from the
minimum spanning tree?

Feb 13, 2013 CSCI211 - Sprenkle 13

Cut Property

Cycle Property

Cut and Cycle Properties
•  Simplifying assumption: All edge costs ce are distinct
➜  MST is unique

•  Cut property. Let S be any subset of nodes, and
let e be the min cost edge with exactly one endpoint
in S. Then MST contains e.

•  Cycle property. Let C be any cycle, and
let f be the max cost edge belonging to C.
Then MST does not contain f.

Feb 13, 2013 CSCI211 - Sprenkle 14

f 	

C	

S	

Cut Property: e is in MST	

e	

Cycle Property: f is not in MST	

Let’s try to prove these … 	

Cycles and Cuts

•  Cycle. Set of edges in the form
 a-b, b-c, c-d, …, y-z, z-a

Feb 13, 2013 CSCI211 - Sprenkle 15

Cycle C = 1-2, 2-3, 3-4,	

	
 4-5, 5-6, 6-1	

1	

3	

8	

2	

6	

7	

4	

5	

Cycles and Cuts
•  Cycle. Set of edges in the form a-b, b-c, c-d, …,

y-z, z-a

Feb 13, 2013 CSCI211 - Sprenkle 16

Cycle C = 1-2, 2-3, 3-4,	

	
 4-5, 5-6, 6-1	

1	

3	

8

2	

6	

7	

4

5

Cut S = { 4, 5, 8 }	

Cutset D = 5-6, 5-7, 3-4,	

	
 	
 3-5, 7-8	

1	

3	

8	

2	

6	

7	

4	

5	

•  Cutset. A cut is a subset of nodes S.
The corresponding cutset D is the subset of
edges with exactly one endpoint in S.

Cycle-Cut Intersection

•  Claim. A cycle and a cutset intersect in an
even number of edges

Feb 13, 2013 CSCI211 - Sprenkle 17

1	

3	

8

2	

6	

7	

4

5

Cycle C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1	

Cut S = { 4, 5, 8 }���
Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8 ���
Intersection = 3-4, 5-6	

What are the possibilities
for the cycle?	

Cycle-Cut Intersection

•  Claim. A cycle and a cutset intersect in an
even number of edges

•  Proof sketch

Feb 13, 2013 CSCI211 - Sprenkle 18

1	

3	

8

2	

6	

7	

4

5

S	

Cycle C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1	

Cut S = { 4, 5, 8 }���
Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8 ���
Intersection = 3-4, 5-6	

(Cut)	
 Edges link to not-Cut	

1.  Cycle all in S	

2.  Cycle not in S	

3.  Cycle has to go from ���

SàV-S and back	

V - S	

2/13/13	

4	

Proving Cut Property: OK to Include Edge

•  Simplifying assumption. All edge costs ce
are distinct.

•  Cut property. Let S be any subset of nodes,
and let e be the min cost edge with exactly
one endpoint in S.
Then the MST T* contains e.

•  Pf.?

Feb 13, 2013 CSCI211 - Sprenkle 19

Proving Cut Property: OK to Include Edge

•  Simplifying assumption. All edge costs ce
are distinct.

•  Cut property. Let S be any subset of nodes,
and let e be the min cost edge with exactly
one endpoint in S.
Then the MST T* contains e.

•  Pf. (exchange argument)
Ø Suppose there is an MST T* that does not

contain e
•  What do we know about T, by defn?
•  What do we know about the nodes e connects?

Feb 13, 2013 CSCI211 - Sprenkle 20

Proving Cut Property: OK to Include Edge

•  Cut property. Let S be any subset of nodes,
and let e be the min cost edge with exactly one
endpoint in S. Then the MST T* contains e.

•  Pf. (exchange argument)
Ø Suppose there is an MST T* that does not

contain e
Ø Adding e to T* creates a cycle C in T*
Ø Edge e is in cycle C and in cutset corresponding

to S
⇒ there exists another edge, say f, that is in both C and

S’s cutset

Feb 13, 2013 CSCI211 - Sprenkle 21

f 	

e	

S	

Which means?	

Proving Cut Property: OK to Include Edge
•  Cut property. Let S be any subset of nodes, and let

e be the min cost edge with exactly one endpoint in
S. Then the MST T* contains e.

•  Pf. (exchange argument)
Ø Suppose there is an MST T* that does not contain e
Ø Adding e to T* creates a cycle C in T*
Ø Edge e is in cycle C and in cutset corresponding to

S
⇒ there exists another edge, say f, that is in both C and S’s

cutset
Ø T' = T* ∪ { e } - { f } is also a spanning tree
Ø Since ce < cf, cost(T') < cost(T*)
Ø This is a contradiction. ▪

Feb 13, 2013 CSCI211 - Sprenkle 22

f 	

e	

S	

Proving Cycle Property: OK to Remove
Edge
•  Simplifying assumption. All edge costs ce are

distinct
•  Cycle property. Let C be any cycle in G, and

let f be the max cost edge belonging to C.
Then the MST T* does not contain f.

Feb 13, 2013 CSCI211 - Sprenkle 23

Ideas about approach?	

Cycle Property: OK to Remove Edge
•  Cycle property. Let C be any cycle in G, and

let f be the max cost edge belonging to C.
Then the MST T* does not contain f.

•  Pf. (exchange argument)
Ø Suppose f belongs to T*
Ø Deleting f from T* creates a cut S in T*
Ø Edge f is both in the cycle C and in the cutset S

⇒ there exists another edge, say e, that is in both C and S
Ø T' = T* ∪ { e } - { f } is also a spanning tree
Ø Since ce < cf, cost(T') < cost(T*)
Ø This is a contradiction. ▪

Feb 13, 2013 CSCI211 - Sprenkle 24

f 	

e	

S	

2/13/13	

5	

Summary of What Just Proved
•  Simplifying assumption: All edge costs ce are distinct
➜  MST is unique

•  Cut property. Let S be any subset of nodes, and let e
be the min cost edge with exactly one endpoint in S.
Then MST contains e.

•  Cycle property. Let C be any cycle, and let f be the
max cost edge belonging to C.
Then MST does not contain f.

Feb 13, 2013 CSCI211 - Sprenkle 25

f 	

C	

S	

Cut Property: e is in MST	

e	

Cycle Property: f is not in MST	

Prim’s Algorithm

•  Start with some root node s and greedily
grow a tree T from s outward.

•  At each step, add the cheapest edge e to T
that has exactly one endpoint in T.

Feb 13, 2013 CSCI211 - Sprenkle 26

How can we prove its correctness?	

[Jarník 1930, Dijkstra 1957, Prim 1959]	

Prim's Algorithm: Proof of Correctness

•  Initialize S to be any node
•  Apply cut property to S

Ø Add min cost edge (v, u) in cutset corresponding
to S, and add one new explored node u to S

Feb 13, 2013 CSCI211 - Sprenkle 27

S	

Ideas about
implementation?	

Implementation: Prim's Algorithm

•  Maintain set of explored nodes S
•  For each unexplored node v, maintain

attachment cost a[v] à cost of cheapest
edge v to a node in S

Feb 13, 2013 CSCI211 - Sprenkle 28

foreach (v ∈ V) a[v] = ∞	
Initialize an empty priority queue Q	
foreach (v ∈ V) insert v onto Q	
Initialize set of explored nodes S = φ	
while (Q is not empty) 	
 u = delete min element from Q	
 S = S ∪ { u }	
 foreach (edge e = (u, v) incident to u)	
 if ((v ∉ S) and (ce < a[v]))	
 decrease priority a[v] to ce	

Similar to Dijkstra’s algorithm	

Running Time?	

Implementation: Prim's Algorithm

•  Maintain set of explored nodes S
•  For each unexplored node v, maintain

attachment cost a[v] à cost of cheapest
edge v to a node in S

Feb 13, 2013 CSCI211 - Sprenkle 29

foreach (v ∈ V) a[v] = ∞	
Initialize an empty priority queue Q	
foreach (v ∈ V) insert v onto Q	
Initialize set of explored nodes S = φ	
while (Q is not empty) 	
 u = delete min element from Q	
 S = S ∪ { u }	
 foreach (edge e = (u, v) incident to u)	
 if ((v ∉ S) and (ce < a[v]))	
 decrease priority a[v] to ce	

O(deg(u))	

O(n)	

O(log n)	

O(n logn)	

O(n)	

O(log n)	

O(m log n) with a heap	

Similar to Dijkstra’s algorithm	

Limitations to Applying MST?

•  Motivating Example: Comcast laying cable

Feb 15, 2013 CSCI211 - Sprenkle 30

Neighborhood Layout	

8	

12	

2	

1	

15	

3	

7	

4	

13	

8	
15	

9	

2/13/13	

6	

Looking ahead

•  Problem Set 4 due Friday
•  I have a meeting from 2-3 p.m. this afternoon

Feb 13, 2013 CSCI211 - Sprenkle 31

