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Objectives 

• Wrap up: Implementing a PQ 
•  Data structure: Graphs 
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Notes 

•  Journals 
Ø Maybe: page #s of algorithms, proofs 
Ø Still provide intuition, runtime 

•  Problem Set 
Ø Recommend typing because have electronic 

copy later (e.g., during take-home exam) 
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Review 

• What is a priority queue? 
• What is a heap? 

Ø Properties 
Ø Implementation 

• What is the process for finding the smallest 
element in a heap? 

• What is the process for adding to a heap? 
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Review: Heap Defined 

•  Combines benefits of sorted array and list 
•  Balanced binary tree 
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root	

• Each node has at most 2 children	

• Node value is its key	


Heap order: each node’s key is 
at least as large as its parent’s	


Note: not a binary search tree	
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Review: Implementing a Heap 

•  Option 1: Use pointers 
Ø Each node keeps 

•  Element it stores (key) 
•  3 pointers: 2 children, parent 

•  Option 2: No pointers 
Ø Requires knowing upper bound on n 
Ø For node at position i 

•  left child is at 2i 
•  right child is at 2i+1 
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Review: Implementing a Heap 

•  Finding the minimal element 
Ø First element 
Ø O(1) 
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Review: Heapify-Up	

• Why does this algorithm work? 
• What is the intuition? 

Jan 21, 2013 7 

Heapify-up(H, i):	
	if i > 1 then	
	 	j=parent(i)=floor(i/2)	
	 	if key[H[i]] < key[H[j]] then	
	 	 	swap array entries H[i] and H[j]	
	 	 	Heapify-up(H, j)	

Heap	
 Position where node added	
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Heapify-Up  

•  Claim.  Assuming array H is almost a heap 
with key of H[i] too small, Heapify-Up 
fixes the heap property in O(log i) time 
Ø Can insert a new element in a heap of n 

elements in O(log n) time 
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Heapify-Up  

•  Claim.  Assuming array H is almost a heap 
with key of H[i] too small, Heapify-Up 
fixes the heap property in O(log i) time 
Ø Can insert a new element in a heap of n 

elements in O(log n) time 
•  Proof.  By induction 

Ø If i=1, is already a heap à O(1) 
Ø If i>1, 

•  Swaps are O(1) 
•  Swaps continue up to root (max)  à log i 

Jan 21, 2013 9 CSCI211 - Sprenkle 

Deleting an Element 
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Delete at 
position 3	


w

Deleting an Element 
•  Delete at position i 
•  Removing an element: 

Ø Messes up heap order 
Ø Leaves a “hole” in the heap 

•  Not as straightforward as Heapify-Up	
•  Algorithm 

1.  Fill in element where hole was 
•  Patch hole: move nth element into ith spot 

2.  Adjust heap to be in order 
•  At position i because moved nth item up to i 
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Deleting an Element 

• What are the possibilities when we move nth 
element (w) into spot where element was 
removed? 
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Delete at 
position 3	


w



1/21/13	


3	


Deleting an Element 

•  Two “bad” possibilities: element w is 
Ø Too small: violation is between it and parent à 
Heapify-Up 	

Ø Too big: with one or both children à Heapify-
Down (example: w becomes 12) 
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Delete at 
position 3	


w

Example of OK:	

11 deleted, replaced by 16	


Deleting an Element 

•  Delete 9 
•  Replace with 5 
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Example where new key is too small	
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Deleting an Element 

•  Delete 9 
•  Replace with 5 
•  But 5 < 6, so need to Heapify-Up	
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Example where new key is too small	
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Heapify-Down 
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Heapify-down(H, i):	
	n = length(H)	
	if 2i > n then	
	 	Terminate with H unchanged	
	else if 2i < n then	
	 	left=2i and right=2i+1	
	 	j be index that minimizes	
	 	 	key[H[left]] and key[[H[right]]	
	else if 2i = n then	
	 	j=2i	

	
	if key[H[j]] < key[H[i]] then	
	 	swap array entries H[i] and H[j]	
	 	Heapify-down(H, j)	
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Why can we stop?	


Heapify-Down 
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Heapify-down(H, i):	
	n = length(H)	
	if 2i > n then	
	 	Terminate with H unchanged	
	else if 2i < n then	
	 	left=2i and right=2i+1	
	 	j be index that minimizes	
	 	 	key[H[left]] and key[[H[right]]	
	else if 2i = n then	
	 	j=2i	

	
	if key[H[j]] < key[H[i]] then	
	 	swap array entries H[i] and H[j]	
	 	Heapify-down(H, j)	
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i  is a leaf – nowhere to go	


Practice: Heapify-Down 
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Moved 21 to where 
element was removed 

21	
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Practice: Heapify-Down 
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21	


21	


7	
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Practice: Heapify-Down 
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21	


7	


8	


7	
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Runtime of Heapify-Down? 

Jan 21, 2013 21 

Heapify-down(H, i):	
	n = length(H)	
	if 2i > n then	
	 	Terminate with H unchanged	
	else if 2i < n then	
	 	left=2i and right=2i+1	
	 	j be index that minimizes	
	 	 	key[H[left]] and key[[H[right]]	
	else if 2i = n then	
	 	j=2i	

	
	if key[H[j]] < key[H[i]] then	
	 	swap array entries H[i] and H[j]	
	 	Heapify-down(H, j)	
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O(1) 

O(1) 

Num swaps: O(log n)	


Implementing Priority Queues 
with Heaps 
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Operation Description Run Time 

StartHeap(N) Creates an empty heap that 
can hold N elements 

Insert(v) Inserts item v into heap 

FindMin() Identifies minimum element in 
heap but does not remove it 

Delete(i) Deletes element in heap at 
position i 

ExtractMin() 
Identifies and deletes an 
element with minimum key from 
heap 
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Implementing Priority Queues 
with Heaps 
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Operation Description Run Time 

StartHeap(N) Creates an empty heap that 
can hold N elements O(N) 

Insert(v) Inserts item v into heap O(log n) 

FindMin() Identifies minimum element in 
heap but does not remove it O(1) 

Delete(i) Deletes element in heap at 
position i O(log n) 

ExtractMin() 
Identifies and deletes an 
element with minimum key from 
heap 

O(log n) 
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Putting It All Together… 

1. Add elements into PQ with the number’s 
value as its priority 

2. Then extract the smallest number until done 
Ø Come out in sorted order 
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What is the running time of sorting numbers 
using a PQ implemented with a Heap?	


O(n log n)	
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Comparing Data Structures 
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Operation Heap Unsorted 
List 

Sorted List 

Start(N) 

Insert(v) 

FindMin() 

Delete(i) 

ExtractMin() 

Comparing Data Structures 
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Operation Heap Unsorted 
List 

Sorted 
List 

Start(N) O(N) 
Insert(v) O(log n) 
FindMin() O(1) 
Delete(i) O(log n) 
ExtractMin() O(log n) 
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Comparing Data Structures 

Jan 21, 2013 27 

Operation Heap Unsorted 
List 

Sorted 
List 

Start(N) O(N) O(1) O(1) 
Insert(v) O(log n) O(1) O(n) 
FindMin() O(1) O(1) O(1) 
Delete(i) O(log n) O(n) O(1) 
ExtractMin() O(log n) O(n) O(1) 
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Additional Heap Operations 
•  Access elements in PQ by “name” 

Ø Maintain additional array Position that stores current 
position of each element in heap 

•  Operations: 
Ø Delete(Position[v]) 

•  Does not increase overall running time 
Ø ChangeKey(v, α) 

•  Changes key of element v to α 
•  Identify position of element v in array (Position array) 
•  Change key, heapify 
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Key 2 4 5 6 9 20 
Value 3542 5143 8712 1264 9123 5954 Process id	


Priority	


GRAPHS 
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Undirected Graphs G = (V, E) 
•  V = nodes (vertices) 
•  E = edges between pairs of nodes 
•  Captures pairwise relationship between 

objects 
•  Graph size parameters:  n = |V|, m = |E| 

30 

V = { 1, 2, 3, 4, 5, 6, 7, 8 }	

E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 }���
n = 8	

m = 11	
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Social Networks 
•  Node: people; Edge: relationship between 2 

people 
•  Everything Bad Is Good for You: How Today's 

Popular Culture Is Actually Making Us Smarter 

31 

•  Television shows 
have complex 
plots, complex 
social networks 

Social network of 
24's Jack Bauer 

http://www.cs.duke.edu/csed/harambeenet/
modules.html	
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Facebook: Visualizing Friends 
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http://www.facebook.com/notes/facebook-engineering/
visualizing-friendships/469716398919	

World Wide Web 

• Web graph 
Ø Node: web page 
Ø Edge: hyperlink from one page to another 

33 

cnn.com 

people.com sportsillustrated.cnn.com netscape.aol.com time.com 

hbo.com 

boardwalkempire.com 

Directed Graph:	
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Graph of Web Page www.wlu.edu 
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http://www.aharef.info/static/htmlgraph	

Ecological Food Web 

•  Food web graph 
Ø Node = species  
Ø Edge = from prey to 

predator 

35 

Reference: 	

https://www.msu.edu/course/isb/202/
ebertmay/images/foodweb.jpg	

Directed Graph:	
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Graph Applications 

36 

transportation	

Graph	


street intersections	


Nodes	
 Edges	

highways	


communication	
 computers	
 fiber optic cables	


World Wide Web	
 web pages	
 hyperlinks	


social	
 people	
 relationships	


food web	
 species	
 predator-prey	


software systems	
 functions	
 function calls	


scheduling	
 tasks	
 precedence constraints	


circuits	
 gates	
 wires	
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Graph Representation: Adjacency Matrix 

•  n×n matrix with Auv = 1 if (u, v) is an edge 
Ø Two representations of each edge (symmetric 

matrix) 
Ø Space? 

Ø Checking if (u, v) is an edge? 
Ø Identifying all edges? 

37 

  1 2 3 4 5 6 7 8 
1 0 1 1 0 0 0 0 0 
2 1 0 1 1 1 0 0 0 
3 1 1 0 0 1 0 1 1 
4 0 1 0 0 1 0 0 0 
5 0 1 1 1 0 1 0 0 
6 0 0 0 0 1 0 0 0 
7 0 0 1 0 0 0 0 1 
8 0 0 1 0 0 0 1 0 
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Graph Representation: Adjacency Matrix 

•  n×n matrix with Auv = 1 if (u, v) is an edge 
Ø Two representations of each edge (symmetric 

matrix) 
Ø Space: Θ(n2) 

Ø Checking if (u, v) is an edge: Θ(1) time 
Ø Identifying all edges: Θ(n2) time 
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  1 2 3 4 5 6 7 8 
1 0 1 1 0 0 0 0 0 
2 1 0 1 1 1 0 0 0 
3 1 1 0 0 1 0 1 1 
4 0 1 0 0 1 0 0 0 
5 0 1 1 1 0 1 0 0 
6 0 0 0 0 1 0 0 0 
7 0 0 1 0 0 0 0 1 
8 0 0 1 0 0 0 1 0 

Graph Representation: Adjacency List 

•  Node indexed array of lists 
Ø Two representations of each edge 
Ø Space? 
Ø Checking if (u, v) is an edge? 
Ø Identifying all edges? 

39 
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What are the 
extremes?	


Graph Representation: Adjacency List 
•  Node indexed array of lists 

Ø Two representations of each edge 
Ø Space = 2m + n = O(m + n) 
Ø Checking if (u, v) is an edge takes O(deg(u)) time 
Ø  Identifying all edges takes Θ(m + n) time 
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degree = number of 
neighbors of u	
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TODO 

•  Journal: Rest of Chapter 2 
•  Problem Set 2 due Friday 

Jan 21, 2013 CSCI211 - Sprenkle 41 


