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Objectives 

•  Reducibility 
•  Conclusions 
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Review 

• What does “polynomial time reducible” 
mean? 
Ø What is it relating? 

• What is a way of showing that one algorithm 
is polynomial time reducible to another? 

• What does NP-Complete mean? 
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Now you “get” this xkcd comic 
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“Status of the P vs NP Problem” 
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From Numbers 
 
Charlie: Dad, uhm.. I've been working on a problem. P vs. 

NP. It can't be solved. 
Alan:  I think you knew that when you started. 
Charlie: I could work on it forever. Constantly pushing 

forward, still never reaching an end.  
… 

Fun Fact: Connecting Chapters 7 and 8  

•  Karp, of the Edmonds-Karp algorithm (max-
flow problem on networks), published a 
paper in complexity theory on "Reducibility 
Among Combinatorial Problems", in which he 
proved 21 Problems to be NP-complete 
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Review: Polynomial-Time Reduction 

•  Reduction. Problem X polynomial reduces to problem Y 
if arbitrary instances of problem X can be solved using: 
Ø  Polynomial number of standard computational steps, plus 
Ø  Polynomial number of calls to oracle that solves problem Y 

•  Assume have a black box that can solve Y 

•  Notation: X ≤P Y 
Ø  “X is polynomial-time reducible to Y” 

•  Conclusion: If Y can be solved in polynomial time and 
X ≤P Y, then X can be solved in polynomial time. 
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Suppose we could solve Y in polynomial-time. ���
What else could we solve in polynomial time?	


Y For X + 
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Review: Polynomial-Time Reduction 

•  Purpose.  Classify problems according to 
relative difficulty. 

•  Design algorithms.  If X ≤P Y and Y can be 
solved in polynomial-time, then X can also be 
solved in polynomial time. 

•  Establish intractability.  If X ≤P Y and X 
cannot be solved in polynomial-time, then Y 
cannot be solved in polynomial time. 

•  Establish equivalence.  If X ≤P Y and Y ≤P X, 
we use notation X ≡P Y. 
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Considering X ≤P Y 

•  Need to be careful putting X in terms of Y 
•  Make sure you’re not putting an easy 

problem (X) in terms of a hard problem (Y) 
Ø While you could do that, what does that do for 

you? 
Ø Just because Y is hard to solve does *not* mean 

that X is hard to solve 
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Review: Basic Reduction Strategies 

•  Reduction by simple equivalence 
•  Reduction from special case to general case 
•  Reduction by encoding with gadgets 
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Basic Reduction Strategies 

•  Reduction by simple equivalence 
•  Reduction from special case to general case 
•  Reduction by encoding with gadgets 
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Set Cover 
•  SET COVER:  Given a set U of elements, a collection S1, 

S2, . . . , Sm of subsets of U, and an integer k, does there 
exist a collection of size ≤ k of these sets whose union is 
equal to U? 

•  Sample application 
Ø  m available pieces of software 
Ø  Set U of n capabilities that we would like our system to have 
Ø  The ith piece of software provides the set Si ⊆ U of capabilities 
Ø  Goal: achieve all n capabilities using fewest pieces of 

software 
•  Ex: 
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U = { 1, 2, 3, 4, 5, 6, 7 }���
k = 2	

S1 = {3, 7} 	
 	
S4 = {2, 4}	

S2 = {3, 4, 5, 6} 	
 	
S5 = {5}���
S3 = {1} 	
 	
 	
S6 =  {1, 2, 6, 7}	


Choose S2 and S6	


Vertex Cover Reduces to Set Cover 
•  Claim. VERTEX-COVER ≤P SET-COVER 
•  Pf.  Given a VERTEX-COVER instance  

G = (V, E), k, we construct a set cover instance 
whose size equals the size of the vertex cover 
instance. 
Ø … 
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SET COVER?	
a	


d	


b	


e	


f	
 c	


VERTEX COVER	


k = 2	

e1 	


e2 	
 e3 	


e5 	


e4 	


e6 	


e7 	
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Vertex Cover Reduces to Set Cover 
•  Claim. VERTEX-COVER ≤P SET-COVER 
•  Pf.  Given a VERTEX-COVER instance  

G = (V, E), k, we construct a set cover instance 
whose size equals the size of the vertex cover 
instance. 
Ø … 
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SET COVER	


	

U = { 1, 2, 3, 4, 5, 6, 7 }���
k = 2	

Sa = {3, 7}	
 	
Sb = {2, 4}	

Sc = {3, 4, 5, 6} 	
Sd = {5}���
Se = {1} 	
 	
Sf= {1, 2, 6, 7}	
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Vertex Cover Reduces to Set Cover 
•  Claim. VERTEX-COVER ≤ P SET-COVER 
•  Pf.  Given a VERTEX-COVER instance G = (V, E), k, we 

construct a set cover instance whose size equals the size 
of the vertex cover instance. 

•  Construction.   
Ø  Create SET-COVER instance: 

•  k = k,  U = E,  Sv = {e ∈ E : e incident to v } 
Ø  Set-cover of size ≤ k iff vertex cover of size ≤ k.  ▪ 
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SET COVER	
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NP 
•  Problems that no polytime algorithm has been 

found AND have not proven that no polytime 
algorithm exists 
Ø A little more … 

•  Examples: 
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Name Description 

Hamiltonian 
circuit 

Determine whether a given graph has a Hamiltonian 
circuit (a path that starts & ends at the same vertex and 
passes through all other vertices exactly once) 

Traveling 
salesman 

Find the shortest tour through n cities with known 
positive integer distances between them (each city 
once) 

Graph coloring 
Find a graph’s chromatic number: smallest # of colors 
that need to be assigned to the graph’s vertices so that 
no 2 adjacent vertices are assigned the same color. 

Common Feature 

•  Computationally difficult BUT checking if a 
proposed solution solves problem can  be 
solved in polynomial time 

•  Example: easy to check if a proposed list of 
vertices is an independent set or a vertex 
cover for a graph 
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Nondeterministic Algorithm 

•  Input: instance of a decision problem 
1. Nondeterministic “guessing” stage: guess a 

solution to problem 
2. Deterministic “verification” stage: outputs 

yes if solution is a solution to the problem 
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NP:  A nondeterministic algorithm whose 
verification stage has a polynomial runtime.	


What We’re Trying To Figure Out 
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NP 

P 

P ⊆ NP	


NP P = NP 

P = NP	
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“Status of the P vs NP Problem” 

• What are the consequences of NP 
Completeness? 

• What if P = NP? 
•  How have people tried to prove P ≠ NP? 

Ø Limitations?  Still in progress? 
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Exam 2 

•  Common issues 
Ø Missing analysis of runtime 
Ø Missing proofs 

•  How do you prove a greedy algorithm? 
Ø Incorrect/inefficient/unclear algorithms 

•  What needs to be returned/output?   
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Average Pct Median Pct 
83.5 81.1 

PS8 

•  Dynamic programming 
•  Expected followed examples from class/book 

Ø Use memoization 
Ø Process to find solution after finding value 
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Final 
•  Usual rules 
•  Due next Friday, 5 p.m. (end of exams) 
•  Can use book, notes, handouts, my lecture 

notes, me (limited) 
Ø “The status of the P versus NP problem” 
Ø No other outside resources 

•  Office hours: Monday and Tuesday afternoons 
Ø Others by appointment 

•  Evaluations due Monday at midnight on Sakai 
(tests and quizzes) 
Ø Last checked: 4 submissions of evaluations 
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