
4/4/12	

1	

Objectives

•  Network Flow Apps
Ø Capacity Scaling

•  Computational intractability

Apr 4, 2012 Sprenkle - CSCI211 1

Review: Ford-Fulkerson:
Exponential Number of Augmentations
•  Is generic Ford-Fulkerson algorithm

polynomial in input size?
Ø No. If max capacity is C, then algorithm can take

C iterations.

Apr 2, 2012 CSCI211 - Sprenkle 2

s

1

2

t

C	

C	

0	

 0	

0	

 0	

0	

C	

C	

1	

 s

1

2

t

C	

C	

1	

0	

 0	

0	

 0	

0	

X	

 1	

C	

C	

X	

X	

X	

1	

1	

1	

X	

X	

1	

1	

X	

X	

X	

1	

0	

1	

Review:
Choosing Good Augmenting Paths
•  Use care when selecting augmenting paths

Ø Some choices lead to exponential algorithms
Ø Clever choices lead to polynomial algorithms
Ø  If capacities are irrational, algorithm not guaranteed

to terminate!
•  Goal: choose augmenting paths so that:

Ø Can find augmenting paths efficiently
Ø Few iterations

•  [Edmonds-Karp 1972, Dinitz 1970]
Choose augmenting paths with:
Ø Max bottleneck capacity
Ø Fewest number of edges
Ø Sufficiently large bottleneck capacity

Apr 2, 2012 CSCI211 - Sprenkle 3

Review: Intuition for Capacity Scaling
•  Choosing path with highest bottleneck capacity

increases flow by max possible amount.
Ø Don't worry about finding exact highest bottleneck path
Ø Maintain scaling parameter Δ
Ø  Let Gf (Δ) be the subgraph of the residual graph

consisting of only edges with capacity at least Δ

Apr 2, 2012 CSCI211 - Sprenkle 4

110	

s

4

2

t 1	

170	

102	

122	

Gf	

110	

s

4

2

t

170	

102	

122	

Gf (100)	

Review: Capacity Scaling

Apr 2, 2012 CSCI211 - Sprenkle 5

Scaling-Max-Flow(G, s, t, c)	
 foreach e ∈ E, f(e) = 0	
 Δ = greatest power of 2 less than or equal to C	
 Gf = residual graph	
 Gf(Δ) = Δ-residual graph	
	
 while Δ ≥ 1:	

	while there exists augmenting path P in Gf(Δ) :	
 f = augment(f, c, P)	
 update Gf(Δ)	
 	Δ = Δ / 2 	
	
 return f	

• Why does this work?	

• What is its running time?	

Capacity Scaling

Apr 2, 2012 CSCI211 - Sprenkle 6

Scaling-Max-Flow(G, s, t, c)	
 foreach e ∈ E, f(e) = 0	
 Δ = greatest power of 2 less than or equal to C	
 Gf = residual graph	
 Gf(Δ) = Δ-residual graph	
	
 while Δ ≥ 1:	

	while there exists augmenting path P in Gf(Δ) :	
 f = augment(f, c, P)	
 update Gf(Δ)	
 	Δ = Δ / 2 	
	
 return f	

O(log C)	

4/4/12	

2	

Capacity Scaling: Correctness
•  Assumption. All edge capacities are integers

between 1 and C.
•  Integrality invariant. All flow and residual

capacity values are integral.
•  Correctness. If the algorithm terminates, then

f is a max flow.
•  Pf.

Ø By integrality invariant, when Δ = 1 ⇒
Gf(Δ) = Gf

Ø Upon termination of Δ = 1 phase, there are no
augmenting paths. ▪

Apr 2, 2012 CSCI211 - Sprenkle 7

Capacity Scaling: Running Time

•  Lemma 1. The outer while loop repeats
O(log2 C) times.

•  Proof. Initially Δ ≤ C. Δ decreases by a factor
of 2 each iteration. ▪

Apr 2, 2012 CSCI211 - Sprenkle 8

Capacity Scaling: Running Time

•  Lemma 2. Let f be the flow at the end of a Δ-
scaling phase. Then value of the maximum
flow is at most v(f) + m Δ.

Apr 2, 2012 CSCI211 - Sprenkle 9

What happens to the flow’s value
at each iteration of the loop?	

Proof and further analysis���
in the book	

Objectives

•  Oh, the places you’ve been!

•  Oh, the places you’ll go!

Apr 4, 2012 Sprenkle - CSCI211 10 10	

 Now, everything comes down to expert knowledge of
algorithms and data structures. If you don't speak
fluent O-notation, you may have trouble getting your
next job at the technology companies in the forefront.	

 — Larry Freeman	

Algorithm Design Patterns

• What are some approaches to solving
problems?

•  How do they compare in terms of difficulty?

Apr 4, 2012 Sprenkle - CSCI211 11

Algorithm Design Patterns
•  Greedy
•  Divide-and-conquer
•  Dynamic programming
•  Duality/network flow

Apr 4, 2012 Sprenkle - CSCI211 12

Course Objectives: Given a problem…	

You’ll recognize when to try an approach	

-  AND, when to bail out and try something different	

Know the steps to solve the problem using the approach	

- e.g., breaking it into subproblems, sorting possibilities
in some order	

Know how to analyze the run time of the solution	

	

- e.g., solving recurrence relation	

4/4/12	

3	

Algorithm Design Patterns

•  Greedy
•  Divide-and-conquer
•  Dynamic programming
•  Duality/network flow
•  Reductions – Chapter 8
•  Local search – Chapter 12
•  Randomization – Chapter 13

Apr 4, 2012 Sprenkle - CSCI211 13

What Was Our Goal In Finding a
Solution?

Apr 4, 2012 Sprenkle - CSCI211 14

Polynomial Time à Efficient	

POLYNOMIAL-TIME
REDUCTIONS

Apr 4, 2012 Sprenkle - CSCI211 15

Classify Problems According to
Computational Requirements

Apr 4, 2012 Sprenkle - CSCI211 16

Fundamental Question: ���
Which problems will we be able

to solve in practice?	

Classify Problems According to
Computational Requirements

•  Working definition. [Cobham 1964, Edmonds 1965,
Rabin 1966] Those with polynomial-time algorithms.

Apr 4, 2012
Sprenkle - CSCI211

17

Yes Probably no
Shortest path Longest path

Min cut Max cut

2-SAT 3-SAT

Matching 3D-matching

Primality testing Factoring

Planar 4-color Planar 3-color

Bipartite vertex cover Vertex cover

Which problems will we be able
to solve in practice?	

Classify Problems

Apr 4, 2012 Sprenkle - CSCI211 18

Polynomial	

 Exponential	

Examples:	

•  Given a Turing machine, does it halt in

at most k steps?	

•  Given a board position in an n-by-n

generalization of chess, can black
guarantee a win?	

?

Frustrating news: Many problems have
defied classification.	

Chapter 8. Show that problems are
"computationally equivalent" and appear to be
manifestations of one really hard problem.	

Classify problems according to those that can be
solved in polynomial-time and those that cannot.	

4/4/12	

4	

Polynomial-Time Reduction

Apr 4, 2012 Sprenkle - CSCI211 19

Suppose we could solve Y in polynomial time. ���
What else could we solve in polynomial time?	

Polynomial-Time Reduction

•  Reduction. Problem X polynomial reduces to problem Y
if arbitrary instances of problem X can be solved using:
Ø  Polynomial number of standard computational steps, plus
Ø  Polynomial number of calls to oracle that solves problem Y

•  Assume have a black box that can solve Y

•  Notation: X ≤P Y
Ø  “X is polynomial-time reducible to Y”

•  Conclusion: If Y can be solved in polynomial time and
X ≤P Y, then X can be solved in polynomial time.

Apr 4, 2012 Sprenkle - CSCI211 20

Suppose we could solve Y in polynomial-time. ���
What else could we solve in polynomial time?	

Y For X +

NP-Complete Problems
•  Problems from many different domains whose

complexity is unknown

•  NP-completeness and proof that all problems are
equivalent is POWERFUL!
Ø All open complexity questions è ONE open question!

•  What does this mean?
Ø  “Computationally hard for practical purposes, but we

can’t prove it”
Ø  If you find an NP-Complete problem, you can stop

looking for an efficient solution
•  Or figure out efficient solution for ALL NP-complete

problems

Apr 4, 2012 Sprenkle - CSCI211 21

Polynomial-Time Reduction

•  Purpose. Classify problems according to
relative difficulty.

•  Design algorithms. If X ≤P Y and Y can be
solved in polynomial-time, then X can also be
solved in polynomial time.

•  Establish intractability. If X ≤P Y and X
cannot be solved in polynomial-time, then Y
cannot be solved in polynomial time.

•  Establish equivalence. If X ≤P Y and Y ≤P X,
we use notation X ≡P Y.

Apr 4, 2012 Sprenkle - CSCI211 22

Basic Reduction Strategies

•  Reduction by simple equivalence
•  Reduction from special case to general case
•  Reduction by encoding with gadgets

Apr 4, 2012 Sprenkle - CSCI211 23

Independent Set
•  Given a graph G = (V, E) and an integer k, is there a

subset of vertices S ⊆ V such that |S| ≥ k and for
each edge at most one of its endpoints is in S?

Apr 4, 2012 Sprenkle - CSCI211 24

3

10

6

9

1

5

8

2

4 7

Ex. Is there an independent set of
size ≥ 6?	

Ex. Is there an independent set of
size ≥ 7? 	

How is this different from
the network flow problem?	

4/4/12	

5	

Independent Set
•  Given a graph G = (V, E) and an integer k, is there a

subset of vertices S ⊆ V such that |S| ≥ k and for
each edge at most one of its endpoints is in S?

Apr 4, 2012 Sprenkle - CSCI211 25

3

10

6

9

1

5

8

2

4 7 independent set	

Ex. Is there an independent set of
size ≥ 6? Yes	

Ex. Is there an independent set of
size ≥ 7? No 	

Vertex Cover
•  Given a graph G = (V, E) and an integer k, is there a

subset of vertices S ⊆ V such that |S| ≤ k and for
each edge, at least one of its endpoints is in S?

Apr 4, 2012 Sprenkle - CSCI211 26

3

10

6

9

1

5

8

2

4 7
Ex. Is there a vertex cover of

size ≤ 4?	

Ex. Is there a vertex cover of

size ≤ 3?	

A vertex covers an edge.	

	

Application: place guards within an
art gallery so that all corridors are
visible at any time 	

Vertex Cover
•  Given a graph G = (V, E) and an integer k, is there a

subset of vertices S ⊆ V such that |S| ≤ k and for
each edge, at least one of its endpoints is in S?

Apr 4, 2012 Sprenkle - CSCI211 27

3

10

6

9

1

5

8

2

4 7

vertex cover	

Ex. Is there a vertex cover of
size ≤ 4? Yes	

Ex. Is there a vertex cover of
size ≤ 3? No	

Problem

•  Not known if finding Independent Set or
Vertex Cover can be solved in polynomial
time

•  BUT, what can we say about their relative
difficulty?

Apr 4, 2012 Sprenkle - CSCI211 28

Vertex Cover and Independent Set

•  Claim. VERTEX-COVER ≡P INDEPENDENT-SET
•  Pf. We show S is an independent set iff

V - S is a vertex cover

Apr 4, 2012 Sprenkle - CSCI211 29

vertex cover	

independent set	

Vertex Cover and Independent Set
•  Claim. VERTEX-COVER ≡P INDEPENDENT-

SET
•  Pf. We show S is an independent set iff

V - S is a vertex cover
•  ⇒

Ø Let S be an independent set
Ø Consider an arbitrary edge (u, v)
Ø Since S is an independent set ⇒ u ∉ S or v ∉ S or

both ∉ S ⇒ u ∈ V - S or v ∈ V - S or both ∈ V - S
Ø Thus, V - S covers (u, v)

•  Every edge has at least one end in V-S
Ø V-S is a vertex cover

Apr 4, 2012 Sprenkle - CSCI211 30

4/4/12	

6	

Vertex Cover and Independent Set
•  Claim. VERTEX-COVER ≡P INDEPENDENT-

SET
•  Pf. We show S is an independent set iff

V - S is a vertex cover
• ⇐

Ø Let V - S be any vertex cover
Ø Consider two nodes u ∈ S and v ∈ S
Ø Observe that (u, v) ∉ E since V - S is a vertex

cover
Ø Thus, no two nodes in S are joined by an edge
⇒ S independent set

Apr 4, 2012 Sprenkle - CSCI211 31

Using the Previous Result
•  Problem X polynomial reduces to problem Y if

arbitrary instances of problem X can be solved
using:
Ø Polynomial number of standard computational steps,

plus
Ø Polynomial number of calls to oracle that solves

problem Y
•  Assume have a black box that can solve Y

Apr 4, 2012 Sprenkle - CSCI211 32

How do we show polynomial reduction ���
for the independent set and vertex cover?	

Summary

•  If we have a block box to solve Vertex Cover,
can decide whether G has an independent
set of size at least k by asking the black box
whether G has a vertex cover of size at most
n – k

•  If we have a block box to solve Independent
Set, can decide whether G has a vertex
cover of size at most k by asking the block
box whether G has an independent set of
size at least n - k

Apr 4, 2012 Sprenkle - CSCI211 33

Planning

•  For Friday
Ø Problem set – DP notes

•  Total problem set points for semester: 201
Ø Fill out course evaluations on Sakai
Ø If 60% fill out, 1% EC on problem sets

•  Additional 1% for every additional 12.5% who
complete

Ø Due Monday at midnight

Apr 4, 2012 Sprenkle - CSCI211 34

