
1/27/12	

1	

Objectives

• Wrapping up implementing BFS and DFS
•  Graph Application: Bipartite Graphs
•  Directed Graphs

Jan 27, 2012 1 CSCI211 - Sprenkle

BFS(s):	
	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	For each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] == false then	
	 	 	 	Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	

Analysis

Jan 27, 2012 CSCI211 - Sprenkle

A
t

m
os

t
n	

A
t

m
os

t
n-

1	

O(n3)	

n	

2

A
t

m
os

t
n-

1	

BFS(s):	
	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	For each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] == false then	
	 	 	 	Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	

Analysis: Tighter Bound

Jan 27, 2012 CSCI211 - Sprenkle

A
t

m
os

t
n	
O(n2)	

n	

3

A
t

m
os

t
n-

1	

Because we’re going to look at each node at most once	

BFS(s):	
	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	For each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] == false then	
	 	 	 	Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	

Analysis: Even Tighter Bound

Jan 27, 2012 CSCI211 - Sprenkle

O(deg(u))	

A
t

m
os

t
n	

n	

Σu∈V deg(u) = 2m	

4

à O(n+m)	

Implementing DFS

•  Keep nodes to be processed in a stack

Jan 27, 2012 CSCI211 - Sprenkle

DFS(s):	
	Initialize S to be a stack with one element s	
	Explored[v] = false, for all v	
	Parent[v] = 0, for all v	
	DFS tree T = {}	
	while S != {}	
	 	Take a node u from S	
	 	if Explored[u] = false	
	 	 	Explored[u] = true	
	 	 	Add edge (u, Parent[u]) to T (if u ≠ s)	
	 	 	for each edge (u, v) incident to u	
	 	 	 	Add v to the stack S	
	 	 	 	Parent[v] = u	

5

DFS(s):	
	Initialize S to be a stack with one element s	
	Explored[v] = false, for all v	
	Parent[v] = 0, for all v	
	DFS tree T = {}	
	while S != {}	
	 	Take a node u from S	
	 	if Explored[u] = false	
	 	 	Explored[u] = true	
	 	 	Add edge (u, Parent[u]) to T (if u ≠ s)	
	 	 	for each edge (u, v) incident to u	
	 	 	 	Add v to the stack S	
	 	 	 	Parent[v] = u	

Analyzing DFS

Jan 27, 2012 CSCI211 - Sprenkle

deg(u)	

O(n+m)	

6

1/27/12	

2	

Analyzing Finding
All Connected Components
•  How can we find set of all connected

components of graph?

Jan 27, 2012 CSCI211 - Sprenkle

Running time: O(m+n)	

7

R* = set of connected components (a set of sets)	
	
while there is a node that does not belong to R*	

		
	select s not in R*	

	
	R = {s}	

	
	while there is an edge (u,v) where u∈R and v∉R	
	 	add v to R	

	
	

	Add R to R*	

But the inner loop is O(m+n)!	

How can this RT be possible?	

Set of All Connected Components

•  How can we find set of all connected
components of graph?

Jan 27, 2012 CSCI211 - Sprenkle 8

Where i is the subscript of the
connected component	

R* = set of connected components (a set of sets)	
	
while there is a node that does not belong to R*	

		
	select s not in R*	

	
	R = {s}	

	
	while there is an edge (u,v) where u∈R and v∉R	
	 	add v to R	

	
	

	Add R to R*	

Imprecision in the running time
of inner loop: O(m+n)	

But that’s m and n of the
connected component, ���
let’s say mi and ni .	

Σi O(mi+ ni) = O(m+n)	

BIPARTITE GRAPHS

9 Jan 27, 2012 CSCI211 - Sprenkle

Bipartite Graphs

•  Def. An undirected graph G = (V, E) is
bipartite if the nodes can be colored red or
blue such that every edge has one red and
one blue end
Ø Generally: vertices divided into sets X and Y

•  Applications:
Ø Stable marriage:

•  men = red, women = blue
Ø Scheduling:

•  machines = red, jobs = blue
Jan 27, 2012 CSCI211 - Sprenkle 10

a bipartite graph	

Testing Bipartiteness
•  Given a graph G, is it bipartite?
•  Many graph problems become:

Ø Easier if underlying graph is bipartite (e.g., matching)
Ø Tractable if underlying graph is bipartite (e.g.,

independent set)
•  Before designing an algorithm, need to understand

structure of bipartite graphs

Jan 27, 2012 CSCI211 - Sprenkle 11

v1	

v2	
 v3	

v6	
 v5	
 v4	

v7	

v2	

v4	

v5	

v7	

v1	

v3	

v6	

a bipartite
graph G:	

another
drawing of G:	

How Can We Determine if a Graph is
Bipartite?

•  Given a connected graph
1.  Color one node red

•  Doesn’t matter which color (Why?)
Ø What should we do next?

Jan 27, 2012 CSCI211 - Sprenkle 12

Why connected?	

v1	

v2	
 v3	

v6	
 v5	
 v4	

v7	

•  How will we know when
we’re finished?	

•  What does this process
sound like?	

1/27/12	

3	

An Obstruction to Bipartiteness

•  Lemma. If a graph G is bipartite, it cannot
contain an odd-length cycle.

Jan 27, 2012 CSCI211 - Sprenkle 13

bipartite ���
(2-colorable)	

not bipartite ���
(not 2-colorable)	

An Obstruction to Bipartiteness

•  Lemma. If a graph G is bipartite, it cannot
contain an odd-length cycle.

•  Pf. Not possible to 2-color the odd cycle, let
alone G.

Jan 27, 2012 CSCI211 - Sprenkle 14

bipartite ���
(2-colorable)	

not bipartite ���
(not 2-colorable)	

If find an odd cycle, 	

graph is NOT bipartite	

How Can We Determine if a Graph is
Bipartite?
•  Given a connected graph

Ø Color one node red
•  Doesn’t matter which color (Why?)

Ø What should we do next?
•  How will we know that we’re finished?
• What does this process sound like?

Ø BFS: alternating colors, layers

Jan 27, 2012 CSCI211 - Sprenkle 15

L1	
 L2	
 L3	

How can we implement the algorithm?	

Implementing Algorithm

•  Modify BFS to have a Color array
• When add v to list L[i+1]

Ø Color[v] = red if i+1 is even
Ø Color[v] = blue if i+1 is odd

Jan 27, 2012 CSCI211 - Sprenkle 16

L1	
 L2	
 L3	

What is the running time of this algorithm?	
What is the running time of this algorithm? O(n+m)	

Marks a change in how we think about algorithms	

Starting to apply known algorithms to solve new problems	

Analyzing Algorithm’s Correctness
•  Lemma. Let G be a connected graph, and let

L0, …, Lk be the layers produced by BFS
starting at node s. Exactly one of the following
holds:
Ø (i) No edge of G joins two nodes of the same layer

•  G is bipartite
Ø (ii) An edge of G joins two nodes of the same layer

•  G contains an odd-length cycle and hence is not
bipartite

Jan 27, 2012 CSCI211 - Sprenkle 17

Case (i):	

L1	
 L2	
 L3	

Case (ii):	

L1	
 L2	
 L3	

Analyzing Algorithm’s Correctness
•  Lemma. Let G be a connected graph, and let

L0, …, Lk be the layers produced by BFS
starting at node s. Exactly one of the following
holds:
Ø (i) No edge of G joins two nodes of the same layer

•  G is bipartite
•  Pf. (i)

Ø Suppose no edge joins two nodes in the same layer
Ø  Implies all edges join nodes on adjacent level
Ø Bipartition

Ø red = nodes on odd levels
Ø blue = nodes on even levels

Jan 27, 2012 CSCI211 - Sprenkle 18
L1	
 L2	
 L3	

1/27/12	

4	

Analyzing Algorithm’s Correctness
•  Lemma. Let G be a connected graph, and let L0, …,

Lk be the layers produced by BFS starting at node s.
Exactly one of the following holds:
Ø  (ii) An edge of G joins two nodes of the same layer à

G contains an odd-length cycle and hence is not bipartite

Jan 27, 2012 CSCI211 - Sprenkle 19 19	

z = lca(x, y)	

•  Pf. (ii)
Ø Suppose (x, y) is an edge with x, y in same

level Lj.
Ø  Let z = lca(x, y) = lowest common ancestor
Ø  Let Li be level containing z
Ø Consider cycle that takes edge from x to y,

then path y àz, then path from z à x

Analyzing Algorithm’s Correctness
•  Lemma. Let G be a connected graph, and let L0, …,

Lk be the layers produced by BFS starting at node s.
Exactly one of the following holds:
Ø  (ii) An edge of G joins two nodes of the same layer à

G contains an odd-length cycle and hence is not bipartite

Jan 27, 2012 CSCI211 - Sprenkle 20

•  Pf. (ii)
Ø  Suppose (x, y) is an edge with x, y in same

level Lj.
Ø  Let z = lca(x, y)=lowest common ancestor
Ø  Let Li be level containing z
Ø  Consider cycle that takes edge from x to y,

then path y à z, then path z à x
Ø  Its length is 1 + (j-i) + (j-i), which is odd

(x, y)	
 path from���
y to z	

path from���
z to x	

z = lca(x, y)	

An Obstruction to Bipartiteness

•  Corollary. A graph G is bipartite iff it contains
no odd length cycle.

Jan 27, 2012 CSCI211 - Sprenkle 21

5-cycle C	

bipartite ���
(2-colorable)	

not bipartite ���
(not 2-colorable)	

Looking ahead

•  Monday: Andrew Danner
Ø 11:15: Public talk

•  Answers to questions on Sakai (10 points)
Ø 4:10: external memory algorithms

•  Reading Chapter 3.1-3.4
Ø Wikis for Tuesday

•  For next Friday: Problem Set 3

Jan 27, 2012 CSCI211 - Sprenkle 22 22	

