
3/16/11	

1	

Objectives

•  Dynamic Programming
 Sequence Alignment
 Improving space requirements

Mar 16, 2011 1 CSCI211 - Sprenkle

Review: Dynamic Programming

•  Summarize each of the different templates
we have used to do dynamic programming
 Think about problems we have solved

Mar 16, 2011 CSCI211 - Sprenkle 2

Dynamic Programming Approaches

•  Binary decision (weighted interval
scheduling)

•  Multiway decision (least segmented squares)
•  Adding a parameter (knapsack)
•  Intervals (RNA substructure)

Mar 16, 2011 CSCI211 - Sprenkle 3

SEQUENCE ALIGNMENT

Mar 16, 2011 CSCI211 - Sprenkle 4

Has This Ever Happened To You?

Mar 16, 2011 CSCI211 - Sprenkle 5

How does Google know what I really meant?	

String Similarity

•  How similar are two strings?
 ocurrance
 occurrence

• We intuitively can tell that these two are
similar
 Systematic measurement?

Mar 16, 2011 CSCI211 - Sprenkle 6

3/16/11	

2	

String Similarity

•  How similar are two strings?
 ocurrance
 occurrence

•  Measurements
 Gap (-): add a letter
 Mismatch

Mar 16, 2011 CSCI211 - Sprenkle 7

o c u r r a n c e

c c u r r e n c e o

-

6 mismatches, 1 gap	

o c u r r a n c e

c c u r r e n c e o

-

1 mismatch, 1 gap	

o c u r r n c e

c c u r r n c e o

- - a

e -

0 mismatches, 3 gaps	

Which is the best alignment?	

Applications of String Similarity
•  Basis for Unix diff	

 Longest common subsequence
•  Spam filters

 Similarity to known spam message
•  Computational biology

 Ex: Figuring out how similar two genomes
(sequences of A, C, G, T) are

•  Alignment with non English/natural language
strings are less obvious how to align

Mar 16, 2011 CSCI211 - Sprenkle 8

Edit Distance

•  [Levenshtein 1966, Needleman-Wunsch
1970]

 Gap penalty: δ
 Mismatch penalty: αpq

•  If p and q are the same, then mismatch penalty is
0

 Cost = sum of gap and mismatch penalties

Mar 16, 2011 CSCI211 - Sprenkle 9

2δ + αCA	

C G A C C T A C C T

C T G A C T A C A T

T G A C C T A C C T

C T G A C T A C A T

- T

C

C

C

αTC + αGT + αAG+ 2αCA	

-

Parameters allow us
to tweak cost	

Sequence Alignment

•  Goal: Given two strings X = x1 x2 . . . xm and
Y = y1 y2 . . . yn find alignment of minimum
cost

•  An alignment M is a set of ordered pairs xi-yj
such that each item occurs in at most one
pair and no crossings

•  The pair xi-yj and xi'-yj' cross if i < i', but j > j’.

Mar 16, 2011 CSCI211 - Sprenkle 10

o c u r e r n c e

c c u r r e n c e o

c

crossing	

o c u r e r n c e

c c u r r e n c e o

c

2 mismatches	

Sequence Alignment Example

•  X = CTACCG
•  Y = TACTG
•  Solution: M = x2-y1 , x3-y2, x4-y3, x5-y4 , x6-y6

Mar 16, 2011 CSCI211 - Sprenkle 11

C T A C C -

T A C A T -

G

G

y1	
 y2	
 y3	
 y4	
 y5	
 y6	

x2	
 x3	
 x4	
 x5	
x1	
 x6	

!

cost(M) = "xi y j
(xi, y j)# M
$

mismatch
! " # $ #

+ %
i : xi unmatched

$ + %
j : y j unmatched

$

gap
! " # # # # # $ # # # # #

What is the cost of M?	

Recall: mismatch penalty is 0 if xi and yj are the same	

Sequence Alignment Case Analysis

•  Consider the last character of the strings X
and Y: xM and yN
 M and N are not necessarily equal

• What are the possibilities for xM and yN in
terms of the alignment?

Mar 16, 2011 CSCI211 - Sprenkle 12

…
…

x	
y	

3/16/11	

3	

Sequence Alignment Case Analysis

•  Consider last character of strings X and Y:
xM and yN
 Case 1: xM and yN are aligned
 Case 2: xM is not matched
 Case 3: yN is not matched

Mar 16, 2011 CSCI211 - Sprenkle 13

Formulate the optimal solution’s value	

…
…

x	
y	

Sequence Alignment Case Analysis

•  Consider last character of strings X and Y:
xM and yN
 Case 1: xM and yN are aligned
 Case 2: xM is not matched
 Case 3: yN is not matched

•  OPT(i, j) = min cost of aligning strings
x1 x2 . . . xi and y1 y2 . . . yj

Mar 16, 2011 CSCI211 - Sprenkle 14

What are the costs
for these cases?	

x	
 y	

Sequence Alignment Cost Analysis
•  Consider last character of strings X and Y: xM

and yN
 Case 1: xM and yN are aligned

•  Pay mismatch for xM-yN + min cost of aligning rest of
strings

•  OPT(M, N) = αXmYn + OPT(M-1, N-1)

 Case 2: xM is not matched
•  Pay gap for xM + min cost of aligning rest of strings
•  OPT(M, N) = δ + OPT(M-1, N)

 Case 3: yN is not matched
•  Pay gap for yN + min cost of aligning rest of strings
•  OPT(M, N) = δ + OPT(M, N-1)

Mar 16, 2011 CSCI211 - Sprenkle 15

Sequence Alignment Cost Analysis

•  Base costs? i or j is 0
 What happens when we run out of letters in one

string before the other?

Mar 16, 2011 CSCI211 - Sprenkle 16

X = CTACCG	
Y = TACTG	

Sequence Alignment:
Problem Structure

Mar 16, 2011 CSCI211 - Sprenkle 17

!

OPT(i, j) =

"

$
$ $

%

$
$
$

j& if i = 0

min

'xi y j
+ OPT(i (1, j (1)

& + OPT(i (1, j)
& + OPT(i, j (1)

"

$

%
$

otherwise

i& if j = 0

Gaps for remainder of X	

Gaps for remainder of Y	

Ran out of 1st string 	

Ran out of 2nd string 	

Sequence Alignment: Algorithm

Mar 16, 2011 CSCI211 - Sprenkle 18

•  Analysis. Θ(mn) time and space.
•  English words or sentences: m, n ≤ 10.
•  Computational biology: m = n = 100,000.

10 billions ops OK, but 10GB array?

	
Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, δ, α) 	
 for i = 0 to m	
 M[0, i] = iδ	
 for j = 0 to n	
 M[j, 0] = jδ	
	
 for i = 1 to m	
 for j = 1 to n	
 M[i, j] = min(α[xi, yj] + M[i-1, j-1],	
 δ + M[i-1, j],	
 δ + M[i, j-1])	
 return M[m, n]	

Costs?	

Cost parameters	

3/16/11	

4	

	
Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, δ, α) 	
 for i = 0 to m	
 M[0, i] = iδ	
 for j = 0 to n	
 M[j, 0] = jδ	
	
 for i = 1 to m	
 for j = 1 to n	
 M[i, j] = min(α[xi, yj] + M[i-1, j-1],	
 δ + M[i-1, j],	
 δ + M[i, j-1])	
 return M[m, n]	

Sequence Alignment: Analysis

Mar 16, 2011 CSCI211 - Sprenkle 19

•  Analysis. Θ(mn) time and space.
•  English words or sentences: m, n ≤ 10.
•  Computational biology: m = n = 100,000.

10 billions ops OK, but 10GB array?

O(mn)	

Example

Mar 16, 2011 CSCI211 - Sprenkle 20

α = 1, for vowel mismatch	

α = 2, for other mismatches	

δ = 2	

b a i t
0 2 4 6 8

b 2
o 4
o 6
t 8

i	

j	

X = bait 	
 	
Y = boot	

Example

Mar 16, 2011 CSCI211 - Sprenkle 21

•  Analysis. Θ(mn) time and space.
•  English words or sentences: m, n ≤ 10.
•  Computational biology: m = n = 100,000.

10 billions ops OK, but 10GB array?

X = bait 	
 	
Y = boot	

b a i t
0 2 4 6 8

b 2 0 2 4 6
o 4
o 6
t 8

α = 1, for vowel mismatch	

α = 2, for other mismatches	

δ = 2	

i	

j	

Example

Mar 16, 2011 CSCI211 - Sprenkle 22

•  Analysis. Θ(mn) time and space.
•  English words or sentences: m, n ≤ 10.
•  Computational biology: m = n = 100,000.

10 billions ops OK, but 10GB array?

X = bait 	
 	
Y = boot	

b a i t
0 2 4 6 8

b 2 0 2 4 6
o 4 2 1 3 5
o 6
t 8

α = 1, for vowel mismatch	

α = 2, for other mismatches	

δ = 2	

i	

j	

Example

Mar 16, 2011 CSCI211 - Sprenkle 23

•  Analysis. Θ(mn) time and space.
•  English words or sentences: m, n ≤ 10.
•  Computational biology: m = n = 100,000.

10 billions ops OK, but 10GB array?

X = bait 	
 	
Y = boot	

b a i t
0 2 4 6 8

b 2 0 2 4 6
o 4 2 1 3 5
o 6 4 3 2 4
t 8

α = 1, for vowel mismatch	

α = 2, for other mismatches	

δ = 2	

i	

j	

Example

Mar 16, 2011 CSCI211 - Sprenkle 24

•  Analysis. Θ(mn) time and space.
•  English words or sentences: m, n ≤ 10.
•  Computational biology: m = n = 100,000.

10 billions ops OK, but 10GB array?

X = bait 	
 	
Y = boot	

b a i t
0 2 4 6 8

b 2 0 2 4 6
o 4 2 1 3 5
o 6 4 3 2 4
t 8 6 5 4 2

α = 1, for vowel mismatch	

α = 2, for other mismatches	

δ = 2	

i	

j	

3/16/11	

5	

Example

Mar 16, 2011 CSCI211 - Sprenkle 25

•  Analysis. Θ(mn) time and space.
•  English words or sentences: m, n ≤ 10.
•  Computational biology: m = n = 100,000.

10 billions ops OK, but 10GB array?

X = bait 	
 	
Y = boot	

b a i t
0 2 4 6 8

b 2 0 2 4 6
o 4 2 1 3 5
o 6 4 3 2 4
t 8 6 5 4 2

α = 1, for vowel mismatch	

α = 2, for other mismatches	

δ = 2	

i	

j	

Sequence Alignment: Algorithm

Mar 16, 2011 CSCI211 - Sprenkle 26

•  Analysis. Θ(mn) time and space.
•  English words or sentences: m, n ≤ 10.
•  Computational biology: m = n = 100,000.

10 billions ops OK, but 10GB array?

What are the space costs?	

When computing M[i,j], which entries in M are used?	

	
Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, δ, α) 	
 for i = 0 to m	
 M[0, i] = iδ	
 for j = 0 to n	
 M[j, 0] = jδ	
	
 for i = 1 to m	
 for j = 1 to n	
 M[i, j] = min(α[xi, yj] + M[i-1, j-1],	
 δ + M[i-1, j],	
 δ + M[i, j-1])	
 return M[m, n]	

	
Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, δ, α) 	
 for i = 0 to m	
 M[0, i] = iδ	
 for j = 0 to n	
 M[j, 0] = jδ	
	
 for i = 1 to m	
 for j = 1 to n	
 M[i, j] = min(α[xi, yj] + M[i-1, j-1],	
 δ + M[i-1, j],	
 δ + M[i, j-1])	
 return M[m, n]	

Sequence Alignment: Analysis

Mar 16, 2011 CSCI211 - Sprenkle 27

•  Analysis. Θ(mn) time and space.
•  English words or sentences: m, n ≤ 10.
•  Computational biology: m = n = 100,000.

10 billions ops OK, but 10GB array?

Space Cost: O(mn)	

Observation: to calculate the current value, ���
we only need the row above us and the entry to the left	

SEQUENCE ALIGNMENT IN
LINEAR SPACE

Mar 16, 2011 CSCI211 - Sprenkle 28

Sequence Alignment: O(m) Space

•  Collapse into an m x 2 array
 M[i,0] represents previous row; M[i,1] -- current

Mar 16, 2011 CSCI211 - Sprenkle 29

	
Space-Efficient-Alignment(m, n, x1x2...xm, y1y2...yn, δ, α) 	
 for i = 0 to m 	 	# initialize first row	
 M[i, 0] = iδ	
 for j = 1 to n	
 M[0, 1] = jδ	 	# first gap	
	
 	for i = 1 to m	

	 	M[i, 1] = min(α[xi, yj] + M[i-1, 0],	
 δ + M[i, 0],	
 δ + M[i-1, 1])	

	for i = 1 to m 	# copy current row into previous	
	 	M[i, 0] = M[i, 1]	

 return M[m, 1]	
Any drawbacks?	

Sequence Alignment: O(m) Space

•  Collapse into an m x 2 array
 M[i,0] represents previous row; M[i,1] -- current

Mar 16, 2011 CSCI211 - Sprenkle 30

	
Space-Efficient-Alignment(m, n, x1x2...xm, y1y2...yn, δ, α) 	
 for i = 0 to m 	 	# initialize first row	
 M[i, 0] = iδ	
 for j = 1 to n	
 M[0, 1] = jδ	 	# first gap	
	
 	for i = 1 to m	

	 	M[i, 1] = min(α[xi, yj] + M[i-1, 0],	
 δ + M[i, 0],	
 δ + M[i-1, 1])	

	for i = 1 to m 	# copy current row into previous	
	 	M[i, 0] = M[i, 1]	

 return M[m, 1]	 Finds optimal value but will
not be able to find alignment 	

3/16/11	

6	

Why Do We Care About Space?

•  For English words or sentences, probably
doesn’t matter

•  Matters for Biological sequence alignment
 Consider: 2 strings with 100,000 symbols each

•  Processor can do 10 billion primitive operations
•  BUT dealing with a 10 GB array

Mar 16, 2011 CSCI211 - Sprenkle 31

Sequence Alignment: Linear Space

•  Can we avoid using quadratic space?
 Optimal value in O(m) space and O(mn) time.

•  Compute OPT(i, •) from OPT(i-1, •)
•  BUT, no simple way to recover alignment itself

•  Theorem. [Hirschberg 1975] Optimal
alignment in O(m + n) space and O(mn) time.
 Clever combination of divide-and-conquer and

dynamic programming

Mar 16, 2011 CSCI211 - Sprenkle 32

Recall Our Example

Mar 16, 2011 CSCI211 - Sprenkle 33

•  Analysis. Θ(mn) time and space.
•  English words or sentences: m, n ≤ 10.
•  Computational biology: m = n = 100,000.

10 billions ops OK, but 10GB array?

X = bait 	
 	
Y = boot	

b a i t
0 2 4 6 8

b 2 0 2 4 6
o 4 2 1 3 5
o 6 4 3 2 4
t 8 6 5 4 2

i	

j	

α = 1, for vowel mismatch	

α = 2, for other mismatches	

δ = 2	

Mapping to a Graph Problem

Mar 16, 2011 CSCI211 - Sprenkle 34

b	

o	

b	

o	

a	
 i	
 t	

ε	

ε	

• Horizontal and vertical
edges cost δ

• Diagonal edges cost α	

t	

Goal: Find shortest path
from top-left to bottom-right	

α = 1, for vowel mismatch	

α = 2, for other mismatches	

δ = 2	

Mapping to a Graph Problem

Mar 16, 2011 CSCI211 - Sprenkle 35

b	

o	

b	

o	

a	
 i	
 t	

ε	

ε	

t	

2	

0	

2	

2	
 2	
 2	

2	

2	

2	

2	

2	

2	

2	

2	
 0	

1	

1	
2	

2	

2	

2	

2	

2	

1	

1	

2	

2	
 2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	
 2	

2	

2	

2	
 2	

2	

2	

2	

2	

2	

α = 1, for vowel mismatch	

α = 2, for other mismatches	

δ = 2	

• Horizontal and vertical
edges cost δ

• Diagonal edges cost α	

Goal: Find shortest path
from top-left to bottom-right	

Sequence Alignment: Forward

•  Edit distance graph
 Let f(i, j) be shortest path from (0,0) to (i, j)
 Observation: f(i, j) = OPT(i, j)

Mar 16, 2011 CSCI211 - Sprenkle 36

i-j

m-n

x1	

x2	

y1	

x3	

y2	
 y3	
 y4	
 y5	
 y6	

ε	

ε	

0-0

δ	

δ	

!

"xi y j

(start)	

3/16/11	

7	

Sequence Alignment: Forward
•  Edit distance graph

 Let f(i, j) be shortest path from (0,0) to (i, j)
 Can compute f (*, j) for any j in O(mn) time and

O(m + n) space

Mar 16, 2011 CSCI211 - Sprenkle 37

i-j

m-n

x1	

x2	

y1	

x3	

y2	
 y3	
 y4	
 y5	
 y6	

ε	

ε	

0-0

j	

(start)	

Sequence Alignment: Backward
•  Edit distance graph

 Let g(i, j) be shortest path from (m, n) to (i, j)
 Can compute by reversing the edge orientations

and inverting the roles of (0, 0) and (m, n)

Mar 16, 2011 CSCI211 - Sprenkle 38

i-j

m-n

x1	

x2	

y1	

x3	

y2	
 y3	
 y4	
 y5	
 y6	

ε	

ε	

0-0

δ	

δ	

!

"xi y j

(end)	

Sequence Alignment: Backward
•  Edit distance graph

 Let g(i, j) be shortest path from (m, n) to (i, j)
 Can compute g(*, j) for any j in O(mn) time and

O(m + n) space

Mar 16, 2011 CSCI211 - Sprenkle 39

i-j

m-n

x1	

x2	

y1	

x3	

y2	
 y3	
 y4	
 y5	
 y6	

ε	

ε	

0-0

j	

(end)	

Sequence Alignment: Linear Space

•  Observation. The cost of the shortest path
that uses (i, j) is f(i, j) + g(i, j)

Mar 16, 2011 CSCI211 - Sprenkle 40

i-j

m-n

x1	

x2	

y1	

x3	

y2	
 y3	
 y4	
 y5	
 y6	

ε	

ε	

0-0

Sequence Alignment: Linear Space
•  Let q be an index that minimizes f(q, n/2) +

g(q, n/2)
•  Then, the shortest path from (0, 0) to (m, n)

uses (q, n/2)

Mar 16, 2011 CSCI211 - Sprenkle 41

q-n/2

m-n

x1	

x2	

y1	

x3	

y2	
 y3	
 y4	
 y5	
 y6	

ε	

ε	

0-0

n / 2	

q	

Have to go through one
node in this column	

Sequence Alignment: Linear Space

•  Divide: find index q that minimizes f(q, n/2) +
g(q, n/2) using DP
 Align xq and yn/2

Mar 16, 2011 CSCI211 - Sprenkle 42

q-n/2 x1	

x2	

y1	

x3	

y2	
 y3	
 y4	
 y5	
 y6	

ε	

ε	

0-0

q	

n / 2	

m-n

3/16/11	

8	

Sequence Alignment: Linear Space
•  Conquer: recursively compute optimal alignment

in each piece
 Reuse working space from one recursive call to next

Mar 16, 2011 CSCI211 - Sprenkle 43

q-n/2 x1	

x2	

y1	

x3	

y2	
 y3	
 y4	
 y5	
 y6	

ε	

ε	

0-0

m-n

Divide and Conquer Sequence Alignment

Mar 16, 2011 CSCI211 - Sprenkle 44

Create graph, label edges with weights	
	
P contains node on shortest corner-to-corner path	
	
Divide-and-Conquer-Alignment(X, Y)	
	
Divide-and-Conquer-Alignment (X, Y):	

	m = length of X	
	n = length of Y	
	if m <= 2 or n <= 2	
	 	compute optimal alignment using Alignment(X, Y)	
	 	return	

 	Space-Efficient-Alignment(X, Y[1:n/2])	
	Backward-Space-Efficient-Alignment(X, Y[n/2+1:n])	
	q = index that minimizes f(q, n/2) + g(q, n/2)	
	add(q, n/2) to P	
	Divide-and-Conquer-Alignment(X[1:q],Y[1:n/2])	
	Divide-and-Conquer-Alignment(X[q:m],Y[(n/2):n])	
	return P	

Example

Mar 16, 2011 CSCI211 - Sprenkle 45

α = 1, for vowel mismatch	

α = 2, for other mismatches	

δ = 2	

b	

o	

b	

o	

a	
 i	
 t	

0	

0	

0-0

t	
 m-n

2	

0	

2	

2	
 2	
 2	

2	

2	

2	

2	

2	

2	

2	

2	
 0	

1	

1	
2	

2	

2	

2	

2	

2	

1	

1	

2	

2	
 2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	
 2	

2	

2	

2	
 2	

2	

2	

2	

2	

2	

Space-efficient alignment: Left

Mar 16, 2011 CSCI211 - Sprenkle 46

b	

o	

b	

o	

a	

0	

0	

0-0

t	

2	

0	

2	

2	

2	

2	

2	

2	

1	
2	

2	

2	

2	

2	

2	

1	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

compute f (*, j), shortest path
from (0,0) to (i, j)	

Space-efficient alignment: Left

Mar 16, 2011 CSCI211 - Sprenkle 47

b	

o	

b	

o	

a	

0	

0	

0-0

t	

2	

0	

2	

2	

2	

2	

2	

2	

1	
2	

2	

2	

2	

2	

2	

1	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

f()	

4	

2	

1	

3	

5	

Backward Space Efficient

Mar 16, 2011 CSCI211 - Sprenkle 48

i	
 t	

m-n

2	

2	

2	

2	

2	
0	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	
 2	

Compute g(*, j), shortest path
from (m,n) to (i, j)	
 b	

o	

o	

t	

a	
 2	

1	

1	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

3/16/11	

9	

Backward Space Efficient

Mar 16, 2011 CSCI211 - Sprenkle 49

g()	

5	

3	

1	

2	

4	

i	
 t	

m-n

2	

2	

2	

2	

2	
0	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	
 2	

b	

o	

o	

t	

a	
 2	

1	

1	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

Example

Mar 16, 2011 CSCI211 - Sprenkle 50

b	

o	

b	

o	

a	
 i	
 t	

0	

0	

0-0

t	
 m-n

2	

0	

2	

2	
 2	
 2	

2	

2	

2	

2	

2	

2	

2	

2	
 0	

1	

1	
2	

2	

2	

2	

2	

2	

1	

1	

2	

2	
 2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	
 2	

2	

2	

2	
 2	

2	

2	

2	

2	

2	

f()	

4	

2	

1	

3	

5	

Pick minimum sum	

g()	

5	

3	

1	

2	

4	

Example

Mar 16, 2011 CSCI211 - Sprenkle 51

b	

o	

b	

o	

a	
 i	
 t	

0	

0	

0-0

t	
 m-n

2	

0	

2	

2	
 2	
 2	

2	

2	

2	

2	

2	

2	

2	

2	
 0	

1	

1	
2	

2	

2	

2	

2	

2	

1	

1	

2	

2	
 2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	
 2	

2	

2	

2	
 2	

2	

2	

2	

2	

2	

f()	

4	

2	

1	

3	

5	

Pick minimum sum	

g()	

5	

3	

1	

2	

4	

Example

Mar 16, 2011 CSCI211 - Sprenkle 52

b	

o	

b	

o	

a	
 i	
 t	

0	

0	

0-0

t	
 m-n

2	

0	

2	

2	
 2	
 2	

2	

2	

2	

2	

2	

2	

2	

2	
 0	

1	

1	
2	

2	

2	

2	

2	

2	

1	

1	

2	

2	
 2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	

2	
 2	

2	

2	

2	
 2	

2	

2	

2	

2	

2	

f()	

4	

2	

1	

3	

5	

g()	

5	

3	

1	

2	

4	

Divide and Conquer Sequence Alignment:
Analysis

Mar 16, 2011 CSCI211 - Sprenkle 53

P contains node on shortest corner-to-corner path	
Divide-and-Conquer-Alignment (X, Y)	

	m = length of X	
	n = length of Y	
	if m <= 2 or n <= 2	
	 	compute optimal alignment using Alignment(X, Y)	
	 	return	

 	Space-Efficient-Alignment(X, Y[1:n/2])	
	Backward-Space-Efficient-Alignment(X, Y[n/2+1:n])	
	q = index that minimizes f(q, n/2) + g(q, n/2)	
	add(q, n/2) to P	
	Divide-and-Conquer-Alignment(X[1:q],Y[1:n/2])	
	Divide-and-Conquer-Alignment(X[q:m],Y[(n/2):n])	
	return P	

What is the recurrence relation?	

Sequence Alignment:
Running Time Analysis Warmup
•  Theorem. Let T(m, n) = max running time of

algorithm on strings of length at most m and
n. T(m, n) = O(mn log n).

•  Remark. Analysis is not tight because sub-

problems are of size (q, n/2) and (m - q, n/2).

Mar 16, 2011 CSCI211 - Sprenkle 54

!

T (m, n) " 2T (m, n /2) + O(mn) # T (m, n) = O(mn logn)

Divide-and-Conquer-Alignment(X[1:q],Y[1:n/2])	
Divide-and-Conquer-Alignment(X[q:m],Y[(n/2):n])	

3/16/11	

10	

Sequence Alignment:
Running Time Analysis
•  Theorem. Let T(m, n) = max running time of

algorithm on strings of length m and n.
T(m, n) = O(mn)

•  Recurrence Relation:

•  Solve using substitution:

Mar 16, 2011 CSCI211 - Sprenkle 55

cmn
cmncqncmncqn

cmnnqmccqn
cmnnqmTnqTnmT

2

2/)(22/2
)2/,()2/,(),(

=

+!+=

+!+"

+!+"

!

T(m, 2) " cm
T(2, n) " cn
T(m, n) " cmn + T(q, n /2) + T(m# q, n /2)

This Week

•  Problem Set 7 due Friday
 Looks short but lots of parts

•  Jan Cuny’s visit
 3 p.m. – reception to meet Jan
 4 p.m. – Broadening Participation in Computing
 Recorded using Tegrity, should be able to watch

later
•  Keep reading Chapter 6

Mar 16, 2011 CSCI211 - Sprenkle 56

