
3/27/13	

1	

Objectives

•  Dynamic Programming: shortest paths
•  Network Flow

Ø Max flow
Ø Min cut

Mar 27, 2013 1 CSCI211 - Sprenkle

Shortest Paths: Where we left off…

•  Dijkstra’s algorithm does not handle negative

edge costs
•  If some path from s to t contains a negative cost

cycle, there does not exist a shortest s-t path
•  Otherwise, there exists one that is simple (i.e.,

does not repeat nodes)
Ø Path has at most n-1 edges

•  where n is # of nodes in graph
Mar 27, 2013 CSCI211 - Sprenkle 2

s t
W	

c(W) < 0	

 -6	

 -4	

 7	

Towards a Recurrence

•  OPT(i,v): minimum cost of a v-t path P using
at most i edges
Ø This formulation eases later discussion

•  Original problem is OPT(n-1, s)

Mar 27, 2013 CSCI211 - Sprenkle 3

v	
 t	

Costs on all edges	

Break down into subproblems based on i and v	

w	
cvw	

Shortest Paths: Dynamic Programming

•  OPT(i, v) = minimum cost of a v-t path P
using at most i edges
Ø Case 1: P uses at most i-1 edges

•  OPT(i, v) = OPT(i-1, v)
Ø Case 2: P uses exactly i edges

•  if (v, w) is first edge, then OPT uses (v, w), and
then selects best w-t path using at most i-1 edges

•  Cost: cost of chosen edge

Mar 27, 2013 CSCI211 - Sprenkle 4

€

OPT(i, v) =
 0 if i = 0

 min OPT(i −1, v) ,
(v, w)∈ E

min OPT(i −1, w)+ cvw{ }
$
%
&

'
(
)

otherwise

$

%
*

& *

Shortest Paths: Implementation

•  Shortest path length is M[n-1, s]

•  Analysis. Θ(mn) time, Θ(n2) space.

•  Finding the shortest paths. Maintain a
"successor" for each table entry.

Mar 27, 2013 CSCI211 - Sprenkle 5

Shortest-Path(G, s) 	
 n = number of nodes in G	
 foreach node v ∈ V	
 M[0, v] = ∞ 	
 M[0, s] = 0	
	
 for i = 1 to n-1	
 foreach node v ∈ V	
 M[i, v] = M[i-1, v]	
 foreach edge (v, w) ∈ E	
 M[i, v] = min(M[i, v], M[i-1, w] + cvw)	

Starting node	

Cost of
chosen edge	

Starting node	

Shortest Paths: Implementation

•  Shortest path length is M[n-1, s]

•  Analysis. Θ(mn) time, Θ(n2) space.

•  Finding the shortest paths. Maintain a
"successor" for each table entry.

Mar 27, 2013 CSCI211 - Sprenkle 6

Shortest-Path(G, s) 	
 n = number of nodes in G	
 foreach node v ∈ V	
 M[0, v] = ∞ 	
 M[0, s] = 0 # distance to yourself is 0	
	
 for i = 1 to n-1	
 foreach node v ∈ V	
 M[i, v] = M[i-1, v]	
 foreach edge (v, w) ∈ E	
 M[i, v] = min(M[i, v], M[i-1, w] + cvw)	

Starting node	

Cost of
chosen edge	

Starting node	

Costs?	

3/27/13	

2	

Shortest Paths: Runtime Analysis

•  Shortest path length is M[n-1, s]

•  Analysis. Θ(mn) time, Θ(n2) space.

•  Finding the shortest paths. Maintain a
"successor" for each table entry.

Mar 27, 2013 CSCI211 - Sprenkle 7

Shortest-Path(G, s) 	
 n = number of nodes in G	
 foreach node v ∈ V	
 M[0, v] = ∞ 	
 M[0, s] = 0 # distance to yourself is 0	
	
 for i = 1 to n-1	
 foreach node v ∈ V	
 M[i, v] = M[i-1, v]	
 foreach edge (v, w) ∈ E	
 M[i, v] = min(M[i, v], M[i-1, w] + cvw)	

Starting node	

Cost of
chosen edge	

Starting node	

O(n)	

O(nm)	

Dynamic Programming Wrapup

• What we didn’t cover
Ø 6.5: RNA Secondary Structure: Dynamic

Programming Over Intervals
Ø 6.7: Sequence Alignment in Linear Space

•  Dynamic programming + Divide and Conquer à
oh my!

Ø 6.9: Shortest Paths and
Distance Vector Protocols
•  In practice in internet routing

Mar 27, 2013 CSCI211 - Sprenkle 8

NETWORK FLOW

Mar 27, 2013 CSCI211 - Sprenkle 9

Motivating Flow Network Problems

•  Modeling transportation networks
Ø Edges: carry traffic
Ø Nodes: pass traffic between edges

•  Can represent many different types of
problems
Ø Instead of looking at all possibilities, formulate as

a flow problem

Mar 27, 2013 CSCI211 - Sprenkle 10

Flow Network
•  G = (V, E) = directed graph, no parallel

edges
•  Two distinguished nodes: s = source, t = sink
•  c(e) = capacity of edge e, > 0

Mar 27, 2013 CSCI211 - Sprenkle 11

s

2

3

4

5

6

7

t

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	
 10	

 10	

 10	
 15	
 4	

 4	

capacity	

source	
 sink	

Flows: Definitions
•  An s-t flow is a function that satisfies

Ø Capacity condition: For each e ∈ E: 0 ≤ f(e) ≤ c(e)
Ø Conservation condition: For each v ∈ V – {s, t}:
∑e into y f(e) = ∑e out of y f(e)

Mar 27, 2013 CSCI211 - Sprenkle 12

Flow can’t exceed
capacity	

Flow in == Flow out	

4	

0	

0	

0	

0	
 0	

0	
 4	
 4	

0	

0	

0	

0	

capacity	

flow	

0	

4	

 15	

s

2

3

4

5

6

7

t

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	
 10	

 10	

 10	
 15	
 4	

 4	

source	
 sink	

3/27/13	

3	

Flows: Definitions

•  The value of a flow f is v(f) = ∑e out of s f(e)

Mar 27, 2013 CSCI211 - Sprenkle 13

4	

0	

0	

0	

0	
 0	

0	
 4	
 4	

0	

0	

0	

Value = 4	

0	

capacity	

flow	

0	

4	

s

2

3

4

5

6

7

t

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	
 10	

 10	

 10	
 15	
 4	

 4	

Maximum Flow Problem

•  Make network most efficient
Ø Use most of available capacity

Mar 27, 2013 CSCI211 - Sprenkle 14

10	

9	

9	

14	

4	
 10	

4	
 8	
 9	

1	

0	
 0	

0	

14	

capacity	

flow	

s

2

3

4

5

6

7

t

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	
 10	

 10	

 10	
 15	
 4	

 4	
 0	

Value = 28	

Goal: Find s-t flow of maximum value

Towards a Max Flow Algorithm
•  Greedy algorithm

Ø Start all edges e ∈ E at f(e) = 0
Ø Find an s-t path P with the most capacity: f(e) < c(e)
Ø Augment flow along path P
Ø Repeat until you get stuck

Mar 27, 2013 CSCI211 - Sprenkle 15

s

1

2

t

10	

10	

0	
 0	

0	
 0	

0	

20	

20	

30	

Flow value = 0	

Towards a Max Flow Algorithm
•  Greedy algorithm

Ø Start all edges e ∈ E at f(e) = 0
Ø Find an s-t path P with the most capacity: f(e) < c(e)
Ø Augment flow along path P
Ø Repeat until you get stuck

Mar 27, 2013 CSCI211 - Sprenkle 16

s

1

2

t

10	

10	

0	
 0	

0	
 0	

0	

20	

20	

30	

X	

X	

X	

20	

20	

20	

Is this optimal?	

Flow value = 20	

Towards a Max Flow Algorithm
•  Greedy algorithm

Ø  Start all edges e ∈ E at f(e) = 0
Ø  Find an s-t path P with the most capacity: f(e) < c(e)
Ø  Augment flow along path P
Ø  Repeat until you get stuck

Mar 27, 2013 CSCI211 - Sprenkle 17

greedy = 20	

s

1

2

t

20	
 10	

10	
 20	

30	

20	
 0	

0	

20	

20	
 opt = 30	

s

1

2

t

20	
 10	

10	
 20	

30	

20	
 10	

10	

10	

20	

locally optimality does not ⇒ global optimality	

RESIDUAL GRAPHS
Towards a solution…

Mar 27, 2013 CSCI211 - Sprenkle 18

3/27/13	

4	

Towards a Residual Graph

•  Original edge: e = (u, v) ∈ E
Ø Flow f(e), capacity c(e)

Mar 27, 2013 CSCI211 - Sprenkle 19

u v 17	

6	

capacity	

flow	

Towards a Residual Graph

•  Original edge: e = (u, v) ∈ E
Ø Flow f(e), capacity c(e)

•  Residual edge
Ø e = (u, v) w/ capacity c(e) - f(e)
Ø eR = (v, u) with capacity f(e)

•  To undo flow

Mar 27, 2013 CSCI211 - Sprenkle 20

u v 11	

residual capacity	

 6	

residual capacity	

u v 17	

6	

capacity	

flow	

Residual Graph: Gf

•  Original edge: e = (u, v) ∈ E
Ø Flow f(e), capacity c(e)

•  Residual edge
Ø e = (u, v) w/ capacity c(e) - f(e)
Ø eR = (v, u) with capacity f(e)

•  To undo flow

•  Residual graph: Gf = (V, Ef)
Ø Residual edges with positive residual capacity
Ø Ef = {e : f(e) < c(e)} ∪ {eR : f(e) > 0}

Mar 27, 2013 CSCI211 - Sprenkle 21

u v 11	

residual capacity	

 6	

residual capacity	

Forward edges	
 Backward edges	

u v 17	

6	

capacity	

flow	

Applying Residual Graph

•  Used to find the maximum flow
Ø Use similar idea to greedy algorithm

•  Residual path: simple s-t path in Gf
Ø Also known as augmenting path

Mar 27, 2013 CSCI211 - Sprenkle 22

Augmenting Path Algorithm

Mar 27, 2013 CSCI211 - Sprenkle 23

Ford-Fulkerson(G, s, t, c)	
 foreach e ∈ E f(e) = 0 # initially no flow	
 Gf = residual graph	
	
 while there exists augmenting path P	
 f = Augment(f, c, P) # change the flow	
 update Gf 	 	# build a new residual graph	
	
 return f	

Augment(f, c, P)	
 b = bottleneck(P) # edge on P with least capacity	
 foreach e ∈ P	
 if (e ∈ E) f(e) = f(e) + b # forward edge, flow	
 else f(eR) = f(e) - b # forward edge, flow 	
 return f	

c=capacity	
 Ford-Fulkerson Algorithm

Mar 27, 2013 CSCI211 - Sprenkle 24

s

2

3

4

5 t 10	

 10	

 9	

 8	

 4	

 10	

 10	
 6	
 2	

0	

0	

0	

0	
 0	
 0	

0	

0	

 G:	

Flow value = 0	

0	

flow	

capacity	

3/27/13	

5	

Ford-Fulkerson Algorithm

Mar 27, 2013 CSCI211 - Sprenkle 25

s

2

3

4

5 t 10	

 10	

 9	

 8	

 4	

 10	

 10	
 6	
 2	

0	

0	

0	

0	
 0	
 0	

0	

0	

 G:	

Flow value = 0	

0	

flow	

What does the residual graph look like?	

capacity	

Ford-Fulkerson Algorithm

Mar 27, 2013 CSCI211 - Sprenkle 26

s

2

3

4

5 t 10	

 10	

 9	

 8	

 4	

 10	

 10	
 6	
 2	

0	

0	

0	

0	
 0	
 0	

0	

0	

 G:	

Flow value = 0	

0	

flow	

s

2

3

4

5 t

 Gf:	

capacity	

Ford-Fulkerson Algorithm

Mar 27, 2013 CSCI211 - Sprenkle 27

s

2

3

4

5 t 10	

 10	

 9	

 8	

 4	

 10	

 10	
 6	
 2	

0	

0	

0	

0	
 0	
 0	

0	

0	

 G:	

Flow value = 0	

0	

flow	

s

2

3

4

5 t 10	
 9	

 4	

 10	
 6	
 2	

 Gf:	

10	
 8	

 10	

residual capacity	

Bottleneck	

capacity	

Ford-Fulkerson Algorithm

Mar 27, 2013 CSCI211 - Sprenkle 28

s

2

3

4

5 t 10	

 10	

 9	

 8	

 4	

 10	

 10	
 6	
 2	

8	

0	

0	

0	
 0	
 8	

8	

0	
 0	

 G:	

s

2

3

4

5 t 10	

 4	

 10	
 6	

 Gf:	

 8	

 8	

 8	

 9	

 2	
2	

 2	

10	

2	

10	

X	

X	

X	
2	
X	

Flow value = 8	

Ford-Fulkerson Algorithm

Mar 27, 2013 CSCI211 - Sprenkle 29

0	

s

2

3

4

5 t 10	

 10	

 9	

 8	

 4	

 10	

 10	
 6	
 2	

10	

0	

0	

0	
 2	
 10	

8	

2	

 G:	

s

2

3

4

5 t

 4	

 2	

 Gf:	

 10	

 8	
10	

2	

 10	
 7	

 10	
 6	

X	

6	

6	

6	

X	

X	

8	
X	

Flow value = 10	

Ford-Fulkerson Algorithm

Mar 27, 2013 CSCI211 - Sprenkle 30

s

2

3

4

5 t 10	

 10	

 9	

 8	

 4	

 10	

 10	
 6	
 2	

10	

0	

6	

6	
 8	
 10	

8	

2	

 G:	

s

2

3

4

5 t 1	

 6	

 Gf:	

 10	

 8	
 10	

8	

6	

6	

 6	

 4	

 4	

 4	

 2	

X	

8	

2	

8	

X	

X	

0	

X	

Flow value = 16	

3/27/13	

6	

Ford-Fulkerson Algorithm

Mar 27, 2013 CSCI211 - Sprenkle 31

s

2

3

4

5 t 10	

 10	

 9	

 8	

 4	

 10	

 10	
 6	
 2	

10	

2	

8	

8	
 8	
 10	

8	

0	

 G:	

s

2

3

4

5 t

 6	
 2	

 Gf:	

 10	

 10	

8	

6	

 8	

8	

 2	

 2	
 1	

 2	

 8	
 2	

X	

9	

7	
 9	

X	

X	

9	
X	

X	
 3	

Flow value = 18	

Ford-Fulkerson Algorithm

Mar 27, 2013 CSCI211 - Sprenkle 32

s

2

3

4

5 t 10	

 10	

 9	

 8	

 4	

 10	

 10	
 6	
 2	

10	

3	

9	

9	
 9	
 10	

7	

0	

 G:	

s

2

3

4

5 t 1	
 9	

 1	

 1	
 6	
 2	

 Gf:	

 10	

 7	
 10	

6	

 9	

9	

 3	

 1	

Flow value = 19	

How do we know we’re done?	

Ford-Fulkerson Algorithm

Mar 27, 2013 CSCI211 - Sprenkle 33

s

2

3

4

5 t 10	

 10	

 9	

 8	

 4	

 10	

 10	
 6	
 2	

10	

3	

9	

9	
 9	
 10	

7	

0	

 G:	

s

2

3

4

5 t 1	
 9	

 1	

 1	
 6	
 2	

 Gf:	

 10	

 7	
 10	

6	

 9	

9	

 3	

 1	

What is reachable from s	

Flow value = 19	
Cut capacity = 19	

Analyzing Augmenting Path Algorithm

Mar 27, 2013 CSCI211 - Sprenkle 34

Ford-Fulkerson(G, s, t, c)	
 foreach e ∈ E f(e) = 0 # initially no flow	
 Gf = residual graph	
	
 while there exists augmenting path P	
 f = Augment(f, c, P) # change the flow	
 update Gf 	 	# build a new residual graph	
	
 return f	

Augment(f, c, P)	
 b = bottleneck(P) # edge on P with least capacity	
 foreach e ∈ P	
 if (e ∈ E) f(e) = f(e) + b # forward edge, flow	
 else f(eR) = f(e) - b # forward edge, flow 	
 return f	

Why does alg work? 	
What is happening at each iteration?	

What is the running time?	
 Need more analysis …	

This Week

•  Problem Set 8 due Friday
•  Start reading chapter 7

Mar 27, 2013 CSCI211 - Sprenkle 35

