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Objectives 

• Wrap Up Minimum Spanning Tree 
•  Union-Find data structure 
•  Clustering 
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Let’s Talk About Algorithms 

•  Challenge 
•  Rules 
• Wiki purpose 
•  Suggestions 
•  Honor Code 
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Review 

• When we have a problem about shortest 
path, what algorithm should we think about 
applying? 

•  BFS or Dijkstra’s 
Ø Difference: Dijkstra’s when edges have positive 

(and different) weights 
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Review: Laying Cable 
•  Comcast wants to lay cable in a neighborhood 

Ø  Reach all houses 
Ø  Least cost 
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Neighborhood Layout	
 Cost of laying cable btw 
houses depends on amount of 
cable, landscaping, obstacles, 

etc.	
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Review: Minimum Spanning Tree 
•  Spanning tree: spans all nodes in graph 
•  Given a connected graph G = (V, E) with 

positive edge weights ce, an MST is a subset of 
the edges T ⊆ E such that T is a spanning tree 
whose sum of edge weights is minimized 
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G = (V, E)	
 T,  Σe∈T ce = 50	


What were the three algorithms we proposed?	


Review: Greedy Algorithms 

•  Prim's algorithm.  Start with some root node s and greedily 
grow a tree T from s outward.  At each step, add the 
cheapest edge e to T that has exactly one endpoint in T. 
Ø  Similar to Dijkstra’s (but simpler) 

•  Kruskal's algorithm.  Start with T = φ. Consider edges in 
ascending order of cost. Insert edge e in T unless doing so 
would create a cycle. 

•  Reverse-Delete algorithm.  Start with T = E.  Consider 
edges in descending order of cost. Delete edge e from T 
unless doing so would disconnect T. 
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What do these algorithms have/do/check in common?	


All three algorithms produce a MST	
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Review: Important Properties 
•  Simplifying assumption: All edge costs ce are distinct 
➜  MST is unique 

•  Cut property.  Let S be any subset of nodes, and let e 
be the min cost edge with exactly one endpoint in S.  
Then MST contains e. 

•  Cycle property.  Let C be any cycle, and let f be the 
max cost edge belonging to C.  Then MST does not 
contain f. 
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Cut Property: e is in MST	


e	


Cycle Property: f is not in MST	


We want to prove these properties	


Review: Cycle-Cut Intersection 

•  Claim.  A cycle and a cutset intersect in an 
even number of edges 

•  Proof sketch 
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Cycle  C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1	

Cut S = { 4, 5, 8 }���
Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8 ���
Intersection = 3-4, 5-6	


(Cut)	
 Edges link to not-Cut	


1.  Cycle all in S	

2.  Cycle not in S	

3.  Cycle has to go from ���

SàV-S and back	


V - S	


Proving Cut Property: OK to Include Edge 

•  Simplifying assumption.  All edge costs ce 
are distinct. 

•  Cut property.  Let S be any subset of nodes, 
and let e be the min cost edge with exactly 
one endpoint in S. Then the MST T* contains 
e. 

•  Pf.? 
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Proving Cut Property: OK to Include Edge 

•  Simplifying assumption.  All edge costs ce 
are distinct. 

•  Cut property.  Let S be any subset of nodes, 
and let e be the min cost edge with exactly 
one endpoint in S. Then the MST T* contains 
e. 

•  Pf. (exchange argument) 
Ø Suppose there is an MST T* that does not 

contain e 
•  What do we know about T, by defn? 
•  What do we know about the nodes e connects? 
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Proving Cut Property: OK to Include Edge 

•  Cut property.  Let S be any subset of nodes, 
and let e be the min cost edge with exactly one 
endpoint in S. Then the MST T* contains e. 

•  Pf. (exchange argument) 
Ø Suppose there is an MST T* that does not 

contain e 
Ø Adding e to T* creates a cycle C in T* 
Ø Edge e is in cycle C and in cutset corresponding 

to S   
⇒ there exists another edge, say f, that is in both C and 

S’s cutset 
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Which means?	

e	


Proving Cut Property: OK to Include Edge 
•  Cut property.  Let S be any subset of nodes, and let e 

be the min cost edge with exactly one endpoint in S. 
Then the MST T* contains e. 

•  Pf. (exchange argument) 
Ø Suppose there is an MST T* that does not contain e 
Ø Adding e to T* creates a cycle C in T* 
Ø Edge e is in cycle C and in cutset corresponding to 

S   
⇒ there exists another edge, say f, that is in both C and S’s 

cutset 
Ø T' = T* ∪ { e } - { f } is also a spanning tree 
Ø Since ce < cf, cost(T') < cost(T*) 
Ø This is a contradiction.   ▪ 
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Proving Cycle Property: OK to Remove 
Edge 
•  Simplifying assumption.  All edge costs ce 

are distinct 
•  Cycle property.  Let C be any cycle in G, and 

let f be the max cost edge belonging to C. 
Then the MST T* does not contain f. 
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Ideas about approach?	


Cycle Property: OK to Remove Edge 
•  Cycle property. Let C be any cycle in G, and let f be 

the max cost edge belonging to C. Then the MST T* 
does not contain f. 

•  Pf.  (exchange argument) 
Ø Suppose f belongs to T* 
Ø Deleting f from T* creates a cut S in T* 
Ø Edge f is both in the cycle C and in the cutset S 

⇒  there exists another edge, say e, that is in both C and S 
Ø T' = T* ∪ { e } - { f } is also a spanning tree 
Ø Since ce < cf, cost(T') < cost(T*) 
Ø This is a contradiction.   ▪ 
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Summary of What Just Proved 
•  Simplifying assumption: All edge costs ce are distinct 
➜  MST is unique 

•  Cut property.  Let S be any subset of nodes, and let e 
be the min cost edge with exactly one endpoint in S.  
Then MST contains e. 

•  Cycle property.  Let C be any cycle, and let f be the 
max cost edge belonging to C.  Then MST does not 
contain f. 
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Cycle Property: f is not in MST	


Prim’s Algorithm 

•  Start with some root node s and greedily 
grow a tree T from s outward. 

•  At each step, add the cheapest edge e to T 
that has exactly one endpoint in T. 
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How can we prove its correctness?	


[Jarník 1930, Dijkstra 1957, Prim 1959]	


Prim's Algorithm: Proof of Correctness 

•  Initialize S to be any node 
•  Apply cut property to S 

Ø Add min cost edge (v, u) in cutset corresponding 
to S, and add one new explored node u to S 
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Ideas about 
implementation?	


Implementation: Prim's Algorithm 

•  Maintain set of explored nodes S 
•  For each unexplored node v, maintain 

attachment cost a[v] à cost of cheapest 
edge v to a node in S 
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foreach (v ∈ V) a[v] = ∞	
Initialize an empty priority queue Q	
foreach (v ∈ V) insert v onto Q	
Initialize set of explored nodes S = φ	
while (Q is not empty) 	
   u = delete min element from Q	
   S = S ∪ { u }	
   foreach (edge e = (u, v) incident to u)	
       if ((v ∉ S) and (ce < a[v]))	
           decrease priority a[v] to ce	

Similar to Dijkstra’s algorithm	


Running Time?	




2/17/12	


4	


Implementation: Prim's Algorithm 

•  Maintain set of explored nodes S 
•  For each unexplored node v, maintain 

attachment cost a[v] à cost of cheapest 
edge v to a node in S 

Feb 17, 2012 CSCI211 - Sprenkle 19 

foreach (v ∈ V) a[v] = ∞	
Initialize an empty priority queue Q	
foreach (v ∈ V) insert v onto Q	
Initialize set of explored nodes S = φ	
while (Q is not empty) 	
   u = delete min element from Q	
   S = S ∪ { u }	
   foreach (edge e = (u, v) incident to u)	
       if ((v ∉ S) and (ce < a[v]))	
           decrease priority a[v] to ce	

O(deg(u))	


O(n)	

O(log n)	


O(n logn)	


O(n)	


O(log n)	


O(m log n) with a heap	


Similar to Dijkstra’s algorithm	


Kruskal’s Algorithm [1956] 

•  Start with T = φ 
•  Consider edges in ascending order of cost 
•  Insert edge e in T unless doing so would 

create a cycle 
Ø Add edge as long as “compatible” 
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How can we prove algorithm’s correctness?	


Kruskal's Algorithm: 
Proof of Correctness 
•  Consider edges in ascending order of weight 
•  Case 1:  If adding e to T creates a cycle, discard e 

according to cycle property (e must be max weight) 
•  Case 2:  Otherwise, insert e = (u, v) into T according to 

cut property where S = set of nodes in u's connected 
component 
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What is tricky about implementing 
Kruskal’s algorithm?	
 Implementing Kruskal’s Algorithm 
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What is tricky about implementing Kruskal’s algorithm?	


How do we know when adding an edge will create a cycle?	

• What are the properties of a graph/its nodes when 

adding an edge will create a cycle?	


UNION-FIND DATA 
STRUCTURE 
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Union-Find Data Structure 
•  Keeps track of a graph as edges are added 

Ø Cannot handle when edges are deleted 
•  Maintains disjoint sets 

Ø E.g., graph’s connected components 
•  Operations: 

Ø Find(u): returns name of set containing u 
•  How utilized to see if two nodes are in the same set? 
•  Goal implementation: O(log n) 

Ø Union(A, B): merge sets A and B into one set 
•  Goal implementation: O(log n) 
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Implementing Kruskal's Algorithm 

•  Using the union-find data structure 
Ø Build set T of edges in the MST 
Ø Maintain set for each connected component 
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Sort edge weights so that c1 ≤ c2 ≤ ... ≤ cm	
T = {}	
foreach (u ∈ V) make a set containing singleton u	
	
for i = 1 to m	
   (u,v) = ei	
   if (u and v are in different sets)	
      T = T ∪ {ei}	
      merge the sets containing u and v	
return T	

are u and v in different connected components?	


merge two components	


Costs?	


Implementing Kruskal's Algorithm 

•  Using best implementation of union-find 
Ø Sorting: O(m log n) 
Ø Union-find: O(m α (m, n)) 
Ø O(m log n) 
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m ≤ n2 ⇒ log m is O(log n)	


essentially a constant	


Sort edges weights so that c1 ≤ c2 ≤ ... ≤ cm	
T = {}	
foreach (u ∈ V) make a set containing singleton u	
	
for i = 1 to m	
   (u,v) = ei	
   if (u and v are in different sets)	
      T = T ∪ {ei}	
      merge the sets containing u and v	
return T	

are u and v in different connected components?	


merge two components	


Limitations to Applying MST? 

•  Motivating Example: Comcast laying cable 
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Neighborhood Layout	
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Looking ahead 

• Wiki: Chapter 4 (front matter through 4.6, 
skipping 4.3) 
Ø Due Tues midnight after break 

•  PS 5 due Friday after break 
•  I will be at a conference Wed afternoon 

through Saturday after break 
Ø No class Friday à Traded for Danner external 

memory algorithms discussion 
Ø Plan accordingly for the problem sets 

•  Available over email 
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