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Objectives 

• Wrap Up: Minimizing Lateness 
Ø Greedy exchange 

•  Problem: Shortest Path 
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Review: Scheduling to Minimizing Lateness 

•  Single resource processes one job at a time 
•  Job j requires tj units of processing time and is due at 

time dj (its deadline) 
•  If j starts at time sj, it finishes at time fj = sj + tj 
•  Lateness:  j = max { 0,  fj - dj } 
•  Goal:  schedule all jobs to minimize maximum 

lateness L = max j 
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Minimizing Lateness: Inversions 

•  Claim.  Swapping two adjacent, inverted jobs 
reduces the number of inversions by one and 
does not increase the max lateness. 

•  How to prove? 
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Minimizing Lateness: Inversions 

•  Claim.  Swapping two adjacent, inverted jobs 
reduces the number of inversions by one and 
does not increase the max lateness. 

•  Pf.  Let  be the lateness before the swap, 
and let ' be it afterwards 
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Minimizing Lateness: Inversions 
•  Claim.  Swapping two adjacent jobs with the same 

deadline does not increase the max lateness 
•  Pf.  Let  be the lateness before the swap,  

and let ’ be it afterwards 
Ø  Lateness remains the same for all other jobs:  

•  'k = k for all k ≠ i, j 
Ø  j ≤ i because di < dj 
Ø Lateness of i before is i = fi - di = Ti-1 + ti + tj - di 
Ø Lateness of j after is 'j =fj’ - dj = Ti-1 + ti + tj - dj 

•  But di < dj 
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Minimizing Lateness: Inversions 

•  Claim.  Swapping two adjacent, inverted jobs 
reduces the number of inversions by one and 
does not increase the max lateness. 

•  Pf.  Let  be the lateness before the swap, 
and let ' be it afterwards 
Ø 'k = k for all k ≠ i, j 
Ø j ≤ i , 'i ≤ i   
Ø If job j is late: 
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€ 

"  j = " f j − d j (definition)
= fi − d j ( j finishes at time f i)
≤ fi − di (i < j)
≤  i (definition)

Shows that the maximum lateness of jobs does not increase after swap	
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Greedy Exchange Proofs 
1.  Label your algorithm’s solution and a general solution. 

Ø  Example: let A = {a1, a2, ..., ak} be the solution generated by your algorithm,  
and let O = {o1, o2, ..., om} be an optimal feasible solution. 

2.  Compare greedy with other solution.  
Ø  Assume that the arbitrary/optimal solution is not the same as  

your greedy solution (since otherwise, you are done). 
Ø  Typically, can isolate a simple example of this difference, such as: 
①  There is an element e ∈ O that ∉ A and an element f ∈ A that ∉ O 
②  2 consecutive elements in O are in a different order than in A  

Ø  i.e., there is an inversion 

3.  Exchange.  
Ø  Swap the elements in question in O (either ➀ swap one element out and 

another in or ➁ swap the order of the elements) and argue that solution is no 
worse than before.  

Ø  Argue that if you continue swapping, you eliminate all differences between O 
and A in a finite # of steps without worsening the solution’s quality. 

Ø  Thus, the greedy solution produced is just as good as any optimal solution, and 
hence is optimal itself. 

Feb 8, 2013 CSCI211 - Sprenkle 7 

Minimizing Lateness: 
Analysis of Greedy Algorithm 
•  Theorem. Greedy schedule S is optimal 
•  Pf idea. Convert Opt to Greedy 

Ø Does opt schedule have idle time? 
Ø What if opt schedule has no inversions? 
Ø What if opt schedule has inversions? 
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Minimizing Lateness: 
Analysis of Greedy Algorithm 
•  Theorem. Greedy schedule S is optimal 
•  Pf.  Define S* to be an optimal schedule that 

has the fewest number of inversions,  
and let's see what happens 
Ø Can assume S* has no idle time 
Ø  If S* has no inversions (and no idle time), then S = S* 
Ø  If S* has an inversion, let i-j be an adjacent inversion 

•  Swapping i and j does not increase the maximum 
lateness and strictly decreases the number of 
inversions 

•  This contradicts definition of S*  ▪ 
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Analyzing Running Time 

•  Earliest deadline first. 
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

d5 = 14 d2 = 8 d6 = 15 d1 = 6 d4 = 9 d3 = 9 

Sort n jobs by deadline so that d1 ≤ d2 ≤ … ≤ dn	
t = 0	
for j = 1 to n	
   Assign job j to interval [t, t + tj]	
   sj = t	
   fj = t + tj	
   t = t + tj	
output intervals [sj, fj]	

What is the runtime of this algorithm?	



O(n logn)	



Greedy Analysis Strategies 
•  Greedy algorithm stays ahead.   

Show that after each step of the greedy 
algorithm, its solution is at least as good as 
any other algorithm's.  

•  Exchange argument.  Gradually transform 
any solution to the one found by the greedy 
algorithm without hurting its quality. 

•  Structural.  Discover a simple "structural" 
bound asserting that every possible solution 
must have a certain value. Then show that 
your algorithm always achieves this bound. 
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SHORTEST PATH 
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Shortest Path Problem 
•  Given 

Ø Directed graph G = (V, E) 
Ø Source s, destination t 
Ø Length e = length of edge e (non-negative) 

•  Shortest path problem: find shortest directed 
path from s to t 
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Cost of path s-A-B-E-t���
     =  9 + 23 + 2 + 16���
     = 48	
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cost of path = ���
sum of edge costs in path	

www.wlu.edu	
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Shortest Path Problem 
•  Shortest path problem: find shortest directed 

path from s to t 
•  Brainstorming on solution … 
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Dijkstra’s Algorithm 

1. Maintain a set of explored nodes S 
Ø Keep the shortest path distance d(u) from s to u 

2.  Initialize S={s}, d(s)=0, ∀u≠s, d(u)=∞ 
3. Repeatedly choose unexplored node v 

which minimizes 
Ø  Add v to S and set d(v) = π(v) 

,)(min)(
:),( eSuvue

udv +=
∈=

π

s	



v	



u	



d(u)	



S	



e	



shortest path to some u ���
in explored part���

followed by a single edge (u, v)	
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Dijkstra's Algorithm 
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How is algorithm Greedy?	



shortest path to some u ���
in explored part���

followed by a single edge (u, v)	



How is Algorithm Greedy? 

• We always form shortest new s-v path from 
a path in S followed by a single edge 

•  Proof of optimality: Stays ahead of all other 
solutions 
Ø Each time selects a path to a node v, that path is 

shorter than every other possible path to v 
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Implementation Ideas	


•  What to represent?	


•  How to represent?	



shortest path to some u ���
in explored part���

followed by a single edge (u, v)	



Looking Ahead 

•  Exam due today at 5 p.m. 
• Wiki due Tuesday for sections 3.4-3.6; 

chapter 4 (front matter), 4.1 
Ø Directed graphs, topological order 
Ø Greedy algorithms 

•  PS4 due Friday 
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