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CSCI211: Intro Objectives 

•  Introduction to Algorithms, Analysis 
•  Course summary 
•  Reviewing proof techniques 
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My Bio 
•  From Dallastown, PA 
•  B.S., Gettysburg College 
•  M.S., Duke University 
•  Ph.D., University of Delaware 
•  For fun: pop culture, ultimate,  

gardening 
•  Volunteer at Rockbridge SPCA 

What This Course Is About 
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From 
30 Rock 

For me, great algorithms are the poetry of computation.  
Just like verse, they can be terse, allusive, dense, and ���
even mysterious. But once unlocked, they cast a ���
brilliant new light on some aspect of computing.       	


     -- Francis Sullivan 

Now, everything comes down to expert knowledge of 
algorithms and data structures.	

If you don't speak fluent O-notation, you may have 
trouble getting your next job at the technology 
companies in the forefront.	


    -- Larry Freeman 
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Motivation 

•  From a Google interview preparation email 
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Get your algorithms straight (they may comprise up to a third ���
of your interview). 	

Visit: http://en.wikipedia.org/wiki/List_of_algorithm_general_topics 	

and examine this list of algorithms: ���
 http://en.wikipedia.org/wiki/List_of_algorithms	


and data structures: http://en.wikipedia.org/wiki/List_of_data_structures  	

Write out all the algorithms yourself from start to finish and���
make sure they're working.	


What is an Algorithm? 
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• Precise procedure to solve a problem	


• Completes in a finite number of steps	
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Questions to Consider 

• What are our goals when designing 
algorithms? 

•  How do we know when we’ve met our goals? 
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•  Goals: Correctness, Efficiency	

•  Use analysis to show/prove	


Course Goals 

•  Learn how to formulate precise problem 
descriptions 

•  Learn specific algorithm design techniques 
and how to apply them 

•  Learn how to analyze algorithms for 
efficiency and for correctness 

•  Learn when no exact, efficient solution is 
possible 
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Course Content 

•  Algorithm analysis 
Ø Formal – proofs; Asymptotic bounds 

•  Advanced data structures 
Ø e.g., heaps, graphs 

•  Greedy Algorithms 
•  Dynamic Programming 
•  Divide and Conquer 
•  Network Flow 
•  Computational Intractability 
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Course Notes 
•  Textbook: Algorithm Design 

Ø Optional: CLRS 
•  Participation is encouraged 

Ø Individual, group, class 
•  Assignments: 

Ø Reading text, writing brief summaries 
•  Readings through Friday due following Tuesday 

Ø Solutions to problems 
Ø Analysis of solutions 
Ø Programming (little) 
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Given on Friday, ���
due next Friday	


Course Grading 

•  40% Individual written and programming 
homework assignments 

•  30% Two midterm exams 
•  20% Final 
•  5% Text book reading summaries, weekly 

Ø In a journal on wiki 
•  5% Participation and attendance 
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Journal Content 
•  Brief summary of chapter/section 

Ø  ~1 paragraph of about 5-10 sentences/section; feel free to 
write more if that will help you 

•  Include motivations for the given problem, as appropriate 
•  For algorithms, brief sketch of algorithm, intuition, and 

implementation 
Ø  Include runtime 

•  Questions you have about motivation/solution/proofs/
analysis 

•  Discuss anything that makes more sense after reading it 
again, after it was presented in class (or vice versa) 

•  Anything that you want to remember, anything that will 
help you 

•  Say something about how readable/interesting the section 
was on scale of 1 to 10 
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ALGORITHMS 
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Computational Problem Solving 101 

•  Computational Problem 
Ø A problem that can be solved by logic 

•  To solve the problem: 
1.  Create a model of the problem 
2.  Design an algorithm for solving the problem 

using the model 
3.  Write a program that implements the algorithm 
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Computational Problem Solving 101 

•  Algorithm: a well-defined recipe for solving a 
problem 
Ø Has a finite number of steps  
Ø Completes in a finite amount of time 

•  Program 
Ø An algorithm written in a programming language 
Ø Important to consider implementation’s effect on 

runtime 
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PROOFS 
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Why Proofs? 

• What are insufficient alternatives? 

•  How can we prove something isn’t true? 
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Why Proofs? 

• What are insufficient alternatives? 
Ø Examples 

•  Considered all possible? 
Ø Empirical/statistical evidence 

•  Ex: “Lying” with statistics 

•  How can we prove something isn’t true? 
Ø One counterexample 
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Need irrefutable proof that something is 
true—for all possibilities	
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Soap Opera Proofs 

•  “It’s the only thing that makes sense.” 
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Analyzing Statistics 

Hospital A 
•  cured a greater % of its 

male patients last year 
than Hospital B 

•  cured a greater % of its 
female patients last year 
than Hospital B 

Hospital B 
•  cured a greater % of its 

patients last year than 
Hospital A 
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Two hospitals (A and B) each claim to be better ���
at treating a certain disease than the other.	


Given that none of the #s involved are zero, is it possible that 
both hospitals have their calculations correct?	


If so, which hospital would you rather be treated by?	


From Joel Feinstein���
University of Nottingham	

“Why do we do proofs”	


Example 

Hospital Male 
Patients % Female 

Patients % Total 
Patients % 

A 50/100 50% 1/1 100% 51/101 50.5% 
B 24/50 48% 49/50 98% 73/100 73% 
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Well-known phenomenon: Simpson’s Paradox	


From Joel Feinstein���
University of Nottingham	

“Why do we do proofs”	
 Common Types of Proofs? 
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Common Types of Proofs 

•  Direct proofs 
Ø Series of true statements, each implies the next 

•  Proof by contradiction 
•  Proof by induction 
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Proof By Contradiction 
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What are the steps to a 	

proof by contradiction?	
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Proof By Contradiction 

1. Assume the proposition (P) we want to 
prove is false 

2. Reason to a contradiction 
3. Conclude that P must therefore be true 
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Prove: There are Infinitely Many Primes 

• What is our first step (proof by 
contradiction)? 

• What do we want to show? 
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• What is a prime number?	

• What is not-a-prime number?	


Prove: There are Infinitely Many Primes 

•  Assume there are a finite number of prime 
numbers 
Ø List them: p1, p2 ..., pn 

•  Consider the number q = p1p2... pn + 1 
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What are the possibilities for q?	


q is either composite or prime	


Prove: There are Infinitely Many Primes 

•  Assume there are a finite number of prime 
numbers 
Ø List them: p1, p2 ..., pn 

•  Consider the number q = p1p2... pn + 1 
•  Case: q is composite 

Ø If we divide q by any of the primes, we get a 
remainder of 1 à q is not composite  
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Prove: There are Infinitely Many Primes 

•  Assume there are a finite number of prime 
numbers 
Ø List them: p1, p2 ..., pn 

•  Consider the number q = p1p2... pn + 1 
•  Case: q is composite 

Ø If we divide q by any of the primes, we get a 
remainder of 1 à q is not composite  

•  Therefore, q is prime, but q is larger than any 
of the finitely enumerated prime numbers 
listed à Contradiction 
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Proof thanks 

to Euclid	


Proof By Induction 
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What are the steps to a 	

proof by induction?	
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Proof By Induction 

1. What you want to prove 
2. Base case 

Ø Typical: Show statement holds for n = 0 or n = 1 
3.  Induction hypothesis 
4.  Induction step: show that adding one to n 

also holds true 
Ø Relies on earlier assumptions 

Jan 7, 2013 Sprenkle – CSCI211 31 

When/why is induction useful?	


Show true for all (infinite) possibilities	

Show works for “one more”	


Proof By Induction 
1.  State your P(n). 

Ø  P(n) is a property as a function of n 
•  State for which n you will prove your P(n) to be true 

2.  State your base case.  
Ø  State for which n your base case is true, and prove it 

•  Use the smallest n for which your statement is true 
3.  State your induction hypothesis 

Ø  Without an induction hypothesis, the proof falls apart.  
Ø  Usually it is just restating your P(n), with no restriction on n (an arbitrary n) 

4.  Inductive Step.  
Ø  Consider P(n + 1).  

•  Try to prove a larger case of the problem than you assumed in your induction 
hypothesis.  

Ø  Keep in mind: What are you trying to prove?  
Ø  Use your induction hypothesis, and clearly state where it is used.  

If you haven’t used your induction hypothesis, then you are not doing a 
proof by induction.  

5.  Conclusion. 
Ø   Optionally, restate the problem. 

Jan 7, 2013 Sprenkle – CSCI211 32 

Example of Induction Proof 
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Prove:  
  2+4+6+8+… + 2n = n*(n+1) 

For what values of n do we want to prove this is true?	


A: where n is a natural number	


Example of Induction Proof 

•  Base case: n = 1 à 
Ø 2*1 = 1*(1+1)  ✔
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Prove:    2+4+6+8+… + 2n = n*(n+1) 
(where n is a natural number)	


Example of Induction Proof 

•  Base case: n = 1 à 
Ø 2*1 = 1*(1+1)  ✔


•  Induction Hypothesis:  
Ø Assume statement is true for some arbitrary  

k > 1 
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Prove:    2+4+6+8+… + 2n = n*(n+1) 
(where n is a natural number)	


Example of Induction Proof 

•  Base case: n = 1 à 
Ø 2*1 = 1*(1+1)  ✔


•  Induction Hypothesis:  
Ø Assume statement is true for some arbitrary  

k > 1 
•  Prove holds for k+1 
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Prove:    2+4+6+8+… + 2n = n*(n+1) 
(where n is a natural number)	
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Example of Induction Proof 

•  Base case: n = 1 à 
Ø 2*1 = 1*(1+1)  ✔


•  Induction Hypothesis:  
Ø Assume statement is true for some arbitrary  

k > 1 
•  Prove holds for k+1, i.e., show that  

2+4+6+8+… + 2k + 2(k+1) = (k+1)*((k+1)+1) 

Jan 7, 2013 Sprenkle – CSCI211 37 

Prove:    2+4+6+8+… + 2n = n*(n+1) 
(where n is a natural number)	


Proof 
•  Base case: n = 1 à 2*1 = 1*(1+1)  ✔


•  Assume statement is true for arbitrary n=k>1 
•  Prove true for k+1, i.e., show that  

2+4+6+8+… + 2k + 2(k+1) = (k+1)*((k+1)+1) 
Ø 2+4+6+8+… + 2k + 2(k+1) 
= k*(k+1) + 2(k+1) 
= k2 + k + 2k + 1 
= k2 + 3k + 1  
= (k+1)*(k+2) 
= (k+1)*((k+1)+1)  ✔ 
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Prove:    2+4+6+8+… + 2n = n*(n+1) 

I want to see these 
steps in your proofs!	


Approach shown: 
transform LHS to 

RHS	


Looking Ahead 

•  Check out course wiki page 
Ø Test username/password 
Ø Decide which style of journal you want: wiki or 

blog 
•  Read first two pages of book’s preface, 

Chapter 1 of book 
Ø Summarize on Wiki by next Tuesday @ midnight 
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