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Objectives 

•  Proving correctness of  
Stable Matching algorithm 

•  Analyzing algorithms 
•  Asymptotic running times 
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Wiki	

Everyone log in okay?	

Decide on either using a blog or wiki-style journal?	


Review 

• What is the stable matching problem? 
Ø What is given? 
Ø What is output? 

•  Provide a sketch of the algorithm 
• What were our observations about how a 

woman’s state changed over the duration of 
the algorithm? 
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Stable Matching: Proving Correctness 

•  Need to show 
Ø Algorithm terminates 
Ø Result is a perfect matching 
Ø Result is a stable matching 
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Propose-And-Reject Algorithm 
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Initialize each person to be free	
while (some man is free and hasn't proposed to every woman) 	
    Choose such a man m	
    w = 1st woman on m's list to whom m has not yet proposed	
    if w is free	
        assign m and w to be engaged	
    else if w prefers m to her fiancé m'	
        assign m and w to be engaged and m' to be free	
    else	
        w rejects m	

[Gale-Shapley 1962]	


Does algorithm terminate?	


Proof of Correctness: Termination 

•  Claim. Algorithm terminates after at most n2 
iterations of while loop. 
Ø Hint: How wouldn’t the algorithm terminate? 
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Proof of Correctness: Termination 

•  Claim. Algorithm terminates after at most n2 
iterations of while loop. 

•  Pf. Each time through the while loop, a man 
proposes to a new woman. There are only n2 
possible proposals.  
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Algorithm Analysis 

•  Perfect matching: everyone is matched 
monogamously 

•  Hint: in algorithm, we know if m is free at 
some point in the execution of the algorithm, 
then there is a woman to whom he has not 
yet proposed. 

Jan 11, 2013 Sprenkle - CSCI211 7 

Prove that final matching is a perfect matching	


Proof of Correctness: Perfection 

•  Claim.  All men and women get matched. 
•  Pf.  (by contradiction) 

Ø Where should we start? 
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Suppose that some man m is not 
matched upon termination of algorithm	


Proof of Correctness: Perfection 
•  Claim.  All men and women get matched. 
•  Pf.  (by contradiction) 

Ø Suppose that m is not matched upon termination 
of algorithm 

Ø Then some woman, say w, is not matched upon 
termination. 

Ø By Observation 2, w was never proposed to. 
Ø But, last man proposed to everyone, since he 

ends up unmatched 
•  (by the while loop’s condition) 

Ø Contradiction  ▪ 
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Proof of Correctness: Stability 

•  Claim.  No unstable pairs. 
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Bertha-Zeus	


Amy-Yancey	


S*	


. . .	


Jan 11, 2013 Sprenkle - CSCI211 

What does it mean to be unstable, ���
given matching S*?	


How do you think we should ���
approach this proof?	


Proof of Correctness: Stability 

•  Claim.  No unstable pairs. 
•  Pf.  (by contradiction) 

Ø Suppose m-w is an unstable pair:  
each prefers each other to partner in  
Gale-Shapley matching S*. 

11 

Bertha-Zeus	


Amy-Yancey	


S*	


. . .	
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What are the possibilities that lead to this?	


Proof of Correctness: Stability 
•  Claim.  No unstable pairs. 
•  Pf.  (by contradiction) 

Ø Suppose m-w is an unstable pair: each prefers each 
other to partner in Gale-Shapley matching S*. 

Ø Case 1: m never proposed to w 
  ⇒  m prefers his GS partner to w.  
  ⇒  m-w is stable. 

Ø Case 2: m proposed to w 
  ⇒  m rejected w (right away or later) 
  ⇒  w prefers her GS partner to m. 
  ⇒  m-w is stable. 

Ø  In either case m-w is stable, a contradiction.  ▪ 
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Bertha-Zeus	


Amy-Yancey	


S*	


. . .	


men propose in 
decreasing order of 
preference	


women only trade up	
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Summary So Far… 

•  Stable matching problem.  Given n men 
and n women and their preferences, find a 
stable matching if one exists. 

•  Gale-Shapley algorithm.  Guarantees to 
find a stable matching for any input 
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Remaining Questions: 	

•  If there are multiple stable matchings, which one does GS 

find?  (see book)	

•  How to implement GS algorithm efficiently? (Monday)	


•  What is our goal running time?	


Review: Our Process 

1. Understand/identify problem 
Ø  Simplify as appropriate 

2. Design a solution 
3. Analyze 

Ø  Correctness, efficiency 
Ø  May need to go back to step 2 and try again 

4.  Implement 
Ø  Within bounds shown in analysis 
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Stable Matching Summary 

•  Stable matching problem.  Given 
preference profiles of n men and n women, 
find a stable matching. 

•  Gale-Shapley algorithm.  Finds a stable 
matching in O(n2) time. 
Ø Claim: can implement algorithm efficiently 

15 

no man and woman prefer to be with���
each other than assigned partner	
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Lloyd 
Shapley 

•  2012 Nobel Memorial Prize in Economic 
Sciences “for the theory of stable allocations 
and the practice of market design.” 
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1980	
2012	


TODAY’S GOAL: 
DEFINE ALGORITHM 

EFFICIENCY 
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Our Process 

1. Understand/identify problem 
Ø  Simplify as appropriate 

2. Design a solution 
3. Analyze 

Ø  Correctness, efficiency 
Ø  May need to go back to step 2 and try again 

4.  Implement 
Ø  Within bounds shown in analysis 
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(On Monday)	
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Computational Tractability 
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Charles Babbage 
(1864)	


As soon as an Analytic Engine exists, it will necessarily guide the future 
course of the science.  Whenever any result is sought by its aid, the 

question will arise - By what course of calculation can these results be 

arrived at by the machine in the shortest time?   

	
 	
 	
 	
 	
-- Charles Babbage	


Analytic Engine 
(schematic)	


http://plan28.org/	

Brute Force 

•  For many non-trivial problems, there is a 
natural brute force search algorithm that 
checks every possible solution 
Ø Typically takes 2N time or worse for inputs of 

size N 
Ø Unacceptable in practice 
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Example: How many possible solutions are there in the 
stable matching problem?	

	

In other words, how many possible perfect matchings are there?  
For each perfect match, we’ll check if it’s stable.	


“Exponential”	


Brute Force 

•  For many non-trivial problems, there is a 
natural brute force search algorithm that 
checks every possible solution 
Ø Typically takes 2N time or worse for inputs of 

size N 
Ø Unacceptable in practice 

•  Example: Stable matching: n! with n men and 
n women 
Ø If n increases by 1, what happens to the running 

time? 
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“Exponential”	


How Do We Measure Runtime? 
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Worst-Case Running Time 

•  Obtain bound on largest possible running 
time of algorithm on input of a given size N 
Ø Generally captures efficiency in practice 
Ø Draconian view but hard to find effective 

alternative 
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What are alternatives to worst-case analysis?	


Average Case Running Time 

•  Obtain bound on running time of algorithm on 
random input as a function of input size N 
Ø Hard (or impossible) to accurately model real 

instances by random distributions 
Ø Algorithm tuned for a certain distribution may 

perform poorly on other inputs 
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Towards a Definition of Efficient… 

•  Desirable scaling property: When input size 
doubles, algorithm should only slow down by 
some constant factor C   
Ø Doesn’t grow multiplicatively 
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Polynomial-Time 

ü Desirable scaling property:  When input size 
doubles, algorithm should only slow down by 
some constant factor C 
Ø What happens if we double N? 

•  Defn.  An algorithm is polynomial time (or 
polytime) if the above scaling property holds. 
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Defn.  There exists constants c > 0 and d > 0 ���
such that on every input of size N, ���

 its running time is bounded by c Nd steps.	


Algorithm Efficiency 
•  Defn.  An algorithm is efficient if its running time is 

polynomial 
•  Justification:  It really works in practice! 

Ø  In practice, poly-time algorithms that people develop 
almost always have low constants and low exponents 

Ø Breaking through the exponential barrier of brute force 
typically exposes some crucial structure of the problem 

•  Exceptions 
Ø Some poly-time algorithms do have high constants and/

or exponents (6.02 × 1023 × N20) and are useless in 
practice 

Ø Some exponential-time (or worse) algorithms are widely 
used because the worst-case instances seem to be rare 
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Running Times 
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Input Size	


Polynomial 	


Visualizing Running Times 
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•  Huge difference from polynomial to not polynomial	

•  Differences in runtime matter more as input size increases	


Polynomial	
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Comparing 10000 n2 and n3 
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As input size increases, n3 dominates large constant * n2	


è Care about running time as input size approaches infinity	

è Only care about highest-order term	
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Asymptotic Order of Growth: 
Upper Bounds 

•  T(n) is the worst case running time of an 
algorithm 

• We say that T(n) is O(f(n)) if there exist 

constants c > 0 and n0 ≥ 0 such that for all    

n ≥ n0, we have T(n) ≤ c · f(n) 
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sufficiently large n	
 T(n) is bounded above by a 
constant multiple of f(n)	


èT is asymptotically upperbounded by f	


c cannot depend on n	


“order f(n)”	


Asymptotic Order of Growth: 
Upper Bounds 
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f(n)	


T(n)	


n0	


Point at which f(n) > T(n) 	


Upper Bounds Example 

•  Find an upperbound for 
 T(n) = pn2 + qn + r 

Ø p, q, r are positive constants 
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Idea: Let’s inflate the terms in the 
equation so that all terms are n2	


Upper Bounds Example 
•  T(n) = pn2 + qn + r 

Ø p, q, r are positive constants 
•  For all n ≥ 1,  

è T(n) ≤ cn2, where c = p+q+r 
è T(n) = O(n2) 
•  Also correct to say that T(n) = O(n3) 

Jan 11, 2013 Sprenkle - CSCI211 34 

T(n) = pn2 + qn + r	

	
≤ pn2 + qn2 + rn2 	


	
= (p+q+r) n2	


	
= c n2	


Notation 

•  T(n) = O(f(n)) is a slight abuse of notation 
Ø Asymmetric: 

•  f(n) = 5n3;  g(n) = 3n2 

•  f(n) = O(n3) = g(n) 
•  But f(n) ≠ g(n). 

Ø Better notation:  T(n) ∈ O(f(n)) 
•  Meaningless statement.  Any comparison-

based sorting algorithm requires at least  
O(n log n) comparisons 
Ø Use Ω for lower bounds 
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Asymptotic Order of Growth: 
Lower Bounds 
•  Complementary to upper bound 

•  T(n) is Ω(f(n)) if there exist constants ε > 0 

and n0 ≥ 0 such that for all n ≥ n0 , we have  

T(n) ≥ ε · f(n) 
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èT is asymptotically lowerbounded by f	


sufficiently large n	


T(n) is bounded below by a 
constant multiple of f(n)	


ε cannot depend on n	
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Assignments 
•  Continue reading Chapter 2 

Ø Covering later sections on Monday 
•  Journal for Chapter 1-2.2 due Tuesday 

Ø No journal for Chapter 1.2 
•  Problem Set 1 due next Friday in class 

Ø Proof, stable matching, asymptotic bound 
Ø Start early! 

•  Read problems and let your brain start thinking 
about them 

•  Solved exercises in book 
Ø Honor Code 
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