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Objectives 

•  Divide and conquer 
Ø Closest pair of points 
Ø Integer multiplication 
Ø Matrix multiplication 
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Reviewing Closest Pair of Points 
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Closest Pair of Points 
•  Closest pair.  Given n points in the plane, find a 

pair with smallest Euclidean distance between 
them. 
Ø Special case of nearest neighbor, Euclidean MST, 

Voronoi. 
•  Brute force.  Check all pairs of points p and q 

with Θ(n2) comparisons 
•  1-D version.  O(n log n)  

Ø Easy if points are on a line 
•  Assumption.  No two points have same x 

coordinate 
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to make presentation cleaner	


Closest Pair of Points 

•  Recall the approach? 
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Closest Pair of Points 

•  Divide: draw vertical line L so that roughly 
½n points on each side 
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L	


Closest Pair of Points 
•  Divide: draw vertical line L so that roughly ½n 

points on each side 
•  Conquer: find closest pair in each side 

recursively 
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Closest Pair of Points 
•  Divide: draw vertical line L so that roughly ½n points on each side 
•  Conquer: find closest pair in each side recursively 
•  Combine: find closest pair with one point in each side 
•  Return best of 3 solutions 
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seems like Θ(n2) 	


Do we need to check all pairs?	


Closest Pair of Points 

•  Find closest pair with one point in each side, 
assuming that distance < δ 
  where δ = min(left_min_dist, right_min_dist) 
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Closest Pair of Points 
•  Find closest pair with one point in each side, 

assuming that distance < δ. 
Ø Observation: only need to consider points within 
δ of line L. 
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δ = min(12, 21) 

Closest Pair of Points 
•  Find closest pair w/ 1 point in each side, assuming that 

distance < δ. 
Ø Observation: only consider points within δ of line L 
Ø Sort points in 2δ-strip by their y coordinate 
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δ = min(12, 21) 

How should we 
solve this part?	


Closest Pair of Points 
•  Find closest pair w/ 1 point in each side, assuming distance < δ. 

Ø  Observation: only consider points within δ of line L 
Ø  Sort points in 2δ-strip by their y coordinate 

•  Only checks distances of those within 11 positions in sorted 
list! 
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Analyzing Cost of Combining 

•  Def.  Let si be the point in the 
2δ-strip with the ith smallest  
y-coordinate 

•  Claim.  If |i – j| ≥ 12,  
then the distance between  
si and sj is at least δ 
Ø What is the distance of the box? 
Ø How many points can be in a 

box? 
Ø When do we know that points are 

> δ apart?  
Mar 9, 2012 CSCI211 - Sprenkle 12 δ	


27	


29	

30	


31	


28	


26	


25	


δ	


½δ	


½δ	


½δ	


39	


i	


j	


Prepare minds to be blown…	
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Analyzing Cost of Combining 
•  Def.  Let si be the point in the 2δ-strip 

with the ith smallest y-coordinate 
•  Claim.  If |i – j| ≥ 12, then the  

distance between si and sj is at least δ 
•  Pf. 

Ø  No two points lie in same ½δ-by-½δ 
box 

Ø  Two points at least 2 rows apart 
have distance ≥  2(½δ).   ▪ 

•  Fact.  Still true if we replace 12 with 7. 
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Cost of combining is therefore…?	


Closest Pair Algorithm 
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Closest-Pair(p1, …, pn) 	
   Compute separation line L such that half the points  
   are on one side and half on the other side.	
	
   δ1 = Closest-Pair(left half)	
   δ2 = Closest-Pair(right half)	
   δ  = min(δ1, δ2)	
	
   Delete all points further than δ from separation 

line L	
	
   Sort remaining points by y-coordinate.	
	
   Scan points in y-order and compare distance between  
   each point and next 7 neighbors. If any of these  
   distances is less than δ, update δ.	
	
   return δ	

Closest Pair Algorithm 
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Closest-Pair(p1, …, pn) 	
   Compute separation line L such that half the points  
   are on one side and half on the other side.	
	
   δ1 = Closest-Pair(left half)	
   δ2 = Closest-Pair(right half)	
   δ  = min(δ1, δ2)	
	
   Delete all points further than δ from separation 

line L	
	
   Sort remaining points by y-coordinate.	
	
   Scan points in y-order and compare distance between  
   each point and next 7 neighbors. If any of these  
   distances is less than δ, update δ.	
	
   return δ	

O(n log n)	


2T(n / 2)	


O(n)	


O(n log n)	


O(n)	


Total running time?	
T(n) = 2 T(n/2) + O(n log n)	


Closest Pair of Points: Analysis 
•  Running time. 

•  Can we achieve O(n log n)? 

•  Yes. Don't sort points in strip from scratch 
each time. 
Ø Each recursive returns two lists: all points sorted 

by y coordinate, and all points sorted by x 
coordinate 

Ø Sort by merging two pre-sorted lists 
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Solved in 5.2	


T(n) ≤ 2T(n/2) + O(n) è T(n) = O(n logn)	


T(n) ≤ 2T(n/2) + O(n log n) è T(n) = O(n log2n)	


INTEGER AND MATRIX 
MULTIPLICATION 
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Integer Arithmetic 

•  Add.  Given 2 n-digit integers a and b, 
compute a + b. 
Ø Algorithm? 
Ø Runtime? 
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Integer Arithmetic 

•  Add.  Given 2 n-digit integers a and b, 
compute a + b. 
Ø Algorithm? 
Ø Runtime? 
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O(n) operations 

Integer Arithmetic 

•  Multiply.  Given 2 n-digit integers a and b, 
compute a × b 
Algorithm? 
Runtime? 
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Integer Arithmetic 

•  Multiply. Given 2 n-digit integers a and b, 
compute a × b. 
Ø Brute force solution: Θ(n2) bit operations 
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Goal: Faster algorithm	


Divide-and-Conquer Multiplication:  
Warmup 
•  To multiply 2 n-digit integers: 

Ø Multiply 4 ½ n-digit integers 
Ø Add 2 ½ n-digit integers and shift to obtain result 
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! 

x = 2n / 2 " x1  +  x0

y = 2n / 2 " y1  +  y0

xy = 2n / 2 " x1 + x0( ) 2n / 2 " y1  + y0( ) = 2n " x1y1  + 2n / 2 " x1y0 + x0 y1( ) + x0 y0

Higher order bits	
 Lower order bits	


What is the recurrence relation?	

•  How many subproblems?	

•  What is merge cost?	

•  What is its runtime?	


Shift	


A	
 B	
 C	
 D	


Divide-and-Conquer Multiplication:  
Warmup 
•  To multiply two n-digit integers: 

Ø Multiply 4 ½ n-digit integers 
Ø Add 2 ½ n-digit integers and shift to obtain result 
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! 

x = 2n / 2 " x1  +  x0

y = 2n / 2 " y1  +  y0

xy = 2n / 2 " x1 + x0( ) 2n / 2 " y1  + y0( ) = 2n " x1y1  + 2n / 2 " x1y0 + x0 y1( ) + x0 y0

Higher order bits	
 Lower order bits	


Shift	


A	
 B	
 C	
 D	


    

! 

T(n)  =  4T n /2( )
recursive calls
! " # $ # 

 +  "(n)
add, shift
! " $  #  T(n) ="(n2 )

assumes n is a power of 2	


Not an improvement 
over brute force	


Karatsuba Multiplication 

•  To multiply two n-digit integers: 
Ø Add 2 ½n digit integers 
Ø Multiply 3 ½n-digit integers 
Ø Add, subtract, and shift ½n-digit integers to 

obtain result 
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! 

x = 2n / 2 " x1  +  x0

y = 2n / 2 " y1  +  y0

xy = 2n " x1y1  + 2n / 2 " x1y0 + x0 y1( ) + x0 y0

= 2n " x1y1  + 2n / 2 " (x1 + x0 ) (y1 + y0 )  # x1y1 # x0 y0( ) + x0 y0

A	
 B	
 C	
A	
 C	


What is the recurrence relation?  Runtime?	
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Karatsuba Multiplication 

•  Theorem.  [Karatsuba-Ofman, 1962]  Can 
multiply two n-digit integers in O(n1.585) bit 
operations 
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! 

x = 2n / 2 " x1  +  x0

y = 2n / 2 " y1  +  y0

xy = 2n " x1y1  + 2n / 2 " x1y0 + x0 y1( ) + x0 y0

= 2n " x1y1  + 2n / 2 " (x1 + x0 ) (y1 + y0 )  # x1y1 # x0 y0( ) + x0 y0

    

! 

T(n) " T n /2# $( ) + T n /2% &( ) + T 1+ n /2% &( )
recursive calls

! " # # # # # # # $ # # # # # # # 
+ '(n)

add, subtract, shift
! " # $ # 

( T(n)  =  O(n log 2 3 )  =  O(n1.585 )

A	
 B	
 C	
A	
 C	


MATRIX MULTIPLICATION 
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Matrix Multiplication 

•  Given 2 n-by-n matrices A and B,  
compute C = AB 

Ø Ex: c12 = a11 b12 + a12 b22 + a13 b32 + … + a1n bn2 
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! 

cij = aik bkj
k=1

n

"

    

! 

c11 c12 ! c1n

c21 c22 ! c2n

" " # "
cn1 cn2 ! cnn

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

=

a11 a12 ! a1n

a21 a22 ! a2n

" " # "
an1 an2 ! ann

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

(

b11 b12 ! b1n

b21 b22 ! b2n

" " # "
bn1 bn2 ! bnn

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

Solve using brute force …	


Matrix Multiplication 
•  Given 2 n-by-n matrices A and B,  

compute C = AB 

Ø Ex: c12 = a11 b12 + a12 b22 + a13 b32 + … + a1n bn2 

•  Brute force. Θ(n3) arithmetic operations 
•  Fundamental question: Can we improve 

upon brute force? 
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! 

cij = aik bkj
k=1

n

"

    

! 

c11 c12 ! c1n

c21 c22 ! c2n

" " # "
cn1 cn2 ! cnn

" 

# 

$ 
$ 
$ 
$ 
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& 
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' 
' 
' 

=

a11 a12 ! a1n

a21 a22 ! a2n

" " # "
an1 an2 ! ann

" 

# 

$ 
$ 
$ 
$ 

% 

& 
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' 
' 
' 

(

b11 b12 ! b1n

b21 b22 ! b2n

" " # "
bn1 bn2 ! bnn

" 

# 
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' 
' 
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Matrix Multiplication: Warmup 

•  Divide: partition A and B into ½n-by-½n 
blocks 

•  Conquer: multiply 8 ½n-by-½n recursively 
•  Combine: add appropriate products using 4 

matrix additions 
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! 

C11 = A11 " B11( )  +  A12 " B21( )
C12 = A11 " B12( )  +  A12 " B22( )
C21 = A21 " B11( )  +  A22 " B21( )
C22 = A21 " B12( )  +  A22 " B22( )

  

! 

C11 C12

C21 C22

" 

# 
$ 

% 

& 
'  =  

A11 A12

A21 A22

" 

# 
$ 

% 

& 
'  (  

B11 B12

B21 B22

" 

# 
$ 

% 

& 
' 

Recurrence relation?  Runtime?	


Matrix Multiplication: Warmup 

•  Divide: partition A and B into ½n-by-½n 
blocks 

•  Conquer: multiply 8 ½n-by-½n recursively 
•  Combine: add appropriate products using 4 

matrix additions 
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! 

C11 = A11 " B11( )  +  A12 " B21( )
C12 = A11 " B12( )  +  A12 " B22( )
C21 = A21 " B11( )  +  A22 " B21( )
C22 = A21 " B12( )  +  A22 " B22( )

  

! 

C11 C12

C21 C22

" 

# 
$ 

% 

& 
'  =  

A11 A12

A21 A22

" 

# 
$ 

% 

& 
'  (  

B11 B12

B21 B22

" 

# 
$ 

% 

& 
' 

    

! 

T(n) = 8T n /2( )
recursive calls
! " # $ # 

 +  "(n2 )
add, form submatrices
! " # # $ # # # T(n) ="(n3)
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Matrix Multiplication: Key Idea 

•  Multiply 2-by-2 block matrices with only 7 
multiplications and 15 additions 

Ø 7 multiplications. 
Ø 18 = 10 + 8 additions (or subtractions). 
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! 

P1 = A11 " (B12 # B22 )
P2 = (A11 + A12 ) " B22
P3 = (A21 + A22 ) " B11
P4 = A22 " (B21 # B11)
P5 = (A11 + A22 ) " (B11 + B22 )
P6 = (A12 # A22 ) " (B21 + B22 )
P7 = (A11 # A21) " (B11 + B12 )  

! 

C11 = P5 + P4 " P2 + P6
C12 = P1 + P2
C21 = P3 + P4
C22 = P5 + P1 " P3 " P7

  

! 

C11 C12

C21 C22

" 

# 
$ 

% 

& 
'  =  

A11 A12

A21 A22

" 

# 
$ 

% 

& 
'  (  

B11 B12

B21 B22

" 

# 
$ 

% 

& 
' 

Trading expensive multiplication for  
less expensive addition/subtraction 

Fast Matrix Multiplication 
[Strassen, 1969] 
•  Divide: partition A and B into ½n-by-½n blocks 
•  Compute: 14 ½n-by-½n matrices via 10 matrix 

additions 
•  Conquer:  multiply 7 ½n-by-½n matrices 

recursively 
•  Combine:  7 products into 4 terms using 8 

matrix additions 
•  Analysis. 

Ø Assume n is a power of 2. 
Ø T(n) = # arithmetic operations. 
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! 

T(n) = 7T n /2( )
recursive calls
! " # $ # 

+ "(n2 )
add, subtract
! " # $ # # T(n) ="(n log2 7 ) = O(n2.81)

Fast Matrix Multiplication in Practice 

•  Implementation issues: problems with putting 
theory into practice 
Ø Sparsity 
Ø Caching effects 
Ø Numerical stability 

•  Theoretically correct but possible problems with 
round off errors, etc 

Ø Odd matrix dimensions 
Ø Crossover to classical algorithm around n = 128 
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Fast Matrix Multiplication in Practice 

•  Common misperception:   
"Strassen is only a theoretical curiosity." 
Ø Advanced Computation Group at Apple 

Computer reports 8x speedup on G4 Velocity 
Engine when n ~ 2,500 

Ø Range of instances where it's useful is a subject 
of controversy 

•  Can "Strassenize" Ax=b, determinant, 
eigenvalues, and other matrix ops 
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Fast Matrix Multiplication in Theory 
•  Q.  Multiply two 2-by-2 matrices with only 7 scalar 

multiplications? 
•  A.  Yes!   [Strassen, 1969] 
•  Q.  Multiply two 2-by-2 matrices with only 6 scalar 

multiplications? 
•  A.  Impossible  [Hopcroft and Kerr, 1971] 
•  Q.  Two 3-by-3 matrices with only 21 scalar multiplications? 
•  A.  Also impossible 
•  Q.  Two 70-by-70 matrices with only 143,640 scalar 

multiplications? 
•  A.  Yes!   [Pan, 1980] 

•  Decimal wars. 
Ø December, 1979:  O(n2.521813) 
Ø  January, 1980:     O(n2.521801) 
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! 

" (n log3 21) = O(n 2.77 )

  

! 

" (n log70 143640 ) = O(n 2.80 )

  

! 

"(n log2 6) = O(n 2.59 )

  

! 

"(n log2 7 ) = O(n 2.81)

Fast Matrix Multiplication in Theory 

•  Best known.  O(n2.376)    
  [Coppersmith-Winograd, 1987] 

Ø But really large constant 
•  Conjecture.  O(n2+ε) for any ε > 0.  

•  Caveat.  Theoretical improvements to 
Strassen are progressively less practical. 
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Problem Set 5 Feedback 

•  Don’t forget to analyze the runtime of every 
algorithm you write 

•  How do you prove optimality of Greedy 
algorithms? 
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Greedy Stays Ahead Proofs 
1.  Define your solutions 

Ø  Describe the form of your greedy solution and of some other solution 
(possibly the optimal solution) 

•  Example: Let A be the solution constructed by the greedy algorithm and O 
be a solution 

2.  Find a measure 
Ø  Find a measure by which greedy stays ahead of the optimal solution 

•  Ex: Let a1, . . . , ak be the first k measures of greedy algorithm and 
o1 , . . . , om be the first m measures of other solution (sometimes m = k ) 

3.  Prove greedy stays ahead 
Ø  Show that the partial solutions constructed by greedy are always just 

as good as the optimal solution’s initial segments based on the 
measure  

•  Ex: for all indices r ≤ min(k,m), prove by induction that ar ≥ or or ar ≤ or 
Ø  Use the greedy algorithm to help you argue the inductive step 

4.  Prove optimality 
Ø  Prove that since greedy stays ahead of the other solution with respect 

to the measure, then the greedy solution is optimal 
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Greedy Exchange Proofs 
1.  Label your algorithm’s solution and a general solution. 

Ø  Example: let A = {a1, a2, ..., ak} be the solution generated by your algorithm, and 
let O = {o1, o2, ..., om} be an arbitrary (or optimal) feasible solution. 

2.  Compare greedy with other solution.  
Ø  Assume that your arbitrary/optimal solution is not the same as your greedy 

solution (since otherwise, you are done). 
Ø  Typically, can isolate a simple example of this difference, such as: 
①  There is an element e ∈ O that ∉ A and an element f ∈ A that ∉ O 
②  2 consecutive elements in O are in a different order than in A (i.e., there is an 

inversion). 

3.  Exchange.  
Ø  Swap the elements in question in O (either ➀ swap one element out and 

another in or ➁ swap the order of the elements) and argue that solution is no 
worse than before.  

Ø  Argue that if you continue swapping, you eliminate all differences between O 
and A in a finite # of steps without worsening the solution’s quality. 

Ø  Thus, the greedy solution produced is just as good as any optimal solution, and 
hence is optimal itself. 
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Assignments 

• Wiki for 5.2-5.5 due Tuesday 
•  Chapter 6 starts Monday 
•  PS7 due Friday 

Ø May want to try to implement solutions (to some 
extent) to help ensure that your algorithm is 
correct 
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