
1/30/13	

1	

Objectives

•  Review: Directed Graphs
•  Topological Orderings of DAGs

Jan 30, 2013 1 CSCI211 - Sprenkle

Review

• What do we know about graphs?
Directed graphs?

Jan 30, 2013 CSCI211 - Sprenkle 2

Review

• What do we know about graphs?
Ø Space
Ø Connectivity

•  BFS, DFS
Ø Bipartite graphs

•  How to color?
•  When know not colorable?

Jan 30, 2013 CSCI211 - Sprenkle 3

Review: Representing Directed Graphs

•  Edge (u, v) goes from node u to node v

•  For each node, keep track of
Ø Out edges (where links go)
Ø In edges (from where links come in)

Jan 30, 2013 CSCI211 - Sprenkle 4

DAGS AND
TOPOLOGICAL ORDERING

5 Jan 30, 2013 CSCI211 - Sprenkle

Directed Acyclic Graphs
•  Def. A DAG is a directed graph that contains

no directed cycles.
•  Example. Precedence constraints:

edge (vi, vj) means vi must precede vj
Ø Course prerequisite graph:

course vi must be taken before vj

Ø Compilation: module vi must be compiled before vj

Ø Pipeline of computing jobs: output of job vi needed to
determine input of job vj

Jan 30, 2013 CSCI211 - Sprenkle 6

v2 v3

v6 v5 v4

v7 v1

a DAG:	

1/30/13	

2	

Problem: Valid Ordering

•  Given a set of tasks with dependencies,
what is a valid order in which the tasks could
be performed?

•  Example: Getting dressed
Ø What tasks are involved?
Ø What tasks depend on other tasks?

Jan 30, 2013 CSCI211 - Sprenkle 7

v2 v3

v6 v5 v4

v7 v1

Topological Ordering
•  Problem: Given a set of tasks with

dependencies, what is a valid order
in which the tasks could be performed?

•  Def. A topological order of a directed graph
G = (V, E) is an ordering of its nodes as v1, v2,
…, vn so that for every edge (vi, vj) we have i < j.

Jan 30, 2013 CSCI211 - Sprenkle 8

a DAG	

a topological ordering	

All edges point “forward”	

v2	
 v3

v6	
 v5	
 v4	

v7	
 v1	

v1	
 v2	
 v3 v4	
 v5	
 v6	
 v7	

Coordinating labeling of nodes, but numbering is not known for just DAG	

Towards a Solution

•  Start by showing that if G has a topological
order, then G is a DAG

•  Eventually, we’ll show the other direction:
if G is a DAG, then G has a topological order

Jan 30, 2013 CSCI211 - Sprenkle 9

Directed Acyclic Graphs

•  Lemma. If G has a topological order,
then G is a DAG.

•  Proof plan: Try to show that G has a
topological order even though G has a cycle

Jan 30, 2013 CSCI211 - Sprenkle 10

v1	
 vi	
 vj	
 vn	

the supposed topological order: v1, …, vn	

the directed cycle C	

Why isn’t this valid?	

DAGs & Topological Orderings
•  Lemma. If G has a topological order, then G is a DAG.
•  Pf. (by contradiction)

Ø  Suppose that G has a topological order v1, …, vn and
that G also has a directed cycle C.

Ø  Let vi be the lowest-indexed node in C, and let vj be the node
on C just before vi; thus (vj, vi) is an edge

Ø  By our choice of i (lowest-indexed node), i < j
Ø  Since (vj, vi) is an edge and v1, …, vn is a topological order,

we must have j < i
•  a contradiction. ▪

Jan 30, 2013 CSCI211 - Sprenkle 11

v1	
 vi	
 vj	
 vn	

the directed cycle C	

the supposed topological order: v1, …, vn	

Directed Acyclic Graphs

•  Does every DAG have a
topological ordering?
Ø If so, how do we compute one?

Jan 30, 2013 CSCI211 - Sprenkle 12

1/30/13	

3	

Directed Acyclic Graphs

•  Does every DAG have a
topological ordering?
Ø If so, how do we compute one?

• What do we need to be able to create a
topological ordering?
Ø What are some characteristics of this graph?

Jan 30, 2013 CSCI211 - Sprenkle 13

v1 v2 v3 v4 v5 v6 v7

Directed Acyclic Graphs

•  Does every DAG have a
topological ordering?
Ø If so, how do we compute one?

• What do we need to be able to create a
topological ordering?
Ø What are some characteristics of this graph?

Jan 30, 2013 CSCI211 - Sprenkle 14

v1 v2 v3 v4 v5 v6 v7

Need someplace to start:	

a node with no incoming edges

(no dependencies)	

Note that both v1 and v2 ���
have no incoming edges	

Towards a Topological Ordering

Jan 30, 2013 CSCI211 - Sprenkle 15

Do we know there is always a ���
node with no incoming edges?	

Goal: Find an algorithm for finding the TO	

Idea: 1st node is one with no incoming edges	

Towards a Topological Ordering

•  Lemma. If G is a DAG,
then G has a node with no incoming edges
Ø This is our starting point of the topological

ordering

Jan 30, 2013 CSCI211 - Sprenkle 16

How to prove?	

Towards a Topological Ordering

•  Lemma. If G is a DAG,
then G has a node with no incoming edges

•  Proof idea: Consider if there is no node
without incoming edges
Ø What contradiction are we looking for?

Jan 30, 2013 CSCI211 - Sprenkle 17

Towards a Topological Ordering
•  Lemma. If G is a DAG,

then G has a node with no incoming edges.
•  Pf. (by contradiction)

Ø  Suppose that G is a DAG and every node has at least one incoming
edge

Ø  Pick any node v, and follow edges backward from v.
•  Since v has at least one incoming edge (u, v), we can walk backward to

u
Ø  Since u has at least one incoming edge (t, u), we can walk backward

to t
Ø  Repeat until we visit a node, say w, twice

•  Has to happen at least by n+1 steps (Why?)
Ø  Let C denote the sequence of nodes encountered between

successive visits to w. C is a cycle, which is a contradiction to G is a
DAG ▪

Jan 30, 2013 CSCI211 - Sprenkle 18 18	

w t u v

1/30/13	

4	

Putting it all together:
Creating a topological order

Jan 30, 2013 CSCI211 - Sprenkle 19

Ideas?	

Topological Ordering Algorithm

Jan 30, 2013 CSCI211 - Sprenkle 20 20	

Find a node v with no incoming edges	
Order v first	
Delete v from G	
Recursively compute a topological ordering of G-{v}	

	and append this order after v

How do we know this works?	

Directed Acyclic Graphs
•  Lemma. If G is a DAG, then G has a topological

ordering.
•  Pf. (by induction on n)

Ø Base case: true if n = 1
Ø Given DAG on n > 1 nodes, find a node v with no

incoming edges
Ø G - { v } is a DAG because deleting v

cannot create cycles
Ø By inductive hypothesis,

G - { v } has a topological ordering
Ø Place v first in topological ordering;
Ø Append nodes of G - { v } in topological order.

•  valid since v has no incoming edges. ▪

Jan 30, 2013 CSCI211 - Sprenkle 21

DAG	

v	

Topological Ordering Algorithm

•  Lemma. If G is a DAG,
then G has a topological ordering.

•  Algorithm:

Jan 30, 2013 CSCI211 - Sprenkle 22 22	

Find a node v with no incoming edges	
Order v first	
Delete v from G	
Recursively compute a topological ordering of G-{v}	

	and append this order after v

Topological Ordering Algorithm:
Example

23

v1

Topological order: 	

v2 v3

v6 v5 v4

v7 v1

Jan 30, 2013 CSCI211 - Sprenkle

Topological Ordering Algorithm:
Example

24

v2

Topological order: v1	

v2 v3

v6 v5 v4

v7

Jan 30, 2013 CSCI211 - Sprenkle

1/30/13	

5	

Topological Ordering Algorithm:
Example

25

v3

Topological order: v1, v2	

v3

v6 v5 v4

v7

Jan 30, 2013 CSCI211 - Sprenkle

Topological Ordering Algorithm:
Example

26

v4

Topological order: v1, v2, v3	

v6 v5 v4

v7

Jan 30, 2013 CSCI211 - Sprenkle

Topological Ordering Algorithm:
Example

27

v5

Topological order: v1, v2, v3, v4	

v6 v5

v7

Jan 30, 2013 CSCI211 - Sprenkle

Topological Ordering Algorithm:
Example

28

v6

Topological order: v1, v2, v3, v4, v5	

v6

v7

Jan 30, 2013 CSCI211 - Sprenkle

Topological Ordering Algorithm:
Example

29

v7

Topological order: v1, v2, v3, v4, v5, v6	

v7

Jan 30, 2013 CSCI211 - Sprenkle

Topological Ordering Algorithm:
Example

30

Topological order: v1, v2, v3, v4, v5, v6, v7.	

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7

Jan 30, 2013 CSCI211 - Sprenkle

1/30/13	

6	

Topological Order Runtime

• Where are the costs?
•  How would we implement?

Jan 30, 2013 CSCI211 - Sprenkle 31

Find a node v with no incoming edges	
Order v first	
Delete v from G	
Recursively compute a topological ordering of G-{v}	

	and append this order after v

Topological Order Runtime

•  Find a node without incoming edges and
delete it: O(n)

•  Repeat on all nodes
 O(n2)

Jan 30, 2013 CSCI211 - Sprenkle 32

Can we do better?	

Find a node v with no incoming edges	
Order v first	
Delete v from G	
Recursively compute a topological ordering of G-{v}	

	and append this order after v

O(n)	

O(n)	

Topological Sorting Algorithm:
Running Time
•  Theorem. Find a topological order in O(m + n)

time
•  Pf.

Ø Maintain the following information:
•  count[w] = remaining number of incoming edges
•  S = set of remaining nodes with no incoming edges

Ø  Initialization: O(m + n) via single scan through graph
Ø Algorithm:

•  Select a node v from S, remove v from S
•  Decrement count[w] for all edges from v to w

Ø  Add w to S if count[w] = 0

Jan 30, 2013 CSCI211 - Sprenkle 33

PS2 Feedback

• When providing algorithms, make sure your
input is clear
Ø Examples: what is the name of your heap?

What does n represent?
Ø isHeap(H[1...n])

•  Analyze runtime of all algorithms created
•  Consider implementing solutions

Ø Catch errors when try different test cases
•  I write notes on your algorithms so that I can

understand what is happening
Jan 30, 2013 CSCI211 - Sprenkle 34

Looking Ahead

•  Problem Set 3 due Friday
•  Exam 1 handed out on Friday

Ø Different rules from problem set
Ø No collaboration
Ø Can access your notes, book, my lectures
Ø Can ask me questions, but I’m limited in how

much help I can give
Ø Next Wednesday: work session

Jan 30, 2013 CSCI211 - Sprenkle 35

