
3/1/13	

1	

Objectives

•  More on recurrence relations
•  Divide and conquer algorithms

Ø Counting inversions

Mar 1, 2013 1 CSCI211 - Sprenkle

Review

•  Describe the template for divide and conquer
solutions

• What is the recurrence relation for Merge
Sort?

• What is a recurrence relation?
•  How can you compute D&C running times?

Ø 2 ways to solve

Mar 1, 2013 CSCI211 - Sprenkle 2

Review: Divide-and-Conquer

•  Divide-and-conquer process
Ø Break up problem into several parts
Ø Solve each part recursively
Ø Combine solutions to sub-problems into overall

solution
•  Define a recurrence relation that describes

the running time

Mar 1, 2013 CSCI211 - Sprenkle 3

Divide et impera.	

Veni, vidi, vici.	

 - Julius Caesar	

Review: Recurrence Relations

•  Use recurrences to analyze/determine the
run time of divide and conquer algorithms
Ø Number of sub problems
Ø Size of sub problems
Ø Number of times divided (number of levels)
Ø Cost of merging problems

•  How to solve
Ø Unrolling
Ø Substitution

Mar 1, 2013 CSCI211 - Sprenkle 4

Analyzing Merge Sort

Mar 1, 2013 CSCI211 - Sprenkle 5

What is the recurrence relation?	

MergeSort(L[n]):	
	if n == 1:	
	 	return L	

 if n == 2:	
	 	compare the two entries in L,	
	 	swap if necessary	
	 	return L	
	A = MergeSort(L[1…n/2])	
	B = MergeSort(L[n/2+1…])	
	M = Merge(A, B)	
	return M	

Analyzing Merge Sort

Mar 1, 2013 CSCI211 - Sprenkle 6

What is the recurrence relation?	

MergeSort(L[n]):	
	if n == 1:	
	 	return L	

 if n == 2:	
	 	compare the two entries in L,	
	 	swap if necessary	
	 	return L	
	A = MergeSort(L[1…n/2])	
	B = MergeSort(L[n/2+1…])	
	M = Merge(A, B)	
	return M	

T(n) = 2T(n/2) + O(n)	

T(n/2)	

T(n/2)	

O(n)	

Base cases	

3/1/13	

2	

Analyzing Binary Search

Mar 1, 2013 CSCI211 - Sprenkle 7

BinarySearch(L[n], key):	
	if n == 1 and L[n] == key:	
	 	return n	
	else:	
	 	return NOT_FOUND	

 mid = n/2	
	if L[mid] == key:	
	 	return mid	
	if L[mid] < key:	
	 	return BinarySearch(L[mid+1:], key)	
	else:	
	 	return BinarySearch(L[:mid], key)	

What is the recurrence relation?	

Analyzing Binary Search

Mar 1, 2013 CSCI211 - Sprenkle 8

BinarySearch(L[n], key):	
	if n == 1 and L[n] == key:	
	 	return n	
	else:	
	 	return NOT_FOUND	

 mid = n/2	
	if L[mid] == key:	
	 	return mid	
	if L[mid] < key:	
	 	return BinarySearch(L[mid+1:], key)	
	else:	
	 	return BinarySearch(L[:mid], key)	

What is the recurrence relation?	

T(n) = T(n/2) + c	

Another Recurrence Relation

•  Instead of recursively solving 2 problems,
solve q problems
Ø Size of problems is still n/2

•  Combining solutions is still O(n)

Mar 1, 2013 CSCI211 - Sprenkle 9

What is the recurrence relation?	

n	

n/2	
 n/2	

n/2	

Example: q=3:	

Another Recurrence Relation

•  Instead of recursively solving 2 problems,
solve q problems
Ø Size of problems is still n/2

•  Combining solutions is still O(n)
•  Recurrence relation:

Ø For some constant c,
T(n) ≤ q T(n/2) + cn when n > 2
T(2) ≤ c

Mar 1, 2013 CSCI211 - Sprenkle 10

Intuition about running time?	

Unrolling Recurrence, q > 2

Mar 1, 2013 CSCI211 - Sprenkle 11

T(n) ≤ q T(n/2) + cn

Unrolling Recurrence, q > 2

•  First level:
q T(n/2) + cn

Mar 1, 2013 CSCI211 - Sprenkle 12

cn	

T(n/2)	
T(n/2)	
 …	
q 	

3/1/13	

3	

Unrolling Recurrence, q > 2

•  Next level:
q T(n/4) + c(n/2)

Mar 1, 2013 CSCI211 - Sprenkle 13

cn	

c n/2	
c n/2	
 …	
q 	

T(n/4)	
 T(n/4)	
 T(n/4)	
 T(n/4)	
…	
q 	
 …	
q 	
…

How much does each level
cost, in terms of the level?	

Number of levels?	

What is the total run time?	

Unrolling Recurrence, q > 2

Mar 1, 2013 CSCI211 - Sprenkle 14

cn	

c n/2	
c n/2	
 …	
q 	

T(n/4)	
 T(n/4)	
 T(n/4)	
 T(n/4)	
…	
q 	
 …	
q 	

qk problems at level k	

Size: n/2k	

Each level takes qk * c * (n/2k) = (q/2)j cn	

à Total work per level is increasing as level increases 	

Number of levels: log2n	

0	

1	

How much does each level
cost, in terms of the level?	

Number of levels?	

What is the total run time?	

Unrolling Recurrence, q > 2

Mar 1, 2013 CSCI211 - Sprenkle 15

cn	

c n/2	
c n/2	
 …	
q 	

T(n/4)	
 T(n/4)	
 T(n/4)	
 T(n/4)	
…	
q 	
 …	
q 	

0	

1	

T(n) ≤ Σj=0,logn (q/2)j cn	

	

Geometric series: 	

(constant ratio between successive terms)	

Multiplying previous term by (q/2) 	
 O(n log2 q)

Unrolling the Recurrence

•  Generalize: What are the steps?

Mar 1, 2013 CSCI211 - Sprenkle 16

Summary

•  Use recurrences to analyze the run time of
divide and conquer algorithms

•  Need to figure out
Ø Number of sub problems
Ø Size of sub problems
Ø Number of times divided (number of levels)
Ø Cost of merging problems

Mar 1, 2013 CSCI211 - Sprenkle 17

Know Your Recurrence Relations

Recurrence Algorithm Running Time

T(n) = T(n/2) + O(1)

T(n) = T(n-1) + O(1)

T(n) = 2 T(n/2) + O(1)

T(n) = T(n-1) + O(n)

T(n) = 2 T(n/2) + O(n)

Mar 1, 2013 CSCI211 - Sprenkle 18

What algorithm has this recurrence relation?	

What is that algorithm’s running time?	

3/1/13	

4	

Know Your Recurrence Relations

Mar 1, 2013 CSCI211 - Sprenkle 19

Recurrence Algorithm Running Time
T(n) = T(n/2) + O(1) Binary Search O(log n)

T(n) = T(n-1) + O(1) Sequential/
Linear Search O(n)

T(n) = 2 T(n/2) + O(1) Binary Tree
Traversal O(n)

T(n) = T(n-1) + O(n) Selection Sort O(n2)
T(n) = 2 T(n/2) + O(n) Merge Sort O(n log n)

What algorithm has this recurrence relation?	

What is that algorithm’s running time?	

Looking Ahead

• Wiki: 4.8, 5.1, 5.2
•  Problem Set 6 – due Friday – SSA day

Mar 1, 2013 CSCI211 - Sprenkle 20

