
3/28/11	

1	

Objectives

•  Dynamic Programming
 Improving Shortest Path

•  Network Flow

Mar 28, 2011 1 CSCI211 - Sprenkle

Shortest Paths

•  Problem: Given a directed graph G = (V, E),
with edge weights cvw, find shortest path from
node s to node t

•  Allows modeling other phenomena

Mar 28, 2011 CSCI211 - Sprenkle 2

s

3

t

2

6

7

4
5

10	

18	

 -16	

9	

 6	

15	

 -8	

 30	

 20	

44	

16	

11	

6	

19	

6	

allow negative weights	

Shortest Paths: Failed Attempts

•  Dijkstra. Can fail if negative edge costs

•  Re-weighting. Adding a constant to every
edge weight can fail

Mar 28, 2011 CSCI211 - Sprenkle 3

s t

2	

 3	

2	

-3	

3	

5	

 5	

6	

6	

0	

Why?	

u

t

s v
2	

 1	

3	

-6	

4	

3	

Orig: 	

 New: 	

10	

12	

Shortest Paths: Negative Cost Cycles

•  If some path from s to t contains a negative
cost cycle, there does not exist a shortest s-t
path

•  Otherwise, there exists one that is simple
(i.e., does not repeat nodes)
 Path has at most n-1 edges, where n is # of

nodes in graph
Mar 28, 2011 CSCI211 - Sprenkle 4

s t
W	

c(W) < 0	

 -6	

 -4	

 7	

Towards a Recurrence

•  OPT(i,v): minimum cost of a v-t path P using
at most i edges
 This formulation eases later discussion

•  Original problem is OPT(n-1, s)

Mar 28, 2011 CSCI211 - Sprenkle 5

v	

 t	

Costs on all edges	

Break down into subproblems based on i and v	

w	

cvw	

Shortest Paths: Dynamic Programming

•  OPT(i, v) = minimum cost of a v-t path P
using at most i edges
 Case 1: P uses at most i-1 edges

•  OPT(i, v) = OPT(i-1, v)
 Case 2: P uses exactly i edges

•  if (v, w) is first edge, then OPT uses (v, w), and
then selects best w-t path using at most i-1 edges

•  Cost: cost of chosen edge

Mar 28, 2011 CSCI211 - Sprenkle 6

!

OPT(i, v) =
 0 if i = 0

 min OPT(i "1, v) ,
(v, w)# E

min OPT(i "1, w)+ cvw{ }
$
%
&

'
(
)

otherwise

$

%
*

& *

3/28/11	

2	

Shortest Paths: Analysis

Mar 28, 2011 CSCI211 - Sprenkle 7

Shortest-Path(G, t) 	
 n = number of nodes in G	
 foreach node v ∈ V	
 M[0, v] = ∞ # infinite cost to reach all nodes	
 M[0, t] = 0 # no cost to reach destination from dest	
	
 for i = 1 to n-1	
 foreach node v ∈ V	
 M[i, v] = M[i-1, v] # at most cost of 1 less	
 foreach edge (v, w) ∈ E	
 M[i, v] = min(M[i, v], M[i-1, w] + cvw)	

Time: O(n3), Θ(mn)
Space: Θ(n2)

O(n)	

O(m)	

Example

Mar 28, 2011 CSCI211 - Sprenkle 8

0 1 2 3 4 5
t 0 0 0 0 0 0
a ∞
b ∞
c ∞
d ∞
e ∞

Number of edges in path	

Review: trying to get to t	

Looking towards improved implementation, ���
how to find the solution, not just the value of the solution	

Example

Mar 28, 2011 CSCI211 - Sprenkle 9

0 1 2 3 4 5
t 0 0 0 0 0 0
a ∞
b ∞
c ∞
d ∞
e ∞

What edges do we need to look at for each node?	

Number of edges in path	

 Example

Mar 28, 2011 CSCI211 - Sprenkle 10

Number of edges in path	

0 1 2 3 4 5
t 0 0 0 0 0 0
a ∞
b ∞
c ∞
d ∞
e ∞

Edges	

b, t	

d, e	

b, t	

a, t	

c, t	

Example

Mar 28, 2011 CSCI211 - Sprenkle 11

0 1 2 3 4 5
t 0 0 0 0 0 0
a ∞ -3
b ∞ ∞
c ∞ 3
d ∞ 4
e ∞ 2

Edges	

b, t	

d, e	

b, t	

a, t	

c, t	

Number of edges in path	

 Example

Mar 28, 2011 CSCI211 - Sprenkle 12

0 1 2 3 4 5
t 0 0 0 0 0 0
a ∞ -3 -3
b ∞ ∞ 0
c ∞ 3 3
d ∞ 4 3
e ∞ 2 0

Edges	

b, t	

d, e	

b, t	

a, t	

c, t	

Number of edges in path	

3/28/11	

3	

Example

Mar 28, 2011 CSCI211 - Sprenkle 13

0 1 2 3 4 5
t 0 0 0 0 0 0
a ∞ -3 -3 -4
b ∞ ∞ 0 -2
c ∞ 3 3 3
d ∞ 4 3 3
e ∞ 2 0 0

Edges	

b, t	

d, e	

b, t	

a, t	

c, t	

Number of edges in path	

 Example

Mar 28, 2011 CSCI211 - Sprenkle 14

0 1 2 3 4 5
t 0 0 0 0 0 0
a ∞ -3 -3 -4 -6
b ∞ ∞ 0 -2 -2
c ∞ 3 3 3 3
d ∞ 4 3 3 2
e ∞ 2 0 0 0

Edges	

b, t	

d, e	

b, t	

a, t	

c, t	

Number of edges in path	

Example

Mar 28, 2011 CSCI211 - Sprenkle 15

0 1 2 3 4 5
t 0 0 0 0 0 0
a ∞ -3 -3 -4 -6 -6
b ∞ ∞ 0 -2 -2 -2
c ∞ 3 3 3 3 3
d ∞ 4 3 3 2 0
e ∞ 2 0 0 0 0

Edges	

b, t	

d, e	

b, t	

a, t	

c, t	

Number of edges in path	

 Shortest Paths: Implementation

•  Shortest path length is M[n-1, s]

•  Analysis. Θ(mn) time, Θ(n2) space.

•  Finding the shortest paths. Maintain a
"successor" for each table entry.

Mar 28, 2011 CSCI211 - Sprenkle 16

Shortest-Path(G, t) 	
 n = number of nodes in G	
 foreach node v ∈ V	
 M[0, v] = ∞ # infinite cost to reach all nodes	
 M[0, t] = 0 # no cost to reach destination from dest	
	
 for i = 1 to n-1	
 foreach node v ∈ V	
 M[i, v] = M[i-1, v] # at most cost of 1 less	
 foreach edge (v, w) ∈ E	
 M[i, v] = min(M[i, v], M[i-1, w] + cvw)	

Discussion

•  How can we find the shortest path?
 What information do we need?

•  Based on experience from example, what
could we do to improve the algorithm’s
runtime and space requirements?

Mar 28, 2011 CSCI211 - Sprenkle 17

Shortest Paths: Practical Improvements

•  To find the shortest paths, maintain a
successor for each node

•  Practical improvements
 Maintain only one array M[v] = shortest v-t path

length that we have found so far
 No need to check edges of the form (v, w)

unless M[w] changed in previous iteration
•  Theorem. Throughout algorithm, M[v] is

length of some v-t path.
 After i rounds of updates, the value M[v] is no

larger than the length of shortest v-t path using ≤
i edges

Mar 28, 2011 CSCI211 - Sprenkle 18

3/28/11	

4	

Bellman-Ford: Efficient Implementation

Mar 28, 2011 CSCI211 - Sprenkle 19

Push-Based-Shortest-Path(G, s, t) 	
 foreach node v ∈ V 	
 M[v] = ∞	
 successor[v] = φ 	
	
 M[t] = 0	
 for i = 1 to n-1 	
 foreach node w ∈ V 	
 if M[w] has been updated in previous iteration 	
 foreach node v such that (v, w) ∈ E 	
 if M[v] > M[w] + cvw	
 M[v] = M[w] + cvw 	
 successor[v] = w	
 	
 if no M[w] value changed in iteration i, stop.	

Analysis of running time, space?	

Bellman-Ford: Efficient Implementation

Mar 28, 2011 CSCI211 - Sprenkle 20

Push-Based-Shortest-Path(G, s, t) 	
 foreach node v ∈ V 	
 M[v] = ∞	
 successor[v] = φ 	
	
 M[t] = 0	
 for i = 1 to n-1 	
 foreach node w ∈ V 	
 if M[w] has been updated in previous iteration 	
 foreach node v such that (v, w) ∈ E 	
 if M[v] > M[w] + cvw	
 M[v] = M[w] + cvw 	
 successor[v] = w	
 	
 if no M[w] value changed in iteration i, stop.	

Space: O(m + n)	

Running time: O(mn) worst case but substantially faster in practice	

Bellman-Ford: Efficient Implementation

Mar 28, 2011 CSCI211 - Sprenkle 21

Push-Based-Shortest-Path(G, s, t) 	
 foreach node v ∈ V 	
 M[v] = ∞	
 successor[v] = φ 	
	
 M[t] = 0	
 for i = 1 to n-1 	
 foreach node w ∈ V 	
 if M[w] has been updated in previous iteration 	
 foreach node v such that (v, w) ∈ E 	
 if M[v] > M[w] + cvw	
 M[v] = M[w] + cvw 	
 successor[v] = w	
 	
 if no M[w] value changed in iteration i, stop.	

How do we get the solution if only have O(m+n) space?	

DISTANCE VECTOR
PROTOCOL

Mar 28, 2011 CSCI211 - Sprenkle 22

Application of Shortest-Path Problem

•  Routers in communication network need to
find most efficient path to destination

•  Model of communication network
 Nodes ≈ routers
 Edge ≈ direct communication link
 Cost of edge ≈ delay on link

•  Possible solution: Dijkstra’s algorithm
 Why?

Mar 28, 2011 CSCI211 - Sprenkle 23

R	

R	

 R	

R	

 R	

Distance Vector Protocol
•  Model of communication network

 Nodes ≈ routers
 Edge ≈ direct communication link
 Cost of edge ≈ delay on link

•  However, Dijkstra's algorithm requires global
information of network
 Create whole paths from node

•  Better: use only local information

Mar 28, 2011 CSCI211 - Sprenkle 24

Naturally non-negative	

3/28/11	

5	

Distance Vector Protocol
•  Model of communication network

 Nodes ≈ routers
 Edge ≈ direct communication link
 Cost of edge ≈ delay on link

•  Bellman-Ford uses only local knowledge of
neighboring nodes
 Distribute algorithm: each node v maintains its

value M[v]
 Updates its value after getting neighbor’s values:

•  minw∈V (cvw + M[w])

Mar 28, 2011 CSCI211 - Sprenkle 25

Naturally non-negative	

Distance Vector Protocol
•  Each router maintains vector

•  Algorithm: each router performs n computations,
1 for each potential destination node
 Periodically gets updates from neighbors

•  Synchronization issues
 Routers don’t run in lockstep
 Order foreach loop executes is not important
 Algorithm still converges even if updates are

asynchronous
•  "Routing by rumor”

 Reliance on neighbors

Mar 28, 2011 CSCI211 - Sprenkle 26

Node Shortest Path Length First Hop (direction)
… … …

Issues with Distance Vector Protocol
•  Original algorithm developed for one central

machine
 Costs known in advance, didn’t change

•  Edge costs may change during algorithm (or
fail completely)

Mar 28, 2011 CSCI211 - Sprenkle 27

t v 1	

s 1	

1	

deleted	

"counting to infinity"	

2	

 1	

Path Vector Protocols

•  Link state routing
 Each router stores entire path

•  Not just the distance and the first hop
 Based on Dijkstra's algorithm
 Avoids "counting-to-infinity" problem and related

difficulties
 Tradeoff: requires significantly more storage

•  Ex. Border Gateway Protocol (BGP), Open
Shortest Path First (OSPF)

Mar 28, 2011 CSCI211 - Sprenkle 28

Milestone: Page 300 in book	

Next Week

• Wiki - Wednesday
 Finish reading Chapter 6: 6.4-6.8

•  Problem Set 8 due Friday
 Implementing pretty printing

Mar 28, 2011 CSCI211 - Sprenkle 29

