
3/22/13	

1	

Objectives

•  Dynamic Programming
Ø Knapsack
Ø Sequence Alignment

Mar 22, 2013 1 CSCI211 - Sprenkle

Review

• What is the new algorithm design technique
we’re learning?

• What is the least segmented squares
problem?

• What was our solution to the problem?

Mar 22, 2013 CSCI211 - Sprenkle 2

Knapsack Problem

•  Given n objects and a "knapsack"
•  Item i weighs wi > 0 kilograms and has value

vi > 0
Ø Example: jobs require wi time

•  Knapsack has capacity of W kilograms
Ø Example: W is time interval that resource is

available

•  Greedy: repeatedly add item with maximum
ratio vi / wi.

•  Ex: { 5, 2, 1 } achieves only value = 35 ⇒
greedy not optimal.

Mar 22, 2013 CSCI211 - Sprenkle 3

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2
W = 11 Goal: fill knapsack so as

to maximize total value	

Towards a Recurrence…

• What do we know about the knapsack with
respect to item i?

Mar 22, 2013 CSCI211 - Sprenkle 4

Towards a Recurrence…

• What do we know about the knapsack with
respect to item i?
Ø Either select item i or not
Ø If don’t select

•  Pick optimum solution of remaining items
Ø Otherwise

Mar 22, 2013 CSCI211 - Sprenkle 5

What happens?	

How does problem change?	

Formulate the recurrence	

Dynamic Programming: False Start

•  Def. OPT(i) = max profit subset of items 1,
…, i
Ø Case 1: OPT does not select item i

•  OPT selects best of { 1, 2, …, i-1 }
Ø Case 2: OPT selects item i

•  Accepting item i does not immediately imply that
we will have to reject other items
Ø No known conflicts

•  Without knowing what other items were selected
before i, we don't even know if we have enough
room for i

Mar 22, 2013 CSCI211 - Sprenkle 6
➡ Need more sub-problems!	

3/22/13	

2	

Dynamic Programming:
Adding a New Variable
•  Def. OPT(i, w) = max profit subset of items 1,

…, i with weight limit w
Ø Case 1: OPT does not select item i

•  OPT selects best of { 1, 2, …, i-1 }
using weight limit w

Ø Case 2: OPT selects item i
•  new weight limit = w – wi

•  OPT selects best of { 1, 2, …, i–1 }
using new weight limit, w – wi

Mar 22, 2013 CSCI211 - Sprenkle 7

€

OPT(i, w) =

0 if i = 0
OPT(i −1, w) if wi > w
max OPT(i −1, w), vi + OPT(i −1, w−wi){ } otherwise

$
%

&
%

Knapsack Problem: Bottom-Up

Mar 22, 2013 CSCI211 - Sprenkle 8

	
Input: N, w1,…,wN, v1,…,vN	
	
for w = 0 to W	
 M[0, w] = 0	
	
for i = 1 to N	
 for w = 1 to W 	
 if wi > w :	
 M[i, w] = M[i-1, w]	
 else	
 M[i, w] = max{ M[i-1, w], vi + M[i-1, w-wi] }	
	
return M[n, W]	

Knapsack Problem: Bottom-Up

•  Fill up an n-by-W array

Mar 22, 2013 CSCI211 - Sprenkle 9

	
Input: N, w1,…,wN, v1,…,vN	
	
for w = 0 to W	
 M[0, w] = 0	
	
for i = 1 to N # for all items 	
 for w = 1 to W # for all possible weights	
 if wi > w : # item’s weight is more than available	
 M[i, w] = M[i-1, w]	
 else	
 M[i, w] = max{ M[i-1, w], vi + M[i-1, w-wi] }	
	
return M[n, W]	

Knapsack Algorithm

Mar 22, 2013 CSCI211 - Sprenkle 10

of
entries: ���
n + 1

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2

φ

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

2

0

3

0

4

0

5

0

6

0

7

0

8

0

9

0

10

0

11

0

of entries: W + 1

W = 11

OPT:	

Solution =	

i	
w	

Represents weight in knapsack	

Represents item id	

Knapsack Algorithm

Mar 22, 2013 CSCI211 - Sprenkle 11

n + 1	

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2

φ

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

2

0

1

3

0

1

4

0

1

5

0

1

6

0

1

7

0

1

8

0

1

9

0

1

10

0

1

11

0

1

W + 1	

W = 11

OPT:	

Solution =	

i = 1	

Knapsack Algorithm

Mar 22, 2013 CSCI211 - Sprenkle 12

n + 1	

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2

φ

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1
1

2

0

6
1

3

0

7
1

4

0

7
1

5

0

7
1

6

0

7
1

7

0

7
1

8

0

7
1

9

0

7
1

10

0

7
1

11

0

7
1

W + 1	

W = 11

OPT:	

Solution =	

i = 2	

3/22/13	

3	

Knapsack Algorithm

Mar 22, 2013 CSCI211 - Sprenkle 13

n + 1	

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2

φ

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1
1

1

2

0

6
6

1

3

0

7
7

1

4

0

7
7

1

5

0

7
18

1

6

0

7
19

1

7

0

7
24

1

8

0

7
25

1

9

0

7
25

1

10

0

7
25

1

11

0

7
25

1

W + 1	

W = 11

OPT:	

Solution =	

i = 3	

Knapsack Algorithm

Mar 22, 2013 CSCI211 - Sprenkle 14

n + 1	

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2

φ

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1
1
1

1

2

0

6
6
6

1

3

0

7
7
7

1

4

0

7
7
7

1

5

0

7
18
18

1

6

0

7
19
22

1

7

0

7
24
24

1

8

0

7
25
28

1

9

0

7
25
29

1

10

0

7
25
29

1

11

0

7
25
40

1

W + 1	

W = 11

OPT:	

Solution =	

i = 4	

Knapsack Algorithm

Mar 22, 2013 CSCI211 - Sprenkle 15

n + 1	

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2

φ

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1
1
1

1

1

2

0

6
6
6

1

6

3

0

7
7
7

1

7

4

0

7
7
7

1

7

5

0

7
18
18

1

18

6

0

7
19
22

1

22

7

0

7
24
24

1

28

8

0

7
25
28

1

29

9

0

7
25
29

1

34

10

0

7
25
29

1

35

11

0

7
25
40

1

40

W + 1	

W = 11

OPT:	

Solution =	

i = 5	

What is the optimal solution?	

Knapsack Algorithm

Mar 22, 2013 CSCI211 - Sprenkle 16

n + 1	

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2

φ

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1
1
1

1

1

2

0

6
6
6

1

6

3

0

7
7
7

1

7

4

0

7
7
7

1

7

5

0

7
18
18

1

18

6

0

7
19
22

1

22

7

0

7
24
24

1

28

8

0

7
25
28

1

29

9

0

7
25
29

1

34

10

0

7
25
29

1

35

11

0

7
25
40

1

40

W + 1	

W = 11

OPT: 40 = 22 + 18	

Solution={4, 3}	

Analyzing Solution

Mar 22, 2013 CSCI211 - Sprenkle 17

	
Input: N, w1,…,wN, v1,…,vN	
	
for w = 0 to W	
 M[0, w] = 0	
	
for i = 1 to N # for all items 	
 for w = 1 to W # for all possible weights	
 if wi > w : # item’s weight is more than available	
 M[i, w] = M[i-1, w]	
 else	
 M[i, w] = max{ M[i-1, w], vi + M[i-1, w-wi] }	
	
return M[n, W]	

How do we figure out the optimal solution?	

Costs?	

Analyzing Solution

Mar 22, 2013 CSCI211 - Sprenkle 18

	
Input: N, w1,…,wN, v1,…,vN	
	
for w = 0 to W	
 M[0, w] = 0	
	
for i = 1 to N # for all items 	
 for w = 1 to W # for all possible weights	
 if wi > w : # item’s weight is more than available	
 M[i, w] = M[i-1, w]	
 else	
 M[i, w] = max{ M[i-1, w], vi + M[i-1, w-wi] }	
	
return M[n, W]	

O(W)	

O(N W)	

3/22/13	

4	

Knapsack Problem: Running Time

•  Running time. Θ(n W)
Ø Not polynomial in input size!
Ø "Pseudo-polynomial”

•  Reasonably efficient when W is reasonably small
Ø Decision version of Knapsack is NP-complete

[Chapter 8]
•  Knapsack approximation algorithm. There

exists a polynomial algorithm that produces a
feasible solution that has value within 0.01%
of optimum. [Section 11.8]

Mar 22, 2013 CSCI211 - Sprenkle 19

Review: Dynamic Programming

• What are the key ideas?

• What is our approach to solve a problem
using dynamic programming?

Mar 22, 2013 CSCI211 - Sprenkle 20

Review: Dynamic Programming
•  What is the key idea?

Ø Memoization: remember the answer for subproblems
•  Improves running time
•  Tradeoff in space

Ø Can calculate answer to problem from subproblems

•  What is our approach to solve a problem using
dynamic programming?
Ø Figure out what we’re optimizing
Ø Figure out how to break the problem into subproblems
Ø Figure out how to compute solution from subproblems
Ø Define the recurrence relation between the problems

Mar 22, 2013 CSCI211 - Sprenkle 21

What was the Key to Solving each of
these Problems?
• Weighted interval scheduling

•  Segmented least squares

•  Knapsack

Mar 22, 2013 CSCI211 - Sprenkle 22

What was the Key to Solving
each of these Problems?
•  Weighted interval scheduling

Ø Binary decision: job was in or wasn’t
Ø Know conflictsà reduce problem

•  Segmented least squares
Ø Knew last point was definitely in one segment

•  Could reduce
Ø Multiway decisionà many possibilities for segment

starting point

•  Knapsack
Ø  If select an item, reduce available size by item’s size

•  Find opt solution for smaller weight, remaining items

Mar 22, 2013 CSCI211 - Sprenkle 23

SEQUENCE ALIGNMENT

Mar 22, 2013 CSCI211 - Sprenkle 24

3/22/13	

5	

Has This Ever Happened To You?

Mar 22, 2013 CSCI211 - Sprenkle 25

How does Google know what I really meant?	

String Similarity

•  How similar are two strings?
Ø ocurrance
Ø occurrence

• We intuitively can tell that these two are
similar
Ø Systematic measurement?

Mar 22, 2013 CSCI211 - Sprenkle 26

String Similarity

•  How similar are two strings?
Ø ocurrance
Ø occurrence

•  Measurements
Ø Gap (-): add a letter
Ø Mismatch

Mar 22, 2013 CSCI211 - Sprenkle 27

o c u r r a n c e

c c u r r e n c e o

-

6 mismatches, 1 gap	

o c u r r a n c e

c c u r r e n c e o

-

1 mismatch, 1 gap	

o c u r r n c e

c c u r r n c e o

- - a

e -

0 mismatches, 3 gaps	

Which is the best alignment?	

Applications of String Similarity
•  Basis for Unix diff	

Ø Longest common subsequence
•  Spam filters

Ø Similarity to known spam message
•  Computational biology

Ø Ex: Figuring out how similar two genomes
(sequences of A, C, G, T) are

•  Alignment with non English/natural language
strings are less obvious how to align

Mar 22, 2013 CSCI211 - Sprenkle 28

Edit Distance

•  [Levenshtein 1966, Needleman-Wunsch
1970]

Ø Gap penalty: δ
Ø Mismatch penalty: αpq

•  If p and q are the same, then mismatch penalty is
0

Ø Cost = sum of gap and mismatch penalties

Mar 22, 2013 CSCI211 - Sprenkle 29

2δ + αCA	

C G A C C T A C C T

C T G A C T A C A T

T G A C C T A C C T

C T G A C T A C A T

- T

C

C

C

αTC + αGT + αAG+ 2αCA	

-

Parameters allow us
to tweak cost	

Oracle of Bacon

Mar 22, 2013 CSCI211 - Sprenkle 30

3/22/13	

6	

Looking Ahead

•  Exam2 due today at 5 p.m.
• Wiki due Tuesday

Ø Chap 6: 6.1-6.4
•  PS8 due Friday

Mar 22, 2013 CSCI211 - Sprenkle 31

