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Objectives 

•  More on recurrence relations 
•  Divide and conquer algorithms 

Ø Counting inversions 
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Review 

•  Describe the template for divide and conquer 
solutions 

• What is the recurrence relation for Merge 
Sort? 

• What is a recurrence relation? 
•  How can you compute D&C running times? 

Ø 2 ways to solve 
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Review: Divide-and-Conquer 

•  Divide-and-conquer process 
Ø Break up problem into several parts 
Ø Solve each part recursively 
Ø Combine solutions to sub-problems into overall 

solution 
•  Define a recurrence relation that describes 

the running time 
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Divide et impera.	

Veni, vidi, vici.	

        - Julius Caesar	


Review: Recurrence Relations 

•  Use recurrences to analyze/determine the 
run time of divide and conquer algorithms 
Ø Number of sub problems 
Ø Size of sub problems 
Ø Number of times divided (number of levels) 
Ø Cost of merging problems 

•  How to solve 
Ø Unrolling 
Ø Substitution 
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Analyzing Merge Sort 
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What is the recurrence relation?	


MergeSort( L[n] ):	
	if n == 1:	
	 	return L	

     if n == 2:	
	 	compare the two entries in L,	
	 	swap if necessary	
	 	return L	
	A = MergeSort(L[1…n/2])	
	B = MergeSort(L[n/2+1…])	
	M = Merge(A, B)	
	return M	

Analyzing Merge Sort 
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What is the recurrence relation?	


MergeSort( L[n] ):	
	if n == 1:	
	 	return L	

     if n == 2:	
	 	compare the two entries in L,	
	 	swap if necessary	
	 	return L	
	A = MergeSort(L[1…n/2])	
	B = MergeSort(L[n/2+1…])	
	M = Merge(A, B)	
	return M	

T(n) = 2T(n/2) + O(n)	


T(n/2)	


T(n/2)	

O(n)	


Base cases	
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Analyzing Binary Search 

Mar 1, 2013 CSCI211 - Sprenkle 7 

BinarySearch( L[n], key ):	
	if n == 1 and L[n] == key:	
	 	return n	
	else:	
	 	return NOT_FOUND	

     mid = n/2	
	if L[mid] == key:	
	 	return mid	
	if L[mid] < key:	
	 	return BinarySearch(L[mid+1:], key)	
	else:	
	 	return BinarySearch(L[:mid], key)	

What is the recurrence relation?	


Analyzing Binary Search 
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BinarySearch( L[n], key ):	
	if n == 1 and L[n] == key:	
	 	return n	
	else:	
	 	return NOT_FOUND	

     mid = n/2	
	if L[mid] == key:	
	 	return mid	
	if L[mid] < key:	
	 	return BinarySearch(L[mid+1:], key)	
	else:	
	 	return BinarySearch(L[:mid], key)	

What is the recurrence relation?	


T(n) = T(n/2) + c	


Another Recurrence Relation 

•  Instead of recursively solving 2 problems, 
solve q problems 
Ø Size of problems is still n/2 

•  Combining solutions is still O(n) 
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What is the recurrence relation?	


n	


n/2	
 n/2	

n/2	


Example: q=3:	


Another Recurrence Relation 

•  Instead of recursively solving 2 problems, 
solve q problems 
Ø Size of problems is still n/2 

•  Combining solutions is still O(n) 
•  Recurrence relation: 

Ø For some constant c, 
T(n) ≤ q T(n/2) + cn when n > 2 
T(2) ≤ c 
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Intuition about running time?	


Unrolling Recurrence, q > 2 
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T(n) ≤ q T(n/2) + cn 

Unrolling Recurrence, q > 2 

•  First level: 
q T(n/2) + cn 
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cn	


T(n/2)	
T(n/2)	
 …	
q 	
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Unrolling Recurrence, q > 2 

•  Next level:  
q T(n/4) + c(n/2) 
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cn	


c n/2	
c n/2	
 …	
q 	


T(n/4)	
 T(n/4)	
 T(n/4)	
 T(n/4)	
…	
q 	
 …	
q 	
…

How much does each level 
cost, in terms of the level?	


Number of levels?	


What is the total run time?	


Unrolling Recurrence, q > 2 
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cn	


c n/2	
c n/2	
 …	
q 	


T(n/4)	
 T(n/4)	
 T(n/4)	
 T(n/4)	
…	
q 	
 …	
q 	


qk problems at level k	

Size: n/2k	


Each level takes qk * c * (n/2k) = (q/2)j cn	

à Total work per level is increasing  as level increases  	


Number of levels: log2n	


0	


1	


How much does each level 
cost, in terms of the level?	


Number of levels?	


What is the total run time?	


Unrolling Recurrence, q > 2 
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cn	


c n/2	
c n/2	
 …	
q 	


T(n/4)	
 T(n/4)	
 T(n/4)	
 T(n/4)	
…	
q 	
 …	
q 	


0	


1	


T(n) ≤ Σj=0,logn (q/2)j cn	

	

Geometric series: 	

(constant ratio between successive terms)	

Multiplying previous term by (q/2) 	
 O(n log2 q) 

Unrolling the Recurrence 

•  Generalize: What are the steps? 
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Summary 

•  Use recurrences to analyze the run time of 
divide and conquer algorithms 

•  Need to figure out 
Ø Number of sub problems 
Ø Size of sub problems 
Ø Number of times divided (number of levels) 
Ø Cost of merging problems 
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Know Your Recurrence Relations 

Recurrence Algorithm Running Time 

T(n) = T(n/2) + O(1) 

T(n) = T(n-1) + O(1) 

T(n) = 2 T(n/2) + O(1) 

T(n) = T(n-1) + O(n) 

T(n) = 2 T(n/2) + O(n) 
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What algorithm has this recurrence relation?	

What is that algorithm’s running time?	
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Know Your Recurrence Relations 
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Recurrence Algorithm Running Time 
T(n) = T(n/2) + O(1) Binary Search O(log n) 

T(n) = T(n-1) + O(1) Sequential/
Linear Search O(n) 

T(n) = 2 T(n/2) + O(1) Binary Tree 
Traversal O(n) 

T(n) = T(n-1) + O(n) Selection Sort O(n2) 
T(n) = 2 T(n/2) + O(n) Merge Sort O(n log n) 

What algorithm has this recurrence relation?	

What is that algorithm’s running time?	


Looking Ahead 

• Wiki: 4.8, 5.1, 5.2 
•  Problem Set 6 – due Friday – SSA day 
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