
2/15/13	

1	

Objectives

• Wrap Up Minimum Spanning Tree
•  Union-Find data structure
•  Clustering

Feb 15, 2013 1 CSCI211 - Sprenkle

Review

• What is a minimum spanning tree?
• What are three greedy solutions to finding

the minimal spanning tree?

Feb 15, 2013 CSCI211 - Sprenkle 2

Review: Minimum Spanning Tree
•  Spanning tree: spans all nodes in graph
•  Given a connected graph G = (V, E) with

positive edge weights ce, an MST is a subset of
the edges T ⊆ E such that T is a spanning tree
whose sum of edge weights is minimized

Feb 15, 2013 CSCI211 - Sprenkle 3

 5	

23	

10 	

21	

 14	

24	

 16	

 6	

 4	

18	

9	

7	

11	

 8	

 5	

 6	

 4	

9	

7	

11	

 8	

G = (V, E)	
 T, Σe∈T ce = 50	

What were the three algorithms we proposed?	

Review: Greedy Algorithms

•  Prim's algorithm. Start with some root node s and greedily
grow a tree T from s outward. At each step, add the
cheapest edge e to T that has exactly one endpoint in T.
Ø  Similar to Dijkstra’s (but simpler)

•  Kruskal's algorithm. Start with T = φ. Consider edges in
ascending order of cost. Insert edge e in T unless doing so
would create a cycle.

•  Reverse-Delete algorithm. Start with T = E. Consider
edges in descending order of cost. Delete edge e from T
unless doing so would disconnect T.

Feb 15, 2013 CSCI211 - Sprenkle 4

What do these algorithms have/do/check in common?	

All three algorithms produce a MST	

Review: Important Properties
•  Simplifying assumption: All edge costs ce are distinct
➜  MST is unique

•  Cut property. Let S be any subset of nodes, and let e
be the min cost edge with exactly one endpoint in S.
Then MST contains e.

•  Cycle property. Let C be any cycle, and let f be the
max cost edge belonging to C. Then MST does not
contain f.

Feb 15, 2013 CSCI211 - Sprenkle 5

f 	

C	

S	

Cut Property: e is in MST	

e	

Cycle Property: f is not in MST	

Review: Prim's Algorithm

•  Maintain set of explored nodes S
•  For each unexplored node v, maintain

attachment cost a[v] à cost of cheapest
edge v to a node in S

Feb 15, 2013 CSCI211 - Sprenkle 6

foreach (v ∈ V) a[v] = ∞	
Initialize an empty priority queue Q	
foreach (v ∈ V) insert v onto Q	
Initialize set of explored nodes S = φ	
while (Q is not empty) 	
 u = delete min element from Q	
 S = S ∪ { u }	
 foreach (edge e = (u, v) incident to u)	
 if ((v ∉ S) and (ce < a[v]))	
 decrease priority a[v] to ce	

O(deg(u))	

O(n)	

O(log n)	

O(n logn)	

O(n)	

O(log n)	

O(m log n) with a heap	

Similar to Dijkstra’s algorithm. Proved optimality with the cut property	

2/15/13	

2	

Kruskal’s Algorithm [1956]

•  Start with T = φ
•  Consider edges in ascending order of cost
•  Insert edge e in T unless doing so would

create a cycle
Ø Add edge as long as “compatible”

Feb 15, 2013 CSCI211 - Sprenkle 7

How can we prove algorithm’s correctness?	

Kruskal's Algorithm:
Proof of Correctness
•  Consider edges in ascending order of weight
•  Case 1: If adding e to T creates a cycle, discard e

according to cycle property (e must be max weight)
•  Case 2: Otherwise, insert e = (u, v) into T according to

cut property where S = set of nodes in u's connected
component

Feb 15, 2013 CSCI211 - Sprenkle 8 Case 1	

v	

u	

Case 2	

e	

e	

S	

What is tricky about implementing
Kruskal’s algorithm?	

Implementing Kruskal’s Algorithm

Feb 15, 2013 CSCI211 - Sprenkle 9

What is tricky about implementing Kruskal’s algorithm?	

How do we know when adding an edge will create a cycle?	

• What are the properties of a graph/its nodes when

adding an edge will create a cycle?	

UNION-FIND
DATA STRUCTURE

Feb 15, 2013 CSCI211 - Sprenkle 10

Union-Find Data Structure
•  Keeps track of a graph as edges are added

Ø Cannot handle when edges are deleted
•  Maintains disjoint sets

Ø E.g., graph’s connected components
•  Operations:

Ø Find(u): returns name of set containing u
•  How utilized to see if two nodes are in the same set?
•  Goal implementation: O(log n)

Ø Union(A, B): merge sets A and B into one set
•  Goal implementation: O(log n)

Feb 15, 2013 CSCI211 - Sprenkle 11 Best darn Union-Find Data Structure	

Implementing Kruskal's Algorithm

•  Using the union-find data structure
Ø Build set T of edges in the MST
Ø Maintain set for each connected component

Feb 15, 2013 CSCI211 - Sprenkle 12

Sort edge weights so that c1 ≤ c2 ≤ ... ≤ cm	
T = {}	
foreach (u ∈ V) make a set containing singleton u	
	
for i = 1 to m	
 (u,v) = ei	
 if (u and v are in different sets)	
 T = T ∪ {ei}	
 merge the sets containing u and v	
return T	

are u and v in different connected components?	

merge two components	

Costs?	

2/15/13	

3	

Implementing Kruskal's Algorithm

•  Using best implementation of union-find
Ø Sorting: O(m log n)
Ø Union-find: O(m α (m, n))
Ø O(m log n)

Feb 15, 2013 CSCI211 - Sprenkle 13

m ≤ n2 ⇒ log m is O(log n)	

essentially a constant	

Sort edges weights so that c1 ≤ c2 ≤ ... ≤ cm	
T = {}	
foreach (u ∈ V) make a set containing singleton u	
	
for i = 1 to m	
 (u,v) = ei	
 if (u and v are in different sets)	
 T = T ∪ {ei}	
 merge the sets containing u and v	
return T	

are u and v in different connected components?	

merge two components	

CLUSTERING

Feb 15, 2013 CSCI211 - Sprenkle 14

Outbreak of cholera deaths in London in 1850s. ���
Reference: Nina Mishra, HP Labs	

Intersections with
polluted wells	

Clustering
•  Given a set U of n objects (or points) labeled

p1, …, pn, classify into coherent groups
Ø Problem: Divide objects into clusters so that

points in different clusters are far apart
•  Requires quantification of distance

•  Applications
Ø Routing in mobile ad hoc networks
Ø Identify patterns in gene expression
Ø Identifying patterns in web application use cases

•  Sets of URLs
Ø Similarity searching in medical image databases

Feb 15, 2013 CSCI211 - Sprenkle 15

Clustering: Distance Function

•  Numeric value specifying "closeness" of two
objects

•  Assume distance function satisfies several
natural properties
Ø d(pi, pj) = 0 iff pi = pj (identity of indiscernibles)
Ø d(pi, pj) ≥ 0 (nonnegativity)
Ø d(pi, pj) = d(pj, pi) (symmetry)

Feb 15, 2013 CSCI211 - Sprenkle 16

Our Problem:
k-Clustering of Maximum Spacing
•  k-clustering. Divide objects into k non-empty

groups
•  Spacing. Min distance between any pair of

points in different clusters
•  k-clustering of maximum spacing.

Given an integer k,
find a k-clustering of maximum spacing

Feb 15, 2013 CSCI211 - Sprenkle 17

spacing	

k = 4	

Ideas about solving?	

Greedy Clustering Algorithm

•  Single-link k-clustering algorithm
Ø Form a graph on the vertex set U, corresponding

to n clusters
Ø Find the closest pair of objects such that each

object is in a different cluster and add an edge
between them

Ø Repeat n-k times until there are exactly k
clusters

Feb 15, 2013 CSCI211 - Sprenkle 18

How is this related to the MST?	

2/15/13	

4	

Greedy Clustering Algorithm

•  Key observation: Same as Kruskal's algorithm
Ø Except we stop when there are k connected

components
•  Remark. Equivalent to finding MST and

deleting the k-1 most expensive edges

Feb 15, 2013 CSCI211 - Sprenkle 19

 5	

 6	

 4	

9	

7	

11	

 8	

 5	

 6	

 4	

7	

 8	

k=3	

MST	

Greedy Clustering Algorithm: Analysis
•  Theorem. Let C denote the clustering C1, …, Ck formed

by deleting the k-1 most expensive edges of a MST.
C is a k-clustering of max spacing.

•  Pf Intuition:
Ø What can we say about C’s spacing?

•  Within clusters and between clusters
Ø What if C isn’t optimal?

•  What does that mean about C’s clusters vs (optimal) C*’s
clusters?

Feb 15, 2013 CSCI211 - Sprenkle 20

 5	

 6	

 4	

9	

7	

11	

 8	

 5	

 6	

 4	

7	

 8	

K=3	

MST	

Greedy Clustering Algorithm: Analysis
•  Theorem. Let C denote the clustering C1, …, Ck formed by

deleting the k-1 most expensive edges of a MST.
C is a k-clustering of maximum spacing.

•  Pf Sketch. Let C* denote some other clustering C*1, …, C*k.
C* and C must be different; otherwise we’re done.
Ø  The spacing of C is length d of (k-1)st most expensive edge
Ø  Let pi, pj be in the same cluster in Greedy solution C (say Cr)

but different clusters in other solution C*, say C*s and C*t
Ø  Some edge (p, q) on pi-pj path in Cr spans two different

clusters in C*

Feb 15, 2013 CSCI211 - Sprenkle 21

p	
 q	
pi	
 pj	

C*s	
 C*t	

Cr	

What do we know about (p, q)?	

Greedy	

Other
solution	

Greedy Clustering Algorithm: Analysis
•  Theorem. Let C denote the clustering C1, …, Ck formed by

deleting the k-1 most expensive edges of a MST.
C is a k-clustering of maximum spacing.

•  Pf. Let C* denote some other clustering C*1, …, C*k.
C* and C must be different; otherwise we’re done.
Ø  The spacing of C is length d of (k-1)st most expensive edge
Ø  Let pi, pj be in the same cluster in C (say Cr) but different

clusters in C*, say C*s and C*t
Ø  Some edge (p, q) on pi-pj path in Cr spans two different

clusters in C*
Ø  All edges on pi-pj path have length ≤ d

since Kruskal chose them
Ø  Spacing of C* is at most ≤ d since
 p and q are in different clusters

Feb 15, 2013 CSCI211 - Sprenkle 22

p	
 q	
pi	
 pj	

C*s	
 C*t	

Cr	

Greedy	

Other
solution	

Looking ahead

• Wiki: Chapter 4, Section 2, 4-6 (skipping
section 3)
Ø Due Tues midnight after break

•  PS 5 due Friday after break

Feb 15, 2013 CSCI211 - Sprenkle 23

