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Objectives 

•  Dynamic Programming 
Ø Segmented Least Squares 
Ø Subset Sums 
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Review: Weighted Interval Scheduling 

1. Determine optimal substructure of problem 
Ø  Define the recurrence relation 

2. Define algorithm to find the value of optimal 
solution 

3. Optionally, change algorithm to an iterative 
rather than recursive solution 

4. Define algorithm to find optimal solution 
5. Analyze running time of algorithms 
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Map to weighted-interval scheduling	


Review: Iterative Weighted Interval 
Scheduling Solution 
•  Build up solution from subproblems instead 

of breaking down 

 
•  Typically, we’ll take iterative approach 

Mar 18, 2013 CSCI211 - Sprenkle 3 

Input: n, s1,…,sn , f1,…,fn , v1,…,vn	
	
Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.	
	
Compute p(1), p(2), …, p(n)	
	
M[0] = 0	
for j = 1 to n	
    M[j] = max(vj + M[p(j)], M[j-1])	 O(n)	


Review: Weighted Interval Scheduling:  
Finding a Solution 
•  Dynamic programming algorithms compute 

optimal value 
•  What if we want the solution itself  

(not simply the value)? 
•  Do some post-processing 
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M-Compute-Opt(n)	
Find-Solution(n)	
	
def Find-Solution(j):	
   if j = 0:	
      output nothing	
   elif vj + M[p(j)] > M[j-1]:	
      print j	
      Find-Solution(p(j))	
   else:	
      Find-Solution(j-1)	

Runtime: O(n)	


SEGMENTED LEAST SQUARES 
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Least Squares 

•  Foundational problem in statistic and 
numerical analysis 

•  Given n points in the plane:  
(x1, y1), (x2, y2) , . . . , (xn, yn) 

•  Find a line y = ax + b that minimizes the sum 
of the squared error 
Ø “line of best fit” 
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Least Squares 
•  Foundational problem in statistic and numerical 

analysis 
•  Given n points in the plane: (x1, y1), (x2, y2) , . . . , (xn, yn) 
•  Find a line y = ax + b that minimizes the sum of the 

squared error 
Ø  “line of best fit” 

 
•  Closed form solution.  Calculus  ⇒  min error is 

achieved when 
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Least Squares 

• What happens to the error if we try to fit one 
line to these points? 

 
• What pattern does it seem like these points 

have? 
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Least Squares 

• What happens to the error if we try to fit one 
line to these points? 
Ø Large error 

•  Pattern: More like 3 lines 
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Our Problem:  
Segmented Least Squares 
•  Points lie roughly on a sequence of line segments 
•  Given n points in the plane (x1, y1), (x2, y2) , . . . ,  

(xn, yn) with x1 < x2 < ... < xn, find a sequence of line 
segments that minimizes f(x) 
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If I want the best fit, how many lines should I use?	


Segmented Least Squares 
•  Points lie roughly on a sequence of line segments 
•  Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) 

with x1 < x2 < ... < xn, find a sequence of line segments 
that minimizes f(x) 
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What's a reasonable choice for f(x) to 
balance accuracy and parsimony?	


Segmented Least Squares 
•  Points lie roughly on a sequence of several line segments. 
•  Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with 

x1 < x2 < ... < xn, find a sequence of line segments that 
minimizes: 
Ø  E: sum of the sums of the squared errors in each segment 
Ø  L: the number of lines 

•  Tradeoff function:  E + c L, for some constant c > 0. 
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Segmented Least Squares 

• What made it seem like the points were in  
3 lines?  What happened? 
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Segmented Least Squares 
• What made it seem like the points were in  

3 lines?  What happened? 

Ø Error increased à want to minimize error 
Ø Looking for change in linear approximation 

•  Where to partition points into line segments 
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Recall:  
Properties of Problems for DP 
•  Polynomial number of subproblems 
•  Solution to original problem can be easily 

computed from solutions to subproblems 
•  Natural ordering of subproblems, easy to 

compute recurrence 
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We need to:	

• Figure out how to break the problem into subproblems	

• Figure out how to compute solution from subproblems	

• Define the recurrence relation between the problems	


Toward a Solution 

•  Consider just the first or last point 
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What do we know about those points?  
their segments?  cost of a segment?	


Toward a Solution 

•  pn can only belong to one segment 
Ø Segment: pi, …, pn 

Ø Cost: c (cost for segment) + error of segment 
• What is the remaining problem? 
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Toward a Solution 

•  pn can only belong to one segment 
Ø Segment: pi, …, pn 

Ø Cost: c (cost for segment) + error of segment 
• What is the remaining problem? 

Ø Solve for p1, …, pi-1 
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Next:  Formulate as a recurrence	
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Dynamic Programming: Multiway Choice 

•  Notation. 
Ø OPT(j) = minimum cost for points p1, pi+1 , … , pj. 
Ø e(i, j)  = minimum sum of squares for points      

pi, pi+1 , …, pj. 

•  How do we compute OPT(j)? 
Ø Last problem: binary decision (include job or not) 
Ø This time: multiway decision 

•  Which option do we choose? 
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Dynamic Programming: Multiway Choice 

•  Notation. 
Ø OPT(j) = minimum cost for points p1, pi+1 , … , pj. 
Ø e(i, j)  = minimum sum of squares for points      

pi, pi+1 , …, pj. 
•  To compute OPT(j): 

Ø Last segment contains points pi, pi+1, … , pj for 
some i 

Ø Cost = e(i, j) + c + OPT(i-1). 
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Segmented Least Squares: Algorithm 
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INPUT: n, p1,…,pN , c	
	
Segmented-Least-Squares()	
   M[0] = 0	
   e[0][0] = 0  # needed?	
   for j = 1 to n	
      for i = 1 to j	
         e[i][j] = least square error for the	

	 	 	  segment pi, …, pj	
	
   for j = 1 to n	
      M[j] = min 1 ≤ i ≤ j (e[i][j] + c + M[i-1])	
	
   return M[n]	

Costs?	


Segmented Least Squares: 
 Algorithm Analysis 

•  Bottleneck: computing e(i, j) for O(n2) pairs, 
O(n) per pair using previous formula 
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can be improved to O(n2) by pre-computing various statistics	


INPUT: n, p1,…,pN , c	
	
Segmented-Least-Squares()	
   M[0] = 0	
   e[0][0] = 0	
   for j = 1 to n	
      for i = 1 to j	
         e[i][j] = least square error for the  
         	 	segment pi,…, pj	
	
   for j = 1 to n	
      M[j] = min 1 ≤ i ≤ j (e[i][j] + c + M[i-1])	
	
   return M[n]	

O(n3)	


can be improved to O(n2) by 
pre-computing various statistics	


O(n2)	


How do we find the solution?	


Post-Processing: Finding the Solution 
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FindSegments(j):	
	if j = 0:	
	 	output nothing	
	else:	
	 	Find an i that minimizes ei,j + c + M[i-1]	
	 	Output the segment {pi, …, pj}	
	 	FindSegments(i-1)  	

Cost?	
 O(n2)	
 SUBSET SUMS and 
KNAPSACKS 
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The Price is Right 

•  Goal: Spend as much money as possible 
without going over $100 
Ø CD $18 
Ø Jeans $40 
Ø DVD $35 
Ø Dinner $15 
Ø Book $8 
Ø Ice cream $5 
Ø Shoes $62 
Ø Pizza $7  
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Or, shopping with someone else’s money	


Possible solutions?	


Knapsack Problem 

•  Given n objects and a "knapsack" 
•  Item i weighs wi  > 0 kilograms and  

has value vi > 0 
Ø Alternative: jobs require wi  time 

•  Knapsack has capacity of W kilograms 
Ø Alternative: W is time interval that resource is 

available 

•  Greedy:  repeatedly add item with maximum 
ratio vi / wi. 

•  Ex:  { 5, 2, 1 } achieves only value = 35  ⇒  
greedy not optimal. 
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W = 11 Goal: fill knapsack so as to 

maximize total value	


Towards a Recurrence… 

• What do we know about the knapsack with 
respect to item i? 
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Towards a Recurrence… 

• What do we know about the knapsack with 
respect to item i? 
Ø Either select item i or not 
Ø If don’t select 

•  Pick optimum solution of remaining items 
Ø Otherwise 

•  What happens? 
•  How does problem change? 

Mar 18, 2013 CSCI211 - Sprenkle 28 

Dynamic Programming: False Start 

•  Def.  OPT(i) = max profit subset of items 1, 
…, i 
Ø Case 1: OPT does not select item i 

•  OPT selects best of { 1, 2, …, i-1 }  
Ø Case 2:  OPT selects item i 

•  Accepting item i does not immediately imply that 
we will have to reject other items 
Ø No known conflicts 

•  Without knowing what other items were selected 
before i, we don't even know if we have enough 
room for i 
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➡ Need more sub-problems!	


Dynamic Programming:  
Adding a New Variable 
•  Def. OPT(i, w) = max profit subset of items 1, 

…, i with weight limit w 
Ø Case 1: OPT does not select item i 

•  OPT selects best of { 1, 2, …, i-1 } using weight 
limit w  

Ø Case 2: OPT selects item i 
•  new weight limit = w – wi 

•  OPT selects best of { 1, 2, …, i–1 } using new 
weight limit 
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Looking Ahead 

•  Exam 2 due Friday 
• Wednesday work period 
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