Objectives

Greedy Algorithms
» Interval partitioning
» Minimizing Lateness

Exchange argument

Feb 6, 2012 CSCI211 - Sprenkle 1

Review

What is the template for a greedy solution?

What problems did we solve optimally with a
greedy algorithm?
How did we prove optimality?

Feb 6, 2012 CSCI211 - Sprenkle 2

Review: Greedy Algorithms

Template
1. Consider jobs (or whatever) in some order
Decision: What order is best?
2. Take each job provided it's compatible with the
ones already taken
At each step, take as much as you can get
» Feasible — satisfy problem’s constraints

» Locally optimal — best local choice among
available feasible choices

» Irrevocable — after decided, no going back

Feb 6, 2012 CSCI211 - Sprenkle 3

Review: Greedy Stays Ahead Proofs

Define your solutions

~  Describe the form of your greedy solution and of some other solution
(possibly the optimal 'solution)

Example: Let A be the solution constructed by the greedy algorithm and O
be an solution.

Find a measure
~  Find a measure by which greedy stays ahead of the optimal solution
Ex: Leta;, ..., a, be the first k measures of greedy algorithm and
[FIR. 0,, be the first m measures of other solution (sometimes m =k )
Prove greedy stays ahead
»  Show that the partial solutions constructed by greedy are always just
as good as the initial segments of the optimal solution, based on the
measure
Ex: for all indices r < min(k,m), prove by induction that a, 2 o, or a, < o,
»  Use the greedy algorithm to help you argue the inductive step
Prove optimality
»  Prove that since %reedy stays ahead of the other solution with respect
to the measure, then the greedy solution is optimal.

Feb 6, 2012 CSCI211 - Sprenkle 4

Review: Interval Scheduling

Job j starts at s; and finishes at f;
Two jobs are compatible if they don't overlap

Goal: find maximum subset of mutually
compatible jobs

a
« Every job is worth equal
b money.
c * To earn the most money >
d schedule the most jobs
e
f
g
h Time
o 1 2 3 4 5 6 7 8 9 10 I
Feb 6, 2012 CSCI211 - Sprenkle 5

Problem Assumptions

All requests were known to scheduling
algorithm
» Online algorithms: make decisions without
knowledge of future input
Each job was worth the same amount
~ What if jobs had different values?
E.g., scaled with size
Single resource requested
~ Rejected requests that didn’t fit

Feb 6, 2012 CSCI211 - Sprenkle 6

2/6/12



INTERVAL PARTITIONING

Feb 6, 2012 CSCI211 - Sprenkle 7

Interval Partitioning

Lecture j starts at s;and finishes at f,

Goal: find minimum number of classrooms to
schedule all lectures so that no two occur at
the same time in the same room.

Ex: 10 lectures in 4 classrooms | e ou conc;

€ fewer rooms?

e i

3 d g
b h
a f i
5 s3 10 1030 11 N30 2 1230 1 30 2 23 3 330 4 4%
Time
Feb 6, 2012 CSCI211 - Sprenkle

Interval Partitioning

Lecture j starts at s;and finishes at f;

Goal: find minimum number of classrooms to
schedule all lectures so that no two occur at
the same time in the same room.

Alternative schedule uses only 3 classrooms

a e h

9 930 10 1030 I 1130 12 1230 | 130 2 230 3 330 4 430
Time

Feb 6, 2012 CSCI211 - Sprenkle 9

Interval Partitioning:

Lower Bound on Optimal Solution
Def. The depth of a set of open intervals is the
maximum number that contain any given time.
Key observation. # of classrooms needed =
depth a,b,call contain 9:30 =~
Ex: Depth of schedule below =3 = schedule
below is optimal.

Does there always exist a schedule equal
to depth of intervals?

3 d f i
b 2

a e h

9 930 10 1030 11 1130 12 1230 | 130 2 230 3 330 4 430
Time

Feb 6, 2012 CSCI211 - Sprenkle 10

Interval Partitioning Discussion

Does there always exist a schedule equal to
depth of intervals?
Can we make decisions locally to get a
global optimum?
Or are there long-range obstacles that require
more resources?

Feb 6, 2012 CSCI211 - Sprenkle "

Interval Partitioning: Greedy Algorithm

Consider lectures in increasing order of start
time: assign lecture to any compatible
classroom

Sort intervals by starting time so that s; = s; = ... = s,
= <+—— number of allocated classrooms
for j=1ton
if lecture j is compatible with some classroom k
schedule lecture j in classroom k
else
allocate a new classroom d + 1
schedule lecture j in classroom d + 1

d=d+1
Analyze algorithm

Feb 6, 2012 CSCI211 - Sprenkle 12

2/6/12



Interval Partitioning: Greedy Algorithm

Consider lectures in increasing order of start time: assign
lecture to any compatible classroom

Sort intervals by starting time so that s; <s, = ... = s,
d= <—— number of allocated classrooms
for j=1ton
if (lecture j is compatible with some classroom k)
schedule lecture j in classroom k
else
allocate a new classroom d + 1
zchegule lecture j in classroom d + 1
=d+1

Implementation: O(n log n)
> Fg& egch classroom k, maintain the finish time of the last job
added.

» Keep the classrooms in a priority queue by last job finish time.

Feb 6, 2012 CSCI211 - Sprenkle 13

Interval Partitioning: Greedy Analysis

Observation. Greedy algorithm never schedules two
incompatible lectures in the same classroom

Theorem. Greedy algorithm is optimal
Pf Intuition

» When do we add more classrooms?

» When would we add the d+1 classroom?

Feb 6, 2012 CSCI211 - Sprenkle 14

Interval Partitioning: Greedy Analysis

Observation. Greedy algorithm never schedules two
incompatible lectures in the same classroom
Theorem. Greedy algorithm is optimal
Pf.
» Let d = number of classrooms that the greedy algorithm
allocates
» Classroom d is opened because we needed to schedule
a job, say j, that is incompatible with all d-1 other
classrooms
» Since we sorted by start time, all these incompatibilities
are caused by lectures that start no later than s,

~ Thus, we have d lectures overlapping at time s; + ¢
» d is the depth of the set of lectures

Feb 6, 2012 CSCI211 - Sprenkle 15

Exchange argument

SCHEDULING TO
MINIMIZE MAX LATENESS

Feb 6, 2012 CSCI211 - Sprenkle 16

Scheduling to Minimizing Max Lateness

Single resource processes one job at a time

Job j requires t, units of processing time and is due at
time d, (its deadline)

If j starts at time s, it finishes at time f, = s, + {;
Lateness: (,=max{0, f-d}

Goal: schedule all jobs to minimize maximum
lateness L = max /

maanan
[ 3 2 ' 4 3 2
Bl s lateness =2 lateness = 0 lateness = 6
\4
d=9 d,=8 d= 15 4 =6 dy= 14 d,=9
0 I 2 3 4 5 6 7 8 9 0 " 12 13 14 15
Feb 6, 2012 csci211-Sp Note: not a sum total 17

Greedy Algorithms

Greedy template. Consider jobs in some
order.

What do we want to optimize?

What order?

» Intuition of order?
» Counter examples for order being optimal?

Feb 6, 2012 CSCI211 - Sprenkle 18

2/6/12



Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some
order.

~ Shortest processing time first. Consider jobs in

ascending order of processing time t;.
2

Counter example 1 10
BN~ o

» Smallest slack. Consider jobs in ascending
order of slack d; - t;.

e
1o
Counter example 5
210
Feb 6, 2012 CSCI211 - Sprenkle 19

Minimizing Lateness: Greedy Algorithm

Earliest deadline first.

Sort n jobs by deadline so that d; = d; = .. = d,
=0

for j=1ton
ssign job j to interval [t, t + t;]

t
t+t
t+t

intervals [s;, fi]

A

s =

fy =
t =

output

max lateness = |

What can we say about this algorithm/its results? ‘

Feb 6, 2012 CSCI211 - Sprenkle 20

Minimizing Lateness: No Idle Time

Observation. There exists an optimal
schedule with no idle time

d=4 d=6 d=12

0 ! 2 3 4 5 6 7 8 9 10 "
d=4 d=6 d=12

0 | 2 3 4 5 6 7 8 9 0 "

Observation. The greedy schedule has no
idle time

Feb 6, 2012 CSCI211 - Sprenkle 21

Proving Optimality

Goal: Prove greedy algorithm produces
optimal solution
Approach: Exchange argument

» Start with an optimal schedule Opt

» Gradually modify Opt, preserving its optimality

» Transform into a schedule identical to greedy’s
schedule

Feb 6, 2012 CSCI211 - Sprenkle 22

Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of
jobs i and j such that:
d; < d, but j scheduled before i

inversion

Can Greedy’s solution have any inversions? ‘

Feb 6, 2012 CSCI211 - Sprenkle 23

Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of
jobs i and j such that:
d; < d; but j scheduled before i

inversion

Greedy’s schedule has no inversions!

Feb 6, 2012 CSCI211 - Sprenkle 24

2/6/12



Minimizing Lateness: Inversions

Claim. Swapping two adjacent jobs with the
same deadline does not increase the max
lateness

Pf Sketch. Let ¢ be the lateness before the
swap, and let ¢ be it afterwards

~ Lateness of other jobs?

» Lateness of i? j?

,
fl
Feb 6, 2012 CSCI211 - Sprenkle 25

Minimizing Lateness: Inversions

Claim. Swapping two adjacent jobs with the
same deadline does not increase the max
lateness
Pf. Let ¢ be the lateness before the swap, and
let ¢’ be it afterwards

» Lateness remains the same for all other jobs:

o=t forallk=i,j
» Lateness of i before is f-d, = t+t-d,
» Lateness of j after is f-d, = t+t-d;

Butd=d,
f;
r!
Feb 6, 2012 CSCI211 - Sprenkle 26

Minimizing Lateness: Inversions

Claim. Swapping two adjacent, inverted jobs
reduces the number of inversions by one and
does not increase the max lateness

[ How do we know inversions are adjacent? |
Pf Setup. Let ¢ be the lateness before the
swap, and let 7’ be it afterwards

‘What can we say about how
i's,'s,and other jobs’ lateness changes?

inversion

"
. . i‘!
By def of inversion, d, < dJ
Feb 6, 2012 CSCI211 - Sprenkle 27

Minimizing Lateness: Inversions

Claim. Swapping two adjacent, inverted jobs
reduces the number of inversions by one and
does not increase the max lateness.

Pf. Let ¢/ be the lateness before the swap,
and let /' be it afterwards

>0 = ( forallk =i, |

LA R4

~Ifjobjislate: ¢, = fi-4, (efinition)
= fi-d,  (jfinishes attime ;)
= fi-d i<j)
< 0 (leforisiom)
Feb 6, 2012 CSCI211 - Sprenkle 28

Minimizing Lateness:

Analysis of Greedy Algorithm
Theorem. Greedy schedule S is optimal
Pfidea. Convert Opt to Greedy

» Does opt schedule have idle time?
» What if opt schedule has no inversions?
» What if opt schedule has inversions?

Feb 6, 2012 CSCI211 - Sprenkle 29

Minimizing Lateness:
Analysis of Greedy Algorithm
Theorem. Greedy schedule S is optimal
Pf. Define S* to be an optimal schedule that
has the fewest number of inversions, and let's
see what happens
» Can assume S* has no idle time
~ If S* has no inversions, then S = S*
~ If S* has an inversion, let i-j be an adjacent inversion
Swapping i and j does not increase the maximum
lateness and strictly decreases the number of
Inversions
This contradicts definition of S* =

Feb 6, 2012 CSCI211 - Sprenkle 30

2/6/12



Greedy Exchange Proofs

Label your algorithm’s solution and a general solution.

» Example: let A = {a,, a,, ..., a,} be the solution generated by your algorithm, and
let O = {0, 0,, ..., 0.} be an arbitrary (or optimal) feasible solution.

Compare greedy with other solution.

» Assume that your arbitrary/optimal solution is not the same as your greedy
solution (since otherwise, you are done).

» Typically, can isolate a simple example of this difference, such as:

There is an element e € O that ¢ A and an element f € A that ¢ O
2 consecutive elements in O are in a different order than in A (i.e., there is an
inversion).

Exchange.

» Swap the elements in question in O (either = swap one element out and
another in or ~ swap the order of the elements) and argue that solution is no
worse than before.

» Argue that if you continue swapping, you eliminate all differences between O
and A in a finite # of steps without worsening the solution’s quality.

» Thus, the greedy solution produced is just as good as any optimal solution, and
hence is optimal itself.

Feb 6, 2012 CSCI211 - Sprenkle 31

Greedy Analysis Strategies

Greedy algorithm stays ahead. Show that
after each step of the greedy algorithm, its
solution is at least as good as any other
algorithm's.

Exchange argument. Gradually transform
any solution to the one found by the greedy
algorithm without hurting its quality.
Structural. Discover a simple "structural”
bound asserting that every possible solution
must have a certain value. Then show that
your algorithm always achieves this bound.

Feb 6, 2012 CSCI211 - Sprenkle 32

Assignments

Exam 1 — due next Monday
» Open book, open notes, open lecture notes

» | mention explicitly to analyze your algorithms’
running times. | will not do that in the future.

Wed: work period
» Ask me questions
» Office Hours: Wed: 2:30-4, Thurs: 2:30-4:30

Feb 6, 2012 CSCI211 - Sprenkle 33

2/6/12



