
2/29/12	



1	



Objectives 

•  Data Compression 

Feb 29, 2012 1 CSCI211 - Sprenkle 

Review: Encoding Problem 
•  Computers use bits: 0s and 1s 
•  Need to represent what we (humans) know 

to what computers know 

Ø Map symbol à unique sequence of 0s and 1s 
Ø Process is called encoding 

Feb 29, 2012 CSCI211 - Sprenkle 2 

decimal, strings	

 binary	

 decimal, strings	



Prefix Codes 
•  Problem: Encoding of one character is a 

prefix of encoding of another 
•  Solution: Prefix Codes: map letters to bit 

strings such that no encoding is a prefix of 
any other 
Ø Won’t need artificial devices like spaces to 

separate characters 
•  Example encodings: 

Ø Verify that no encoding is 
    a prefix of another 
Ø What is 0010000011101?	

Feb 29, 2012 CSCI211 - Sprenkle 3 

a: 11 	d: 10	
b: 01 	e: 000	
c: 001	

Optimal Prefix Codes 

•  Goal: minimize Average number of Bits 
per Letter (ABL):  

    Σx∈Sfrequency of x * length of encoding of x 

•  fx: frequency that letter x occurs 
•  γ(x): encoding of x 

Ø |γ(x)|: length of encoding of x 

•  Minimize ABL =  Σx∈Sfx |γ(x)| 
 Feb 29, 2012 CSCI211 - Sprenkle 4 

For all characters in our alphabet	



Problem Statement 

•  Given an alphabet and a set of frequencies 
for the letters, produce optimal (most 
efficient) prefix code 
Ø Minimizes average # of bits per letter (ABL) 

Feb 29, 2012 CSCI211 - Sprenkle 5 

Review: Building the Binary Tree 

•  How do we build the binary tree for this 
mapping? 

•  Tree Rules:  
Ø Each leaf node is a letter 
Ø Follow path to the letter 

•  Going left: 0 
•  Going right: 1 

Feb 29, 2012 CSCI211 - Sprenkle 6 



2/29/12	



2	



Tree Properties 

• What is the length of a letter’s encoding? 

•  Define our optimal goal in tree terms 

Feb 29, 2012 CSCI211 - Sprenkle 7 

Tree Properties 

• What is the length of a letter’s encoding? 
Ø Length of path from root to leaf à its depth 

•  Define our optimal goal in tree terms 
Ø ABL = Σx∈Sfx |γ(x)| =  Σx∈Sfx depth(x)  

Feb 29, 2012 CSCI211 - Sprenkle 8 

Tree Properties 

• What do we want our tree to look like for the 
optimal solution? 
Ø How many leaves? 
Ø How many internal nodes? 

•  Think about parent nodes vs. child nodes 
Ø When uniform frequencies? 
Ø Nonuniform frequencies? 

Feb 29, 2012 CSCI211 - Sprenkle 9 

Tree Properties 

•  Claim.  The binary tree T corresponding to 
the optimal prefix code is full, i.e., each 
internal node has two children. 

•  Proof? 

Feb 29, 2012 CSCI211 - Sprenkle 10 

Tree Properties 

•  Claim.  The binary tree T corresponding to 
the optimal prefix code is full, i.e., each 
internal node has two children. 

•  Proof. Assume that T has an internal node 
with only one child 
Ø Without loss of generality, assume left child 

Feb 29, 2012 CSCI211 - Sprenkle 11 

u	



v:	


 root of 
Subtree	



u	



v	



?	

 ?	



Tree Properties 

•  Claim.  The binary tree T corresponding to 
the optimal prefix code is full, i.e., each 
internal node has two children. 

•  Proof. Assume that T has an internal node 
with only one child 

Feb 29, 2012 CSCI211 - Sprenkle 12 

u	



v:	


 root of 
Subtree	



u	



v	



v	



Replace u with v à decrease depth à original wasn’t optimal	



v:	


 root of 
Subtree	





2/29/12	



3	



Toward a Solution… 

•  Two problems to solve: 
Ø Creating the prefix code tree 
Ø Labeling the prefix code tree with alphabet/

frequencies 

Feb 29, 2012 CSCI211 - Sprenkle 13 

Simplifying: Know Optimal Prefix Code 

•  Process: assume knowledge of optimal solution 
to gain insight into finding solution 

•  Assume we knew the tree structure of the 
optimal prefix code, how would you label the 
leaf nodes? 

Feb 29, 2012 CSCI211 - Sprenkle 14 

In
cr

ea
si

ng
	



 fr
eq

ue
nc

y	



Drawing Conclusions from Conclusions 

•  The binary tree corresponding to the optimal 
prefix code is full, i.e., each internal node has 
two children 

• We want to label the leaf nodes of the binary 
tree corresponding to the optimal prefix code 
such that nodes with greatest depth have 
least frequency 

Feb 29, 2012 CSCI211 - Sprenkle 15 

What does this mean the ���
bottom of our tree looks like?	



Drawing Conclusions from Conclusions 

•  The binary tree corresponding to the optimal 
prefix code is full, i.e., each internal node has 
two children 

• We want to label the leaf nodes of the binary 
tree corresponding to the optimal prefix code 
such that nodes with greatest depth have 
least frequency 

Feb 29, 2012 CSCI211 - Sprenkle 16 

What does this mean the bottom 
of our tree looks like?	



fn-1	

fn	


2 letters with least 

frequency:	



Could be flipped	



How Can We Use This? 

•  Two letters with least frequency are definitely 
going to be siblings 
Ø Tie them together 
Ø Their parent is a “meta-letter” 

•  Frequency is sum of fn + fn-1 

Feb 29, 2012 CSCI211 - Sprenkle 17 

fn + fn-1	



fn-1	

fn	

2 letters with 
least frequency:	



Could be flipped	



Meta-letter:	



Constructing an Optimal Prefix Code 

Feb 29, 2012 CSCI211 - Sprenkle 18 

Huffman’s Algorithm: 	



Replace lowest-freq 
letters with meta letter 	



R
ed

uc
e	



Bu
ild

 u
p	



To construct a prefix code for an alphabet S with given 
frequencies:	
	
if S has two letters:	

	Encode one letter as 0 and the other letter as 1	
	
	
else:	

	Let y* and z* be the two lowest-frequency letters	
	Form a new alphabet S’ by deleting y* and z* and replacing 

them with a new letter w of freq fy* + fz*	
	Recursively construct a prefix code y’ for S’ with tree T’	
	Define a prefix code for S as follows:	
	 	Start with T’	
	 	Take the leaf labeled w and add two children below it 

labeled y* and z*	



2/29/12	



4	



Alternative Description 

1. Create a leaf node for each symbol, labeled 
by its frequency, and add to a queue 

2. While there is more than one node in the 
queue 
a)  Remove the two nodes of lowest frequency 
b)  Create a new internal node with these two 

nodes as children and with frequency equal to 
the sum of the two nodes' probabilities 

c)  Add the new node to the queue 
3. The remaining node is the tree’s root node 

Feb 29, 2012 CSCI211 - Sprenkle 19 

Creating the Optimal Prefix Code 

Feb 29, 2012 CSCI211 - Sprenkle 20 

fa = .32 
fb = .25 
fc = .20 
fd = .18 
fe = .05 

Creating the Optimal Prefix Code 

Feb 29, 2012 CSCI211 - Sprenkle 21 

fa = .32 
fb = .25 
fc = .20 
fd = .18 
fe = .05 

e	

d	


c	

a	

 b	



de=	


.23	



Lowest frequencies	


Merge	



Creating the Optimal Prefix Code 

Feb 29, 2012 CSCI211 - Sprenkle 22 

fa = .32 
fb = .25 
fc = .20 
fde = .23 

e	

d	



c	



a	

 b	



de=	


.23	



Lowest frequencies	


Merge	



cde=	


.43	



Creating the Optimal Prefix Code 

Feb 29, 2012 CSCI211 - Sprenkle 23 

fa = .32 
fb = .25 
fcde = .43 

e	

d	



c	

a	

 b	


de=	


.23	



Lowest frequencies	


Merge	



cde=	


.43	



ab=	


.57	



Creating the Optimal Prefix Code 

Feb 29, 2012 CSCI211 - Sprenkle 24 

fab = .57 
fcde = .43 

e	

d	



c	

a	

 b	


de=	


.23	



Lowest frequencies	


Merge	



cde=	


.43	



ab=	


.57	



abcde
=1	



What are the resulting encodings?	


What is the ABL?	



fa = .32 
fb = .25 
fc = .20 
fd = .18 
fe = .05 



2/29/12	



5	



Creating the Optimal Prefix Code 

Feb 29, 2012 CSCI211 - Sprenkle 25 

e	

d	



c	

a	

 b	


de=	


.23	



cde=	


.43	



ab=	


.57	



abcde
=1	

0	



0	

 0	



0	



1	



1	

 1	



1	



a: 00	
b: 01	
c: 10	
d: 110	
e: 111	

fa = .32 
fb = .25 
fc = .20 
fd = .18 
fe = .05 

ABL=.32*2 + .25*2 + .20*2 + .18*3 + .05*3 
 = .64 + .5 + .4 + .54 + .15  
 = 2.23 

I chose to build the tree this way.	


What if I had switched the order of the children?	



Alternative Description 

1. Create a leaf node for each symbol, labeled 
by its frequency, and add to a queue 

2. While there is more than one node in the 
queue 
a)  Remove the two nodes of lowest frequency 
b)  Create a new internal node with these two 

nodes as children and with frequency equal to 
the sum of the two nodes' probabilities 

c)  Add the new node to the queue 
3. The remaining node is the tree’s root node 

Feb 29, 2012 CSCI211 - Sprenkle 26 

What data structures 
do we need?	



Implementation 

• What data structures do we need? 
Ø Binary tree for the prefix codes 
Ø Priority queue for choosing the node with lowest 

frequency 

• Where are the costs? 

Feb 29, 2012 CSCI211 - Sprenkle 27 

Alternative Description 

1. Create a leaf node for each symbol, labeled 
by its frequency, and add to a queue 

2. While there is more than one node in the 
queue 
a)  Remove the two nodes of lowest frequency 
b)  Create a new internal node with these two 

nodes as children and with frequency equal to 
the sum of the two nodes' probabilities 

c)  Add the new node to the queue 
3. The remaining node is the tree’s root node 

Feb 29, 2012 CSCI211 - Sprenkle 28 

What are the costs?	



Alternative Description 

1. Create a leaf node for each symbol, labeled 
by its frequency, and add to a queue 

2. While there is more than one node in the 
queue 
a)  Remove the two nodes of lowest frequency 
b)  Create a new internal node with these two 

nodes as children and with frequency equal to 
the sum of the two nodes' probabilities 

c)  Add the new node to the queue 
3. The remaining node is the tree’s root node 

Feb 29, 2012 CSCI211 - Sprenkle 29 Total: O(n logn)	



O(log n) 

O(log n) 

O(nlog n) 

O(n) 

Running Time 

•  Costs 
Ø Inserting and extracting node into PQ: O(log n) 
Ø Number of insertions and extractions: O(n) 
Ø  O(n log n) 

Feb 29, 2012 CSCI211 - Sprenkle 30 



2/29/12	



6	



Analysis of Algorithm’s Optimality 

•  2 page proof in book 

Feb 29, 2012 CSCI211 - Sprenkle 31 

Real-life Compression 

•  Text can be compressed well because of 
known frequencies 

•  Algorithms can be optimized to languages 
Ø More than just “z doesn’t happen very often” 

•  “z doesn’t happen after q” 

Feb 29, 2012 CSCI211 - Sprenkle 32 

DIVIDE AND CONQUER 
ALGORITHMS 

Feb 29, 2012 CSCI211 - Sprenkle 33 

Divide-and-Conquer 

•  Divide-and-conquer process 
Ø Break up problem into several parts 
Ø Solve each part recursively 
Ø Combine solutions to sub-problems into overall 

solution 
•  Most common usage: 

Ø Break up problem of size n into two equal parts 
of size ½n 

Ø Solve two parts recursively 
Ø Combine two solutions into overall solution 

Feb 29, 2012 CSCI211 - Sprenkle 34 

Divide et impera.	


Veni, vidi, vici.	


        - Julius Caesar	



Discussion 

• What is a well-known divide and conquer 
algorithm? 

Feb 29, 2012 CSCI211 - Sprenkle 35 

Merge Sort	



Merge Sort 

•  How does Merge Sort work? 

• When do we stop? 

Feb 29, 2012 CSCI211 - Sprenkle 36 



2/29/12	



7	



Merge Sort 

Feb 29, 2012 CSCI211 - Sprenkle 37 

Divide list 
into two lists	



Until only 2 
elements	



Sort elements	



Combine sorted 
lists (how?)	



RECURRENCE RELATIONS 

Feb 29, 2012 CSCI211 - Sprenkle 38 

Analyzing Merge Sort 

•  Def.  T(n) = number of comparisons to 
mergesort an input of size n 

• Want to say a bit more about what T(n) is 
Ø Break it down more… 

Feb 29, 2012 CSCI211 - Sprenkle 39 

General Template	


• Break up problem of size n into two equal parts of 

size ½n	


• Solve two parts recursively	


• Combine two solutions into overall solution	



What can we say about the running time w.r.t. to 
the different parts of the above template?	



Analyzing Merge Sort 

•  Def.  T(n) = number of comparisons to 
mergesort an input of size n 

• Want to say a bit more about what T(n) is 
Ø Break it down more… 

Feb 29, 2012 CSCI211 - Sprenkle 40 

General Template	


• Break up problem of size n into two equal parts of 

size ½n	


• Solve two parts recursively	


• Combine two solutions into overall solution	

 O(n)	



T(n/2) + T(n/2)	



O(1)	



What is the base case?  Its running time?	



Merge Sort’s Recurrence Relation 

•  Put an upperbound on T(n): 

Feb 29, 2012 CSCI211 - Sprenkle 41 

For some constant c, 
 T(n) ≤ 2 T(n/2) + cn  when n > 2,  
 T(2) ≤ c 

O(n)	



Solve T(n) to come up with explicit bound	



Approaches to Solving Recurrences 

1. Unroll recursion 
Ø Look for patterns in runtime at each level 
Ø Sum up running times over all levels 

2. Substitute guess solution into recurrence 
Ø Check that it works 
Ø Induction on n 

Feb 29, 2012 CSCI211 - Sprenkle 42 



2/29/12	



8	



Unrolling Recurrence: T(n) 

Feb 29, 2012 CSCI211 - Sprenkle 43 

T(n) = 2 T(n/2) + cn 

Unrolling Recurrence: 2 T(n/2) + cn 

•  First level: 2 T(n/2) + cn 

Feb 29, 2012 CSCI211 - Sprenkle 44 

cn	



T(n/2)	

T(n/2)	



How does the next level break down?	



Unrolling Recurrence: 2 T(n/2) + cn 

•  Next level:  
 
 
 
 
Each one is 2 T(n/4) + c(n/2) 

Feb 29, 2012 CSCI211 - Sprenkle 45 

cn	



c n/2	

c n/2	



T(n/4)	

 T(n/4)	

 T(n/4)	

 T(n/4)	



Next level?	



Unrolling Recurrence 

•  Next level:  
Each one is 2 T(n/8) + c(n/4) 

Feb 29, 2012 CSCI211 - Sprenkle 46 

cn	



c n/2	

c n/2	



c n/4	

 c n/4	

 c n/4	

 c n/4	



And so on…	



T(n/8)	

 T(n/8)	


… T(n/8)	

 T(n/8)	



What does the final level look like?	



Unrolling Recurrence 
•  How much does each level cost, in terms of the level? 
•  How many levels are there (assuming n is a power of 

2)? 
•  What is the total run time? 

Feb 29, 2012 CSCI211 - Sprenkle 47 

cn	



c n/2	

c n/2	



c n/4	

c n/4	

c n/4	

 c n/4	



c	

 c	

 c	

 c	

 c	

 c	

 c	

 c	



T(n / 2k)	



T(n)	



T(2)	



0	



1	



2	



Unrolling Recurrence 
•  How many levels are there (assuming n is a power of 

2)? 
•  How much does each level cost, in terms of the level? 
•  What is the total run time? 

Feb 29, 2012 CSCI211 - Sprenkle 48 

cn	



c n/2	

c n/2	



c n/4	

c n/4	

c n/4	

 c n/4	



c	

 c	

 c	

 c	

 c	

 c	

 c	

 c	



T(n / 2k)	



T(n)	



T(2)	



0	



1	



2	



2k problems���
Size: n/2k	



Each level takes 	


2k * c * (n/2k) = cn  	



Number of levels: log2n	



O(n log n) 



2/29/12	



9	



Alternative: Proof by Induction 

•  Claim.  If T(n) satisfies this recurrence, then 
T(n) = n log2 n. 
Ø Recall: T(n) = 2 T(n/2) + cn 

•  Pf.  (by induction on n) 
Ø Base case:  n = 2 
Ø Inductive hypothesis:  T(n) ≤ cn log2 n 
Ø Goal: show that T(2n) =  2cn log2 (2n) 

Feb 29, 2012 CSCI211 - Sprenkle 49 

Why doubling n?	



Proof by Induction 

•  Claim.  If T(n) satisfies this recurrence, then 
T(n) = n log2 n. 
Ø Recall: T(n) = 2 T(n/2) + cn 

•  Pf.  (by induction on n) 
Ø Inductive hypothesis: T(n) ≤ cn log2 n 
Ø Goal: show that T(2n) =  2cn log2 (2n) 

Feb 29, 2012 CSCI211 - Sprenkle 50 

T(2n) 	

= 2T(n) + c2n	


	

= 2cn log2n + 2cn	


	

= 2cn (log2(2n)-1) + 2cn	


	

= 2cn log2(2n) - 2cn + 2cn	


	

= 2cn log2(2n) ✔	



Replace	
  w/	
  induc.on	
  hypothesis	
  

Looking Ahead 

• Wiki due tonight 
•  Problem Set 5 due Monday in class 

•  Next Wiki: Chapter 4.7-4.8, Chapter 5  
Ø Due next Wednesday 

•  Problem Set 6 due next Friday 

Feb 29, 2012 CSCI211 - Sprenkle 51 


