Objectives

Wrap Up Minimum Spanning Tree
Union-Find data structure
Clustering

Feb 15,2013 CSCI211 - Sprenkle 1

Review

What is a minimum spanning tree?

What are three greedy solutions to finding
the minimal spanning tree?

Feb 15,2013 CSCI211 - Sprenkle 2

Review: Minimum Spanning Tree

Spanning tree: spans all nodes in graph

Given a connected graph G = (V, E) with
positive edge weights c,, an MST is a subset of
the edges T C E such that T is a spanning tree
whose sum of edge weights is minimized

T R — —® /‘
2 g ./\ 9
‘e w o 6\’\
) e ® I ’<
10 14 1
[TR —] ‘
G=(VE) T Zeer .= 50
Feb 15,20] VWhat were the three algorithms we proposed? ‘ 3

Review: Greedy Algorithms
All three algorithms produce a MST

Prim's algorithm. Start with some root node s and greedily

grow a tree T from s outward. At each step, add the

cheapest edge e to T that has exactly one endpointin T.
Similar to Dijkstra’s (but simpler)

Kruskal's algorithm. Start with T = ¢. Consider edges in

ascending order of cost. Insert edge e in T unless doing so

would create a cycle.

Reverse-Delete algorithm. Start with T = E. Consider

edges in descending order of cost. Delete edge e from T

unless doing so would disconnect T.

What do these algorithms have/do/check in common?

Feb 15, 2013 CSCI211 - Sprenkle 4

Review: Important Properties

Simplifying assumption: All edge costs ¢, are distinct
MST is unique

Cut property. Let S be any subset of nodes, and let e

be the min cost edge with exactly one endpointin S.

Then MST contains e.

Cycle property. Let C be any cycle, and let f be the

max cost edge belonging to C. Then MST does not

contain f.

o—e [} f

s. * ® [] ?
.\e\. ® °
o—©0 ® L]

Cut Property: e is in MST Cycle Property:f is not in MST
Feb 15, 2013 CSCI211 - Sprenkle 5

Review: Prim's Algorithm
Similar to Dijkstra’s algorithm. Proved optimality with the cut property
Maintain set of explored nodes S

For each unexplored node v, maintain
attachment cost a[v] = cost of cheapest
edge vtoanodein S

foreach (v € V) a[v] = » O(n)
Initialize an empty priority queue Q
foreach (v € V) insert v onto Q O(n logn)
Initialize set of explored nodes S = ¢
while (Q is not empty) O(n)

u = delete min element from Q O(log n)

S=SuU{u}

foreach (edge e = (u, Vv) incident to u) |O(deg(u))

if ((v € S) and (c. < a[v]))

Feb 15, 20 decrease priority a[v] to c. O(lpgn) s

O(m log n) with a heap

2/15/13

Kruskal’s Algorithm [1956]

Start with T = ¢
Consider edges in ascending order of cost

Insert edge e in T unless doing so would
create a cycle
» Add edge as long as “compatible”

‘ How can we prove algorithm’s correctness?

Feb 15,2013 CSCI211 - Sprenkle 7

Kruskal's Algorlthm What is tricky about implementing
Proof of Correctness Kruskal' algorithm?

Consider edges in ascending order of weight

Case 1: If adding e to T creates a cycle, discard e
according to cycle property (e must be max weight)
Case 2: Otherwise, insert e = (u, v) into T according to
cut property where S = set of nodes in u's connected
component

T4 A

Case | Case 2

Feb 15,2013 CSCI211 - Sprenkle 8

Implementing Kruskal’s Algorithm

‘ What is tricky about implementing Kruskal’s algorithm? ‘

How do we know when adding an edge will create a cycle?
* What are the properties of a graph/its nodes when
adding an edge will create a cycle?

Feb 15, 2013 CSCI211 - Sprenkle 9

UNION-FIND
DATA STRUCTURE

Feb 15, 2013 CSCI211 - Sprenkle 10

2/15/13

Union-Find Data Structure

Keeps track of a graph as edges are added
» Cannot handle when edges are deleted
Maintains disjoint sets
» E.g., graph’s connected components
Operations:
» Find(u): returns name of set containing u
How utilized to see if two nodes are in the same set?
Goal implementation: O(log n)
> UnionCA, B): merge sets A and B into one set
Goal implementation: O(log n)

reb1s, 2013 | Be€St darn Union-Find Data Structure “

Implementing Kruskal's Algorithm

Using the union-find data structure
~ Build set T of edges in the MST
» Maintain set for each connected component

Costs?

Sort edge weights so that ¢; = ¢, = ... = ¢,
T

foreach (u € V) make a set containing singleton u
fori=1tom are u and v in different connected components?

,Vv) = ¢

if (u and v are in different sets)

=TU {e}
merge the sets containing u and v
return T
merge two components

Feb 15,2013 CSCI211 - Sprenkle 12

Implementing Kruskal's Algorithm

Using best implementation of union-find
V4 Sor’[ing: o(m |0g n) <+—— m = n?=> log m is O(log n)

» Union-find: O(m ¢ (m, n))

4 O(m |Og n) essentially a constant

Sort edges weights so that ¢; < ¢; = ... = ¢,
T=
foreach (u € V) make a set containing singleton u

fori=1tom
W,v) = ¢
if (u and v are in different sets)
T=TU {e}
merge the sets containing u and v
return T

are u and v in different connected components?

merge two components

Feb 15,2013 CSCI211 - Sprenkle 13

Intersections with \X .

olluted wells
P o %S,

<N

Outbreak of cholera deaths in London in 1850s.
Reference: Nina Mishra, HP Labs

CLUSTERING

Feb 15,2013 CSCI211 - Sprenkle 14

Clustering

Given a set U of n objects (or points) labeled
P4, .-, Pn Classify into coherent groups
» Problem: Divide objects into clusters so that
points in different clusters are far apart
Requires quantification of distance
Applications
» Routing in mobile ad hoc networks
» ldentify patterns in gene expression
» ldentifying patterns in web application use cases
Sets of URLs
» Similarity searching in medical image databases

Feb 15, 2013 CSCI211 - Sprenkle 15

Clustering: Distance Function

Numeric value specifying "closeness" of two
objects

Assume distance function satisfies several
natural properties
»d(p;, py) = 0iff p; = p; (identity of indiscernibles)

»d(p;, py) =0 (nonnegativity)
»d(p;, py) = d(py, p1) (symmetry)
Feb 15, 2013 CSCI211 - Sprenkle 16

Our Problem:

k-Clustering of Maximum Spacing
k-clustering. Divide objects into k non-empty
groups
Spacing. Min distance between any pair of
points in different clusters

k-clustering of maximum spacing.
Given an integer k,
find a k-clustering of maximum spacing

eoe
e
k=4 °
o 0

Feb 15,2013 CSCI211 - Sprenkle

Ideas about solving?

Greedy Clustering Algorithm

Single-link k-clustering algorithm
» Form a graph on the vertex set U, corresponding
to n clusters
~ Find the closest pair of objects such that each
object is in a different cluster and add an edge
between them
» Repeat n-k times until there are exactly k
clusters

How is this related to the MST?

Feb 15,2013 CSCI211 - Sprenkle 18

2/15/13

Greedy Clustering Algorithm

Key observation: Same as Kruskal's algorithm

» Except we stop when there are k connected
components

Remark. Equivalent to finding MST and
deleting the k-1 most expensive edges

+—@® / — @ ®
< 2
\7\\-/"< T 9
J o J N

Feb 15,2013 CSCI211 - Sprenkle 19

Greedy Clustering Algorithm: Analysis

Theorem. Let C denote the clustering C4, ..., C, formed
by deleting the k-1 most expensive edges of a MST.
C is a k-clustering of max spacing.
Pf Intuition:
» What can we say about C’s spacing?
Within clusters and between clusters
» What if C isn’t optimal?

What does that mean about C’s clusters vs (optimal) C*'s
clusters?

R I
7\\-/’(\Z\S\o 4
J 9 J N

Feb 15, 2013 MST CSCI211 - Sprenkle 20

Greedy Clustering Algorithm: Analysis

Theorem. Let C denote the clustering C,, ..., C, formed by
deleting the k-1 most expensive edges of a MST.
C is a k-clustering of maximum spacing.

Pf Sketch. Let C* denote some other clustering C*,, ..., C*.
C* and C must be different; otherwise we're done.
~ The spacing of C is length d of (k-1)*t most expensive edge
~ Let p, p;be in the same cluster in Greedy solution C (say C,)
but different clusters in other solution C*, say C*; and C*,
» Some que (p, q) on p-p;path in C, spans two}differe/nt* Other
clusters in C* C(s\\ / € solution

i |
a ° | e o

What do we know about (p, q)? ‘

Feb 15,2013 csci211 - Sprenkle Greedy // \ 21

Greedy Clustering Algorithm: Analysis

Theorem. Let C denote the clustering C,, ..., C, formed by
deleting the k-1 most expensive edges of a MST.
C is a k-clustering of maximum spacing.

Pf. Let C* denote some other clustering C*4, ..., C*,.
C* and C must be different; otherwise we’re done.

» The spacing of C is length d of (k-1)st most expensive edge
Let p;, p; be in the same cluster in C (say C,) but different
clusters in C*, say C*;and C*

Some edge (*p, q) on prp;path in C, spans two dcizft\arent/@ Other
clusters in C :

\!

A’

\ / ~ ‘solution

~ All edges on p-p;path have length <d ¢, \
since Kruskal chose them o o |l o o
» Spacing of C* is at most < d since ” ,/I__. .
p and q are in different clusters e P P/ \¢ P
Feb 15,2013 CSCI211 - Sprenkle Greedy // \\ 22

Looking ahead

Wiki: Chapter 4, Section 2, 4-6 (skipping
section 3)
» Due Tues midnight after break

PS 5 due Friday after break

Feb 15,2013 CSCI211 - Sprenkle 23

2/15/13

