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Objectives 

•  Greedy Algorithms 
Ø Interval partitioning 
Ø Minimizing Lateness 

•  Exchange argument 
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Review 

• What is the template for a greedy solution? 
• What problem did we solve optimally with a 

greedy algorithm? 
•  How did we prove optimality? 
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Review: Greedy Algorithms 

•  Template 
1.  Consider jobs (or whatever) in some order 

•  Decision: What order is best? 
2.  Take each job provided it's compatible with the 

ones already taken 
•  At each step, take as much as you can get 

Ø Feasible – satisfy problem’s constraints 
Ø Locally optimal – best local choice among 

available feasible choices 
Ø Irrevocable – after decided, no going back 
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Review: Greedy Stays Ahead Proofs 
1.  Define your solutions 

Ø  Describe the form of your greedy solution (A) and of some other 
solution (possibly the optimal solution, O) 

2.  Find a measure 
Ø  Find a measure by which greedy stays ahead of the optimal solution 

•  Ex: Let a1, . . . , ak be the first k measures of greedy algorithm and 
o1 , . . . , om be the first m measures of other solution (sometimes m = k ) 

3.  Prove greedy stays ahead 
Ø  Show that greedy’s partial solutions constructed are always just as 

good as the optimal solution’s initial segments based on the measure  
•  Ex: for all indices r ≤ min(k,m), prove by induction that ar ≥ or or ar ≤ or 

Ø  Use the greedy algorithm to help you argue the inductive step 

4.  Prove optimality 
Ø  Prove that since greedy stays ahead of the other solution with respect 

to the measure, then the greedy solution is optimal 
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Review: Interval Scheduling 
•  Job j starts at sj and finishes at fj 
•  Two jobs are compatible if they don't overlap 
•  Goal: find maximum subset of mutually 

compatible jobs 
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•  Every job is worth equal 
money.	


• To earn the most money à 
schedule the most jobs	


Problem Assumptions 

•  All requests were known to scheduling 
algorithm 
Ø Online algorithms: make decisions without 

knowledge of future input 
•  Each job was worth the same amount 

Ø What if jobs had different values? 
•  E.g., scaled with size 

•  Single resource requested 
Ø Rejected requests that didn’t fit 
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INTERVAL PARTITIONING 
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Interval Partitioning 

•  Lecture j starts at sj and finishes at fj 
•  Goal: find minimum number of classrooms to 

schedule all lectures so that no two occur at 
the same time in the same room. 

•  Ex: 10 lectures in 4 classrooms 
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What are our constraints?	
Can we use fewer rooms?	


Interval Partitioning 

•  Lecture j starts at sj and finishes at fj 
•  Goal: find minimum number of classrooms to 

schedule all lectures so that no two occur at 
the same time in the same room. 

•  Alternative schedule uses only 3 classrooms 
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Interval Partitioning: 
Lower Bound on Optimal Solution 
•  Def.  The depth of a set of open intervals is the 

maximum number that contain any given time. 
•  Key observation.  # of classrooms needed  ≥  

depth. 
•  Ex:  Depth of schedule below = 3  ⇒  schedule 

below is optimal. 
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Does there always exist a schedule equal 
to depth of intervals?	


Interval Partitioning Discussion 

•  Does there always exist a schedule equal to 
depth of intervals? 

•  Can we make decisions locally to get a 
global optimum? 
Ø Or are there long-range obstacles that require 

more resources?  
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Interval Partitioning: Greedy Algorithm 

•  Consider lectures in increasing order of start 
time: assign lecture to any compatible 
classroom 
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Sort intervals by starting time so that s1 ≤ s2 ≤ ... ≤ sn	
d = 0	
for j = 1 to n 	
   if lecture j is compatible with some classroom k	
      schedule lecture j in classroom k	
   else	
      allocate a new classroom d + 1	
      schedule lecture j in classroom d + 1	
      d = d + 1 	

number of allocated classrooms	


Analyze algorithm	
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Sort intervals by starting time so that s1 ≤ s2 ≤ ... ≤ sn	
d = 0	
for j = 1 to n 	
   if (lecture j is compatible with some classroom k)	
      schedule lecture j in classroom k	
   else	
      allocate a new classroom d + 1	
      schedule lecture j in classroom d + 1	
      d = d + 1 	

Interval Partitioning: Greedy Algorithm 
•  Consider lectures in increasing order of start time: assign 

lecture to any compatible classroom 

•  Implementation: O(n log n) 
Ø  For each classroom k, maintain the finish time of the last job 

added. 
Ø  Keep the classrooms in a priority queue by last job finish time. 
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number of allocated classrooms	


Interval Partitioning: Greedy Analysis 
•  Observation. Greedy algorithm never schedules  

two incompatible lectures in the same classroom 
•  Theorem. Greedy algorithm is optimal 
•  Pf Intuition 

Ø When do we add more classrooms? 
Ø When would we add the d+1 classroom? 
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Interval Partitioning: Greedy Analysis 
•  Observation. Greedy algorithm never schedules  

two incompatible lectures in the same classroom 
•  Theorem. Greedy algorithm is optimal 
•  Pf. 

Ø  Let d = number of classrooms that the greedy algorithm 
allocates 

Ø Classroom d is opened because we needed to schedule 
a job, say j, that is incompatible with all d-1 other 
classrooms 

Ø Since we sorted by start time, all these incompatibilities 
are caused by lectures that start no later than sj 

Ø Thus, we have d lectures overlapping at time sj + ε 
Ø  d is the depth of the set of lectures 
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SCHEDULING TO  
MINIMIZE MAX LATENESS 

Exchange argument 
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Scheduling to Minimizing Max Lateness 
•  Single resource processes one job at a time 
•  Job j requires tj units of processing time and is due at 

time dj (its deadline) 
•  If j starts at time sj, it finishes at time fj = sj + tj 
•  Lateness:  j = max { 0,  fj - dj } 
•  Goal: schedule all jobs to  

minimize maximum lateness L = max j 
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Greedy Algorithms 

•  Greedy template.  
Consider jobs in some order. 

• What do we want to optimize? 
• What order? 

Ø Intuition of order? 
Ø Counter examples for order being optimal?  
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Minimizing Lateness: Greedy Algorithms 

•  Greedy template.  Consider jobs in some 
order.  
Ø Shortest processing time first. Consider jobs in 

ascending order of processing time tj. 

Ø Smallest slack.  Consider jobs in ascending 
order of slack dj - tj. 
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Counter example	


Counter example	


dj	


tj	


100	


1	


1	


10	


10	


2	


dj	


tj	


2	


1	


1	


10	


10	


2	


Minimizing Lateness: Greedy Algorithm 

•  Earliest deadline first. 
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Sort n jobs by deadline so that d1 ≤ d2 ≤ … ≤ dn	
t = 0	
for j = 1 to n	
   Assign job j to interval [t, t + tj]	
   sj = t	
   fj = t + tj	
   t = t + tj	
output intervals [sj, fj]	

What can we say about this algorithm/its results?	


Minimizing Lateness: No Idle Time 

•  Observation.  There exists an optimal 
schedule with no idle time 

•  Observation. The greedy schedule has no 
idle time 
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Proving Optimality 

•  Goal: Prove greedy algorithm produces 
optimal solution 

•  Approach: Exchange argument 
Ø Start with an optimal schedule Opt 
Ø Gradually modify Opt, preserving its optimality 
Ø Transform into a schedule identical to greedy’s 

schedule 
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Minimizing Lateness: Inversions 

•  Def. An inversion in schedule S is a pair of 
jobs i and j such that: 
di < dj (i’s deadline is before j) 
but j scheduled before i 
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Can Greedy’s solution have any inversions?	


Minimizing Lateness: Inversions 

•  Def. An inversion in schedule S is a pair of 
jobs i and j such that: 
di < dj (i’s deadline is before j) 
but j scheduled before i 
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Greedy’s schedule has no inversions! 	
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Minimizing Lateness: Inversions 
•  Claim.  Swapping two adjacent, inverted jobs 

reduces the number of inversions by one and 
does not increase the max lateness 

•  Pf Setup.  Let  be the lateness before the 
swap, and let ’ be it afterwards 
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inversion	


By defn of inversion, di < dj 	


How do we know inversions are adjacent?	


What can we say about how ���
i’s, j’s, and other jobs’ lateness changes?	


Minimizing Lateness: Inversions 
•  Claim.  Swapping two adjacent jobs with the 

same deadline does not increase the max 
lateness 

•  Pf.  Let  be the lateness before the swap,  
and let ’ be it afterwards 
Ø  Lateness remains the same for all other jobs:  

•  'k = k for all k ≠ i, j 
Ø Lateness of i before is i = fi - di = Ti-1 + ti + tj - di 
Ø Lateness of j after is 'j =fj’ - dj = Ti-1 + ti + tj - dj 

•  But di < dj 
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Put in terms of i  

Minimizing Lateness: Inversions 

•  Claim.  Swapping two adjacent, inverted jobs 
reduces the number of inversions by one and 
does not increase the max lateness. 

•  Pf.  Let   be the lateness before the swap, 
and let ' be it afterwards 
Ø 'k = k for all k ≠ i, j 
Ø 'i ≤ i   
Ø If job j is late: 
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€ 

"  j = " f j − d j (definition)
= fi − d j ( j finishes at time f i)
≤ fi − di (i < j)
≤  i (definition)

Greedy Exchange Proofs 
1.  Label your algorithm’s solution and a general solution. 

Ø  Example: let A = {a1, a2, ..., ak} be the solution generated by your algorithm,  
and let O = {o1, o2, ..., om} be an optimal feasible solution. 

2.  Compare greedy with other solution.  
Ø  Assume that the arbitrary/optimal solution is not the same as  

your greedy solution (since otherwise, you are done). 
Ø  Typically, can isolate a simple example of this difference, such as: 
①  There is an element e ∈ O that ∉ A and an element f ∈ A that ∉ O 
②  2 consecutive elements in O are in a different order than in A  

Ø  i.e., there is an inversion 

3.  Exchange.  
Ø  Swap the elements in question in O (either ➀ swap one element out and 

another in or ➁ swap the order of the elements) and argue that solution is no 
worse than before.  

Ø  Argue that if you continue swapping, you eliminate all differences between O 
and A in a finite # of steps without worsening the solution’s quality. 

Ø  Thus, the greedy solution produced is just as good as any optimal solution, and 
hence is optimal itself. 
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Minimizing Lateness: 
Analysis of Greedy Algorithm 
•  Theorem.  Greedy schedule S is optimal 
•  Pf idea.  Convert Opt to Greedy 

Ø Does opt schedule have idle time? 
Ø What if opt schedule has no inversions? 
Ø What if opt schedule has inversions? 
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Minimizing Lateness: 
Analysis of Greedy Algorithm 
•  Theorem.  Greedy schedule S is optimal 
•  Pf.  Define S* to be an optimal schedule that 

has the fewest number of inversions, and let's 
see what happens 
Ø Can assume S* has no idle time 
Ø  If S* has no inversions, then S = S* 
Ø  If S* has an inversion, let i-j be an adjacent inversion 

•  Swapping i and j does not increase the maximum 
lateness and strictly decreases the number of 
inversions 

•  This contradicts definition of S*  ▪ 
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Greedy Analysis Strategies 
•  Greedy algorithm stays ahead.  Show that 

after each step of the greedy algorithm, its 
solution is at least as good as any other 
algorithm's.  

•  Exchange argument.  Gradually transform 
any solution to the one found by the greedy 
algorithm without hurting its quality. 

•  Structural.  Discover a simple "structural" 
bound asserting that every possible solution 
must have a certain value. Then show that 
your algorithm always achieves this bound. 
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Assignments 

•  Exam 1 – due Friday 
Ø Open book, open notes, open lecture notes 
Ø I mention explicitly to analyze your algorithms’ 

running times.  I will not do that in the future. 
• Wed: work period 

Ø Ask me questions 
Ø Office Hours: today: 1-3 p.m., Wed: 1-4:30 p.m. 

•  By appointment 
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