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Objectives 

•  Review: Asymptotic running times 
•  Implementing Gale-Shapley algorithm 
•  Classes of running times 
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Review Asymptotic Bounds 

• What does O(f(n)) mean? 
•  How do we know if one function ∈ O(f(n))? 
• What is the other bounds we discussed? 
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Asymptotic Order of Growth: 
Upper Bounds 

•  T(n) is the worst case running time of an 
algorithm 

• We say that T(n) is O(f(n)) if there exist 

constants c > 0 and n0 ≥ 0 such that for all    

n ≥ n0, we have T(n) ≤ c · f(n) 
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sufficiently large n	

 T(n) is bounded above by a 
constant multiple of f(n)	



èT is asymptotically upperbounded by f	



c cannot depend on n	



“order f(n)”	



Asymptotic Order of Growth: 
Upper Bounds 
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f(n)	



T(n)	



n0	



Point at which f(n) > T(n) 	



Asymptotic Order of Growth: 
Lower Bounds 
•  Complementary to upper bound 

•  T(n) is Ω(f(n)) if there exist constants ε > 0 

and n0 ≥ 0 such that for all n ≥ n0 , we have  

T(n) ≥ ε · f(n) 
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èT is asymptotically lowerbounded by f	



sufficiently large n	



T(n) is bounded below by a 
constant multiple of f(n)	



ε cannot depend on n	



Example: Lower Bound 

•  T(n) = pn2 + qn + r 
Ø p, q, r are positive constants 

•  Idea: Deflate terms rather than inflate 
•  For all n ≥ 0,  

•  Also correct to say that T(n) = Ω(n) 
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T(n) = pn2 + qn + r ≥ pn2	


è T(n) ≥ εn2, where ε = p > 0	


è T(n) = Ω(n2)	
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Tight bounds 

 
Ø The “right” bound 
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T(n) is Θ(f(n)) if T(n) is both 
O(f(n)) and Ω(f(n)) 

A Fashion Analogy 

•  O == Hammer pants 
Ø Loose and baggy with plenty of room for the 

pants to shrink or the body to grow 
•  Ω == The pants you plan to fit in this summer 

after working off the snacks from the holidays 
•  Θ == Katy Perry's skin tight jeans in a 

teenage dream 
Ø Can't make them any smaller, and no extra room 

to even fit a cell phone in the pocket  
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Courtesy Andy Danner, Swarthmore	



Property: Transitivity 

•  If f = O(g) and g = O(h) then f = O(h) 
•  If f = Ω(g) and g = Ω(h) then f = Ω(h)  
•  If f = Θ(g) and g = Θ(h) then f = Θ(h) 
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Proofs in book	



f	



g	



h	

 f	



g	


h	



Ω	

O 

Property: Additivity 

•  If f = O(h) and g = O(h) then f + g = O(h) 
•  If f = Ω(h) and g = Ω(h) then f + g = Ω(h) 
•  If f = Θ(h) and g = Θ(h) then f + g = Θ(h) 
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Proofs in book	



Sketch proof for O:	


By defn, f ≤ c · h	


By defn, g ≤ d · h	


f + g ≤ c · h + d · h = (c + d) h = c’ · h	


à f + g is O(h)	



Practice:  
Asymptotic Order of Growth 

•  T(n) = 32n2 + 17n + 32 
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What are the upper bounds, lower 
bounds, and tight bound on T(n)?	



Practice: 
Asymptotic Order of Growth 

•  T(n) = 32n2 + 17n + 32 
Ø T(n) is O(n2), O(n3), Ω(n2), Ω(n), and Θ(n2)  
Ø T(n) is not O(n), Ω(n3), Θ(n), or Θ(n3) 
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ASYMPTOTIC BOUNDS FOR 
CLASSES OF ALGORITHMS 
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Asymptotic Bounds for Polynomials 
•  a0 + a1n + … + adnd ∈ Θ(nd) if ad > 0 

  
•  Polynomial time.  Running time is O(nd) for 

some constant d that is independent of the 
input size n 

•  Other examples of polynomial times: 
Ø O(n1/2) 
Ø O(n1.58) 
Ø O(n log n) ≤ O(n2) 
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➔  Runtime determined by highest-order term 

Asymptotic Bounds for Logarithms 

•  Logarithms.  logbn = x, where bx=n 
Ø Approximate: To represent n in base-b, need     

x+1 digits 
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N b x 
100 10 
1000 10 
100 2 
1000 2 

Asymptotic Bounds for Logarithms 

•  Logarithms.  logbn = x, where bx=n 
Ø Approximate: To represent n in base-b, need     

x+1 digits 
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Describe the running time of an O(log n) 
algorithm as the input size grows.	



Compare with polynomials.	



N b x 
100 10 2 
1000 10 3 
100 2 6.64 
1000 2 9.92 

Asymptotic Bounds for Logarithms 

•  Logarithms.  logbn = x, where bx=n 
Ø x is number of digits to represent n in base-b 

representation 
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Asymptotic Bounds for Logarithms 

•  Logarithms.  logbn = x, where bx=n 

•  Identity:  
Ø Means that  

•  O(log a n) = O(log b n) for any constants        
a, b > 0 
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➔  Slowly growing functions	



logan = logbn/logba	



logan = 1/logba * logbn 
Constant!	
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Asymptotic Bounds for Logarithms 

•  Logarithms.  logbn = x, where bx=n 

•  O(log a n) = O(log b n) for any constants        
a, b > 0 

•  For every x > 0,  log n = O(nx) 
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➔  Slowly growing functions	



➔  Don’t need to specify the base	



➔  Log grows slower than every polynomial	



Asymptotic Bounds for Exponentials 

•  Exponentials: functions of the form f(n) = rn 
for constant base r 
Ø Faster growth rates as n increases 

•  For every r > 1 and every d > 0,  nd = O(rn) 
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➔  Every exponential grows faster than every polynomial	



Summary of Asymptotic Bounds 

•  In terms of growth rates …. 

•  Practice comparing functions on problem set 
Ø See Chapter 2 solved exercise 
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Logarithms < Polynomials < Exponentials	



Review: Our Process 

1. Understand/identify problem 
Ø  Simplify as appropriate 

2. Design a solution 
3. Analyze 

Ø  Correctness, efficiency 
Ø  May need to go back to step 2 and try again 

4.  Implement 
Ø  Within bounds shown in analysis 
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IMPLEMENTING  
GALE-SHAPLEY ALGORITHM 
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Review: 
Gale-Shapley Stable Matching Algorithm 
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Initialize each person to be free	
while (some man is free and hasn't proposed to every woman) 	
    Choose such a man m	
    w = 1st woman on m's list to whom m has not yet proposed	
    if (w is free)	
        assign m and w to be engaged	
    else if (w prefers m to her fiancé m')	
        assign m and w to be engaged and m' to be free	
    else	
        w rejects m	
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How Can We Implement The  
Algorithm Efficiently? 

• What is our goal for the implementation’s 
runtime? 

• What do we need to model? 
•  How should we represent them? 

Jan 14, 2013 Sprenkle - CSCI211 25 

How Can We Implement The  
Algorithm Efficiently? 

• What is our goal for the implementation’s 
runtime? 
Ø O(N2) 

• What do we need to model? 
•  How should we represent them? 
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Stable Matching Implementation 

• What do we need to represent? 
•  How should we represent them? 
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Data How represented 
Men, Women 

Preference lists 

Unmatched men 
Who men proposed to 

Engagements 

Sprenkle - CSCI211 
What’s the difference between an array and a list?	



Arrays 

•  Fixed number of elements 
• What is the runtime of 

Ø Determining the value of the ith item in the array? 
Ø Determining if a value e is in the array? 
Ø Determining if a value e is in the array if the 

array is sorted? 

Jan 14, 2013 28 Sprenkle - CSCI211 

Array Operations’ Running Times 
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Operation Running Time 
Value of ith item O(1) à direct access 

If e is in the array O(n) à look through all 
the elements 

If e is in the array if 
sorted 

O(log n) à binary 
search 

Limitation of arrays?	



Fixed size, so difficult to add/delete elements	



Lists 
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•  Dynamic set of elements 
Ø Linked list 
Ø Doubly linked list 

• What is the running time to 
Ø Add an element to the list? 
Ø Delete an element from the list? 
Ø Find an element e in the list? 
Ø Find the ith element in the list? 
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List Operations’ Running Time 
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Operation Running Time 
Add element O(1) 
Delete element O(1) 

Find element O(n) 

Find ith element O(i) 

Disadvantage of list instead of array?	



Finding ith element is slower	



Converting between Lists and Arrays  
(and Vice Versa) 

• What is the running time of converting a list 
to an array? 

•  An array to a list? 
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O(n)	



Assignments 

•  Review Chapter 2 
Ø Finishing up on Wednesday 

•  Journal due Tuesday at 11:59:59 
•  Problem Set 1 due Friday in class 

Ø FAQ of commonly asked questions on course 
web page 
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