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Objectives 

•  Network Flow 
Ø Wrap up Max flow, Min cut 
Ø Applications 
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Review: Flow Network 
•  Abstraction for material flowing through the edges 
•  G = (V, E) = directed graph, no parallel edges 
•  Two distinguished nodes:  s = source, t = sink 
•  c(e) = capacity of edge e, > 0 
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Review: Flows 
•  An s-t flow is a function that satisfies 

Ø Capacity condition: For each e ∈ E: 0 ≤ f(e) ≤ c(e) 
Ø Conservation condition: For each v ∈ V – {s, t}:         
∑e into y  f(e) =  ∑e out of y  f(e) 
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Review: Flows 

•  The value of a flow f is v(f) = ∑e out of s  f(e)         
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Review: Cuts 

•  An s-t cut is a partition (A, B) of V with s ∈ A 
and t ∈ B 

•  The capacity of a cut (A, B) is 
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"

 Capacity =���
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Review: Minimum Cut Problem 

•  Goal: Find an s-t cut of minimum capacity 
Ø Puts upperbound on maximum flow 
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  Capacity = 10 + 8 + 10���
              = 28	
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Review: Flow Value Lemma 
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 Value = 6 + 0 + 8 - 1 + 11���
          = 24	
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f (e)
e out of A
" # f (e)

e in to A
"  =  v( f )

•  Let f be any flow, and let (A, B) be any s-t cut.  
Then, the net flow sent across the cut is equal 
to the amount leaving s. 

Review: Weak Duality 

•  Let f be any flow and let (A, B) be any s-t cut.  
Then the value of the flow is at most the cut’s 
capacity 
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Cut capacity = 30   ⇒    Flow value ≤ 30 	
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Capacity = 30	
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Review: Certificate of Optimality 

•  Corollary.  Let f be any flow, and let (A, B) be 
any cut.  If v(f) = cap(A, B), then f is a max 
flow and (A, B) is a min cut. 
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Value of flow = 28���
Cut capacity  = 28   ⇒���

	

Flow value ≤ 28	
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Review 

• What is the Ford-Fulkerson algorithm? 
Ø When does it stop? 
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Analyzing Augmenting Path Algorithm 
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Ford-Fulkerson(G, s, t, c)	
   foreach e ∈ E  f(e) = 0  # initially no flow	
   Gf = residual graph	
	
   while there exists augmenting path P	
      f = Augment(f, c, P)     # change the flow	
      update Gf   	 	# build a new residual graph	
	
   return f	

Augment(f, c, P)	
   b = bottleneck(P) # edge on P with least capacity	
   foreach e ∈ P	
      if (e ∈ E) f(e) = f(e) + b  # forward edge, é flow	
      else       f(eR) = f(e) - b  # forward edge, ê flow 	
   return f	

Intuition Behind Correctness of  
F-F Algorithm 

•  Let A be set of vertices reachable from s in 
residual graph at end of F-F alg execution 

•  By definition of A, s ∈ A 
•  By definition of the F-F algorithm’s resulting 

flow, t ∉ A 
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Ford-Fulkerson Algorithm 
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Flow value = 19	

Cut capacity = 19	
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• What do we know about the flow out of A?	


• What do we know about the flow into A?	



A: nodes reachable from s 	
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Ford-Fulkerson Algorithm 
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Flow value = 19	

Cut capacity = 19	



• What do we know about the flow out of A?	


• What do we know about the flow into A?	



A	



• All edges out of A are completely saturated	


• All edges into A are completely unused	



A	



Max-Flow Min-Cut Theorem 

•  Proof strategy.  Prove both simultaneously by 
showing the following are equivalent: 
   (i) There exists a cut (A, B) such that v(f) = cap(A, B). 
   (ii) Flow f is a max flow. 
  (iii) There is no augmenting path relative to f. 
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Max-flow min-cut theorem.  [Ford-Fulkerson 1956] ���
The value of the max flow is equal to the value of the min cut.	



Augmenting path theorem.  ���
Flow f is a max flow iff there are no augmenting paths. 	



See formal proof in book	



Example 
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Flow value = 20	
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Analyzing Augmenting Path Algorithm 
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Ford-Fulkerson(G, s, t, c)	
   foreach e ∈ E  f(e) = 0  # initially no flow	
   Gf = residual graph	
	
   while there exists augmenting path P	
      f = Augment(f, c, P)     # change the flow	
      update Gf   	 	# build a new residual graph	
	
   return f	

Augment(f, c, P)	
   b = bottleneck(P) # edge on P with least capacity	
   foreach e ∈ P	
      if (e ∈ E) f(e) = f(e) + b  # forward edge, é flow	
      else       f(eR) = f(e) - b  # forward edge, ê flow 	
   return f	

Analyzing Augmenting Path Algorithm 
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Ford-Fulkerson(G, s, t, c)	
   foreach e ∈ E  f(e) = 0  # initially no flow	
   Gf = residual graph	
	
   while there exists augmenting path P	
      f = Augment(f, c, P)     # change the flow	
      update Gf   	 	# build a new residual graph	
	
   return f	

Augment(f, c, P)	
   b = bottleneck(P) # edge on P with least capacity	
   foreach e ∈ P	
      if (e ∈ E) f(e) = f(e) + b  # forward edge, é flow	
      else       f(eR) = f(e) - b  # forward edge, ê flow 	
   return f	

O(m)	



O(m)	



O(m)	



O(m)	



O(n)	


O(n)	



O(1)	


O(1)	



Total: O(n) à O(m), since n ≤ 2m 

Total: O(Fm) 

Find path: O(m);  Iterations: O(F) iterations, where F = max flow	
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Running Time 
•  Assumption.  All capacities are integers between 1 and C. 
•  Invariant.  Every flow value f(e) and every residual 

capacity’s cf(e) remains an integer throughout algorithm. 

•  Theorem.  The algorithm terminates in at most v(f*) ≤ nC 
iterations. 

•  Pf.  Each augmentation increases value by at least 1. 
•  Corollary.  If C = 1, Ford-Fulkerson runs in O(mn) time. 

•  Integrality theorem.  If all capacities are integers, then 
there exists a max flow f for which every flow value f(e) is 
an integer. 

•  Pf.  Since algorithm terminates, theorem follows from 
invariant.  
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Power of Max Flow Problem 

Mar 30, 2012 CSCI211 - Sprenkle 20 

Some problems with non-trivial combinatorial searches 
can be formulated as max flow or���

 min cut in a directed graph	



BIPARTITE MATCHING 
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Bipartite Matching 
•  Input: undirected, bipartite graph G = (L ∪ R, E) 

Ø  Edges: one end in L, one end in R 
•  Matching M ⊆ E such that each node appears in at most 

1 edge in M. 
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Problem: find matching of largest possible size	



Can we do better?	



Bipartite Matching 
•  Input: undirected, bipartite graph G = (L ∪ R, E) 

Ø  Edges: one end in L, one end in R 
•  Matching M ⊆ E such that each node appears in at most 

1 edge in M. 

Mar 30, 2012 CSCI211 - Sprenkle 23 

V	



1 

3 

5 

1' 

3' 

5' 

2 

4 

2' 

4' 

R	

L	



max matching 

1-1', 2-2', 3-3' 4-4'   

Max Flow Formulation 
1.  Create digraph G' = (L ∪ R ∪ {s, t},  E' ) 
2.  Direct all edges from L to R, and assign unit capacity 
3.  Add source s, and unit capacity edges from s to each node in L 
4.  Add sink t, and unit capacity edges from each node in R to t 
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Why does 
this work?	



What is cost of 
generating 

model?	



What is C ���
in this model?	
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Bipartite Matching: Proof of Correctness 

•  Theorem. Max cardinality matching in G = 
value of max flow in G'. 

•  Proof: Need to show in both directions 
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Bipartite Matching: Proof of Correctness 
•  Theorem. Max cardinality matching in G = value of 

max flow in G'. 
•  Pf.  à 

Ø Given max matching M of cardinality k. 
Ø Consider flow f that sends 1 unit along each of k paths. 
Ø  f is a flow and has cardinality k.   ▪ 
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Bipartite Matching: Proof of Correctness 
•  Theorem. Max cardinality matching in G = value of max flow in G'. 
•  Pf.  ß 

Ø  Let f be a max flow in G' of value k. 
Ø  Integrality theorem  ⇒  k is integral and can assume f is 0-1. 
Ø  Consider M = set of edges from L to R with f(e) = 1. 

•  each node in L and R participates in at most one edge in M 
•  |M| = k:  consider cut (L ∪ s, R ∪ t)   ▪ 
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Summary of Approach 

1. Model problem as a flow network 
2. Run Ford-Fulkerson algorithm 
3. Analyze running time 

Ø  Creating model 
Ø  FF algorithm 
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EXTENSIONS TO MAX FLOW 
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Circulation with Demands 

•  Directed graph G = (V, E) 
•  Edge capacities c(e), e ∈ E 
•  Node supply and demands d(v), v ∈ V 
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•  d(v) > 0 à demand	


•  d(v) < 0 à supply	


•  d(v) = 0 à transshipment	
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Example Graph:  
Circulation with Demands 
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Circulation with Demands 
•  Circulation with demands 

Ø Directed graph G = (V, E) 
Ø Edge capacities c(e), e ∈ E 
Ø Node supply and demands d(v), v ∈ V 
 

•  Def.  A circulation is a function that satisfies: 
Ø For each e ∈ E:  0 ≤ f(e) ≤ c(e)          (capacity) 
Ø For each v ∈ V:            (conservation) 
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! 

f (e)
e in to v
" # f (e)

e out of v
" = d (v)

demand if d(v) > 0; supply if d(v) < 0; transshipment if d(v) = 0	



Circulation problem: ���
given (V, E, c, d),  does a circulation exist?	



(Can we satisfy demand with supply?)	



Example Graph:  
Circulation with Demands 
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Circulation with Demands 

•  Necessary condition:   
   sum of supplies = sum of demands 
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! 

d (v)
v : d (v) > 0
" = # d (v)

v : d (v) < 0
" =: D
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Circulation with Demands: 
 Towards Max Flow Formulation 
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G:	



Ideas about how we can formulate this as a max flow problem?	
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Circulation with Demands: 
  Max Flow Formulation 

•  Add new source s and sink t 
•  For each v with d(v) < 0, add edge (s, v) with capacity -d(v) 
•  For each v with d(v) > 0, add edge (v, t) with capacity  d(v) 
•  Claim: G has circulation iff G' has max flow of value D 
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Circulation with Demands: 
Characterization 
•  Given (V, E, c, d), there does not exist a 

circulation iff there exists a node partition  
(A, B) such that  

  Σv∈B dv > cap(A, B) 

•  Pf? 
Ø What can we use to prove this? 
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supply of nodes in B + ���
max capacity of edges going from A à B	



demand by	


nodes in B	



exceeds 

Circulation with Demands: 
Characterization 
•  Given (V, E, c, d), there does not exist a 

circulation iff there exists a node partition  
(A, B) such that  

  Σv∈B dv > cap(A, B) 

•  Pf idea.  Look at min cut in G'. 
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ANOTHER EXTENSION: 
LOWER BOUNDS 
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Circulation with Demands and  
Lower Bounds 
•  Feasible circulation 

Ø Directed graph G = (V, E)   
Ø Edge capacities c(e) and lower bounds  (e), e ∈ E 
Ø Node supply and demands d(v), v ∈ V 

•  Def.  A circulation is a function that satisfies: 
Ø For each e ∈ E: 0 ≤  (e) ≤ f(e) ≤ c(e)       (capacity) 
Ø For each v ∈ V:     (conservation) 
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! 

f (e)
e in to v
" # f (e)

e out of v
" = d (v)

Circulation problem with lower bounds.���
Given (V, E, , c, d), does a circulation exist?	



Force flow to use���
 certain edges	



Circulation with Demands and  
Lower Bounds 

•  Model lower bounds with demands 
Ø Send (e) units of flow along edge e 
Ø Update demands of both endpoints 
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Supply and demand decrease	

 7.8  SURVEY DESIGN 
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Survey Design 
•  Design survey asking consumers about 

products 
•  Can only survey a consumer about a product 

if they own it 
Ø Consumer can own multiple products 

•  Ask consumer i between ci and ci’ questions 
•  Ask between pj and pj’ consumers about 

product j	



Mar 30, 2012 CSCI211 - Sprenkle 43 

Goal: Design a survey that meets these specs, if possible.	



How can we model this problem?	



Bipartite Graph 

•  Nodes: customers and products 
•  Edge between customer and product means 

customer owns product 
•  For each customer, range of # of products 

asked about 
•  For each product, range of # of customers 

asked about it 
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What does the flow represent?	



Next Week 

• Wiki - Tuesday 
Ø Skip the rest of Chapter 6 (unless you want to) 
Ø Chapter 7 up through 7.2, 7.5, 7.7 

•  Problem Set 9 due Friday 
Ø Implementing pretty print 
Ø Network flow problems 

•  As usual, check out the solved exercises at end 
of chapter 
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