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Objectives 

•  Network Flow 
Ø Max flow 
Ø Min cut 
Ø Application: Bipartite Matching 
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Review 

• What are the characteristics of the network 
flow graph we’re dealing with? 

• What was the problem we were trying to 
solve? 

•  Describe our algorithm to solve the problem 
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Review: Flows: Definitions 
•  An s-t flow is a function that satisfies 

Ø Capacity condition: For each e ∈ E: 0 ≤ f(e) ≤ c(e) 
Ø Conservation condition: For each v ∈ V – {s, t}:         
∑e into y  f(e) =  ∑e out of y  f(e) 
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Maximum Flow Problem 

•  Make network most efficient 
Ø Use most of available capacity 
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Goal: Find s-t flow of maximum value 

Augmenting Path Algorithm 
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Ford-Fulkerson(G, s, t, c)	
   foreach e ∈ E  f(e) = 0  # initially no flow	
   Gf = residual graph	
	
   while there exists augmenting path P	
      f = Augment(f, c, P)     # change the flow	
      update Gf   	 	# build a new residual graph	
	
   return f	

Augment(f, c, P)	
   b = bottleneck(P) # edge on P with least capacity	
   foreach e ∈ P	
      if (e ∈ E) f(e) = f(e) + b  # forward edge,  flow	
      else       f(eR) = f(e) - b  # forward edge,  flow 	
   return f	

c=capacity	

 Analyzing Augmenting Path Algorithm 
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Ford-Fulkerson(G, s, t, c)	
   foreach e ∈ E  f(e) = 0  # initially no flow	
   Gf = residual graph	
	
   while there exists augmenting path P	
      f = Augment(f, c, P)     # change the flow	
      update Gf   	 	# build a new residual graph	
	
   return f	

Augment(f, c, P)	
   b = bottleneck(P) # edge on P with least capacity	
   foreach e ∈ P	
      if (e ∈ E) f(e) = f(e) + b  # forward edge,  flow	
      else       f(eR) = f(e) - b  # forward edge,  flow 	
   return f	

Why does alg work? 	

What is happening at each iteration?	


What is the running time?	

 Need more analysis …	
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MINIMUM CUTS 
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Cuts 

•  An s-t cut is a partition (A, B) of V with s ∈ A 
and t ∈ B 

•  The capacity of a cut (A, B) is 
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What is the capacity 
of this cut?	



Minimum Cut Problem 

•  Find an s-t cut of minimum capacity 
Ø Puts upperbound on maximum flow 
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 Capacity = 10 + 8 + 10���
              = 28	
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Same graph, 
different cut	



Recall 

•  The value of a flow f is v(f) = ∑e out of s  f(e)         
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Flow Value Lemma 
•  Let f be any flow, and let (A, B) be any s-t cut.  

Then, the value of the flow is = fout(A) – fin(A). 
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of this flow?	



Flow Value Lemma 
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•  Let f be any flow, and let (A, B) be any s-t cut. 
Then, the value of the flow is = fout(A) – fin(A). 

€ 

f (e)
e out of A
∑ − f (e)

e in to A
∑  =  v( f )
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CSCI211 - Sprenkle 

Possibilities for edge e:	


•  Both ends in A (0)	


•  Points out from A (+)	


•  Points in to A (-)	



Flow Value Lemma (FVL) 

•  Let f be any flow, and let (A, B) be any s-t cut. 
•  Then 
•  Pf.    

Mar 29, 2013 
13 

by flow conservation, ���
all terms except v = s are 0	



By definition	
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Weak Duality 

•  Let f be any flow and let (A, B) be any s-t cut. 
➜ Then the value of the flow is at most the 

cut’s capacity 
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Cut capacity = 30   ⇒    Flow value ≤ 30 	
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Capacity = 30	
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Weak Duality 

•  Let f be any flow.   
Then, for any s-t cut (A, B) v(f) ≤ cap(A, B). 

•  Pf. 
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Certificate of Optimality 

•  Corollary.  Let f be any flow, and  
let (A, B) be any cut.  If v(f) = cap(A, B),  
then f is a max flow and (A, B) is a min cut. 
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Value of flow = 28���
Cut capacity  = 28   ⇒���

	

Flow value ≤ 28	
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Recall: Residual Graph Gf 

•  Original edge: e = (u, v)  ∈ E 
Ø Flow f(e), capacity c(e) 

•  Residual edge 
Ø e = (u, v) w/ capacity c(e) - f(e) 
Ø eR = (v, u) with capacity f(e)  

•  To undo flow 

•  Residual graph:  Gf = (V, Ef ) 
Ø Residual edges with positive residual capacity 
Ø Ef = {e : f(e) < c(e)}  ∪  {eR : f(e) > 0} 
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Recall: Augmenting Path Algorithm 
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Ford-Fulkerson(G, s, t, c)	
   foreach e ∈ E  f(e) = 0  # initially no flow	
   Gf = residual graph	
	
   while there exists augmenting path P	
      f = Augment(f, c, P)     # change the flow	
      update Gf   	 	# build a new residual graph	
	
   return f	

Augment(f, c, P)	
   b = bottleneck(P) # edge on P with least capacity	
   foreach e ∈ P	
      if (e ∈ E) f(e) = f(e) + b  # forward edge,  flow	
      else       f(eR) = f(e) - b  # forward edge,  flow 	
   return f	
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Intuition Behind Correctness of  
F-F Algorithm 

•  Let A be set of vertices reachable from s in 
residual graph at end of F-F alg execution 

•  By definition of A, s ∈ A 
•  By definition of the F-F algorithm’s resulting 

flow, t ∉ A 
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Ford-Fulkerson Algorithm 
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Flow value = 19	

Cut capacity = 19	



A	



• What do we know about the flow out of A?	


• What do we know about the flow into A?	



A: nodes reachable from s 	



A	



Ford-Fulkerson Algorithm 
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Flow value = 19	

Cut capacity = 19	



• What do we know about the flow out of A?	


• What do we know about the flow into A?	



A	



• All edges out of A are completely saturated	


• All edges into A are completely unused	


➔ A is the min cut	



A	



Max-Flow Min-Cut Theorem 

•  Proof strategy.  Prove both simultaneously by 
showing the following are equivalent: 
   (i) There exists a cut (A, B) such that v(f) = cap(A, B). 
   (ii) Flow f is a max flow. 
  (iii) There is no augmenting path relative to f. 
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Max-flow min-cut theorem.  [Ford-Fulkerson 1956] ���
The value of the max flow is equal to the value of the min cut.	



Augmenting path theorem.  ���
Flow f is a max flow iff there are no augmenting paths. 	



See formal proof in book	



Analyzing Augmenting Path Algorithm 
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Ford-Fulkerson(G, s, t, c)	
   foreach e ∈ E  f(e) = 0  # initially no flow	
   Gf = residual graph	
	
   while there exists augmenting path P	
      f = Augment(f, c, P)     # change the flow	
      update Gf   	 	# build a new residual graph	
	
   return f	

Augment(f, c, P)	
   b = bottleneck(P) # edge on P with least capacity	
   foreach e ∈ P	
      if (e ∈ E) f(e) = f(e) + b  # forward edge,  flow	
      else       f(eR) = f(e) - b  # forward edge,  flow 	
   return f	

Analyzing Augmenting Path Algorithm 
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Ford-Fulkerson(G, s, t, c)	
   foreach e ∈ E  f(e) = 0  # initially no flow	
   Gf = residual graph	
	
   while there exists augmenting path P	
      f = Augment(f, c, P)     # change the flow	
      update Gf   	 	# build a new residual graph	
	
   return f	

Augment(f, c, P)	
   b = bottleneck(P) # edge on P with least capacity	
   foreach e ∈ P	
      if (e ∈ E) f(e) = f(e) + b  # forward edge,  flow	
      else       f(eR) = f(e) - b  # forward edge,  flow 	
   return f	

O(m)	



O(m)	



O(m)	



O(m)	



O(n)	


O(n)	



O(1)	


O(1)	



Total: O(n) à O(m), since n ≤ 2m 

Total: O(Fm) 

Find path: O(m);  Iterations: O(F) iterations, where F = max flow	
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Running Time 
•  Assumption.  All capacities are integers between 1 and F. 
•  Invariant.  Every flow value f(e) and every residual 

capacity’s cf(e) remains an integer throughout algorithm. 

•  Theorem. Algorithm terminates in at most v(f*) ≤ nF 
iterations. 

•  Pf.  Each augmentation increases value by at least 1. 
•  Corollary.  If F = 1, Ford-Fulkerson runs in O(mn) time. 

•  Integrality theorem.  If all capacities are integers, then 
there exists a max flow f for which every flow value f(e) is 
an integer. 

•  Pf.  Since algorithm terminates, theorem follows from 
invariant.  
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Discussion: Max Flow Problem  

• What is the form of the solution to the max 
flow problem? 

•  Is there only one solution to a given max flow 
problem? 
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Power of Max Flow Problem 
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Some problems with non-trivial combinatorial searches 
can be formulated as max flow or���

 min cut in a directed graph	



BIPARTITE MATCHING 
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Bipartite Matching 
•  Input: undirected, bipartite graph G = (L ∪ R, E) 

Ø  Edges: one end in L, one end in R 
•  Matching M ⊆ E such that each node appears in at most 

1 edge in M. 

Mar 29, 2013 CSCI211 - Sprenkle 29 

1 

3 

5 

1' 

3' 

5' 

2 

4 

2' 

4' 

matching	



1-2', 3-1', 4-5'  	



R	

L	



V	



Problem: find matching of largest possible size	



Can we do better?	



Bipartite Matching 
•  Input: undirected, bipartite graph G = (L ∪ R, E) 

Ø  Edges: one end in L, one end in R 
•  Matching M ⊆ E such that each node appears in at most 

1 edge in M. 
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Max Flow Formulation 
1.  Create digraph G' = (L ∪ R ∪ {s, t},  E' ) 
2.  Direct all edges from L to R, and assign unit capacity 
3.  Add source s, and unit capacity edges from s to each node in L 
4.  Add sink t, and unit capacity edges from each node in R to t 
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Given model, 
now what?	



What is cost of 
generating 

model?	



What is C ���
in this model?	



Why does 
this work?	



Bipartite Matching: Proof of Correctness 

•  Theorem. Max cardinality matching in G = 
value of max flow in G'. 

•  Proof: Need to show in both directions 

Mar 29, 2013 CSCI211 - Sprenkle 32 

s 

1 

3 

5 

1' 

3' 

5' 

t 

2 

4 

2' 

4' 

1	

 1	



1	

1 

3 

5 

1' 

3' 

5' 

2 

4 

2' 

4' 

G'	

G	



Bipartite Matching: Proof of Correctness 
•  Theorem. Max cardinality matching in G = value of 

max flow in G'. 
•  Pf.  à 

Ø Given max matching M of cardinality k. 
Ø Consider flow f that sends 1 unit along each of k paths. 
Ø  f is a flow and has cardinality k.   ▪ 
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Bipartite Matching: Proof of Correctness 
•  Theorem. Max cardinality matching in G = value of max flow in G'. 
•  Pf.  ß 

Ø  Let f be a max flow in G' of value k. 
Ø  Integrality theorem  ⇒  k is integral and can assume f is 0-1. 
Ø  Consider M = set of edges from L to R with f(e) = 1. 

•  each node in L and R participates in at most one edge in M 
•  |M| = k:  consider cut (L ∪ s, R ∪ t)   ▪ 
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Network Flow Solutions 
1. Model problem as a flow network 

Ø  Describe what nodes, edges, and capacity 
represent 

Ø  Describe what flow represents and how that maps 
to your solution 

Ø  Run Ford-Fulkerson algorithm 
2. Prove that the solution found is correct/

feasible/optimal 
3. Prove that you find all solutions 
4. Analyze running time 

Ø  Creating model 
Ø  FF algorithm 
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This Week 

•  Problem Set 9 due Friday 
• Wiki Reading 

Ø 7.1-7.2, 7.5, 7.7 
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