
2/17/12	

1	

Objectives

• Wrap Up Minimum Spanning Tree
•  Union-Find data structure
•  Clustering

Feb 17, 2012 1 CSCI211 - Sprenkle

Let’s Talk About Algorithms

•  Challenge
•  Rules
• Wiki purpose
•  Suggestions
•  Honor Code

Feb 17, 2012 CSCI211 - Sprenkle 2

Review

• When we have a problem about shortest
path, what algorithm should we think about
applying?

•  BFS or Dijkstra’s
Ø Difference: Dijkstra’s when edges have positive

(and different) weights

Feb 17, 2012 CSCI211 - Sprenkle 3

Review: Laying Cable
•  Comcast wants to lay cable in a neighborhood

Ø  Reach all houses
Ø  Least cost

Feb 17, 2012 CSCI211 - Sprenkle 4

Neighborhood Layout	
 Cost of laying cable btw
houses depends on amount of
cable, landscaping, obstacles,

etc.	

8	

12	

2	

1	

15	

3	

7	

4	

13	

8	
15	

9	

Review: Minimum Spanning Tree
•  Spanning tree: spans all nodes in graph
•  Given a connected graph G = (V, E) with

positive edge weights ce, an MST is a subset of
the edges T ⊆ E such that T is a spanning tree
whose sum of edge weights is minimized

Feb 17, 2012 CSCI211 - Sprenkle 5

 5	

23	

10 	

21	

 14	

24	

 16	

 6	

 4	

18	

9	

7	

11	

 8	

 5	

 6	

 4	

9	

7	

11	

 8	

G = (V, E)	
 T, Σe∈T ce = 50	

What were the three algorithms we proposed?	

Review: Greedy Algorithms

•  Prim's algorithm. Start with some root node s and greedily
grow a tree T from s outward. At each step, add the
cheapest edge e to T that has exactly one endpoint in T.
Ø  Similar to Dijkstra’s (but simpler)

•  Kruskal's algorithm. Start with T = φ. Consider edges in
ascending order of cost. Insert edge e in T unless doing so
would create a cycle.

•  Reverse-Delete algorithm. Start with T = E. Consider
edges in descending order of cost. Delete edge e from T
unless doing so would disconnect T.

Feb 17, 2012 CSCI211 - Sprenkle 6

What do these algorithms have/do/check in common?	

All three algorithms produce a MST	

2/17/12	

2	

Review: Important Properties
•  Simplifying assumption: All edge costs ce are distinct
➜  MST is unique

•  Cut property. Let S be any subset of nodes, and let e
be the min cost edge with exactly one endpoint in S.
Then MST contains e.

•  Cycle property. Let C be any cycle, and let f be the
max cost edge belonging to C. Then MST does not
contain f.

Feb 17, 2012 CSCI211 - Sprenkle 7

f 	

C	

S	

Cut Property: e is in MST	

e	

Cycle Property: f is not in MST	

We want to prove these properties	

Review: Cycle-Cut Intersection

•  Claim. A cycle and a cutset intersect in an
even number of edges

•  Proof sketch

Feb 17, 2012 CSCI211 - Sprenkle 8

1	

3	

8

2	

6	

7	

4

5

S	

Cycle C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1	

Cut S = { 4, 5, 8 }���
Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8 ���
Intersection = 3-4, 5-6	

(Cut)	
 Edges link to not-Cut	

1.  Cycle all in S	

2.  Cycle not in S	

3.  Cycle has to go from ���

SàV-S and back	

V - S	

Proving Cut Property: OK to Include Edge

•  Simplifying assumption. All edge costs ce
are distinct.

•  Cut property. Let S be any subset of nodes,
and let e be the min cost edge with exactly
one endpoint in S. Then the MST T* contains
e.

•  Pf.?

Feb 17, 2012 CSCI211 - Sprenkle 9

Proving Cut Property: OK to Include Edge

•  Simplifying assumption. All edge costs ce
are distinct.

•  Cut property. Let S be any subset of nodes,
and let e be the min cost edge with exactly
one endpoint in S. Then the MST T* contains
e.

•  Pf. (exchange argument)
Ø Suppose there is an MST T* that does not

contain e
•  What do we know about T, by defn?
•  What do we know about the nodes e connects?

Feb 17, 2012 CSCI211 - Sprenkle 10

Proving Cut Property: OK to Include Edge

•  Cut property. Let S be any subset of nodes,
and let e be the min cost edge with exactly one
endpoint in S. Then the MST T* contains e.

•  Pf. (exchange argument)
Ø Suppose there is an MST T* that does not

contain e
Ø Adding e to T* creates a cycle C in T*
Ø Edge e is in cycle C and in cutset corresponding

to S
⇒ there exists another edge, say f, that is in both C and

S’s cutset

Feb 17, 2012 CSCI211 - Sprenkle 11

f 	

S	

Which means?	

e	

Proving Cut Property: OK to Include Edge
•  Cut property. Let S be any subset of nodes, and let e

be the min cost edge with exactly one endpoint in S.
Then the MST T* contains e.

•  Pf. (exchange argument)
Ø Suppose there is an MST T* that does not contain e
Ø Adding e to T* creates a cycle C in T*
Ø Edge e is in cycle C and in cutset corresponding to

S
⇒ there exists another edge, say f, that is in both C and S’s

cutset
Ø T' = T* ∪ { e } - { f } is also a spanning tree
Ø Since ce < cf, cost(T') < cost(T*)
Ø This is a contradiction. ▪

Feb 17, 2012 CSCI211 - Sprenkle 12

f 	

e	

S	

2/17/12	

3	

Proving Cycle Property: OK to Remove
Edge
•  Simplifying assumption. All edge costs ce

are distinct
•  Cycle property. Let C be any cycle in G, and

let f be the max cost edge belonging to C.
Then the MST T* does not contain f.

Feb 17, 2012 CSCI211 - Sprenkle 13

Ideas about approach?	

Cycle Property: OK to Remove Edge
•  Cycle property. Let C be any cycle in G, and let f be

the max cost edge belonging to C. Then the MST T*
does not contain f.

•  Pf. (exchange argument)
Ø Suppose f belongs to T*
Ø Deleting f from T* creates a cut S in T*
Ø Edge f is both in the cycle C and in the cutset S

⇒ there exists another edge, say e, that is in both C and S
Ø T' = T* ∪ { e } - { f } is also a spanning tree
Ø Since ce < cf, cost(T') < cost(T*)
Ø This is a contradiction. ▪

Feb 17, 2012 CSCI211 - Sprenkle 14

f 	

e	

S	

Summary of What Just Proved
•  Simplifying assumption: All edge costs ce are distinct
➜  MST is unique

•  Cut property. Let S be any subset of nodes, and let e
be the min cost edge with exactly one endpoint in S.
Then MST contains e.

•  Cycle property. Let C be any cycle, and let f be the
max cost edge belonging to C. Then MST does not
contain f.

Feb 17, 2012 CSCI211 - Sprenkle 15

f 	

C	

S	

Cut Property: e is in MST	

e	

Cycle Property: f is not in MST	

Prim’s Algorithm

•  Start with some root node s and greedily
grow a tree T from s outward.

•  At each step, add the cheapest edge e to T
that has exactly one endpoint in T.

Feb 17, 2012 CSCI211 - Sprenkle 16

How can we prove its correctness?	

[Jarník 1930, Dijkstra 1957, Prim 1959]	

Prim's Algorithm: Proof of Correctness

•  Initialize S to be any node
•  Apply cut property to S

Ø Add min cost edge (v, u) in cutset corresponding
to S, and add one new explored node u to S

Feb 17, 2012 CSCI211 - Sprenkle 17

S	

Ideas about
implementation?	

Implementation: Prim's Algorithm

•  Maintain set of explored nodes S
•  For each unexplored node v, maintain

attachment cost a[v] à cost of cheapest
edge v to a node in S

Feb 17, 2012 CSCI211 - Sprenkle 18

foreach (v ∈ V) a[v] = ∞	
Initialize an empty priority queue Q	
foreach (v ∈ V) insert v onto Q	
Initialize set of explored nodes S = φ	
while (Q is not empty) 	
 u = delete min element from Q	
 S = S ∪ { u }	
 foreach (edge e = (u, v) incident to u)	
 if ((v ∉ S) and (ce < a[v]))	
 decrease priority a[v] to ce	

Similar to Dijkstra’s algorithm	

Running Time?	

2/17/12	

4	

Implementation: Prim's Algorithm

•  Maintain set of explored nodes S
•  For each unexplored node v, maintain

attachment cost a[v] à cost of cheapest
edge v to a node in S

Feb 17, 2012 CSCI211 - Sprenkle 19

foreach (v ∈ V) a[v] = ∞	
Initialize an empty priority queue Q	
foreach (v ∈ V) insert v onto Q	
Initialize set of explored nodes S = φ	
while (Q is not empty) 	
 u = delete min element from Q	
 S = S ∪ { u }	
 foreach (edge e = (u, v) incident to u)	
 if ((v ∉ S) and (ce < a[v]))	
 decrease priority a[v] to ce	

O(deg(u))	

O(n)	

O(log n)	

O(n logn)	

O(n)	

O(log n)	

O(m log n) with a heap	

Similar to Dijkstra’s algorithm	

Kruskal’s Algorithm [1956]

•  Start with T = φ
•  Consider edges in ascending order of cost
•  Insert edge e in T unless doing so would

create a cycle
Ø Add edge as long as “compatible”

Feb 17, 2012 CSCI211 - Sprenkle 20

How can we prove algorithm’s correctness?	

Kruskal's Algorithm:
Proof of Correctness
•  Consider edges in ascending order of weight
•  Case 1: If adding e to T creates a cycle, discard e

according to cycle property (e must be max weight)
•  Case 2: Otherwise, insert e = (u, v) into T according to

cut property where S = set of nodes in u's connected
component

Feb 17, 2012 CSCI211 - Sprenkle 21 Case 1	

v	

u	

Case 2	

e	

e	

S	

What is tricky about implementing
Kruskal’s algorithm?	
 Implementing Kruskal’s Algorithm

Feb 17, 2012 CSCI211 - Sprenkle 22

What is tricky about implementing Kruskal’s algorithm?	

How do we know when adding an edge will create a cycle?	

• What are the properties of a graph/its nodes when

adding an edge will create a cycle?	

UNION-FIND DATA
STRUCTURE

Feb 17, 2012 CSCI211 - Sprenkle 23

Union-Find Data Structure
•  Keeps track of a graph as edges are added

Ø Cannot handle when edges are deleted
•  Maintains disjoint sets

Ø E.g., graph’s connected components
•  Operations:

Ø Find(u): returns name of set containing u
•  How utilized to see if two nodes are in the same set?
•  Goal implementation: O(log n)

Ø Union(A, B): merge sets A and B into one set
•  Goal implementation: O(log n)

Feb 17, 2012 CSCI211 - Sprenkle 24 Best darn Union-Find Data Structure	

2/17/12	

5	

Implementing Kruskal's Algorithm

•  Using the union-find data structure
Ø Build set T of edges in the MST
Ø Maintain set for each connected component

Feb 17, 2012 CSCI211 - Sprenkle 25

Sort edge weights so that c1 ≤ c2 ≤ ... ≤ cm	
T = {}	
foreach (u ∈ V) make a set containing singleton u	
	
for i = 1 to m	
 (u,v) = ei	
 if (u and v are in different sets)	
 T = T ∪ {ei}	
 merge the sets containing u and v	
return T	

are u and v in different connected components?	

merge two components	

Costs?	

Implementing Kruskal's Algorithm

•  Using best implementation of union-find
Ø Sorting: O(m log n)
Ø Union-find: O(m α (m, n))
Ø O(m log n)

Feb 17, 2012 CSCI211 - Sprenkle 26

m ≤ n2 ⇒ log m is O(log n)	

essentially a constant	

Sort edges weights so that c1 ≤ c2 ≤ ... ≤ cm	
T = {}	
foreach (u ∈ V) make a set containing singleton u	
	
for i = 1 to m	
 (u,v) = ei	
 if (u and v are in different sets)	
 T = T ∪ {ei}	
 merge the sets containing u and v	
return T	

are u and v in different connected components?	

merge two components	

Limitations to Applying MST?

•  Motivating Example: Comcast laying cable

Feb 17, 2012 CSCI211 - Sprenkle 27

Neighborhood Layout	

8	

12	

2	

1	

15	

3	

7	

4	

13	

8	
15	

9	

Looking ahead

• Wiki: Chapter 4 (front matter through 4.6,
skipping 4.3)
Ø Due Tues midnight after break

•  PS 5 due Friday after break
•  I will be at a conference Wed afternoon

through Saturday after break
Ø No class Friday à Traded for Danner external

memory algorithms discussion
Ø Plan accordingly for the problem sets

•  Available over email
Feb 17, 2012 CSCI211 - Sprenkle 28

