Objectives

Network Flow

» Max flow

» Min cut

» Application: Bipartite Matching
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Review

What are the characteristics of the network
flow graph we’re dealing with?

What was the problem we were trying to
solve?

Describe our algorithm to solve the problem
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Review: Flows: Definitions

Flow can’t exceed
An s-t flow is a function that satisfies ~ “2"
» Capacity condition: For each e € E: 0 <f(e) < c(e)
» Conservation condition: Foreachv € V —{s, t}:

Ze intoy f(e) = Ze out of y f(e) <= Flow in == Flow out
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Maximum Flow Problem

Make network most efficient
» Use most of available capacity

l / Value = 28
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Augmenting Path Algorithm c=capacity

Ford-Fulkerson(G, s, t, c)
foreach e € E f(e) = # initially no flow
G¢ = residual graph

while there exists augmenting path P
f = Augment(f, c, P) # change the flow
update Ge # build a new residual graph

return f

Augment(f c, P
bottleneck(P) # edge on P with least capacity
for'euch ecP
if (e € E) f(e) = f(e) + b # forward edge, A flow

else f(e®) = f(e) - b # forward edge, ¥ flow
return f
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Analyzing Augmenting Path Algorithm

Ford-Fulkerson(G, s, t, c)
foreach e € E f(e) = # initially no flow
G; = residual graph

while there exists augmenting path P
f = Augment(f, c, P) # change the flow
update Gg # build a new residual graph

return f

Augment(f c, P
bott'leneck(P) # edge on P with least capacity
for'each ecP
if (e € E) f(e) = f(e) + b # forward edge, A flow
else f(e®) = f(e) - b # forward edge, ¥ flow
return f

Why does alg work? What is happening at each iteration?
Mar 29, 2013| What is the running time? Need more analysis ...




MINIMUM CUTS
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Cuts

An s-t cut is a partition (A, B) of V withs € A
andte B

The capacity of a cut (A, B) is @8 = 3

What is the capacity
of this cut? /
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Minimum Cut Problem

Find an s-f cut of minimum capacity
» Puts upperbound on maximum flow

Same graph,

different cut /
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Recall

The value of a flow fis v(f) = >, cutos f(€)
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Flow Value Lemma
Let fbe any flow, and let (A, B) be any s-t cut.

Then, the value of the flow is = fout{(A) — fin(A).

What is the value
of this flow?

Sfle) - Zf) = v(f)
eoutof A einto A
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Flow Value Lemma

Let fbe any flow, and let (A, B) be any s-t cut.
Then, the value of the flow is = fouf(A) — fin(A).
Sfle) - E{(ﬂ) = v(f)
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Flow Value Lemma (FVL)

Let fbe any flow, and let (A, B) be any s-t cut.
Then v(/) =2, out o7 4 /() = X in 10 4 F(€)
Pf.
o(f) = ,Z, Sf(t') By definition
= ’Zj RIOK: .f%\(. ;f RIOEEPISC)

e into v

fl)— X feo+ X (X flo- X fle)

e out of s cinto s vEA#s € out of v ¢ into v
=X X flo- X fle)

vEA € out of v e into v R 3
= X flo- X [l

¢ out of A cinto A

Possibilities for edge e:

+ Both ends in A (0)

* Points out from A (+)
Mar 29,2013 .+ points in to A (-)

by flow conservation,
all terms except v = s are 0

Weak Duality

Let fbe any flow and let (A, B) be any s-t cut.

Then the value of the flow is at most the
cut’s capacity

Cut capacity =30 =  Flow value = 30
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Weak Duality

Let fbe any flow.
Then, for any s-t cut (A, B) v(f) < cap(A, B).
Pf.
BYFVL W) = 3 fle- 3 f)
i

coutof A

< > cle)

coutof A

= cap(A.B)
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Certificate of Optimality

Corollary. Let fbe any flow, and
let (A, B) be any cut. If v(f) = cap(A, B),
then fis a max flow and (A, B) is a min cut.

Value of flow = 28
Cut capacity =28 =

S Flow value = 28
| \ 9
! I
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Recall: Residual Graph G;

Original edge: e = (u,v) €E e
~ Flow f(e), capacity c(e) Y
Residual edge
» e =(u, v) w/ capacity c(e) - f(e)
» eR = (v, u) with capacity fle)
To undo flow ~— 6
Residual graph: G;=(V, E;)
» Residual edges with positive residual capacity
> Es= {le f(e) <c(e)} U l{eR :f(e) > Ol}

6 «—flow

Y
Backward edges
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T
Forward edges
Mar 29, 2013
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residual capacity

=V

X residual capacity

Recall: Augmenting Path Algorithm

Ford-Fulkerson(G, s, t, ¢)
foreach e € E f(e) = @ # initially no flow
G¢ = residual graph

while there exists augmenting path P
f = Augment(f, c, P) # change the flow
update G¢ # build a new residual graph

return f

Augment(f, c, P)
b = bottleneck(P) # edge on P with least capacity
foreach e € P
if (e € E) f(e) = f(e) + b # forward edge, A flow

else f(e® = f(e) - b # forward edge, ¥ flow
return f
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Intuition Behind Correctness of
F-F Algorithm

Let A be set of vertices reachable from s in
residual graph at end of F-F alg execution

By definition of A, s €A

By definition of the F-F algorithm’s resulting
flow, t &€ A
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FOfd‘FUIkers * What do we know about the flow out of A?
* What do we know about the flow into A?

AT
@44_\ AN

Cut capacity = 19 Flow value = 19

Gi ﬁ :
A:nodes reach?e from s \
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Ford'FU"(erS * What do we know about the flow out of A?

* What do we know about the flow into A?

Flow value = 19

« All edges out of A are completely saturated
« All edges into A are completely unused
= Ais the min cut

Mar 29, 2013
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Max-Flow Min-Cut Theorem

Augmenting path theorem.

Flow f'is a max flow iff there are no augmenting paths.

Max-flow min-cut theorem.
The value of the max flow is equal to the value of the min cut.

Proof strategy. Prove both simultaneously by
showing the following are equivalent:
(i) There exists a cut (A, B) such that v(f) = cap(A, B).
(ii) Flow f is a max flow.
(iii) There is no augmenting path relative to f.

See formal proof in I232c>ok
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Analyzing Augmenting Path Algorithm

Ford-Fulkerson(G, s, t, c)
foreach e € E f(e) = # initially no flow
G¢ = residual graph

while there exists augmenting path P
f = Augment(f, c, P) # change the flow
update Ge # build a new residual graph

return f

Augment(f c, P
bottleneck(P) # edge on P with least capacity
for'each ecP
if (e € E) f(e) = f(e) + b # forward edge, A flow
else f(e®) = f(e) - b # forward edge, ¥ flow
return f
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Analyzing Augmenting Path Algorithm

Ford-Fulkerson(G, s, t, c)

Om)  foreach e € E f(e) = # initially no flow

Om)  Gf = residual graph

Find path: O(m); Iterations: O(F) iterations, where F = max flow

while there exists augmenting path P

o(m) f = Augment(f, c, P) # change the flow

om) update Gg # build a new residual graph

turn f
recurn Total: O(Fm)

Augment(f, c, P)
an) b = bott'leneck(P) # edge on P with least capacity
O foreach e € P
[o10) if (e € E) f(e) = f(e) + b # forward edge, A flow
() else f(e®) = f(e) - b # forward edge, ¥ flow
return f

l Total: O(n) > O(m), since n < 2m
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Running Time

Assumption. All capacities are integers between 1 and F.

Invariant. Every flow value f(e) and every residual
capacity’s c,(e) remains an integer throughout algorithm.

Theorem. Algorithm terminates in at most v(f*) < nF
iterations.

Pf. Each augmentation increases value by at least 1.
Corollary. If F =1, Ford-Fulkerson runs in O(mn) time.

Integrality theorem. If all capacities are integers, then
there exists a max flow f for which every flow value f(e) is
an integer.

Pf. Since algorithm terminates, theorem follows from
invariant.
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Discussion: Max Flow Problem

What is the form of the solution to the max
flow problem?

Is there only one solution to a given max flow
problem?
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Power of Max Flow Problem
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BIPARTITE MATCHING
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Bipartite Matching v

Input: undirected, bipartite graph G = (L U R, E)
» Edges: one endin L, one end in R
Matching M C E such that each node appears in at most
1 edge in M.
Problem: find matching of largest possible size
e

matching
&
12,3-14.5'
& Can we do better?
L 5 R
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Bipartite Matching v

Input: undirected, bipartite graph G = (L U R, E)
~ Edges: one endin L, one end in R

Matching M C E such that each node appears in at most
1 edge in M.

max matching
1-1', 2-2', 3-3, 5-5'
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Max Flow Formulation

Create digraph G'= (L URU {s, t}, E')

Direct all edges from L to R, and assign unit capacity

Add source s, and unit capacity edges from s to each node in L
Add sink t, and unit capacity edges from each node in Rto t

What is cost of | i Given model,
i /'oy \ now what?
generating
|

model? | 2.\\‘
" o // ' '
A./
What is C Why does
in this model? L © g R this work?
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Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G =
value of max flow in G'.

Proof: Need to show in both directions

© ©6 © © ©
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Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of
max flow in G'.
Pf. >
» Given max matching M of cardinality k.
» Consider flow f that sends 1 unit along each of k paths.
» fis a flow and has cardinality k. =

o 7 | — 1-\
G >} 2 \'\ G'
o 3 s D ————t
o G ‘ 7
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Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of max flow in G'.
Pf. €«
» Let f be a max flow in G' of value k.
~ Integrality theorem = k is integral and can assume f is 0-1.
~ Consider M = set of edges from L to R with f(e) = 1.
each node in Land R participates in at most one edge in M
M| = k: considercut (LUs, RUt) =

(5
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Network Flow Solutions

Model problem as a flow network

» Describe what nodes, edges, and capacity
represent

» Describe what flow represents and how that maps
to your solution

» Run Ford-Fulkerson algorithm

Prove that the solution found is correct/
feasible/optimal

Prove that you find all solutions
Analyze running time

» Creating model

» FF algorithm
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This Week

Problem Set 9 due Friday
Wiki Reading
»71-72,75,7.7
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