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Objectives 

• Wrap Up Minimum Spanning Tree 
•  Union-Find data structure 
•  Clustering 

Feb 15, 2013 1 CSCI211 - Sprenkle 

Review 

• What is a minimum spanning tree? 
• What are three greedy solutions to finding 

the minimal spanning tree? 
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Review: Minimum Spanning Tree 
•  Spanning tree: spans all nodes in graph 
•  Given a connected graph G = (V, E) with 

positive edge weights ce, an MST is a subset of 
the edges T ⊆ E such that T is a spanning tree 
whose sum of edge weights is minimized 
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G = (V, E)	
 T,  Σe∈T ce = 50	


What were the three algorithms we proposed?	


Review: Greedy Algorithms 

•  Prim's algorithm.  Start with some root node s and greedily 
grow a tree T from s outward.  At each step, add the 
cheapest edge e to T that has exactly one endpoint in T. 
Ø  Similar to Dijkstra’s (but simpler) 

•  Kruskal's algorithm.  Start with T = φ. Consider edges in 
ascending order of cost. Insert edge e in T unless doing so 
would create a cycle. 

•  Reverse-Delete algorithm.  Start with T = E.  Consider 
edges in descending order of cost. Delete edge e from T 
unless doing so would disconnect T. 
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What do these algorithms have/do/check in common?	


All three algorithms produce a MST	


Review: Important Properties 
•  Simplifying assumption: All edge costs ce are distinct 
➜  MST is unique 

•  Cut property.  Let S be any subset of nodes, and let e 
be the min cost edge with exactly one endpoint in S.  
Then MST contains e. 

•  Cycle property.  Let C be any cycle, and let f be the 
max cost edge belonging to C.  Then MST does not 
contain f. 
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Cut Property: e is in MST	


e	


Cycle Property: f is not in MST	


Review: Prim's Algorithm 

•  Maintain set of explored nodes S 
•  For each unexplored node v, maintain 

attachment cost a[v] à cost of cheapest 
edge v to a node in S 
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foreach (v ∈ V) a[v] = ∞	
Initialize an empty priority queue Q	
foreach (v ∈ V) insert v onto Q	
Initialize set of explored nodes S = φ	
while (Q is not empty) 	
   u = delete min element from Q	
   S = S ∪ { u }	
   foreach (edge e = (u, v) incident to u)	
       if ((v ∉ S) and (ce < a[v]))	
           decrease priority a[v] to ce	

O(deg(u))	


O(n)	

O(log n)	


O(n logn)	


O(n)	


O(log n)	


O(m log n) with a heap	


Similar to Dijkstra’s algorithm.  Proved optimality with the cut property	
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Kruskal’s Algorithm [1956] 

•  Start with T = φ 
•  Consider edges in ascending order of cost 
•  Insert edge e in T unless doing so would 

create a cycle 
Ø Add edge as long as “compatible” 
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How can we prove algorithm’s correctness?	


Kruskal's Algorithm: 
Proof of Correctness 
•  Consider edges in ascending order of weight 
•  Case 1:  If adding e to T creates a cycle, discard e 

according to cycle property (e must be max weight) 
•  Case 2:  Otherwise, insert e = (u, v) into T according to 

cut property where S = set of nodes in u's connected 
component 
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What is tricky about implementing 
Kruskal’s algorithm?	


Implementing Kruskal’s Algorithm 
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What is tricky about implementing Kruskal’s algorithm?	


How do we know when adding an edge will create a cycle?	

• What are the properties of a graph/its nodes when 

adding an edge will create a cycle?	


UNION-FIND  
DATA STRUCTURE 
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Union-Find Data Structure 
•  Keeps track of a graph as edges are added 

Ø Cannot handle when edges are deleted 
•  Maintains disjoint sets 

Ø E.g., graph’s connected components 
•  Operations: 

Ø Find(u): returns name of set containing u 
•  How utilized to see if two nodes are in the same set? 
•  Goal implementation: O(log n) 

Ø Union(A, B): merge sets A and B into one set 
•  Goal implementation: O(log n) 
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Implementing Kruskal's Algorithm 

•  Using the union-find data structure 
Ø Build set T of edges in the MST 
Ø Maintain set for each connected component 
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Sort edge weights so that c1 ≤ c2 ≤ ... ≤ cm	
T = {}	
foreach (u ∈ V) make a set containing singleton u	
	
for i = 1 to m	
   (u,v) = ei	
   if (u and v are in different sets)	
      T = T ∪ {ei}	
      merge the sets containing u and v	
return T	

are u and v in different connected components?	


merge two components	


Costs?	
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Implementing Kruskal's Algorithm 

•  Using best implementation of union-find 
Ø Sorting: O(m log n) 
Ø Union-find: O(m α (m, n)) 
Ø O(m log n) 
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m ≤ n2 ⇒ log m is O(log n)	


essentially a constant	


Sort edges weights so that c1 ≤ c2 ≤ ... ≤ cm	
T = {}	
foreach (u ∈ V) make a set containing singleton u	
	
for i = 1 to m	
   (u,v) = ei	
   if (u and v are in different sets)	
      T = T ∪ {ei}	
      merge the sets containing u and v	
return T	

are u and v in different connected components?	


merge two components	


CLUSTERING 
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Outbreak of cholera deaths  in London in 1850s. ���
Reference: Nina Mishra, HP Labs	


Intersections with 
polluted wells	


Clustering 
•  Given a set U of n objects (or points) labeled  

p1, …, pn, classify into coherent groups 
Ø Problem: Divide objects into clusters so that 

points in different clusters are far apart 
•  Requires quantification of distance 

•  Applications 
Ø Routing in mobile ad hoc networks 
Ø Identify patterns in gene expression 
Ø Identifying patterns in web application use cases 

•  Sets of URLs 
Ø Similarity searching in medical image databases 
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Clustering: Distance Function 

•  Numeric value specifying "closeness" of two 
objects 

•  Assume distance function satisfies several 
natural properties 
Ø d(pi, pj) = 0 iff pi = pj   (identity of indiscernibles) 
Ø d(pi, pj) ≥ 0        (nonnegativity) 
Ø d(pi, pj) = d(pj, pi)       (symmetry) 
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Our Problem:  
k-Clustering of Maximum Spacing 
•  k-clustering. Divide objects into k non-empty 

groups 
•  Spacing. Min distance between any pair of 

points in different clusters 
•  k-clustering of maximum spacing.   

Given an integer k,  
find a k-clustering of maximum spacing 
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spacing	

k = 4	


Ideas about solving?	


Greedy Clustering Algorithm 

•  Single-link k-clustering algorithm 
Ø Form a graph on the vertex set U, corresponding 

to n clusters 
Ø Find the closest pair of objects such that each 

object is in a different cluster and add an edge 
between them 

Ø Repeat n-k times until there are exactly k 
clusters 
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How is this related to the MST?	
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Greedy Clustering Algorithm 

•  Key observation: Same as Kruskal's algorithm 
Ø Except we stop when there are k connected 

components 
•  Remark. Equivalent to finding MST and 

deleting the k-1 most expensive edges 
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k=3	


MST	


Greedy Clustering Algorithm: Analysis 
•  Theorem. Let C denote the clustering C1, …, Ck formed 

by deleting the k-1 most expensive edges of a MST.   
C is a k-clustering of max spacing. 

•  Pf Intuition: 
Ø What can we say about C’s spacing? 

•  Within clusters and between clusters 
Ø What if C isn’t optimal? 

•  What does that mean about C’s clusters vs (optimal) C*’s 
clusters? 
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K=3	


MST	


Greedy Clustering Algorithm: Analysis 
•  Theorem.  Let C denote the clustering C1, …, Ck formed by 

deleting the k-1 most expensive edges of a MST.  
C is a k-clustering of maximum spacing. 

•  Pf Sketch.  Let C* denote some other clustering C*1, …, C*k.  
C* and C must be different; otherwise we’re done. 
Ø  The spacing of C is length d of (k-1)st most expensive edge 
Ø  Let pi, pj be in the same cluster in Greedy solution C (say Cr) 

but different clusters in other solution C*, say C*s and C*t 
Ø  Some edge (p, q) on pi-pj path in Cr spans two different 

clusters in C* 
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p	
 q	
pi	
 pj	


C*s	
 C*t	


Cr	

What do we know about (p, q)?	


Greedy	


Other 
solution	


Greedy Clustering Algorithm: Analysis 
•  Theorem.  Let C denote the clustering C1, …, Ck formed by 

deleting the k-1 most expensive edges of a MST.  
C is a k-clustering of maximum spacing. 

•  Pf.  Let C* denote some other clustering C*1, …, C*k.         
C* and C must be different; otherwise we’re done. 
Ø  The spacing of C is length d of (k-1)st most expensive edge 
Ø  Let pi, pj be in the same cluster in C (say Cr) but different 

clusters in C*, say C*s and C*t 
Ø  Some edge (p, q) on pi-pj path in Cr spans two different 

clusters in C* 
Ø  All edges on pi-pj path have length ≤ d 

since Kruskal chose them 
Ø  Spacing of C* is at most ≤ d since  
    p and q are in different clusters 
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Looking ahead 

• Wiki: Chapter 4, Section 2, 4-6 (skipping 
section 3) 
Ø Due Tues midnight after break 

•  PS 5 due Friday after break 
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