Objectives

Dynamic Programming
» Fibonacci Sequence
» Weighted Interval Scheduling

Mar 12, 2012 CSCI211 - Sprenkle 1

Algorithmic Paradigms

Greedy. Build up a solution incrementally,
myopically optimizing some local criterion

Divide-and-conquer. Break up a problem into
sub-problems, solve each sub-problem
independently, and combine solution to sub-
problems to form solution to original problem

Dynamic programming. Break up a problem
into a series of overlapping sub-problems, and
build up solutions to larger and larger sub-
problems

Mar 12, 2012 CSCI211 - Sprenkle 2

Dynamic Programming History

Richard Bellman pioneered systematic study of
dynamic programming in 1950s
Etymology
» Dynamic programming = planning over time
Not our typical use of “programming”

~ Secretary of Defense was hostile to mathematical
research

» Bellman sought an impressive name to avoid
confrontation
"it's impossible to use dynamic in a pejorative sense"
"something not even a Congressman could object to"

Mar 12, 201 Reference: Bellman, R.E. Eye of the Hurricane, An Autobiography. 3

WARMUP:
FIBONACCI SEQUENCE

Mar 12, 2012 CSCI211 - Sprenkle 4

How Would You Solve the
Fibonacci Sequence?
Input: the number of Fibonacci numbers, x

Output: display the list of the first x Fibonacci
numbers

Sequence:

» FO:F1:1
»F=F ot Fo,

Mar 12, 2012 CSCI211 - Sprenkle 5

Soln 1: Using a List
Typical Solution:

fibs = [] # create an empty list
fibs.append(1) # append the first two Fib numbers
fibs.append(1)
print fibs[@], fibs[1],
for x in xrange(2, N):
newfib = fibs[x-1]+fibs[x-2]
print newfib,
fibs.append(newfib)

Building up solution

print fibs # print out the list

‘ Running time? Space cost? ‘

‘ Do we need a whole list? ‘

Mar 12, 2012 CSCI211 - Sprenkle 6

3/12/12

Soln 2: Using Three Variables

Only need the solutions to the last two
problems (F[k-1], F[k-2])

lastNum = 1
twoAgo = 1
print twoAgo, lastNum,
for n in xrange(2, N):

nthNum = twoAgo + lastNum
print nthNum,

twoAgo = lastNum
LlastNum = nthNum

Mar 12, 2012 CSCI211 - Sprenkle 7

Soln 3: Recursion

def fibonacci(n):
return fibonacci(n-1) + fibonacci(n-2)

What is the running time of this algorithm?

Mar 12, 2012 CSCI211 - Sprenkle 8

Dynamic Programming
Memoization Process

Create a table with the possible inputs

If the value is in the table, return it, without
recomputing it

Otherwise, call function recursively

» Add value to table for future reference

‘ How can we apply this template to our Fibonnaci problem?

Mar 12, 2012 CSCI211 - Sprenkle 9

Memoization Example: Fibonacci

memoized_fibonacci(n):
for j =1 to n:
results[i] = -1 # -1 means undefined

return memoized_fib_recurs(results, n)
memoized_fib_recurs(results, n):

if results[n] !'= -1: # value is defined
return results[n]

ne Runtime?|
elif n == 2:

val = 1 O(n)
else:

val = memoized_fib_recurs(results, n-2)

val = val + memoized_fib_recurs(results, n-1)
results[n] = val
return val

Mar 12, 2012 CSCI211 - Sprenkle 10

Memoization Example: Fibonacci

Alternative version...

memoized_fibonacci(n):
for j =1 to n:
results[i] = -1 # -1 means undefined
results[1] = 1
results[2] = 1

return memoized_fib_recurs(results, n)

memoized_fib_recurs(results, n):
if results[n] != -1: # value is defined
return results[n]

val = memoized_fib_recurs(results, n-2)

val = val + memoized_fib_recurs(results, n-1)
results[n] = val

return val

Mar 12, 2012 CSCI211 - Sprenkle "

WEIGHTED INTERVAL
SCHEDULING

Mar 12, 2012 CSCI211 - Sprenkle 12

3/12/12

Weighted Interval Scheduling

Job j starts at s, finishes at f;, and has weight or value v,
Two jobs are compatible if they don't overlap

Goal: find maximum weight subset of mutually
compatible jobs

Time

Mar 12, 2012 CSCI211 - Sprenkle 13

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights
are 1 (or equivalent).
~ Consider jobs in ascending order of finish time

» Add job to subset if it is compatible with
previously chosen jobs

What happens to Greedy algorithm
if we add weights to the problem?

Mar 12, 2012 CSCI211 - Sprenkle 14

Limitation of Greedy Algorithm

Recall. Greedy algorithm works if all weights
are 1.
» Consider jobs in ascending order of finish time
~ Add job to subset if it is compatible with
previously chosen jobs
Observation. Greedy algorithm can fail
spectacularly if arbitrary weights are allowed

weight = 999 b
weight = | a
Time
o 1 2 3 4 5 6 7 8 9 10 Il
Mar 12, 2012 CSCI211 - Sprenkle 15

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f; < f, <. .. <f,

Def. p(j) = largest index i < j such that job i is compatible
with j

Ex: p(8)=5,p(7)=3,p(2)=0

Time

Mar 12, 2012 CSCI211 - Sprenkle 16

Dynamic Programming

Assume we have an optimal solution

OPT(j) = value of optimal solution to the
problem consisting of job requests 1, 2, ..., j

What is something obvious we can we say about
the optimal solution with respect to job j?

Mar 12, 2012 CSCI211 - Sprenkle 17

Dynamic Programming: Binary Choice

OPT(j) = value of optimal solution to the
problem consisting of job requests 1, 2, ..., j
» Case 1: OPT selects job j

» Case 2: OPT does not select job j

Explore both of these cases...
* What jobs are in OPT? Which are not?
Keep in mind our definition of p

Mar 12, 2012 CSCI211 - Sprenkle 18

3/12/12

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f; < f, <. .. <f|

Def. p(j) = largest index i < j such that job i is compatible
with j

Ex: p(8)=5,p(7)=3,p(2) =0

Time

0 5 6 7 8
Mar 12, 2012 CSCI211 - Sprenkle 19

Dynamic Programming: Binary Choice

OPT(j) = value of optimal solution to the
problem consisting of job requests 1, 2, ..., j
Case 1: OPT selects job j
can't use incompatible jobs { p() + 1, p(j)) + 2, ...,j- 1}

must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., p(j)

Case 2: OPT does not select jobj optimal substructure

must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., j-1

Formulate OPT (j) as a recurrence relation ‘

Mar 12, 2012 CSCI211 - Sprenkle 20

Dynamic Programming: Binary Choice

OPT(j) = value of optimal solution to the
problem consisting of job requests 1, 2, ..., j
Case 1: OPT selects job j
can't use incompatible jobs { p(j) + 1, p() + 2, ..., j- 1}

must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., p(j)\

Case 2: OPT does not select job j optimal substructure

must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., j-1

Formulate OPT(j) in terms . N .
of smaller subproblems fizoicpticnsaOntliiayiQetel)

Which should we choose? Opt(j) = Opt(j-1)

Mar 12, 2012 CSCI211 - Sprenkle 21

Dynamic Programming: Binary Choice

OPT(j) = value of optimal solution to the
problem consisting of job requests 1, 2, ..., j
Case 1: OPT selects job j
can't use incompatible jobs { p(j) + 1, p(j) + 2, ...,j- 1}
must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., p(j)
Case 2: OPT does not select job j

must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., j-1

0 if j=0 Basecase
OPT(j)= . . . “ »
max{ v;+ OPT(p(})). OPT(]—I)} otherwise = Choose the “better
of the two solutions
Mar 12, 2012 CSCI211 - Sprenkle 22

Weighted Interval Scheduling:
Recursive Algorithm

Input: n jobs (associated start time s;, finish time f;, and value vy)
Sort jobs by finish times so that f; = f, = ... = f,
Compute p(1), p(2), ., p(n) Closest compatible job
Compute-0pt(3)

if j =
R O Picks j Doesn't pick j
return max(v; + Compute-Opt(p(3)), Compute-Opt(j-1))

What is the run time?
(Trace for n = 5)

Mar 12, 2012 CSCI211 - Sprenkle 23

Weighted Interval Scheduling:

Brute Force
Observation. Redundant sub-problems =
exponential algorithms

Ex. Number of recursive calls for family of
"layered" instances grows like Fibonacci

sequence. 5
4 3
‘1‘
2| 3 2 2 d
3
4 20 0 @ @
5
1 ©
p(1) =0,p(j) = j-2

Mar 12, 2012 CSCI211 - Sprenkle 24

Weighted Interval Scheduling:
Memoization
Memoization. Store results of each sub-
problem in a cache; lookup as needed.

Input: n jobs (associated start time s;, finish time f;, and value v;)

Sort jobs by finish times so that f; = f, = ... = f,
Compute p(1), p(2), «, p(n)

for j =1+ton
M[O?EZ:IO: eMPLY = |obal array
M-Compute-0pt(n)

M-Compute-Opt(j):
if M[J] is empty:
M[J] = max(v; + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[j]

Mar 12, 2012 CSCI211 - Sprenkle 25

Example

Jobs labeled as

Exam ple What is the value of p for each job?

Jobs labeled as

A-1
BTZ
C-3
,D-A,
E-5
! F-3
ClR2i
H-1 Time
0 1 2 3 4 5 6 7 8 9 10 "
M 0 A B C D £ IF G H
0
Mar 12, 2012 CSCI211 - Sprenkle 27

A-1
B-2
c-3
D-4
E-5
| F-3
SR
H-1 Time
[2 3 4 5 6 7 8 9 10 "
M 0 A B C D E F G H
0
Mar 12,2012 CSCI211 - Sprenkle 2
Example
P()
0 A-1
0 B-2
0 G
A D-4
0 E-5
B | F-3
C G-2
E e Time
o 2 3 4 5 6 7 8 9 10 "
M 0 A B C D = F G H
0
Mar 12,2012 CSCI211 - Sprenkle 28

Example

P()
0 A1
0 B-2
0 Caa
A D-4
0 E-5
B | F-3
C G-2__
E Hed Time
0 1 2 3 4 5 6 7 8 9 10 "
M 0 A B (o3 D E I G H
0
Mar 12, 2012 CSCI211 - Sprenkle 29

Example

P())
0 A1
0 B-2
0 C
A D-4
0 E-5
B | F-3
C G-2
E H-1
[2 3 4 5 6 7 8 9 10 "

M 0 A B C D E F G

0

Mar 12, 2012 CSCI211 - Sprenkle

Time

30

3/12/12

Example

Time

P(j)
0 A-1
0 &
0 c3
A D-4
0 E-5
B | F-3
C G-2
E H-1
0 1 3 5 6 7 8 9 10 "
M 0 B C D E IF G H
0
Mar 12, 2012 CSCI211 - Sprenkle

31

Example

Time

PG)

0 A1

0 &

0 ©a

A D-4

0 E-5

B | F-3

C G-2_

E H-1

[3 5 6 7 8 9 10 "
M 0 B C D E IF G H
0
Mar 12, 2012 CSCI211 - Sprenkle

32

Example

Time

P(j)
0 =
0 -2
0 G
A D-4
0 E-5
B | F-3
C G-2
E H-1
0 1 3 5 6 7 8 9 10 "
M 0 A B C D E I G H
0
Mar 12, 2012 CSCI211 - Sprenkle

33

Example

Time

PG)

0 =

0 -2

0 G

A D-4

0 E-5

B | F-3

C G-2

E H-1
o 3 5 6 7 8 9 10 "

M 0 A B C D = F G H
0

Mar 12,2012 CSCI211 - Sprenkle

34

Example

PG)
0 1
0 V -2
0 Caa
A D-4
0 E-5
B | F-3
C G-2__
E H-1
0 1 3 5 6 7 8 9 10 "
M 0 A B C D E F G H
0 1
Mar 12, 2012 L CSCI211 - Sprenkle

Time

35

Example

P()
0 1
0 V)
0 C
A D-4
0 E-5
B ! F-3
C G-2
E H-1
[3 5 6 7 8 9 10 "
M 0 A B C D E F G H
0 1 2
Mar 12, 2012 L L CSCI211 - Sprenkle

Time

36

3/12/12

Example

=2

C-3

mAO®Oo » © o o

Time

M 0 A|B|C|D

0 1 2 3

Mar 12, 2012 L L

L >SCI211 - Sprenkle

37

Example

Time

P())
0 A1
0 B-2
0 ©a
A D-4
0 E-5
B F:3
C G-2_
E H-1
[2 3 4 5 6 7 9 10 "
M 0 A B C D = F G H

0 1 2 3 5

Mar 12, 2012 L L

L >SCI | - Sprenkle

38

Example

Example

P()

0 A-1

0 B-2

0 G

A D-4.

0 E-5

B ! F-3

C G-

E -1 Time

0 1 2 3 4 5 6 7 8 10 "
M 0 A B C D E G H
0 1 2 3 5 5
Mar 12, 2012 TN L3SCl L SR le 39
Example

P()

0 o
0 B:Z

0 Caa

A D-4

0 E-5

B ! F-3

C G-

E =) Time

0 2 3 4 5 6 7 8 10 "
M 0 A B (o3 D E G H
0 1 2 3 5 5
Mar 12, 2012 TN LESCl L [-§ LR le 41

P()

0 A-1

0 B-2

0 G

A D-4

0 E-5

B F:3

C G-2

E e Time

o 2 3 4 5 6 7 8 9 10 "
M 0 A B C D = F G H
0 1 2 3 5 5
Mar 12,2012 LoL L3SCIL -S LR le 40
Example

P())

0 A1

0 B:Z

0 C

A D-4

0 E-5

B F-3

C G-2

E Hed Time

[2 3 5 6 7 8 9 10 "
M 0 A B (o3 D E F G H
0 1 2 3 5 5
Mar 12,2012 LL L3SCI L -S LR le 42

3/12/12

Example
P())
0 A-1
0 B-2
0 c-3
A D-4
0 E-5
B | F-3
C SR
E H-1 Time
[2 3 6 9 10 "
M 0 A B C D F
0 1 2 3 5 5 5
Mar 12, 2012 RN L3SCl -S Rl LR LR 44

Example
P()
0 A-1
0 B-2
0 GE
A D-4
0 =
B F:3
C G-2
E e Time
0 1 2 3 4 5 6 7 8 9 10 "
M 0 A B C D E F G H
0 1 2 3 5 5 5
Mar 12, 2012 Ll L LESCl L |-§ R lo| LR 43
Example
[e]
P()
0 A-1
0 B-2
0 G
A -4
0 =
B F-3
C G-2
E -1 Time
0 2 3 4 6 7 8 9 10 "
M 0 A B C D E IF G H
0 1 2 3 5 5 5 5 6
Mar 12, 2012 Ll I LbseiL-Surlelur | |ur| L 4

Looking Ahead

Katherine Crowley’s talk at 7:30 p.m.
Wiki for Tuesday:
» Finish reading Chapter 5
PS7 due Friday
Wednesday’s Class: 10:45 a.m.-11:30 a.m.

Mar 12, 2012 CSCI211 - Sprenkle 46

3/12/12

