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Objectives 

•  Reducibility 
•  Conclusions 
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Classify Problems According to 
Computational Requirements 
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Fundamental Question: ���
Which problems will we be able 

to solve in practice?	


Classify Problems 
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Polynomial	
 Exponential	


Examples:	

•  Given a Turing machine, does it halt���

in at most k steps?	

•  Given a board position in an n-by-n 

generalization of chess, ���
can black guarantee a win?	


? 

Frustrating news:  ���
Many problems have defied classification.	

	

Chapter 8.  Show that problems are 
"computationally equivalent" and appear to be 
manifestations of one really hard problem.	


Classify problems according to those that can be 
solved in polynomial-time and those that cannot.	


The Big Question 
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NP 

P 

P ⊆ NP	


NP P = NP 

P = NP	


In the mean time… 
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Polynomial	
 Exponential	


Examples:	

•  Given a Turing machine, does it halt���

in at most k steps?	

•  Given a board position in an n-by-n 

generalization of chess, ���
can black guarantee a win?	


? 

Frustrating news:  ���
Many problems have defied classification.	

	

Chapter 8.  Show that problems are 
"computationally equivalent" and appear to be 
manifestations of one really hard problem.	


Classify problems according to those that can be 
solved in polynomial-time and those that cannot.	


Polynomial-Time Reduction 
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Suppose we could solve Y in polynomial time. ���
What else could we solve in polynomial time?	
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Polynomial-Time Reduction 

•  Reduction. Problem X polynomial reduces to problem Y 
if arbitrary instances of problem X can be solved using: 
Ø  Polynomial number of standard computational steps, plus 
Ø  Polynomial number of calls to oracle that solves problem Y 

•  Assume have a black box that can solve Y 

•  Notation: X ≤P Y 
Ø  “X is polynomial-time reducible to Y” 

•  Conclusion: If Y can be solved in polynomial time and 
X ≤P Y, then X can be solved in polynomial time. 
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Suppose we could solve Y in polynomial-time. ���
What else could we solve in polynomial time?	


Y For X + 

Fun Fact: Connecting Chapters 7 and 8  

•  Karp, of the Edmonds-Karp algorithm (max-
flow problem on networks), published a 
paper in complexity theory on "Reducibility 
Among Combinatorial Problems", in which he 
proved 21 Problems to be NP-complete 

Apr 5, 2013 Sprenkle - CSCI211 8 

Review: Polynomial-Time Reduction 

•  Reduction. Problem X polynomial reduces to problem Y 
if arbitrary instances of problem X can be solved using: 
Ø  Polynomial number of standard computational steps, plus 
Ø  Polynomial number of calls to oracle that solves problem Y 

•  Assume have a black box that can solve Y 

•  Notation: X ≤P Y 
Ø  “X is polynomial-time reducible to Y” 

•  Conclusion: If Y can be solved in polynomial time and 
X ≤P Y, then X can be solved in polynomial time. 
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Suppose we could solve Y in polynomial-time. ���
What else could we solve in polynomial time?	


Y For X + 

NP-Complete Problems 
•  Problems from many different domains whose 

complexity is unknown 

•  NP-completeness and proof that all problems are 
equivalent is POWERFUL! 
Ø All open complexity questions è ONE open question! 

•  What does this mean? 
Ø  “Computationally hard for practical purposes, but we 

can’t prove it” 
Ø  If you find an NP-Complete problem, you can stop 

looking for an efficient solution 
•  Or figure out efficient solution for ALL NP-complete 

problems 
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Polynomial-Time Reduction 

•  Purpose.  Classify problems according to 
relative difficulty. 

•  Design algorithms.  If X ≤P Y and Y can be 
solved in polynomial-time, then X can also be 
solved in polynomial time. 

•  Establish intractability.  If X ≤P Y and X 
cannot be solved in polynomial-time, then Y 
cannot be solved in polynomial time. 

•  Establish equivalence.  If X ≤P Y and Y ≤P X, 
we use notation X ≡P Y. 
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Considering X ≤P Y 

•  Need to be careful putting X in terms of Y 
•  Make sure you’re not putting an easy 

problem (X) in terms of a hard problem (Y) 
Ø While you could do that, what does that do for 

you? 
Ø Just because Y is hard to solve does *not* mean 

that X is hard to solve 
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Basic Reduction Strategies 

•  Reduction by simple equivalence 
•  Reduction from special case to general case 
•  Reduction by encoding with gadgets 
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Independent Set 
•  Given a graph G = (V, E) and an integer k, is there a 

subset of vertices S ⊆ V such that |S| ≥ k and for 
each edge at most one of its endpoints is in S? 
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Ex.  Is there an independent set of 
size ≥ 6?	


Ex.  Is there an independent set of 
size ≥ 7? 	


How is this different from 
the network flow problem?	


Independent Set 
•  Given a graph G = (V, E) and an integer k, is there a 

subset of vertices S ⊆ V such that |S| ≥ k and for 
each edge at most one of its endpoints is in S? 

Apr 5, 2013 Sprenkle - CSCI211 15 

3 

10 

6 

9 

1 

5 

8 

2 

4 7 independent set	


Ex.  Is there an independent set of 
size ≥ 6? Yes	


Ex.  Is there an independent set of 
size ≥ 7? No 	


Vertex Cover 
•  Given a graph G = (V, E) and an integer k, is there a 

subset of vertices S ⊆ V such that |S| ≤ k and for 
each edge, at least one of its endpoints is in S? 
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Ex.  Is there a vertex cover of 

size ≤ 4?	

Ex.  Is there a vertex cover of 

size ≤ 3?	


A vertex covers an edge.	

	

Application: place guards within an 
art gallery so that all corridors are 
visible at any time 	


Vertex Cover 
•  Given a graph G = (V, E) and an integer k, is there a 

subset of vertices S ⊆ V such that |S| ≤ k and for 
each edge, at least one of its endpoints is in S? 
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vertex cover	


Ex.  Is there a vertex cover of 
size ≤ 4? Yes	


Ex.  Is there a vertex cover of 
size ≤ 3? No	


Problem 

•  Not known if finding Independent Set or 
Vertex Cover can be solved in  
polynomial time 

•  BUT, what can we say about their relative 
difficulty?  
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Vertex Cover and Independent Set 

•  Claim. VERTEX-COVER ≡P INDEPENDENT-SET 
•  Pf.  We show S is an independent set iff  

V - S is a vertex cover 
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vertex cover	


independent set	


Vertex Cover and Independent Set 
•  Claim. VERTEX-COVER ≡P INDEPENDENT-SET 
•  Pf.  We show S is an independent set iff  

V - S is a vertex cover 
•  ⇒ 

Ø Let S be an independent set 
Ø Consider an arbitrary edge (u, v) 
Ø Since S is an independent set ⇒ u ∉ S or v ∉ S or 

both ∉ S   ⇒  u ∈ V - S or v ∈ V - S or both ∈ V - S 
Ø Thus, V - S covers (u, v) 

•  Every edge has at least one end in V-S 
Ø V-S is a vertex cover 
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Vertex Cover and Independent Set 

•  Claim. VERTEX-COVER ≡P INDEPENDENT-SET 
•  Pf.  We show S is an independent set iff  

V - S is a vertex cover 
• ⇐  

Ø Let V - S be any vertex cover 
Ø Consider two nodes u ∈ S and v ∈ S 
Ø Observe that (u, v) ∉ E since V - S is a vertex 

cover 
Ø Thus, no two nodes in S are joined by an edge  
⇒ S independent set 
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Using the Previous Result 
•  Problem X polynomial reduces to problem Y if 

arbitrary instances of problem X can be solved 
using: 
Ø Polynomial number of standard computational steps, 

plus 
Ø Polynomial number of calls to oracle that solves 

problem Y 
•  Assume have a black box that can solve Y 
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How do we show polynomial reduction ���
for the independent set and vertex cover?	


Summary 

•  If we have a block box to solve Vertex Cover, 
can decide whether G has an independent 
set of size at least k by asking the black box 
whether G has a vertex cover of size at most 
n – k 

•  If we have a block box to solve Independent 
Set, can decide whether G has a vertex 
cover of size at most k by asking the block 
box whether G has an independent set of 
size at least n - k 
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Basic Reduction Strategies 

•  Reduction by simple equivalence 
•  Reduction from special case to general case 
•  Reduction by encoding with gadgets 
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Set Cover 
•  SET COVER:  Given a set U of elements, a collection S1, 

S2, . . . , Sm of subsets of U, and an integer k, does there 
exist a collection of size ≤ k of these sets whose union is 
equal to U? 

•  Sample application 
Ø  m available pieces of software 
Ø  Set U of n capabilities that we would like our system to have 
Ø  The ith piece of software provides the set Si ⊆ U of capabilities 
Ø  Goal: achieve all n capabilities using fewest pieces of 

software 
•  Ex: 
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U = { 1, 2, 3, 4, 5, 6, 7 }���
k = 2	

S1 = {3, 7} 	
 	
S4 = {2, 4}	

S2 = {3, 4, 5, 6} 	
 	
S5 = {5}���
S3 = {1} 	
 	
 	
S6 =  {1, 2, 6, 7}	


Choose S2 and S6	


Vertex Cover Reduces to Set Cover 
•  Claim. VERTEX-COVER ≤P SET-COVER 
•  Pf.  Given a VERTEX-COVER instance  

G = (V, E), k, we construct a set cover instance 
whose size equals the size of the vertex cover 
instance. 
Ø … 
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SET COVER?	
a	


d	


b	


e	


f	
 c	


VERTEX COVER	


k = 2	

e1 	


e2 	
 e3 	


e5 	


e4 	


e6 	


e7 	


Vertex Cover Reduces to Set Cover 
•  Claim. VERTEX-COVER ≤P SET-COVER 
•  Pf.  Given a VERTEX-COVER instance  

G = (V, E), k, we construct a set cover instance 
whose size equals the size of the vertex cover 
instance. 
Ø … 
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SET COVER	


	

U = { 1, 2, 3, 4, 5, 6, 7 }���
k = 2	

Sa = {3, 7}	
 	
Sb = {2, 4}	

Sc = {3, 4, 5, 6} 	
Sd = {5}���
Se = {1} 	
 	
Sf= {1, 2, 6, 7}	


a	


d	
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 c	


VERTEX COVER	


k = 2	

e1 	


e2 	
 e3 	


e5 	


e4 	


e6 	


e7 	


Vertex Cover Reduces to Set Cover 
•  Claim. VERTEX-COVER ≤ P SET-COVER 
•  Pf.  Given a VERTEX-COVER instance G = (V, E), k, we 

construct a set cover instance whose size equals the size 
of the vertex cover instance. 

•  Construction.   
Ø  Create SET-COVER instance: 

•  k = k,  U = E,  Sv = {e ∈ E : e incident to v } 
Ø  Set-cover of size ≤ k iff vertex cover of size ≤ k.  ▪ 
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SET COVER	


	

U = { 1, 2, 3, 4, 5, 6, 7 }���
k = 2	

Sa = {3, 7}	
 	
Sb = {2, 4}	

Sc = {3, 4, 5, 6} 	
Sd = {5}���
Se = {1} 	
 	
Sf= {1, 2, 6, 7}	


a	


d	


b	
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VERTEX COVER	


k = 2	
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Now you “get” this xkcd comic 
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PS8 

•  Dynamic programming 
•  Follow examples from class/book 

Ø Recurrence relation/subproblems 
•  Explain intuition  

Ø Use memoization 
Ø Process to find solution after finding value 
Ø Analysis of runtime 
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Final 
•  Usual rules 
•  Due next Friday, 5 p.m. (end of exams) 
•  Can use book, notes, handouts, my lecture 

notes, me (limited) 
Ø “The status of the P versus NP problem” 
Ø No other outside resources 

•  Office hours: Tuesday, 9:10 a.m.-11:50 a.m., 
1:30 p.m. – 3:20 p.m. 
Ø Others by appointment 

•  Evaluations due Monday at midnight on Sakai 
(tests and quizzes) 
Ø Last checked: 4 submissions of evaluations 
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