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Objectives 

•  Dynamic Programming: shortest paths 
•  Network Flow 

Ø Max flow 
Ø Min cut 
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Shortest Paths: Where we left off… 

 
•  Dijkstra’s algorithm does not handle negative 

edge costs 
•  If some path from s to t contains a negative cost 

cycle, there does not exist a shortest s-t path 
•  Otherwise, there exists one that is simple (i.e., 

does not repeat nodes) 
Ø Path has at most n-1 edges 

•  where n is # of nodes in graph 
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Towards a Recurrence 

•  OPT(i,v): minimum cost of a v-t path P using 
at most i edges 
Ø This formulation eases later discussion 

•  Original problem is OPT(n-1, s) 
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Shortest Paths: Dynamic Programming 

•  OPT(i, v) = minimum cost of a v-t path P 
using at most i edges 
Ø Case 1: P uses at most i-1 edges 

•  OPT(i, v) = OPT(i-1, v) 
Ø Case 2: P uses exactly i edges 

•  if (v, w) is first edge, then OPT uses (v, w), and 
then selects best w-t path using at most i-1 edges 

•  Cost: cost of chosen edge 
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Shortest Paths: Implementation 

•  Shortest path length is M[n-1, s] 

•  Analysis.  Θ(mn) time, Θ(n2) space. 

•  Finding the shortest paths.  Maintain a 
"successor" for each table entry. 
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Shortest-Path(G, s) 	
   n = number of nodes in G	
   foreach node v ∈ V	
      M[0, v] = ∞ 	
   M[0, s] = 0	
	
   for i = 1 to n-1	
      foreach node v ∈ V	
         M[i, v] = M[i-1, v]	
         foreach edge (v, w) ∈ E	
             M[i, v] = min(M[i, v], M[i-1, w] + cvw )	
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Shortest Paths: Implementation 

•  Shortest path length is M[n-1, s] 

•  Analysis.  Θ(mn) time, Θ(n2) space. 

•  Finding the shortest paths.  Maintain a 
"successor" for each table entry. 

Mar 27, 2013 CSCI211 - Sprenkle 6 

Shortest-Path(G, s) 	
   n = number of nodes in G	
   foreach node v ∈ V	
      M[0, v] = ∞ 	
   M[0, s] = 0  # distance to yourself is 0	
	
   for i = 1 to n-1	
      foreach node v ∈ V	
         M[i, v] = M[i-1, v]	
         foreach edge (v, w) ∈ E	
             M[i, v] = min(M[i, v], M[i-1, w] + cvw )	
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Shortest Paths: Runtime Analysis 

•  Shortest path length is M[n-1, s] 

•  Analysis.  Θ(mn) time, Θ(n2) space. 

•  Finding the shortest paths.  Maintain a 
"successor" for each table entry. 
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Shortest-Path(G, s) 	
   n = number of nodes in G	
   foreach node v ∈ V	
      M[0, v] = ∞ 	
   M[0, s] = 0  # distance to yourself is 0	
	
   for i = 1 to n-1	
      foreach node v ∈ V	
         M[i, v] = M[i-1, v]	
         foreach edge (v, w) ∈ E	
             M[i, v] = min(M[i, v], M[i-1, w] + cvw )	
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Dynamic Programming Wrapup 

• What we didn’t cover 
Ø 6.5: RNA Secondary Structure: Dynamic 

Programming Over Intervals 
Ø 6.7: Sequence Alignment in Linear Space 

•  Dynamic programming + Divide and Conquer à 
oh my! 

Ø 6.9: Shortest Paths and  
Distance Vector Protocols 
•  In practice in internet routing 
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NETWORK FLOW 
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Motivating Flow Network Problems 

•  Modeling transportation networks 
Ø Edges: carry traffic 
Ø Nodes: pass traffic between edges 

•  Can represent many different types of 
problems 
Ø Instead of looking at all possibilities, formulate as 

a flow problem 
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Flow Network 
•  G = (V, E) = directed graph, no parallel 

edges 
•  Two distinguished nodes: s = source, t = sink 
•  c(e) = capacity of edge e, > 0 
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Flows: Definitions 
•  An s-t flow is a function that satisfies 

Ø Capacity condition: For each e ∈ E: 0 ≤ f(e) ≤ c(e) 
Ø Conservation condition: For each v ∈ V – {s, t}:         
∑e into y  f(e) =  ∑e out of y  f(e) 
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Flows: Definitions 

•  The value of a flow f is v(f) = ∑e out of s  f(e)         
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Maximum Flow Problem 

•  Make network most efficient 
Ø Use most of available capacity 
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Goal: Find s-t flow of maximum value 

Towards a Max Flow Algorithm 
•  Greedy algorithm 

Ø Start all edges e ∈ E at f(e) = 0 
Ø Find an s-t path P with the most capacity: f(e) < c(e) 
Ø Augment flow along path P 
Ø Repeat until you get stuck 
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Towards a Max Flow Algorithm 
•  Greedy algorithm 

Ø Start all edges e ∈ E at f(e) = 0 
Ø Find an s-t path P with the most capacity: f(e) < c(e) 
Ø Augment flow along path P 
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Is this optimal?	
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Towards a Max Flow Algorithm 
•  Greedy algorithm 

Ø  Start all edges e ∈ E at f(e) = 0 
Ø  Find an s-t path P with the most capacity: f(e) < c(e) 
Ø  Augment flow along path P 
Ø  Repeat until you get stuck 
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locally optimality does not ⇒ global optimality	



RESIDUAL GRAPHS 
Towards a solution… 
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Towards a Residual Graph 

•  Original edge: e = (u, v)  ∈ E 
Ø Flow f(e), capacity c(e) 
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Towards a Residual Graph 

•  Original edge: e = (u, v)  ∈ E 
Ø Flow f(e), capacity c(e) 

•  Residual edge 
Ø e = (u, v) w/ capacity c(e) - f(e) 
Ø eR = (v, u) with capacity f(e)  

•  To undo flow 
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Residual Graph: Gf 

•  Original edge: e = (u, v)  ∈ E 
Ø Flow f(e), capacity c(e) 

•  Residual edge 
Ø e = (u, v) w/ capacity c(e) - f(e) 
Ø eR = (v, u) with capacity f(e)  

•  To undo flow 

•  Residual graph:  Gf = (V, Ef ) 
Ø Residual edges with positive residual capacity 
Ø Ef = {e : f(e) < c(e)}  ∪  {eR : f(e) > 0} 
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Applying Residual Graph 

•  Used to find the maximum flow 
Ø Use similar idea to greedy algorithm 

•  Residual path: simple s-t path in Gf 
Ø Also known as augmenting path 
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Augmenting Path Algorithm 

Mar 27, 2013 CSCI211 - Sprenkle 23 

Ford-Fulkerson(G, s, t, c)	
   foreach e ∈ E  f(e) = 0  # initially no flow	
   Gf = residual graph	
	
   while there exists augmenting path P	
      f = Augment(f, c, P)     # change the flow	
      update Gf   	 	# build a new residual graph	
	
   return f	

Augment(f, c, P)	
   b = bottleneck(P) # edge on P with least capacity	
   foreach e ∈ P	
      if (e ∈ E) f(e) = f(e) + b  # forward edge,  flow	
      else       f(eR) = f(e) - b  # forward edge,  flow 	
   return f	

c=capacity	

 Ford-Fulkerson Algorithm 
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Ford-Fulkerson Algorithm 
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What does the residual graph look like?	
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Ford-Fulkerson Algorithm 
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Ford-Fulkerson Algorithm 

Mar 27, 2013 CSCI211 - Sprenkle 27 

s 

2 

3 

4 

5 t  10	



   10	



 9	



 8	



 4	



 10	



   10	

 6	

 2	



0	



0	



0	



0	

 0	

 0	



0	



0	



 G:	



Flow value = 0	



0	



flow	



s 

2 

3 

4 

5 t  10	

  9	



 4	



   10	

 6	

 2	



 Gf:	



10	

  8	



 10	



residual capacity	



Bottleneck	



capacity	



Ford-Fulkerson Algorithm 
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Flow value = 8	



Ford-Fulkerson Algorithm 
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Ford-Fulkerson Algorithm 
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Ford-Fulkerson Algorithm 
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Ford-Fulkerson Algorithm 
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Flow value = 19	



How do we know we’re done?	



Ford-Fulkerson Algorithm 
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What is reachable from s	



Flow value = 19	

Cut capacity = 19	



Analyzing Augmenting Path Algorithm 
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Ford-Fulkerson(G, s, t, c)	
   foreach e ∈ E  f(e) = 0  # initially no flow	
   Gf = residual graph	
	
   while there exists augmenting path P	
      f = Augment(f, c, P)     # change the flow	
      update Gf   	 	# build a new residual graph	
	
   return f	

Augment(f, c, P)	
   b = bottleneck(P) # edge on P with least capacity	
   foreach e ∈ P	
      if (e ∈ E) f(e) = f(e) + b  # forward edge,  flow	
      else       f(eR) = f(e) - b  # forward edge,  flow 	
   return f	

Why does alg work? 	

What is happening at each iteration?	


What is the running time?	

 Need more analysis …	



This Week 

•  Problem Set 8 due Friday 
•  Start reading chapter 7 

Mar 27, 2013 CSCI211 - Sprenkle 35 


