
3/7/13	

1	

Objectives

•  Divide and conquer
Ø Closest pair of points

Mar 6, 2013 1 CSCI211 - Sprenkle

Computational Geometry

•  Algorithms and data structures for
geometrical objects
Ø Points, line segments, polygons, etc.
Ø Common motivator: large data sets à efficiency

•  Some Applications
Ø Graphics
Ø Robotics

•  motion planning and visibility problems
Ø Geographic information systems (GIS)

•  geometrical location and search, route planning
Mar 6, 2013 CSCI211 - Sprenkle 2

Closest Pair of Points

•  Closest pair. Given n points in the plane,
find a pair with smallest Euclidean distance
between them.
Ø Special case of nearest neighbor, Euclidean

MST, Voronoi

•  Brute force?

Mar 6, 2013 CSCI211 - Sprenkle 3

fast closest pair inspired ���
fast algorithms for these problems	

Closest Pair of Points

•  Closest pair. Given n points in the plane,
find a pair with smallest Euclidean distance
between them.
Ø Special case of nearest neighbor, Euclidean

MST, Voronoi.

•  Brute force. Check all pairs of points p and q
with Θ(n2) comparisons

Mar 6, 2013 CSCI211 - Sprenkle 4

Simplify: All Points on a Line

•  How could we solve this problem?

• What is its running time?

Mar 6, 2013 CSCI211 - Sprenkle 5

Simplify: All Points on a Line

•  How could we solve this problem?
Ø Sort the points

•  Monotonically increasing x/y coordinates
•  No closer points than neighbors in sorted list

Ø Step through, looking at the distances between
each pair

• What is its running time?
Ø O(n logn)

Mar 6, 2013 CSCI211 - Sprenkle 6

Why won’t this work for 2D?	

3/7/13	

2	

Closest Pair of Points
•  Closest pair. Given n points in the plane, find a

pair with smallest Euclidean distance between
them.
Ø Special case of nearest neighbor, Euclidean MST,

Voronoi.
•  Brute force. Check all pairs of points p and q

with Θ(n2) comparisons
•  1-D version. O(n log n)

Ø Easy if points are on a line
•  Assumption. No two points have same x

coordinate

Mar 6, 2013 CSCI211 - Sprenkle 7

to make presentation cleaner	

Closest Pair of Points: First Attempt

•  Divide. Sub-divide region into 4 quadrants

Mar 6, 2013 CSCI211 - Sprenkle 8

L	

Why does this seem to be a natural first step?	

Any problems with implementing this approach?	

Closest Pair of Points: First Attempt

•  Divide. Sub-divide region into 4 quadrants
•  Obstacle. Impossible to ensure n/4 points in

each piece

Mar 6, 2013 CSCI211 - Sprenkle 9

L	

Closest Pair of Points

•  Divide: draw vertical line L so that roughly
½n points on each side

Mar 6, 2013 CSCI211 - Sprenkle 10

L	

How do we implement this?	

Closest Pair of Points
•  Divide: draw vertical line L so that roughly ½n

points on each side
•  Conquer: find closest pair in each side

recursively

Mar 6, 2013 CSCI211 - Sprenkle 11

12	

21	

L	

Closest Pair of Points
•  Divide: draw vertical line L so that roughly ½n points on each side
•  Conquer: find closest pair in each side recursively
•  Combine: find closest pair with one point in each side
•  Return best of 3 solutions

Mar 6, 2013 CSCI211 - Sprenkle 12

12	

21	

8	

L	

seems like Θ(n2) 	

Do we need to check all pairs?	

3/7/13	

3	

Closest Pair of Points

•  Find closest pair with one point in each side,
assuming that distance < δ
 where δ = min(left_min_dist, right_min_dist)

Mar 6, 2013 CSCI211 - Sprenkle 13

12	

21	

δ = min(12, 21)

L	

Closest Pair of Points
•  Find closest pair with one point in each side,

assuming that distance < δ.
Ø Observation: only need to consider points within
δ of line L.

Mar 6, 2013 CSCI211 - Sprenkle 14

12	

21	

δ	

L	

δ = min(12, 21)

Closest Pair of Points
•  Find closest pair w/ 1 point in each side, assuming that

distance < δ.
Ø Observation: only consider points within δ of line L
Ø Sort points in 2δ-strip by their y coordinate

Mar 6, 2013 CSCI211 - Sprenkle 15

12	

21	

1	

2	

3	

4	
 5	

6	

7	

δ	

L	

δ = min(12, 21)

How many points are
within that region?	

Closest Pair of Points
•  Find closest pair w/ 1 point in each side, assuming that distance < δ

Ø  Observation: only consider points within δ of line L
Ø  Sort points in 2δ-strip by their y coordinate

•  Only checks distances of those within 11 positions in sorted list!

Mar 6, 2013 CSCI211 - Sprenkle 16

12	

21	

1	

2	

3	

4	
 5	

6	

7	

δ	

L	

δ = min(12, 21)

Analyzing Cost of Combining

•  Def. Let si be the point in the
2δ-strip, with the ith smallest y-
coordinate

•  Claim. If |i – j| ≥ 12, then the
distance between si and sj is at
least δ
Ø What is the distance of the box?
Ø How many points can be in a

box?
Ø When do we know that points are

> δ apart?
Mar 6, 2013 CSCI211 - Sprenkle 17 δ	

27	

29	

30	

31	

28	

26	

25	

δ	

½δ	

½δ	

½δ	

39	

i	

j	

Prepare minds to be blown…	

Analyzing Cost of Combining
•  Def. Let si be the point in the 2δ-

strip, with the ith smallest y-
coordinate

•  Claim. If |i – j| ≥ 12, then the
distance between si and sj is at least
δ

•  Pf.
Ø  No two points lie in same ½δ-by-½δ

box
Ø  Two points at least 2 rows apart

have distance ≥ 2(½δ). ▪
•  Fact. Still true if we replace 12 with

7.

Mar 6, 2013 CSCI211 - Sprenkle 18 δ	

27	

29	

30	

31	

28	

26	

25	

δ	

½δ	

 2 rows	

½δ	

½δ	

39	

i	

j	

Cost of combining is therefore…?	

3/7/13	

4	

Closest Pair Algorithm

Mar 6, 2013 CSCI211 - Sprenkle 19

Closest-Pair(p1, …, pn) 	
 Compute separation line L such that half the points  
 are on one side and half on the other side.	
	
 δ1 = Closest-Pair(left half)	
 δ2 = Closest-Pair(right half)	
 δ = min(δ1, δ2)	
	
 Delete all points further than δ from separation

line L	
	
 Sort remaining points by y-coordinate.	
	
 Scan points in y-order and compare distance between  
 each point and next 7 neighbors. If any of these  
 distances is less than δ, update δ.	
	
 return δ	

Closest Pair Algorithm

Mar 6, 2013 CSCI211 - Sprenkle 20

Closest-Pair(p1, …, pn) 	
 Compute separation line L such that half the points  
 are on one side and half on the other side.	
	
 δ1 = Closest-Pair(left half)	
 δ2 = Closest-Pair(right half)	
 δ = min(δ1, δ2)	
	
 Delete all points further than δ from separation

line L	
	
 Sort remaining points by y-coordinate.	
	
 Scan points in y-order and compare distance between  
 each point and next 7 neighbors. If any of these  
 distances is less than δ, update δ.	
	
 return δ	

O(n log n)	

2T(n / 2)	

O(n)	

O(n log n)	

O(n)	

Total running time?	
T(n) = 2 T(n/2) + O(n log n)	

Closest Pair of Points: Analysis
•  Running time.

•  Can we achieve O(n log n)?

•  Yes. Don't sort points in strip from scratch
each time.
Ø Each recursive returns two lists: all points sorted

by y coordinate, and all points sorted by x
coordinate

Ø Sort by merging two pre-sorted lists

Mar 6, 2013 CSCI211 - Sprenkle 21

€

T(n) ≤ 2T n /2() + O(n) ⇒ T(n) = O(n logn)

€

T(n) ≤ 2T n /2() + O(n log n) ⇒ T(n) = O(n log2 n)

Solved in 5.2	

Looking Ahead

•  PS6 due Friday
• Wiki due Tuesday

Ø Chapter 5.3, 5.4, 5.5

Mar 6, 2013 CSCI211 - Sprenkle 22

