
2/4/13	

1	

Objectives

•  Greedy Algorithms
Ø Interval partitioning
Ø Minimizing Lateness

•  Exchange argument

Feb 4, 2013 1 CSCI211 - Sprenkle

Review

• What is the template for a greedy solution?
• What problem did we solve optimally with a

greedy algorithm?
•  How did we prove optimality?

Feb 4, 2013 CSCI211 - Sprenkle 2

Review: Greedy Algorithms

•  Template
1.  Consider jobs (or whatever) in some order

•  Decision: What order is best?
2.  Take each job provided it's compatible with the

ones already taken
•  At each step, take as much as you can get

Ø Feasible – satisfy problem’s constraints
Ø Locally optimal – best local choice among

available feasible choices
Ø Irrevocable – after decided, no going back

Feb 4, 2013 CSCI211 - Sprenkle 3

Review: Greedy Stays Ahead Proofs
1.  Define your solutions

Ø  Describe the form of your greedy solution (A) and of some other
solution (possibly the optimal solution, O)

2.  Find a measure
Ø  Find a measure by which greedy stays ahead of the optimal solution

•  Ex: Let a1, . . . , ak be the first k measures of greedy algorithm and
o1 , . . . , om be the first m measures of other solution (sometimes m = k)

3.  Prove greedy stays ahead
Ø  Show that greedy’s partial solutions constructed are always just as

good as the optimal solution’s initial segments based on the measure
•  Ex: for all indices r ≤ min(k,m), prove by induction that ar ≥ or or ar ≤ or

Ø  Use the greedy algorithm to help you argue the inductive step

4.  Prove optimality
Ø  Prove that since greedy stays ahead of the other solution with respect

to the measure, then the greedy solution is optimal

Feb 4, 2013 CSCI211 - Sprenkle 4

Review: Interval Scheduling
•  Job j starts at sj and finishes at fj
•  Two jobs are compatible if they don't overlap
•  Goal: find maximum subset of mutually

compatible jobs

Feb 4, 2013 CSCI211 - Sprenkle 5

Time	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	

f	

g	

h	

e	

a	

b	

c	

d	

•  Every job is worth equal
money.	

• To earn the most money à
schedule the most jobs	

Problem Assumptions

•  All requests were known to scheduling
algorithm
Ø Online algorithms: make decisions without

knowledge of future input
•  Each job was worth the same amount

Ø What if jobs had different values?
•  E.g., scaled with size

•  Single resource requested
Ø Rejected requests that didn’t fit

Feb 4, 2013 CSCI211 - Sprenkle 6

2/4/13	

2	

INTERVAL PARTITIONING

Feb 4, 2013 CSCI211 - Sprenkle 7

Interval Partitioning

•  Lecture j starts at sj and finishes at fj
•  Goal: find minimum number of classrooms to

schedule all lectures so that no two occur at
the same time in the same room.

•  Ex: 10 lectures in 4 classrooms

Feb 4, 2013 CSCI211 - Sprenkle 8
Time	

9	
 9:30	
 10	
 10:30	
 11	
 11:30	
 12	
 12:30	
 1	
 1:30	
 2	
 2:30	

h	

c	

b	

a	

e	

d	
 g	

f	
 i	

j	

3	
 3:30	
 4	
 4:30	

What are our constraints?	
Can we use fewer rooms?	

Interval Partitioning

•  Lecture j starts at sj and finishes at fj
•  Goal: find minimum number of classrooms to

schedule all lectures so that no two occur at
the same time in the same room.

•  Alternative schedule uses only 3 classrooms

Feb 4, 2013 CSCI211 - Sprenkle 9
Time	

9	
 9:30	
 10	
 10:30	
 11	
 11:30	
 12	
 12:30	
 1	
 1:30	
 2	
 2:30	

h	

c	

a	
 e	

f	

g	
 i	

j	

3	
 3:30	
 4	
 4:30	

d	

b	

Time	

9	
 9:30	
 10	
 10:30	
 11	
 11:30	
 12	
 12:30	
 1	
 1:30	
 2	
 2:30	

h	

c	

a	
 e	

f	

g	
 i	

j	

3	
 3:30	
 4	
 4:30	

d	

b	

a, b, c all contain 9:30	

Interval Partitioning:
Lower Bound on Optimal Solution
•  Def. The depth of a set of open intervals is the

maximum number that contain any given time.
•  Key observation. # of classrooms needed ≥

depth.
•  Ex: Depth of schedule below = 3 ⇒ schedule

below is optimal.

Feb 4, 2013 10 CSCI211 - Sprenkle

Does there always exist a schedule equal
to depth of intervals?	

Interval Partitioning Discussion

•  Does there always exist a schedule equal to
depth of intervals?

•  Can we make decisions locally to get a
global optimum?
Ø Or are there long-range obstacles that require

more resources?

Feb 4, 2013 CSCI211 - Sprenkle 11

Interval Partitioning: Greedy Algorithm

•  Consider lectures in increasing order of start
time: assign lecture to any compatible
classroom

Feb 4, 2013 CSCI211 - Sprenkle 12

Sort intervals by starting time so that s1 ≤ s2 ≤ ... ≤ sn	
d = 0	
for j = 1 to n 	
 if lecture j is compatible with some classroom k	
 schedule lecture j in classroom k	
 else	
 allocate a new classroom d + 1	
 schedule lecture j in classroom d + 1	
 d = d + 1 	

number of allocated classrooms	

Analyze algorithm	

2/4/13	

3	

Sort intervals by starting time so that s1 ≤ s2 ≤ ... ≤ sn	
d = 0	
for j = 1 to n 	
 if (lecture j is compatible with some classroom k)	
 schedule lecture j in classroom k	
 else	
 allocate a new classroom d + 1	
 schedule lecture j in classroom d + 1	
 d = d + 1 	

Interval Partitioning: Greedy Algorithm
•  Consider lectures in increasing order of start time: assign

lecture to any compatible classroom

•  Implementation: O(n log n)
Ø  For each classroom k, maintain the finish time of the last job

added.
Ø  Keep the classrooms in a priority queue by last job finish time.

Feb 4, 2013 CSCI211 - Sprenkle 13

number of allocated classrooms	

Interval Partitioning: Greedy Analysis
•  Observation. Greedy algorithm never schedules

two incompatible lectures in the same classroom
•  Theorem. Greedy algorithm is optimal
•  Pf Intuition

Ø When do we add more classrooms?
Ø When would we add the d+1 classroom?

Feb 4, 2013 CSCI211 - Sprenkle 14

Interval Partitioning: Greedy Analysis
•  Observation. Greedy algorithm never schedules

two incompatible lectures in the same classroom
•  Theorem. Greedy algorithm is optimal
•  Pf.

Ø  Let d = number of classrooms that the greedy algorithm
allocates

Ø Classroom d is opened because we needed to schedule
a job, say j, that is incompatible with all d-1 other
classrooms

Ø Since we sorted by start time, all these incompatibilities
are caused by lectures that start no later than sj

Ø Thus, we have d lectures overlapping at time sj + ε
Ø  d is the depth of the set of lectures

Feb 4, 2013 CSCI211 - Sprenkle 15

SCHEDULING TO
MINIMIZE MAX LATENESS

Exchange argument

Feb 4, 2013 CSCI211 - Sprenkle 16

Scheduling to Minimizing Max Lateness
•  Single resource processes one job at a time
•  Job j requires tj units of processing time and is due at

time dj (its deadline)
•  If j starts at time sj, it finishes at time fj = sj + tj
•  Lateness: j = max { 0, fj - dj }
•  Goal: schedule all jobs to

minimize maximum lateness L = max j

Feb 4, 2013 CSCI211 - Sprenkle 17

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	

d5 = 14	
d2 = 8	
 d6 = 15	
 d1 = 6	
 d4 = 9	
d3 = 9	

lateness = 0	
lateness = 2	
dj	
 6	

tj	
 3	

1	

8	

2	

2	

9	

1	

3	

9	

4	

4	

14	

3	

5	

15	

2	

6	

lateness = 6	

Note: not a sum total	

Greedy Algorithms

•  Greedy template.
Consider jobs in some order.

• What do we want to optimize?
• What order?

Ø Intuition of order?
Ø Counter examples for order being optimal?

Feb 4, 2013 CSCI211 - Sprenkle 18

2/4/13	

4	

Minimizing Lateness: Greedy Algorithms

•  Greedy template. Consider jobs in some
order.
Ø Shortest processing time first. Consider jobs in

ascending order of processing time tj.

Ø Smallest slack. Consider jobs in ascending
order of slack dj - tj.

Feb 4, 2013 CSCI211 - Sprenkle 19

Counter example	

Counter example	

dj	

tj	

100	

1	

1	

10	

10	

2	

dj	

tj	

2	

1	

1	

10	

10	

2	

Minimizing Lateness: Greedy Algorithm

•  Earliest deadline first.

Feb 4, 2013 CSCI211 - Sprenkle 20

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	

d5 = 14	
d2 = 8	
 d6 = 15	
d1 = 6	
 d4 = 9	
d3 = 9	

Sort n jobs by deadline so that d1 ≤ d2 ≤ … ≤ dn	
t = 0	
for j = 1 to n	
 Assign job j to interval [t, t + tj]	
 sj = t	
 fj = t + tj	
 t = t + tj	
output intervals [sj, fj]	

What can we say about this algorithm/its results?	

Minimizing Lateness: No Idle Time

•  Observation. There exists an optimal
schedule with no idle time

•  Observation. The greedy schedule has no
idle time

Feb 4, 2013 CSCI211 - Sprenkle 21

0	
 1	
 2	
 3	
 4	
 5	
 6	

d = 4	
 d = 6	

7	
 8	
 9	
 10	
 11	

d = 12	

0	
 1	
 2	
 3	
 4	
 5	
 6	

d = 4	
 d = 6	

7	
 8	
 9	
 10	
 11	

d = 12	

Proving Optimality

•  Goal: Prove greedy algorithm produces
optimal solution

•  Approach: Exchange argument
Ø Start with an optimal schedule Opt
Ø Gradually modify Opt, preserving its optimality
Ø Transform into a schedule identical to greedy’s

schedule

Feb 4, 2013 22 CSCI211 - Sprenkle

Minimizing Lateness: Inversions

•  Def. An inversion in schedule S is a pair of
jobs i and j such that:
di < dj (i’s deadline is before j)
but j scheduled before i

Feb 4, 2013 CSCI211 - Sprenkle 23

i	
j	
before swap	

inversion	

Can Greedy’s solution have any inversions?	

Minimizing Lateness: Inversions

•  Def. An inversion in schedule S is a pair of
jobs i and j such that:
di < dj (i’s deadline is before j)
but j scheduled before i

Feb 4, 2013 CSCI211 - Sprenkle 24

i	
j	
before swap	

inversion	

Greedy’s schedule has no inversions! 	

2/4/13	

5	

Minimizing Lateness: Inversions
•  Claim. Swapping two adjacent, inverted jobs

reduces the number of inversions by one and
does not increase the max lateness

•  Pf Setup. Let be the lateness before the
swap, and let ’ be it afterwards

Feb 4, 2013 CSCI211 - Sprenkle 25

i	
j	

i	
 j	

before swap	

after swap	

f'j	

fi	

inversion	

By defn of inversion, di < dj 	

How do we know inversions are adjacent?	

What can we say about how ���
i’s, j’s, and other jobs’ lateness changes?	

Minimizing Lateness: Inversions
•  Claim. Swapping two adjacent jobs with the

same deadline does not increase the max
lateness

•  Pf. Let be the lateness before the swap,
and let ’ be it afterwards
Ø  Lateness remains the same for all other jobs:

•  'k = k for all k ≠ i, j
Ø Lateness of i before is i = fi - di = Ti-1 + ti + tj - di
Ø Lateness of j after is 'j =fj’ - dj = Ti-1 + ti + tj - dj

•  But di < dj

Feb 4, 2013 CSCI211 - Sprenkle 26

i	
j	

i	
 j	

before swap	

after swap	

f'j	

fi	

Put in terms of i

Minimizing Lateness: Inversions

•  Claim. Swapping two adjacent, inverted jobs
reduces the number of inversions by one and
does not increase the max lateness.

•  Pf. Let be the lateness before the swap,
and let ' be it afterwards
Ø 'k = k for all k ≠ i, j
Ø 'i ≤ i
Ø If job j is late:

Feb 4, 2013 CSCI211 - Sprenkle 27

€

" j = " f j − d j (definition)
= fi − d j (j finishes at time f i)
≤ fi − di (i < j)
≤ i (definition)

Greedy Exchange Proofs
1.  Label your algorithm’s solution and a general solution.

Ø  Example: let A = {a1, a2, ..., ak} be the solution generated by your algorithm,
and let O = {o1, o2, ..., om} be an optimal feasible solution.

2.  Compare greedy with other solution.
Ø  Assume that the arbitrary/optimal solution is not the same as

your greedy solution (since otherwise, you are done).
Ø  Typically, can isolate a simple example of this difference, such as:
①  There is an element e ∈ O that ∉ A and an element f ∈ A that ∉ O
②  2 consecutive elements in O are in a different order than in A

Ø  i.e., there is an inversion

3.  Exchange.
Ø  Swap the elements in question in O (either ➀ swap one element out and

another in or ➁ swap the order of the elements) and argue that solution is no
worse than before.

Ø  Argue that if you continue swapping, you eliminate all differences between O
and A in a finite # of steps without worsening the solution’s quality.

Ø  Thus, the greedy solution produced is just as good as any optimal solution, and
hence is optimal itself.

Feb 4, 2013 CSCI211 - Sprenkle 28

Minimizing Lateness:
Analysis of Greedy Algorithm
•  Theorem. Greedy schedule S is optimal
•  Pf idea. Convert Opt to Greedy

Ø Does opt schedule have idle time?
Ø What if opt schedule has no inversions?
Ø What if opt schedule has inversions?

Feb 4, 2013 CSCI211 - Sprenkle 29

Minimizing Lateness:
Analysis of Greedy Algorithm
•  Theorem. Greedy schedule S is optimal
•  Pf. Define S* to be an optimal schedule that

has the fewest number of inversions, and let's
see what happens
Ø Can assume S* has no idle time
Ø  If S* has no inversions, then S = S*
Ø  If S* has an inversion, let i-j be an adjacent inversion

•  Swapping i and j does not increase the maximum
lateness and strictly decreases the number of
inversions

•  This contradicts definition of S* ▪

Feb 4, 2013 CSCI211 - Sprenkle 30

2/4/13	

6	

Greedy Analysis Strategies
•  Greedy algorithm stays ahead. Show that

after each step of the greedy algorithm, its
solution is at least as good as any other
algorithm's.

•  Exchange argument. Gradually transform
any solution to the one found by the greedy
algorithm without hurting its quality.

•  Structural. Discover a simple "structural"
bound asserting that every possible solution
must have a certain value. Then show that
your algorithm always achieves this bound.

Feb 4, 2013 CSCI211 - Sprenkle 31

Assignments

•  Exam 1 – due Friday
Ø Open book, open notes, open lecture notes
Ø I mention explicitly to analyze your algorithms’

running times. I will not do that in the future.
• Wed: work period

Ø Ask me questions
Ø Office Hours: today: 1-3 p.m., Wed: 1-4:30 p.m.

•  By appointment

Feb 4, 2013 CSCI211 - Sprenkle 32

