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Objectives 

• Wrapping up implementing BFS and DFS 
•  Graph Application: Bipartite Graphs 
•  Directed Graphs 
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Review: Comparing BFS vs DFS 

• What do they do? 
•  How are their outcomes different? 
• What is the runtime of BFS?  DFS? 
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Implementing DFS 

•  Keep nodes to be processed in a stack 
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DFS(s):	
	Initialize S to be a stack with one element s	
	Explored[v] = false, for all v	
	Parent[v] = 0, for all v	
	DFS tree T = {}	
	while S != {}	
	 	Take a node u from S	
	 	if Explored[u] = false	
	 	 	Explored[u] = true	
	 	 	Add edge (u, Parent[u]) to T (if u ≠ s)	
	 	 	for each edge (u, v) incident to u	
	 	 	 	Add v to the stack S	
	 	 	 	Parent[v] = u	
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How many times is a node added/removed from the stack?	



O(n)	



DFS(s):	
	Initialize S to be a stack with one element s	
	Explored[v] = false, for all v	
	Parent[v] = 0, for all v	
	DFS tree T = {}	
	while S != {}	
	 	Take a node u from S	
	 	if Explored[u] = false	
	 	 	Explored[u] = true	
	 	 	Add edge (u, Parent[u]) to T (if u ≠ s)	
	 	 	for each edge (u, v) incident to u	
	 	 	 	Add v to the stack S	
	 	 	 	Parent[v] = u	

Analyzing DFS 
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deg(u)	



O(n+m)	
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O(n)	



A node is added/removed from the stack 2m = O(m) times	



Analyzing Finding  
All Connected Components 
•  How can we find set of all connected 

components of graph?  
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Running time: O(m+n)	
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R* = set of connected components (a set of sets)	
	
while there is a node that does not belong to R*	

		
	select s not in R*	

	
	R = {s}	

	
	while there is an edge (u,v) where u∈R and v∉R	
	 	add v to R	

	
	

	Add R to R*	

But the inner loop is O(m+n)!	


How can this RT be possible?	



Set of All Connected Components 

•  How can we find set of all connected 
components of graph?  
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Where i is the subscript of the 
connected component	



R* = set of connected components (a set of sets)	
	
while there is a node that does not belong to R*	

		
	select s not in R*	

	
	R = {s}	

	
	while there is an edge (u,v) where u∈R and v∉R	
	 	add v to R	

	
	

	Add R to R*	

Imprecision in the running time 
of inner loop:  O(m+n)	



But that’s m and n of the 
connected component, ���
let’s say mi and ni .	



Σi O(mi+ ni) = O(m+n)	
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BIPARTITE GRAPHS 
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Bipartite Graphs 

•  Def.  An undirected graph G = (V, E) is 
bipartite if the nodes can be colored red or 
blue such that every edge has one red and 
one blue end 
Ø Generally: vertices divided into sets X and Y 

•  Applications: 
Ø Stable marriage:  

•  men = red, women = blue 
Ø Scheduling:   

•  machines = red, jobs = blue 
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a bipartite graph	



Testing Bipartiteness 
•  Given a graph G, is it bipartite? 
•  Many graph problems become: 

Ø Easier if underlying graph is bipartite (e.g., matching) 
Ø Tractable if underlying graph is bipartite (e.g., 

independent set) 
•  Before designing an algorithm, need to understand 

structure of bipartite graphs 
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v1	
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v5	
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a bipartite 
graph G:	



another 
drawing of G:	



How Can We Determine if a Graph is 
Bipartite? 

•  Given a connected graph 
1.  Color one node red 

•  Doesn’t matter which color (Why?) 
Ø What should we do next? 

Jan 28, 2013 CSCI211 - Sprenkle 10 

Why connected?	



v1	



v2	

 v3	



v6	

 v5	

 v4	



v7	


•  How will we know when we’re finished?	


•  What does this process sound like?	



An Obstruction to Bipartiteness 

•  Lemma.  If a graph G is bipartite,  
it cannot contain an odd-length cycle. 
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bipartite ���
(2-colorable)	



not bipartite ���
(not 2-colorable)	



An Obstruction to Bipartiteness 

•  Lemma.  If a graph G is bipartite,  
it cannot contain an odd-length cycle. 

•  Pf.  Not possible to 2-color the odd cycle, let 
alone G. 
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bipartite ���
(2-colorable)	



not bipartite ���
(not 2-colorable)	



If find an odd cycle, 	


graph is NOT bipartite	
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How Can We Determine if a Graph is 
Bipartite? 
•  Given a connected graph 

Ø Color one node red 
•  Doesn’t matter which color (Why?) 

Ø What should we do next? 
•  How will we know that we’re finished? 
• What does this process sound like? 

Ø BFS: alternating colors, layers 
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L1	

 L2	

 L3	



How can we implement the algorithm?	



Review: BFS Implementation 
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BFS(s):	
	Discovered[v] = false, for all v	
	Discovered[s] = true	
	L[0] = {s}	
	layer counter i = 0	
	BFS tree T = {}	
	while L[i] != {}	
	 	L[i+1] = {}	
	 	For each node u ∈ L[i]	
	 	 	Consider each edge (u,v) incident to u	
	 	 	if Discovered[v] == false then	
	 	 	 	Discovered[v] = true	
	 	 	 	Add edge (u, v) to tree T	
	 	 	 	Add v to the list L[i + 1]	
	 	i+=1	

Implementing Algorithm 

•  Modify BFS to have a Color array 
• When add v to list L[i+1] 

Ø Color[v] = red if i+1 is even 
Ø Color[v] = blue if i+1 is odd 
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L1	

 L2	

 L3	



What is the running time of this algorithm?	

What is the running time of this algorithm? O(n+m)	



Marks a change in how we think about algorithms	


Starting to apply known algorithms to solve new problems	



Analyzing Algorithm’s Correctness 
•  Lemma.  Let G be a connected graph, and let 

L0, …, Lk be the layers produced by BFS 
starting at node s.   
Exactly one of the following holds: 
Ø (i) No edge of G joins two nodes of the same layer 

•  G is bipartite 
Ø (ii) An edge of G joins two nodes of the same layer 

•  G contains an odd-length cycle and hence is not 
bipartite 
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Case (i):	



L1	

 L2	

 L3	



Case (ii):	



L1	

 L2	

 L3	



Analyzing Algorithm’s Correctness 
•  Lemma.  Let G be a connected graph, and let 

L0, …, Lk be the layers produced by BFS 
starting at node s.  Exactly one of the following 
holds: 
Ø (i) No edge of G joins two nodes of the same layer 

•  G is bipartite 
•  Pf.  (i) 

Ø No edge joins two nodes in the same layer 
Ø  Implies all edges join nodes on adjacent level 
Ø Bipartition 

Ø red = nodes on odd levels 
Ø blue = nodes on even levels 

Jan 28, 2013 CSCI211 - Sprenkle 17 
L1	

 L2	

 L3	



Analyzing Algorithm’s Correctness 
•  Lemma.  Let G be a connected graph, and let  

L0, …, Lk be the layers produced by BFS starting at 
node s.  Exactly one of the following holds: 
Ø  (ii)  An edge of G joins two nodes of the same layer à   

G contains an odd-length cycle and hence is not bipartite 
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z = lca(x, y)	



•  Pf.  (ii) 
Ø Suppose (x, y) is an edge with x, y in same 

level Lj. 
Ø  Let z = lca(x, y) = lowest common ancestor 
Ø  Let Li be level containing z 
Ø Consider cycle that takes edge from x to y, 

then path y àz, then path from z à x 



1/28/13	



4	



Analyzing Algorithm’s Correctness 
•  Lemma.  Let G be a connected graph, and let  

L0, …, Lk be the layers produced by BFS starting at 
node s.  Exactly one of the following holds: 
Ø  (ii)  An edge of G joins two nodes of the same layer à   

G contains an odd-length cycle and hence is not bipartite 
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•  Pf.  (ii) 
Ø  Suppose (x, y) is an edge with x, y in same 

level Lj. 
Ø  Let z = lca(x, y)=lowest common ancestor 
Ø  Let Li be level containing z 
Ø  Consider cycle that takes edge from x to y, 

then path y à z, then path z à x 
Ø  Its length is  1  +   (j-i)  +  (j-i),  which is odd 

(x, y)	

 path from���
y to z	



path from���
z to x	



z = lca(x, y)	



An Obstruction to Bipartiteness 

•  Corollary.  A graph G is bipartite  
iff it contains no odd length cycle. 
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5-cycle C	



bipartite ���
(2-colorable)	



not bipartite ���
(not 2-colorable)	



DIRECTED GRAPHS 
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Directed Graphs G = (V, E) 

•  Edge (u, v) goes from node u to node v 

•  Example: Web graph - hyperlink points from 
one web page to another 
Ø Directedness of graph is crucial 
Ø Modern web search engines exploit hyperlink 

structure to rank web pages by importance 
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Representing Directed Graphs 

•  For each node, keep track of 
Ø Out edges (where links go) 
Ø In edges (from where links come in) 

•  Could only store out edges 
Ø Figure out in edges with increased computation/

time 
Ø Useful to have both in and out edges 
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Rock Paper Scissors Lizard Spock 
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CONNECTIVITY IN 
DIRECTED GRAPHS 
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Graph Search 

•  How does reachability change with  
directed graphs? 

 
•  Example: Web crawler   

1.  Start from web page s. 
2.  Find all web pages linked from s, either directly 

or indirectly. 
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Graph Search 

•  Directed reachability.  Given a node s, find all 
nodes reachable from s. 

•  Directed s-t shortest path problem.  Given 
two nodes s and t, what is the length of the 
shortest path between s and t? 
Ø Not necessarily the same as tàs shortest path 

•  Graph search.  BFS and DFS extend 
naturally to directed graphs 
Ø Trace through out edges 
Ø Run in O(m+n) time 
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Problem 

•  Find all nodes with paths to s 
Ø Rather than paths from s to other nodes 
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Problem/Solution 

•  Problem. Find all nodes with paths to s 
•  Solution.  Run BFS on in edges instead of 

out edges 
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Strong Connectivity 

•  Def.  Node u and v are mutually reachable 
if there is a path from u à v and also a path 
from v à u 

•  Def.  A graph is strongly connected if every 
pair of nodes is mutually reachable 

•  Lemma.  Let s be any node.  G is strongly 
connected iff every node is reachable from s 
and s is reachable from every node 
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s	



v	



u	



(not necessarily a direct edge)	
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Strong Connectivity 

•  If u and v are mutually reachable and v and 
w are mutually reachable, then u and w are 
mutually reachable 
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Strong Connectivity 
•  If u and v are mutually reachable and v and 

w are mutually reachable, then u and w are 
mutually reachable. 

•  Proof.  We need to show that there is a path 
from u à w and from w à u. 
Ø By defn of mutually reachable 

•  There is a path u à v & a path v à u 
•  There is a path v à w,  and a path w à v 

Ø Take path uàv and then from v à w 
•  Path from uàw 

Ø Similarly for wàu 
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Strong Connectivity 

•  Def.  A graph is strongly connected if every 
pair of nodes is mutually reachable 

•  Lemma.  Let s be any node.  G is strongly 
connected iff every node is reachable from s 
and s is reachable from every node. 
Ø 1st prove ⇒ 
Ø 2nd prove ⇐ 

•  for any nodes u and v, is there a path uàv and 
vàu ? 
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Strong Connectivity 
•  Def.  A graph is strongly connected if every pair 

of nodes is mutually reachable 
•  Lemma.  Let s be any node.  G is strongly 

connected iff every node is reachable from s, 
and s is reachable from every node. 

•  Pf.  ⇒ Follows from definition of strongly 
connected 

•  Pf.  ⇐ For any nodes u and v, make path uàv 
and vàu  
Ø   uàv : concatenating uàs with sàv 
Ø   v àu: concatenate vàs with sàu 
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s	
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u	



Strong Connectivity Problem 

•  Determine if G is strongly connected in        
O(m + n) time 
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strongly connected	

 not strongly connected	



Hint: Can we leverage any algorithms ���
we know have O(m+n) time?	



Strong Connectivity: Algorithm 
•  Theorem.  Can determine if G is strongly 

connected in O(m + n) time. 
•  Pf. 

Ø Pick any node s 
Ø Run BFS from s in G 
Ø Run BFS from s in Grev 
Ø Return true iff all nodes reached in both BFS 

executions 
Ø Correctness follows immediately from previous 

lemma 
•  All reachable from one node, s is reached by all 
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reverse orientation of every edge in G	


Or, the BFS using the in edges	
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Strong Components 

•  For any two nodes s and t in a directed 
graph, their strong components are either 
identical or disjoint 
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Hint: Consider a node in common…	



Strong Components 
•  For any two nodes s and t in a directed graph, 

their strong components are either identical or 
disjoint 

•  Proof. 
Ø Consider v in both strong components 

•  sà v; v à s; vàt; tàv è  tàs, sàt (mutually 
reachable) 

•  As soon as there is one common node, then have 
identical strong components 

Ø On the other hand, consider s and t are not mutually 
reachable 
•  No node v that is in the strong component of each 

Ø  What would it mean if there were? 
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Looking Ahead 

•  Summaries of readings associated with last 
week’s lectures are due Tuesday night 

•  Problem Set 3 due Friday by class 
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