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Objectives 

•  Dynamic Programming 
Ø Segmented Least Squares 
Ø Subset Sums problem 
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Review: Weighted Interval Scheduling 

•  Jobs have start time, end time, value/weight 
Ø Goal: schedule compatible jobs with maximum 

weight 
• What was the key insight to solving the 

weighted interval scheduling problem? 

•  How do we pick the solution? 
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Binary decision:	

 - Optimal solution for jobs i through j includes j or doesn’t	


Choose the larger value of ���
 - [choose j and the best solution of compatible jobs] OR ���

	
[best solution if don’t pick j] 	


Then what did we do?	


Review 

• What is the process for applying dynamic 
programming to a problem? 
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Dynamic Programming Process 

•  Determine optimal substructure of problem 
Ø  Define the recurrence relation 

•  Define algorithm to find the value of optimal 
solution 

•  Optionally, change algorithm to an iterative 
rather than recursive solution 

•  Define algorithm to find optimal solution 
•  Analyze running time of algorithms 
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SEGMENTED LEAST SQUARES 
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Least Squares 

•  Foundational problem in statistic and 
numerical analysis 

•  Given n points in the plane: (x1, y1), 
 (x2, y2) , . . . , (xn, yn) 

•  Find a line y = ax + b that minimizes the sum 
of the squared error 
Ø “line of best fit” 
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Least Squares 
•  Foundational problem in statistic and numerical 

analysis 
•  Given n points in the plane: (x1, y1), (x2, y2) , . . . , (xn, yn) 
•  Find a line y = ax + b that minimizes the sum of the 

squared error 
Ø  “line of best fit” 

 
•  Closed form solution.  Calculus  ⇒  min error is 

achieved when 
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Least Squares 

• What happens to the error if we try to fit one 
line to these points? 

 
• What pattern does it seem like these points 

have? 
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Least Squares 

• What happens to the error if we try to fit one 
line to these points? 
Ø Large error 

•  Pattern: More like 3 lines 
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Segmented Least Squares 
•  Points lie roughly on a sequence of line segments 
•  Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, 

yn) with x1 < x2 < ... < xn, find a sequence of line 
segments that minimizes f(x) 

Mar 16, 2012 CSCI211 - Sprenkle 10 
x	


y	


If I want the best fit, how many lines should I use?	


Segmented Least Squares 
•  Points lie roughly on a sequence of line segments 
•  Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) 

with x1 < x2 < ... < xn, find a sequence of line segments 
that minimizes f(x) 
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What's a reasonable choice for f(x) to 
balance accuracy and parsimony?	


Segmented Least Squares 
•  Points lie roughly on a sequence of several line segments. 
•  Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with 

x1 < x2 < ... < xn, find a sequence of line segments that 
minimizes: 
Ø  E: sum of the sums of the squared errors in each segment 
Ø  L: the number of lines 

•  Tradeoff function:  E + c L, for some constant c > 0. 
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How should we define 
an optimal solution?	
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Segmented Least Squares 

• What made it seem like the points were in 3 
lines?  What happened? 
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Segmented Least Squares 
• What made it seem like the points were in 3 

lines?  What happened? 

•  Error increased 
•  Looking for change in linear approximation 

Ø Where to partition points into line segments 
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Recall:  
Properties of Problems for DP 
•  Polynomial number of subproblems 
•  Solution to original problem can be easily 

computed from solutions to subproblems 
•  Natural ordering of subproblems, easy to 

compute recurrence 
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We need to:	

• Figure out how to break the problem into subproblems	

• Figure out how to compute solution from subproblems	

• Define the recurrence relation between the problems	


Toward a Solution 

•  Consider just the first or last point 
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What do we know about those points?  
their segments?  cost of a segment?	


Toward a Solution 

•  pn can only belong to one segment 
Ø Segment: pi, …, pn 

Ø Cost: c (cost for segment) + error of segment 
• What is the remaining problem? 
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Toward a Solution 

•  pn can only belong to one segment 
Ø Segment: pi, …, pn 

Ø Cost: c (cost for segment) + error of segment 
• What is the remaining problem? 

Ø Solve for p1, …, pi-1 
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Next:  Formulate as a recurrence	
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Dynamic Programming: Multiway Choice 

•  Notation. 
Ø OPT(j) = minimum cost for points p1, pi+1 , … , pj. 
Ø e(i, j)  = minimum sum of squares for points      

pi, pi+1 , …, pj. 

•  How do we compute OPT(j)? 
Ø Last problem: binary decision (include job or not) 
Ø This time: multiway decision 

•  Which option do we choose? 
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Dynamic Programming: Multiway Choice 

•  Notation. 
Ø OPT(j) = minimum cost for points p1, pi+1 , … , pj. 
Ø e(i, j)  = minimum sum of squares for points      

pi, pi+1 , …, pj. 
•  To compute OPT(j): 

Ø Last segment contains points pi, pi+1, … , pj for 
some i 

Ø Cost = e(i, j) + c + OPT(i-1). 
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Segmented Least Squares: Algorithm 
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INPUT: n, p1,…,pN , c	
	
Segmented-Least-Squares()	
   M[0] = 0	
   e[0][0] = 0  # needed?	
   for j = 1 to n	
      for i = 1 to j	
         e[i][j] = least square error for the	

	 	 	  segment pi, …, pj	
	
   for j = 1 to n	
      M[j] = min 1 ≤ i ≤ j (e[i][j] + c + M[i-1])	
	
   return M[n]	

Costs?	


Segmented Least Squares: 
 Algorithm Analysis 

•  Bottleneck: computing e(i, j) for O(n2) pairs, 
O(n) per pair using previous formula 
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can be improved to O(n2) by pre-computing various statistics	


INPUT: n, p1,…,pN , c	
	
Segmented-Least-Squares()	
   M[0] = 0	
   e[0][0] = 0	
   for j = 1 to n	
      for i = 1 to j	
         e[i][j] = least square error for the  
         	 	segment pi,…, pj	
	
   for j = 1 to n	
      M[j] = min 1 ≤ i ≤ j (e[i][j] + c + M[i-1])	
	
   return M[n]	

O(n3)	


can be improved to O(n2) by 
pre-computing various statistics	


O(n2)	


How do we find the solution?	


Post-Processing: Finding the Solution 
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FindSegments(j):	
	if j = 0:	
	 	output nothing	
	else:	
	 	Find an i that minimizes ei,j + c + M[i-1]	
	 	Output the segment {pi, …, pj}	
	 	FindSegments(i-1)  	

Cost?	
 O(n2)	


Dynamic Programming Process 

•  Determine optimal substructure of problem 
Ø  Define the recurrence relation 

•  Define algorithm to find the value of optimal 
solution 

•  Optionally, change algorithm to an iterative 
rather than recursive solution 

•  Define algorithm to find optimal solution 
•  Analyze running time of algorithms 
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SUBSET SUMS and 
KNAPSACKS 
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The Price is Right 

•  Goal: Spend as much money as possible 
without going over $100 
Ø CD $18 
Ø Jeans $40 
Ø DVD $35 
Ø Dinner $15 
Ø Book $8 
Ø Ice cream $5 
Ø Shoes $62 
Ø Pizza $7  
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Or, shopping with someone else’s money	


Possible solutions?	


Knapsack Problem 

•  Given n objects and a "knapsack" 
•  Item i weighs wi  > 0 kilograms and  

has value vi > 0 
Ø Alternative: jobs require wi  time 

•  Knapsack has capacity of W kilograms 
Ø Alternative: W is time interval that resource is 

available 

•  Greedy:  repeatedly add item with maximum 
ratio vi / wi. 

•  Ex:  { 5, 2, 1 } achieves only value = 35  ⇒  
greedy not optimal. 
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W = 11 Goal: fill knapsack so as to 

maximize total value	


Towards a Recurrence… 

• What do we know about the knapsack with 
respect to item i? 
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Towards a Recurrence… 

• What do we know about the knapsack with 
respect to item i? 
Ø Either select item i or not 
Ø If don’t select 

•  Pick optimum solution of remaining items 
Ø Otherwise 

•  What happens? 
•  How does problem change? 
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Dynamic Programming: False Start 

•  Def.  OPT(i) = max profit subset of items 1, 
…, i 
Ø Case 1: OPT does not select item i 

•  OPT selects best of { 1, 2, …, i-1 }  
Ø Case 2:  OPT selects item i 

•  Accepting item i does not immediately imply that 
we will have to reject other items 
Ø No known conflicts 

•  Without knowing what other items were selected 
before i, we don't even know if we have enough 
room for i 
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➡ Need more sub-problems!	




3/16/12	


6	


Looking Ahead 

•  Exam 2 due next Friday 
Ø Wednesday work period 

•  No wiki for next week 
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