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Objectives 

•  Dynamic Programming 
 Improving Shortest Path 

•  Network Flow 
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Shortest Paths 

•  Problem: Given a directed graph G = (V, E), 
with edge weights cvw, find shortest path from 
node s to node t 

•  Allows modeling other phenomena 
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allow negative weights	



Shortest Paths: Failed Attempts 

•  Dijkstra. Can fail if negative edge costs 

•  Re-weighting. Adding a constant to every 
edge weight can fail 
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Shortest Paths: Negative Cost Cycles 

•  If some path from s to t contains a negative 
cost cycle, there does not exist a shortest s-t 
path 

•  Otherwise, there exists one that is simple 
(i.e., does not repeat nodes) 
 Path has at most n-1 edges, where n is # of 

nodes in graph 
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Towards a Recurrence 

•  OPT(i,v): minimum cost of a v-t path P using 
at most i edges 
 This formulation eases later discussion 

•  Original problem is OPT(n-1, s) 
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Costs on all edges	



Break down into subproblems based on i and v	
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Shortest Paths: Dynamic Programming 

•  OPT(i, v) = minimum cost of a v-t path P 
using at most i edges 
 Case 1: P uses at most i-1 edges 

•  OPT(i, v) = OPT(i-1, v) 
 Case 2: P uses exactly i edges 

•  if (v, w) is first edge, then OPT uses (v, w), and 
then selects best w-t path using at most i-1 edges 

•  Cost: cost of chosen edge 
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Shortest Paths: Analysis 
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Shortest-Path(G, t) 	
   n = number of nodes in G	
   foreach node v ∈ V	
      M[0, v] = ∞    # infinite cost to reach all nodes	
   M[0, t] = 0    # no cost to reach destination from dest	
	
   for i = 1 to n-1	
      foreach node v ∈ V	
         M[i, v] = M[i-1, v]  # at most cost of 1 less	
         foreach edge (v, w) ∈ E	
             M[i, v] = min(M[i, v], M[i-1, w] + cvw )	

Time: O(n3), Θ(mn)  
Space: Θ(n2) 

O(n)	



O(m)	



Example 
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0 1 2 3 4 5 
t 0 0 0 0 0 0 
a ∞ 
b ∞ 
c ∞ 
d ∞ 
e ∞ 

Number of edges in path	



Review: trying to get to t	


Looking towards improved implementation, ���
how to find the solution, not just the value of the solution	



Example 
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0 1 2 3 4 5 
t 0 0 0 0 0 0 
a ∞ 
b ∞ 
c ∞ 
d ∞ 
e ∞ 

What edges do we need to look at for each node?	



Number of edges in path	

 Example 
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Number of edges in path	



0 1 2 3 4 5 
t 0 0 0 0 0 0 
a ∞ 
b ∞ 
c ∞ 
d ∞ 
e ∞ 

Edges	



b, t	



d, e	



b, t	



a, t	



c, t	



Example 
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0 1 2 3 4 5 
t 0 0 0 0 0 0 
a ∞ -3 
b ∞ ∞ 
c ∞ 3 
d ∞ 4 
e ∞ 2 

Edges	



b, t	



d, e	



b, t	



a, t	



c, t	



Number of edges in path	

 Example 
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0 1 2 3 4 5 
t 0 0 0 0 0 0 
a ∞ -3 -3 
b ∞ ∞ 0 
c ∞ 3 3 
d ∞ 4 3 
e ∞ 2 0 

Edges	



b, t	



d, e	



b, t	



a, t	



c, t	



Number of edges in path	
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Example 
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0 1 2 3 4 5 
t 0 0 0 0 0 0 
a ∞ -3 -3 -4 
b ∞ ∞ 0 -2 
c ∞ 3 3 3 
d ∞ 4 3 3 
e ∞ 2 0 0 

Edges	



b, t	



d, e	



b, t	



a, t	



c, t	



Number of edges in path	

 Example 
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0 1 2 3 4 5 
t 0 0 0 0 0 0 
a ∞ -3 -3 -4 -6 
b ∞ ∞ 0 -2 -2 
c ∞ 3 3 3 3 
d ∞ 4 3 3 2 
e ∞ 2 0 0 0 

Edges	



b, t	



d, e	



b, t	



a, t	



c, t	



Number of edges in path	



Example 
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0 1 2 3 4 5 
t 0 0 0 0 0 0 
a ∞ -3 -3 -4 -6 -6 
b ∞ ∞ 0 -2 -2 -2 
c ∞ 3 3 3 3 3 
d ∞ 4 3 3 2 0 
e ∞ 2 0 0 0 0 

Edges	



b, t	



d, e	



b, t	



a, t	



c, t	



Number of edges in path	

 Shortest Paths: Implementation 

•  Shortest path length is M[n-1, s] 

•  Analysis.  Θ(mn) time, Θ(n2) space. 

•  Finding the shortest paths.  Maintain a 
"successor" for each table entry. 
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Shortest-Path(G, t) 	
   n = number of nodes in G	
   foreach node v ∈ V	
      M[0, v] = ∞    # infinite cost to reach all nodes	
   M[0, t] = 0    # no cost to reach destination from dest	
	
   for i = 1 to n-1	
      foreach node v ∈ V	
         M[i, v] = M[i-1, v]  # at most cost of 1 less	
         foreach edge (v, w) ∈ E	
             M[i, v] = min(M[i, v], M[i-1, w] + cvw )	

Discussion 

•  How can we find the shortest path? 
 What information do we need? 

•  Based on experience from example, what 
could we do to improve the algorithm’s 
runtime and space requirements? 
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Shortest Paths: Practical Improvements 

•  To find the shortest paths, maintain a 
successor for each node 

•  Practical improvements 
 Maintain only one array M[v] = shortest v-t path 

length that we have found so far 
 No need to check edges of the form (v, w) 

unless M[w] changed in previous iteration 
•  Theorem. Throughout algorithm, M[v] is 

length of some v-t path.   
 After i rounds of updates, the value M[v] is no 

larger than the length of shortest v-t path using ≤ 
i edges 
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Bellman-Ford: Efficient Implementation 

Mar 28, 2011 CSCI211 - Sprenkle 19 

Push-Based-Shortest-Path(G, s, t) 	
   foreach node v ∈ V 	
      M[v] = ∞	
      successor[v] = φ 	
	
   M[t] = 0	
   for i = 1 to n-1 	
      foreach node w ∈ V 	
         if M[w] has been updated in previous iteration 	
            foreach node v such that (v, w) ∈ E 	
               if M[v] > M[w] + cvw	
                  M[v] = M[w] + cvw 	
                  successor[v] = w	
            	
       if no M[w] value changed in iteration i, stop.	

Analysis of running time, space?	



Bellman-Ford: Efficient Implementation 
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Push-Based-Shortest-Path(G, s, t) 	
   foreach node v ∈ V 	
      M[v] = ∞	
      successor[v] = φ 	
	
   M[t] = 0	
   for i = 1 to n-1 	
      foreach node w ∈ V 	
         if M[w] has been updated in previous iteration 	
            foreach node v such that (v, w) ∈ E 	
               if M[v] > M[w] + cvw	
                  M[v] = M[w] + cvw 	
                  successor[v] = w	
            	
       if no M[w] value changed in iteration i, stop.	

Space: O(m + n)	


Running time: O(mn) worst case but substantially faster in practice	



Bellman-Ford: Efficient Implementation 
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Push-Based-Shortest-Path(G, s, t) 	
   foreach node v ∈ V 	
      M[v] = ∞	
      successor[v] = φ 	
	
   M[t] = 0	
   for i = 1 to n-1 	
      foreach node w ∈ V 	
         if M[w] has been updated in previous iteration 	
            foreach node v such that (v, w) ∈ E 	
               if M[v] > M[w] + cvw	
                  M[v] = M[w] + cvw 	
                  successor[v] = w	
            	
       if no M[w] value changed in iteration i, stop.	

How do we get the solution if only have O(m+n) space?	



DISTANCE VECTOR 
PROTOCOL 
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Application of Shortest-Path Problem 

•  Routers in communication network need to 
find most efficient path to destination 

•  Model of communication network 
 Nodes ≈ routers 
 Edge ≈ direct communication link 
 Cost of edge ≈ delay on link 

•  Possible solution: Dijkstra’s algorithm 
 Why? 
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Distance Vector Protocol 
•  Model of communication network 

 Nodes ≈ routers 
 Edge ≈ direct communication link 
 Cost of edge ≈ delay on link 

•  However, Dijkstra's algorithm requires global 
information of network 
 Create whole paths from node 

•  Better: use only local information 
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Naturally non-negative	





3/28/11	



5	



Distance Vector Protocol 
•  Model of communication network 

 Nodes ≈ routers 
 Edge ≈ direct communication link 
 Cost of edge ≈ delay on link 

•  Bellman-Ford uses only local knowledge of 
neighboring nodes 
 Distribute algorithm: each node v maintains its 

value M[v] 
 Updates its value after getting neighbor’s values: 

•  minw∈V (cvw + M[w]) 
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Naturally non-negative	



Distance Vector Protocol 
•  Each router maintains vector  

•  Algorithm: each router performs n computations,  
1 for each potential destination node 
 Periodically gets updates from neighbors 

•  Synchronization issues 
 Routers don’t run in lockstep 
 Order foreach loop executes is not important 
 Algorithm still converges even if updates are 

asynchronous 
•  "Routing by rumor” 

 Reliance on neighbors 
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Node Shortest Path Length First Hop (direction) 
… … … 

Issues with Distance Vector Protocol 
•  Original algorithm developed for one central 

machine 
 Costs known in advance, didn’t change 

•  Edge costs may change during algorithm (or 
fail completely) 
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Path Vector Protocols 

•  Link state routing 
 Each router stores entire path 

•  Not just the distance and the first hop 
 Based on Dijkstra's algorithm 
 Avoids "counting-to-infinity" problem and related 

difficulties 
 Tradeoff: requires significantly more storage 

•  Ex. Border Gateway Protocol (BGP), Open 
Shortest Path First (OSPF) 
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Milestone: Page 300 in book	



Next Week 

• Wiki - Wednesday 
 Finish reading Chapter 6: 6.4-6.8 

•  Problem Set 8 due Friday 
 Implementing pretty printing 
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