
1/9/13

1

CSCI211: Intro Objectives

•  Introduction to Algorithms, Analysis
•  Course summary
•  Reviewing proof techniques

Jan 7, 2013 Sprenkle – CSCI211 1 Jan 7, 2013 Sprenkle – CSCI211 2

My Bio
•  From Dallastown, PA
•  B.S., Gettysburg College
•  M.S., Duke University
•  Ph.D., University of Delaware
•  For fun: pop culture, ultimate,

gardening
•  Volunteer at Rockbridge SPCA

What This Course Is About

Jan 7, 2013 Sprenkle – CSCI211 3

From
30 Rock

For me, great algorithms are the poetry of computation.
Just like verse, they can be terse, allusive, dense, and ���
even mysterious. But once unlocked, they cast a ���
brilliant new light on some aspect of computing. 	

 -- Francis Sullivan

Now, everything comes down to expert knowledge of
algorithms and data structures.	

If you don't speak fluent O-notation, you may have
trouble getting your next job at the technology
companies in the forefront.	

 -- Larry Freeman

Jan 7, 2013 Sprenkle – CSCI211 4

Motivation

•  From a Google interview preparation email

Jan 7, 2013 Sprenkle – CSCI211 5

Get your algorithms straight (they may comprise up to a third ���
of your interview). 	

Visit: http://en.wikipedia.org/wiki/List_of_algorithm_general_topics 	

and examine this list of algorithms: ���
 http://en.wikipedia.org/wiki/List_of_algorithms	

and data structures: http://en.wikipedia.org/wiki/List_of_data_structures 	

Write out all the algorithms yourself from start to finish and���
make sure they're working.	

What is an Algorithm?

Jan 7, 2013 Sprenkle – CSCI211 6

• Precise procedure to solve a problem	

• Completes in a finite number of steps	

1/9/13

2

Questions to Consider

• What are our goals when designing
algorithms?

•  How do we know when we’ve met our goals?

Jan 7, 2013 Sprenkle – CSCI211 7

•  Goals: Correctness, Efficiency	

•  Use analysis to show/prove	

Course Goals

•  Learn how to formulate precise problem
descriptions

•  Learn specific algorithm design techniques
and how to apply them

•  Learn how to analyze algorithms for
efficiency and for correctness

•  Learn when no exact, efficient solution is
possible

Jan 7, 2013 Sprenkle – CSCI211 8

Course Content

•  Algorithm analysis
Ø Formal – proofs; Asymptotic bounds

•  Advanced data structures
Ø e.g., heaps, graphs

•  Greedy Algorithms
•  Dynamic Programming
•  Divide and Conquer
•  Network Flow
•  Computational Intractability

Jan 7, 2013 Sprenkle – CSCI211 9

Course Notes
•  Textbook: Algorithm Design

Ø Optional: CLRS
•  Participation is encouraged

Ø Individual, group, class
•  Assignments:

Ø Reading text, writing brief summaries
•  Readings through Friday due following Tuesday

Ø Solutions to problems
Ø Analysis of solutions
Ø Programming (little)

Jan 7, 2013 Sprenkle – CSCI211 10

Given on Friday, ���
due next Friday	

Course Grading

•  40% Individual written and programming
homework assignments

•  30% Two midterm exams
•  20% Final
•  5% Text book reading summaries, weekly

Ø In a journal on wiki
•  5% Participation and attendance

Jan 7, 2013 Sprenkle – CSCI211 11

Journal Content
•  Brief summary of chapter/section

Ø  ~1 paragraph of about 5-10 sentences/section; feel free to
write more if that will help you

•  Include motivations for the given problem, as appropriate
•  For algorithms, brief sketch of algorithm, intuition, and

implementation
Ø  Include runtime

•  Questions you have about motivation/solution/proofs/
analysis

•  Discuss anything that makes more sense after reading it
again, after it was presented in class (or vice versa)

•  Anything that you want to remember, anything that will
help you

•  Say something about how readable/interesting the section
was on scale of 1 to 10

Jan 7, 2013 Sprenkle – CSCI211 12

1/9/13

3

ALGORITHMS

Jan 7, 2013 Sprenkle – CSCI211 13

Computational Problem Solving 101

•  Computational Problem
Ø A problem that can be solved by logic

•  To solve the problem:
1.  Create a model of the problem
2.  Design an algorithm for solving the problem

using the model
3.  Write a program that implements the algorithm

Jan 7, 2013 Sprenkle – CSCI211 14

Computational Problem Solving 101

•  Algorithm: a well-defined recipe for solving a
problem
Ø Has a finite number of steps
Ø Completes in a finite amount of time

•  Program
Ø An algorithm written in a programming language
Ø Important to consider implementation’s effect on

runtime

Jan 7, 2013 Sprenkle – CSCI211 15

PROOFS

Jan 7, 2013 Sprenkle – CSCI211 16

Why Proofs?

• What are insufficient alternatives?

•  How can we prove something isn’t true?

Jan 7, 2013 Sprenkle – CSCI211 17

Why Proofs?

• What are insufficient alternatives?
Ø Examples

•  Considered all possible?
Ø Empirical/statistical evidence

•  Ex: “Lying” with statistics

•  How can we prove something isn’t true?
Ø One counterexample

Jan 7, 2013 Sprenkle – CSCI211 18

Need irrefutable proof that something is
true—for all possibilities	

1/9/13

4

Soap Opera Proofs

•  “It’s the only thing that makes sense.”

Jan 7, 2013 Sprenkle – CSCI211 19

Analyzing Statistics

Hospital A
•  cured a greater % of its

male patients last year
than Hospital B

•  cured a greater % of its
female patients last year
than Hospital B

Hospital B
•  cured a greater % of its

patients last year than
Hospital A

Jan 7, 2013 Sprenkle – CSCI211 20

Two hospitals (A and B) each claim to be better ���
at treating a certain disease than the other.	

Given that none of the #s involved are zero, is it possible that
both hospitals have their calculations correct?	

If so, which hospital would you rather be treated by?	

From Joel Feinstein���
University of Nottingham	

“Why do we do proofs”	

Example

Hospital Male
Patients % Female

Patients % Total
Patients %

A 50/100 50% 1/1 100% 51/101 50.5%
B 24/50 48% 49/50 98% 73/100 73%

Jan 7, 2013 Sprenkle – CSCI211 21

Well-known phenomenon: Simpson’s Paradox	

From Joel Feinstein���
University of Nottingham	

“Why do we do proofs”	
 Common Types of Proofs?

Jan 7, 2013 Sprenkle – CSCI211 22

Common Types of Proofs

•  Direct proofs
Ø Series of true statements, each implies the next

•  Proof by contradiction
•  Proof by induction

Jan 7, 2013 Sprenkle – CSCI211 23

Proof By Contradiction

Jan 7, 2013 Sprenkle – CSCI211 24

What are the steps to a 	

proof by contradiction?	

1/9/13

5

Proof By Contradiction

1. Assume the proposition (P) we want to
prove is false

2. Reason to a contradiction
3. Conclude that P must therefore be true

Jan 7, 2013 Sprenkle – CSCI211 25

Prove: There are Infinitely Many Primes

• What is our first step (proof by
contradiction)?

• What do we want to show?

Jan 7, 2013 Sprenkle – CSCI211 26

• What is a prime number?	

• What is not-a-prime number?	

Prove: There are Infinitely Many Primes

•  Assume there are a finite number of prime
numbers
Ø List them: p1, p2 ..., pn

•  Consider the number q = p1p2... pn + 1

Jan 7, 2013 Sprenkle – CSCI211 27

What are the possibilities for q?	

q is either composite or prime	

Prove: There are Infinitely Many Primes

•  Assume there are a finite number of prime
numbers
Ø List them: p1, p2 ..., pn

•  Consider the number q = p1p2... pn + 1
•  Case: q is composite

Ø If we divide q by any of the primes, we get a
remainder of 1 à q is not composite

Jan 7, 2013 Sprenkle – CSCI211 28

Prove: There are Infinitely Many Primes

•  Assume there are a finite number of prime
numbers
Ø List them: p1, p2 ..., pn

•  Consider the number q = p1p2... pn + 1
•  Case: q is composite

Ø If we divide q by any of the primes, we get a
remainder of 1 à q is not composite

•  Therefore, q is prime, but q is larger than any
of the finitely enumerated prime numbers
listed à Contradiction

Jan 7, 2013 Sprenkle – CSCI211 29
Proof thanks

to Euclid	

Proof By Induction

Jan 7, 2013 Sprenkle – CSCI211 30

What are the steps to a 	

proof by induction?	

1/9/13

6

Proof By Induction

1. What you want to prove
2. Base case

Ø Typical: Show statement holds for n = 0 or n = 1
3.  Induction hypothesis
4.  Induction step: show that adding one to n

also holds true
Ø Relies on earlier assumptions

Jan 7, 2013 Sprenkle – CSCI211 31

When/why is induction useful?	

Show true for all (infinite) possibilities	

Show works for “one more”	

Proof By Induction
1.  State your P(n).

Ø  P(n) is a property as a function of n
•  State for which n you will prove your P(n) to be true

2.  State your base case.
Ø  State for which n your base case is true, and prove it

•  Use the smallest n for which your statement is true
3.  State your induction hypothesis

Ø  Without an induction hypothesis, the proof falls apart.
Ø  Usually it is just restating your P(n), with no restriction on n (an arbitrary n)

4.  Inductive Step.
Ø  Consider P(n + 1).

•  Try to prove a larger case of the problem than you assumed in your induction
hypothesis.

Ø  Keep in mind: What are you trying to prove?
Ø  Use your induction hypothesis, and clearly state where it is used.

If you haven’t used your induction hypothesis, then you are not doing a
proof by induction.

5.  Conclusion.
Ø  Optionally, restate the problem.

Jan 7, 2013 Sprenkle – CSCI211 32

Example of Induction Proof

Jan 7, 2013 Sprenkle – CSCI211 33

Prove:
 2+4+6+8+… + 2n = n*(n+1)

For what values of n do we want to prove this is true?	

A: where n is a natural number	

Example of Induction Proof

•  Base case: n = 1 à
Ø 2*1 = 1*(1+1) ✔

Jan 7, 2013 Sprenkle – CSCI211 34

Prove: 2+4+6+8+… + 2n = n*(n+1)
(where n is a natural number)	

Example of Induction Proof

•  Base case: n = 1 à
Ø 2*1 = 1*(1+1) ✔

•  Induction Hypothesis:
Ø Assume statement is true for some arbitrary

k > 1

Jan 7, 2013 Sprenkle – CSCI211 35

Prove: 2+4+6+8+… + 2n = n*(n+1)
(where n is a natural number)	

Example of Induction Proof

•  Base case: n = 1 à
Ø 2*1 = 1*(1+1) ✔

•  Induction Hypothesis:
Ø Assume statement is true for some arbitrary

k > 1
•  Prove holds for k+1

Jan 7, 2013 Sprenkle – CSCI211 36

Prove: 2+4+6+8+… + 2n = n*(n+1)
(where n is a natural number)	

1/9/13

7

Example of Induction Proof

•  Base case: n = 1 à
Ø 2*1 = 1*(1+1) ✔

•  Induction Hypothesis:
Ø Assume statement is true for some arbitrary

k > 1
•  Prove holds for k+1, i.e., show that

2+4+6+8+… + 2k + 2(k+1) = (k+1)*((k+1)+1)

Jan 7, 2013 Sprenkle – CSCI211 37

Prove: 2+4+6+8+… + 2n = n*(n+1)
(where n is a natural number)	

Proof
•  Base case: n = 1 à 2*1 = 1*(1+1) ✔

•  Assume statement is true for arbitrary n=k>1
•  Prove true for k+1, i.e., show that

2+4+6+8+… + 2k + 2(k+1) = (k+1)*((k+1)+1)
Ø 2+4+6+8+… + 2k + 2(k+1)
= k*(k+1) + 2(k+1)
= k2 + k + 2k + 1
= k2 + 3k + 1
= (k+1)*(k+2)
= (k+1)*((k+1)+1) ✔

Jan 7, 2013 Sprenkle – CSCI211 38

Prove: 2+4+6+8+… + 2n = n*(n+1)

I want to see these
steps in your proofs!	

Approach shown:
transform LHS to

RHS	

Looking Ahead

•  Check out course wiki page
Ø Test username/password
Ø Decide which style of journal you want: wiki or

blog
•  Read first two pages of book’s preface,

Chapter 1 of book
Ø Summarize on Wiki by next Tuesday @ midnight

Jan 7, 2013 Sprenkle – CSCI211 39

