
CS211: Solutions to Problem Set 1

1. (2.1-8, CLR) We can extend the O notation to the case of two parameters n and m that can go
to infinity independently at different rates. For a given function g(n, m), we denote O(g(n, m)) the
set of functions

O(g(n, m)) = {f(n, m) : there exist positive constants c, n0,m0 such that
0 ≤ f(n, m) ≤ cg(n, m) for all n ≥ n0,m ≥ m0}

Give corresponding definitions for Ω(g(n, m)) and Θ(g(n, m)).

Extending the one-dimensional definitions for Ω(g(n)) and Θ(g(n)) to two dimensions, we get the equations

Ω(g(n, m)) = {f(n, m) : there exist positive constants c, n0,m0 such that
0 ≤ cg(n, m) ≤ f(n, m) for all n ≥ n0,m ≥ m0}

Θ(g(n, m)) = {f(n, m) : there exist positive constants c1, c2, n0,m0 such that
0 ≤ c1g(n, m) ≤ f(n, m) ≤ c2g(n, m) for all n ≥ n0,m ≥ m0}

2. (2.3) Take the following list of functions and arrange them in ascending order of growth rate.
That is, if function g(n) immediately follows function f(n) in your list, then it should be the case
that f(n) is O(g(n)).

f1(n) = n2.5 f2(n) =
√

2n
f3(n) = n + 10 f4(n) = 10n

f5(n) = 100n f6(n) = n2logn

f2(n) ≤ f3(n) ≤ f6(n) ≤ f1(n) ≤ f4(n) ≤ f5(n)

1



CS211 Problem Set 1

3. (2.4) Take the following list of functions and arrange them in ascending order of growth rate.
That is, if function g(n) immediately follows function f(n) in your list, then it should be the case
that f(n) is O(g(n)).

f1(n) = 2
√

logn f2(n) = 2n

f3(n) = n4/3 f4(n) = n(logn)3

f5(n) = nlogn f6(n) = 22n

f7(n) = 2n2

f1(n) ≤ f4(n) ≤ f3(n) ≤ f5(n) ≤ f2(n) ≤ f7(n) ≤ f6(n)

One way to look at the functions is to take the log of each function:

f1(n) =
√

logn f2(n) = n
f3(n) = 4

3 ∗ logn f4(n) = logn + 3 ∗ log(logn) < logn + 1/4logn = 5
4 ∗ logn

f5(n) = logn ∗ logn f6(n) = 2n

f7(n) = n2

4. Suppose that each row of an n × n array A consists of 1’s and 0’s such that, in any row i of A,
all the 1’s come before any 0’s in that row. Suppose further that the number of 1’s in row i is at
least the number in row i + 1, for i = 0, 1, ..., n− 2. Assuming A is already in memory, describe a
method running in O(n) time for counting the number of 1’s in the array.

Suppose that A is square matrix with n rows and n columns. For convenience we assume a 0 indexed matrix,
so A[0, 0] gives the top-left corner and A[n− 1, n− 1] gives the bottom-right corner. The idea is to keep
a running total of the 1s, while moving from the top-left corner to the bottom-right corner. When you
encounter a 1, move to the right, whenever you encounter a 0 or the right wall, add the column number to
the total and then move down. Stop when you reach the bottom wall. The algorithm is correct because we
are adding the total number of 1s in each row—the column position of the final 1 in a row indicates how
many 1s precede it. The algorithm requires O(n) time because we either move right or move down.

5. (3.2) Give an algorithm to detect whether a given undirected graph contains a cycle. If the graph
contains a cycle, then your algorithm should output one. (It should not output all cycles in the
graph, just one of them.) The running time of your algorithm should be O(m + n) for a graph
with n nodes and m edges.

Modify DFS (an O(m+n) algorithm) to keep track of the path it takes. Starting at some node (doesn’t
matter which in an undirected graph), when it reaches a node that it has already visited, it looks back in
the path to see the last time it visited that node. If it’s more than 2 “hops”, it’s found a cycle.

2


