CISC370: Inheritance

Sara Sprenkle

Questions?

Review

Assignment O due
Submissions

CPM Accounts

June 13, 2006 Sara Sprenkle - CISC370

Quiz!

June 13, 2006 Sara Sprenkle - CISC370 3

Inheritance

Build new classes based on existing classes
Allows you to reuse code

Start with a Class (superclass)

Create another class that extends the class

(subclass or derived class)

subclass inherits all of superclass’s methods and
fields (unless they’re private)

can also override methods

use the same name, but the implementation is
different

June 13, 2006 Sara Sprenkle - CISC370 4

Inheritance

Subclass adds methods or fields for additional
functionality

If the subclass redefines a superclass method,
can still call the superclass method on the “super’
object

Use extends keyword to make a subclass

June 13, 2006 Sara Sprenkle - CISC370 5

Rooster class

Could write class from scratch, but ...

A rooster is a chicken

But it adds something to (or specializes) what a
chicken is/does

The is a relationship
Classic mark of inheritance

Rooster will be subclass
Chicken will be superclass

June 13, 2006 Sara Sprenkle - CISC370 6

Rooster class

public class Rooster extends Chicken {
public Rooster(String name,
int height, double weight) {
// all instance fields inherited
// from super class
this.name = name;
this.height = height;
this.weight = weight;
is female = false;
} By default calls super
constructor with no parameters
// new functionality
public void crow() {.. }

} June 13, 2006 Sara Sprenkle - CISC370 7

Rooster class

public class Rooster extends Chicken {
public Rooster(String name,
int height, double weight) {
super (name, height, weight);
is female = false;

}
Call to super constructor must be first line in constructor

// new functionality
public void crow() { ..}

June 13, 2006 Sara Sprenkle - CISC370 8

Constructor Chaining

Automatically calls constructor of superclass
if not done explicitly

super();
What if superclass does not have a
constructor with no parameters?

Compilation error
Forces subclasses to call a constructor with
parameters

June 13, 2006 Sara Sprenkle - CISC370

Overriding Methods in Superclass

public class Rooster extends Chicken {

// new functionality
public void crow() {.. }

// overrides superclass; greater gains
public void feed() {

weight += .5;

height += 2;

June 13, 2006 Sara Sprenkle - CISC370 10

Overriding Methods in Superclass

public class Rooster extends Chicken {

// new functionality
public void crow() {.. }

// overrides superclass; greater gains

public void feed () {
// make 1t relative to Chicken

super.feed();
super.feed();

June 13, 2006 Sara Sprenkle - CISC370 11

Every object is an instance of Object

java.lang.Object
Inherited methods

clone
Creates and returns a copy of this object.

equals
Indicates whether some other object is "equal to"
this one.

finalize
Called by the garbage collector on an object when
garbage collection determines that there are no more
references to the object

June 13, 2006 Sara Sprenkle - CISC370 12

Aside on finalize()

No deconstructors in Java
No explicit freeing of memory
Garbage collector calls finalize()

Garbage collector is low-priority thread
Or runs when available memory gets tight

Before can clean up memory, object may have
generated temp files or open network
connections that should be deleted/closed first

Benefits of garbage collection?

June 13, 2006 Sara Sprenkle - CISC370 13

Aside on finalize()

Benefits of garbage collection
Fewer memory leaks
Less buggy code
But, memory leaks are still possible
Code is easier to write
Cost: garbage collection may not be as
efficient as explicit freeing of memory

June 13, 2006 Sara Sprenkle - CISC370 14

Every object is an instance of Object

java.lang.Object

Inherited methods
getClass
Returns the runtime class of an object.
toString

Override to customize printout for use in
System.out.printin()

And others...

June 13, 2006 Sara Sprenkle - CISC370 15

Inheritance Tree

java.lang.Object
Chicken
Rooster

Rooster Chicken Object

Call constructor of superclass first

Know you have the fields of superclass before
you implement constructor for your class

June 13, 2006 Sara Sprenkle - CISC370 16

Inheritance Tree

java.lang.Object
Chicken
Rooster

Rooster Chicken Object

No finalize() chaining

Should call super.finalize() inside of finalize
method

June 13, 2006 Sara Sprenkle - CISC370

17

Shadowing Superclass Fields

Subclass has field with same name as
superclass
You probably shouldn’t be doing this!
But could happen
Possibly: more precision for a constant

field // this class’s field
this.field // this class’s field

super.field // super class’s
field

June 13, 2006 Sara Sprenkle - CISC370

18

Access Modifiers (Revisited)

public
Any class can access
private

No other class can access (including
subclasses)

Must use superclass’s accessor/mutator methods
protected
subclasses can access
members of package can access
other classes cannot access

June 13, 2006 Sara Sprenkle - CISC370 19

Summary of Access Modes

Four access modes:
Private — visible to the class only
Public — visible to the world

Protected — visible to the package and all
subclasses.

Default — visible to the package

what you get if you don’t provide an access
modifier

June 13, 2006 Sara Sprenkle - CISC370 20

Member Visibility

Member Visibility
Accessible to
Public Protected Package |Private
Defining Yes Yes Yes Yes
Class
Class in same Yes Yes Yes No
package
Subclass in
different Yes Yes No No
package
Non-subclass
different Yes No No No
yPackage 5 3 R
June 13, 2006 Sara Sprenkle - CISC370 21

Multiple Inheritance

In C++, it is possible for a class to inherit (or
extend) more than one superclass.

The subclass has the fields from both
superclasses

This is NOT possible in Java.

A class may extend (or inherit from) only one
class.

There is no multiple inheritance.

June 13, 2006 Sara Sprenkle - CISC370 22

Polymorphism

You can use a derived class object whenever

the program expects an object of the
superclass

object variables are polymorphic.
A Chicken object variable can refer to an

object of class Chicken, Hen, Rooster, or any

class that inherits from Chicken

Chicken[] chickens = new Chicken[3];
chickens[0] = momma;

chickens[1] = foghorn;

chickens[2] = baby;

June 13, 2006 Sara Sprenkle - CISC370

Polymorphism

Chicken|[] chickens = new Chicken[3];
chickens[0] = momma;
chickens[1] = foghorn;

chickens[2] = baby;

But, chicken[1] is still a Chicken object

chicken[1l].crow() ;

will not work

June 13, 2006 Sara Sprenkle - CISC370

Polymorphism

When we refer to a Rooster object through a
Rooster object variable, we see it as a
Rooster object

If we refer to a Rooster object through a
Chicken object variable, we see it only as a
Chicken object.

We cannot assign a superclass object to a
derived class object variable

A Rooster is a Chicken, but a Chicken is not
necessarily a Rooster

June 13, 2006 Sara Sprenkle - CISC370 25

Polymorphism

Which method do we call if we call
chicken[l].feed ()
Rooster’s or Chicken’s?

June 13, 2006 Sara Sprenkle - CISC370 26

Polymorphism

Which method do we call if we call
chicken[l].feed ()

Rooster’s or Chicken’s?

Rooster’s!
Object is a Rooster
The JVM figures out its class at runtime and
runs the appropriate method.

Dynamic dispatch

At runtime, the class of the object is determined.
Then, the appropriate method for that class is
dispatched.

June 13, 2006 Sara Sprenkle - CISC370 27

Dynamic vs. Static Dispatch

Dynamic dispatch is a property of Java, not
object-oriented programming in general.
Some OOP languages use static dispatch
where the type of the object variable used to
call the method determines which version
gets run.
The primary difference is when the decision
on which method to call is made...
Static dispatch (C#) decides at compile time.
Dynamic dispatch (Java) decides at run time.

June 13, 2006 Sara Sprenkle - CISC370 28

Feed the Chickens!

for(Chicken c¢: chickens) {

c.feed(); How to read this code?
}
Dynamic dispatch calls the appropriate
method in each case, corresponding to the
actual class of each object.

This is the power of polymorphism and dynamic
dispatch!

June 13, 2006 Sara Sprenkle - CISC370 29

Preventing Inheritance

Sometimes, you do not want a class to derive from
one of your classes.

A class that cannot be extended is known as a final
class.

To make a class final, simply add the keyword
final in front of the class definition:

final class Rooster extends Chicken

{

}

June 13, 2006 Sara Sprenkle - CISC370 30

Final methods

It is also possible to make a method inside of
a class final.

any class derived from this class cannot override
the final methods

By default, all methods in a final class are
final methods.

class Chicken

{

public final String getname() { . . . }

}

June 13, 2006 Sara Sprenkle - CISC370 31

Why have final methods and classes?

Efficiency

the compiler can replace a final method call with
an inline method because it does not have to
worry about another form of this method that
belongs to a derived class.

JVM does not need to determine which method
to call dynamically

Safety

no alternate form of the method; straightforward
which version of the method you called.

Example of final class: System

June 13, 2006 Sara Sprenkle - CISC370 32

Explicit Object Casting

Just like we can cast variables:
double pi = 3.14; int i pi = (int)pi;

We can cast objects.
Rooster foghorn = (Rooster)chickens[1l];

Use casting to use an object in its full
capacity after its actual type (the derived
class) has been forgotten

The Rooster object is referred to only using a
Chicken object variable

June 13, 2006 Sara Sprenkle - CISC370 33

Explicit Object Casting

chickens[1] refers to an object variable to a
Chicken object

We cannot access any of the Rooster-specific
fields or methods using this object variable.

We create a new object variable to a Rooster
object

Using this variable will allow us to reference the
Rooster-specific fields of our object...

Rooster rooster = (Rooster) chickens[1];

June 13, 2006 Sara Sprenkle - CISC370 34

Object Casting

We can do explicit type checking because chickens|[1]
refers to an object that is actually a Rooster object.

For example, cannot do this with chickens[0] because it
refers to a Hen (not Rooster) object

Rooster rooster = (Rooster) chickens[1];

// OK; chickens[1l] refers to a Rooster object
Rooster hen = (Rooster) chickens[0];

// ERROR; chickens[1l] refers to a Hen object

We are “promising” the compiler that chickens[1]
really refers to a Rooster object, although it is an
object variable to a Chicken object.

If this is not the case, generates an exception.
More about exceptions later.

June 13, 2006 Sara Sprenkle - CISC370 35

instanceof Operator

Make sure such a cast will succeed before
attempting it, using the instanceof

operator:

if (chickens[1l] instanceof Rooster)
{ rooster = (Rooster)chickens[1l]; }
operator returns a boolean

true if chickens[1] refers to an object of type
Rooster

false otherwise

June 13, 2006 Sara Sprenkle - CISC370 36

Summary of Inheritance

Place common operations & fields in the
superclass.

Remove repetitive code by modeling the “is-a”
hierarchy

Move “common denominator” code up the
inheritance chain

Protected fields are generally not a good
idea.

Don’t use inheritance unless all inherited
methods make sense

Use polymorphism.

June 13, 2006 Sara Sprenkle - CISC370 37

Real-world Example of Inheritance

java.net.Socket

This class implements client sockets. A socket
is an endpoint for communication between two
machines.

java.net.SSLSocket

This class extends Sockets and provides secure
socket using protocols such as the "Secure Sockets
Layer" (SSL) or IETF "Transport Layer Security"
(TLS) protocols.

Such sockets are normal stream sockets, but they
add a layer of security protections over the
underlying network transport protocol, such as TCP.

June 13, 2006 Sara Sprenkle - CISC370 38

Wrapper Classes

Wrapper class for each primitive type

Sometimes need an instance of an Object

To use to store in HashMaps and other
collections

Include the functionality of parsing their
respective data types.

int x = 10;

Integer y = new Integer (10);

June 13, 2006 Sara Sprenkle - CISC370 39

Wrapper Classes

Autoboxing — automatically create a wrapper
object

// dimplicitly 11 converted to

// new Integer (11):;

Integer vy = 11;

Autounboxing — automatically extract a primitive
type

Integer x = new Integer(1l1l);

int yv = x.intValue () ;

int z = x; // implicitly, x is x.intValue();

June 13, 2006 Sara Sprenkle - CISC370 40

PACKAGES!

June 13, 2006 Sara Sprenkle - CISC370 41
Abstract Classes
June 13, 2006 Sara Sprenkle - CISC370 42

21

Example of Abstract classes

Calendar (abstract)
Gregorian Calendar

June 13, 2006 Sara Sprenkle - CISC370

43

ArrayList

Dynamically sized array

June 13, 2006 Sara Sprenkle - CISC370

44

