
1

11

CISC370: InheritanceCISC370: Inheritance

Sara SprenkleSara Sprenkle

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 22

Questions?Questions?

•• ReviewReview

•• Assignment 0 dueAssignment 0 due
SubmissionsSubmissions

•• CPM AccountsCPM Accounts

2

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 33

Quiz!Quiz!

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 44

InheritanceInheritance

• Build new classes based on existing classes
Allows you to reuse code

• Start with a Class (superclass)

• Create another class that extends the class
(subclass or derived class)
 subclass inherits all of superclass’s methods and

fields (unless they’re private)

 can also override methods
• use the same name, but the implementation is

different

3

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 55

InheritanceInheritance
Subclass adds methods or fields for additional

functionality

 If the subclass redefines a superclass method,
can still call the superclass method on the “super”
object

• Use extends keyword to make a subclass

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 66

Rooster classRooster class

•• Could write class from scratch, but Could write class from scratch, but ……

•• A rooster A rooster is ais a chicken chicken
But it adds something to (or specializes) what aBut it adds something to (or specializes) what a

chicken is/doeschicken is/does

•• The The is ais a relationship relationship
Classic mark of inheritanceClassic mark of inheritance

•• Rooster will be subclassRooster will be subclass

•• Chicken will be Chicken will be superclasssuperclass

4

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 77

RoosterRooster class class
public class Rooster extends Chicken {

public Rooster(String name,
int height, double weight) {
// all instance fields inherited
// from super class
this.name = name;
this.height = height;
this.weight = weight;
is_female = false;

}

// new functionality
public void crow() {… }
…

}

By default calls super
constructor with no parameters

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 88

RoosterRooster class class
public class Rooster extends Chicken {

public Rooster(String name,
int height, double weight) {
super(name, height, weight);
is_female = false;

}

// new functionality
public void crow() { … }

…
}

Call to super constructor must be first line in constructor

5

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 99

Constructor ChainingConstructor Chaining

•• Automatically calls constructor of Automatically calls constructor of superclasssuperclass
if not done explicitlyif not done explicitly
 super();super();

•• What ifWhat if superclass superclass does not have a does not have a
constructor with no parameters?constructor with no parameters?
Compilation errorCompilation error

 Forces subclasses to call a constructor withForces subclasses to call a constructor with
parametersparameters

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1010

Overriding Methods in Overriding Methods in SuperclassSuperclass
public class Rooster extends Chicken {

…

// new functionality
public void crow() {… }

// overrides superclass; greater gains
public void feed() {

weight += .5;
height += 2;

}
}

6

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1111

Overriding Methods in Overriding Methods in SuperclassSuperclass
public class Rooster extends Chicken {

…

// new functionality
public void crow() {… }

// overrides superclass; greater gains
public void feed() {

// make it relative to Chicken
super.feed();
super.feed();

}
}

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1212

Every object is an instance of ObjectEvery object is an instance of Object

•• java.java.langlang.Object.Object

•• Inherited methodsInherited methods
 cloneclone

• Creates and returns a copy of this object.

 equalsequals
• Indicates whether some other object is "equal to"

this one.

 finalizefinalize
• Called by the garbage collector on an object when

garbage collection determines that there are no more
references to the object

7

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1313

Aside on finalize()Aside on finalize()

•• No No deconstructorsdeconstructors in Java in Java
No explicit freeing of memoryNo explicit freeing of memory

•• Garbage collector calls finalize()Garbage collector calls finalize()
Garbage collector is low-priority threadGarbage collector is low-priority thread

•• Or runs when available memory gets tightOr runs when available memory gets tight

Before can clean up memory, object may haveBefore can clean up memory, object may have
generated temp files or open networkgenerated temp files or open network
connections that should be deleted/closed firstconnections that should be deleted/closed first

•• Benefits of garbage collection?Benefits of garbage collection?

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1414

Aside on finalize()Aside on finalize()

•• Benefits of garbage collectionBenefits of garbage collection
 Fewer memory leaksFewer memory leaks

•• Less buggy codeLess buggy code

•• But, memory leaks are still possibleBut, memory leaks are still possible

Code is easier to writeCode is easier to write

•• Cost: garbage collection may not be asCost: garbage collection may not be as
efficient as explicit freeing of memoryefficient as explicit freeing of memory

8

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1515

Every object is an instance of ObjectEvery object is an instance of Object

•• java.java.langlang.Object.Object

•• Inherited methodsInherited methods
getClass

• Returns the runtime class of an object.

 toString
• Override to customize printout for use in

System.out.println()

And others…

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1616

Inheritance TreeInheritance Tree

•• java.java.langlang.Object.Object
ChickenChicken

•• RoosterRooster

•• Call constructor of Call constructor of superclasssuperclass first first
Know you have the fields ofKnow you have the fields of superclass superclass beforebefore

you implement constructor for your classyou implement constructor for your class

ObjectChickenRooster

9

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1717

Inheritance TreeInheritance Tree

•• java.java.langlang.Object.Object
ChickenChicken

•• RoosterRooster

•• No finalize() chainingNo finalize() chaining
Should call super.finalize() inside of finalizeShould call super.finalize() inside of finalize

methodmethod

ObjectChickenRooster

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1818

Shadowing Shadowing SuperclassSuperclass Fields Fields

•• Subclass has field with same name asSubclass has field with same name as
superclasssuperclass
You probably shouldnYou probably shouldn’’t be doing this!t be doing this!

But could happenBut could happen
•• Possibly: more precision for a constantPossibly: more precision for a constant

••field field // this class// this class’’s fields field

••this.field this.field // this class// this class’’s fields field

••super.field // super classsuper.field // super class’’ss
fieldfield

10

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1919

Access Modifiers (Revisited)Access Modifiers (Revisited)

• public
Any class can access

• private
No other class can access (including

subclasses)
• Must use superclass’s accessor/mutator methods

• protected
 subclasses can access

members of package can access

other classes cannot access

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2020

Summary of Access ModesSummary of Access Modes

•• Four access modes:Four access modes:
PrivatePrivate –– visible to the class only visible to the class only

PublicPublic –– visible to the world visible to the world

ProtectedProtected –– visible to the package and all visible to the package and all
subclasses.subclasses.

DefaultDefault –– visible to the package visible to the package
•• what you get if you donwhat you get if you don’’t provide an accesst provide an access

modifiermodifier

11

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2121

Member VisibilityMember Visibility
Member VisibilityMember Visibility

NoNoNoNoNoNoYesYes
Non-subclassNon-subclass
differentdifferent
packagepackage

NoNoNoNoYesYesYesYes
Subclass inSubclass in
differentdifferent
packagepackage

NoNoYesYesYesYesYesYesClass in sameClass in same
packagepackage

YesYesYesYesYesYesYesYesDefiningDefining
ClassClass

PrivatePrivatePackagePackageProtectedProtectedPublicPublic
Accessible toAccessible to

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2222

Multiple InheritanceMultiple Inheritance

•• In C++, it is possible for a class to inherit (orIn C++, it is possible for a class to inherit (or
extend) more than oneextend) more than one superclass superclass..
 The subclass has the fields from bothThe subclass has the fields from both

superclassessuperclasses

•• This is NOT possible in Java.This is NOT possible in Java.
A class may extend (or inherit from) only oneA class may extend (or inherit from) only one

class.class.

 There is no multiple inheritance.There is no multiple inheritance.

12

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2323

PolymorphismPolymorphism

•• You can use a derived class object wheneverYou can use a derived class object whenever
the program expects an object of thethe program expects an object of the
superclasssuperclass

•• object variables are object variables are polymorphicpolymorphic..

•• A Chicken object variable can refer to anA Chicken object variable can refer to an
object of class Chicken, Hen, Rooster, or anyobject of class Chicken, Hen, Rooster, or any
class that inherits from Chickenclass that inherits from Chicken
Chicken[] chickens = new Chicken[3];
chickens[0] = momma;
chickens[1] = foghorn;
chickens[2] = baby;

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2424

PolymorphismPolymorphism

•• But, But, chicken[1]chicken[1] is still a Chicken object is still a Chicken object

chicken[1].crow();chicken[1].crow();

will not workwill not work

Chicken[] chickens = new Chicken[3];
chickens[0] = momma;
chickens[1] = foghorn;
chickens[2] = baby;

13

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2525

PolymorphismPolymorphism

•• When we refer to a Rooster object through aWhen we refer to a Rooster object through a
Rooster object variable, we see it as aRooster object variable, we see it as a
Rooster objectRooster object

•• If we refer to a Rooster object through aIf we refer to a Rooster object through a
Chicken object variable, we see it only as aChicken object variable, we see it only as a
Chicken object.Chicken object.

•• We cannot assign aWe cannot assign a superclass superclass object to aobject to a
derived class object variablederived class object variable
A Rooster is a Chicken, but a Chicken is notA Rooster is a Chicken, but a Chicken is not

necessarily a Roosternecessarily a Rooster

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2626

PolymorphismPolymorphism

•• Which method do we call if we callWhich method do we call if we call
chicken[1].feed()chicken[1].feed()

RoosterRooster’’s or Chickens or Chicken’’s?s?

14

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2727

PolymorphismPolymorphism
•• Which method do we call if we callWhich method do we call if we call

chicken[1].feed()chicken[1].feed()

RoosterRooster’’s or Chickens or Chicken’’s?s?

•• RoosterRooster’’ss!!
Object is a RoosterObject is a Rooster
 The JVM figures out its class at runtime andThe JVM figures out its class at runtime and

runs the appropriate method.runs the appropriate method.

•• Dynamic dispatchDynamic dispatch
At runtime, the class of the object is determined.At runtime, the class of the object is determined.

Then, the appropriate method for that class isThen, the appropriate method for that class is
dispatched.dispatched.

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2828

Dynamic Dynamic vsvs. Static Dispatch. Static Dispatch

•• Dynamic dispatch is a property of Java, notDynamic dispatch is a property of Java, not
object-oriented programming in general.object-oriented programming in general.

•• Some OOP languages use Some OOP languages use static dispatchstatic dispatch
where the type of the object variable used towhere the type of the object variable used to
call the method determines which versioncall the method determines which version
gets run.gets run.

•• The primary difference is when the decisionThe primary difference is when the decision
on which method to call is madeon which method to call is made……
Static dispatch (C#) decides at compile time.Static dispatch (C#) decides at compile time.

Dynamic dispatch (Java) decides at run time.Dynamic dispatch (Java) decides at run time.

15

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2929

Feed the Chickens!Feed the Chickens!
for(Chicken c: chickens) {for(Chicken c: chickens) {

c.feed();c.feed();

}}

•• Dynamic dispatch calls the appropriateDynamic dispatch calls the appropriate
method in each case, corresponding to themethod in each case, corresponding to the
actual class of each object.actual class of each object.
 This is the power of polymorphism and dynamicThis is the power of polymorphism and dynamic

dispatch!dispatch!

How to read this code?

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3030

Preventing InheritancePreventing Inheritance
•• Sometimes, you do not want a class to derive fromSometimes, you do not want a class to derive from

one of your classes.one of your classes.

•• A class that cannot be extended is known as a A class that cannot be extended is known as a finalfinal
class.class.

•• To make a class final, simply add the keywordTo make a class final, simply add the keyword
finalfinal in front of the class definition: in front of the class definition:

final class Rooster extends Chicken
{

. . .
}

16

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3131

Final methodsFinal methods

•• It is also possible to make a method inside ofIt is also possible to make a method inside of
a class final.a class final.
 any class derived from this class cannot overrideany class derived from this class cannot override

the final methodsthe final methods

•• By default, all methods in a final class areBy default, all methods in a final class are
final methods.final methods.
class Chicken
{

. . .
public final String getname() { . . . }
. . .

}

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3232

Why have final methods and classes?Why have final methods and classes?
•• EfficiencyEfficiency

 the compiler can replace a final method call withthe compiler can replace a final method call with
an inline method because it does not have toan inline method because it does not have to
worry about another form of this method thatworry about another form of this method that
belongs to a derived class.belongs to a derived class.

 JVM does not need to determine which methodJVM does not need to determine which method
to call dynamicallyto call dynamically

•• SafetySafety
 no alternate form of the method; straightforwardno alternate form of the method; straightforward

which version of the method you called.which version of the method you called.

•• Example of final class: SystemExample of final class: System

17

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3333

Explicit Object CastingExplicit Object Casting

•• Just like we can cast variables:Just like we can cast variables:
double pi = 3.14;double pi = 3.14; int int i_pi = (i_pi = (intint)pi;)pi;

•• We can cast objects.We can cast objects.

Rooster foghorn = (Rooster)chickens[1];Rooster foghorn = (Rooster)chickens[1];

•• Use casting to use an object in its fullUse casting to use an object in its full
capacity after its actual type (the derivedcapacity after its actual type (the derived
class) has been forgottenclass) has been forgotten
 The Rooster object is referred to only using aThe Rooster object is referred to only using a

Chicken object variableChicken object variable

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3434

Explicit Object CastingExplicit Object Casting

•• chickens[1] refers to an object variable to achickens[1] refers to an object variable to a
Chicken objectChicken object
We cannot access any of the Rooster-specificWe cannot access any of the Rooster-specific

fields or methods using this object variable.fields or methods using this object variable.

•• We create a new object variable to a RoosterWe create a new object variable to a Rooster
objectobject
Using this variable will allow us to reference theUsing this variable will allow us to reference the

Rooster-specific fields of our objectRooster-specific fields of our object……

Rooster rooster = (Rooster) chickens[1];

18

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3535

Object CastingObject Casting
•• We can do explicit type checking because chickens[1]We can do explicit type checking because chickens[1]

refers to an object that is actually a Rooster object.refers to an object that is actually a Rooster object.
•• For example, cannot do this with chickens[0] because itFor example, cannot do this with chickens[0] because it

refers to a Hen (not Rooster) objectrefers to a Hen (not Rooster) object

•• We are We are ““promisingpromising”” the compiler that chickens[1] the compiler that chickens[1]
really refers to a Rooster object, although it is anreally refers to a Rooster object, although it is an
object variable to a Chicken object.object variable to a Chicken object.

•• If this is not the case, generates an exception.If this is not the case, generates an exception.
 More about exceptions later.More about exceptions later.

Rooster rooster = (Rooster) chickens[1];
// OK; chickens[1] refers to a Rooster object

Rooster hen = (Rooster) chickens[0];
// ERROR; chickens[1] refers to a Hen object

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3636

instanceofinstanceof OperatorOperator

•• Make sure such a cast will succeed beforeMake sure such a cast will succeed before
attempting it, using theattempting it, using the instanceofinstanceof
operator:operator:

•• operator returns a operator returns a booleanboolean
 true if chickens[1] refers to an object of typetrue if chickens[1] refers to an object of type

RoosterRooster

 false otherwisefalse otherwise

if (chickens[1] instanceof Rooster)
{ rooster = (Rooster)chickens[1]; }

19

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3737

Summary of InheritanceSummary of Inheritance
•• Place common operations & fields in thePlace common operations & fields in the

superclasssuperclass..
Remove repetitive code by modeling the Remove repetitive code by modeling the ““is-ais-a””

hierarchyhierarchy
Move Move ““common denominatorcommon denominator”” code up the code up the

inheritance chaininheritance chain
•• Protected fields are generally not a goodProtected fields are generally not a good

idea.idea.
•• DonDon’’t use inheritance unless t use inheritance unless allall inherited inherited

methods make sensemethods make sense
•• Use polymorphism.Use polymorphism.

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3838

Real-world Example of InheritanceReal-world Example of Inheritance
•• java.net.Socketjava.net.Socket

This class implements client sockets. A socket
is an endpoint for communication between two
machines.

•• java.net.java.net.SSLSocketSSLSocket
 This class extends Sockets and provides secure

socket using protocols such as the "Secure Sockets
Layer" (SSL) or IETF "Transport Layer Security"
(TLS) protocols.

 Such sockets are normal stream sockets, but they
add a layer of security protections over the
underlying network transport protocol, such as TCP.

20

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3939

Wrapper ClassesWrapper Classes

•• Wrapper classWrapper class for each primitive type for each primitive type
•• Sometimes need an instance of an ObjectSometimes need an instance of an Object

 To use to store in To use to store in HashMaps HashMaps and otherand other
collectionscollections

•• Include the functionality of parsing theirInclude the functionality of parsing their
respective data types.respective data types.
int int x = 10;x = 10;

Integer y = new Integer(10);Integer y = new Integer(10);

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 4040

Wrapper ClassesWrapper Classes
•• AutoboxingAutoboxing –– automatically create a wrapper automatically create a wrapper

objectobject
// implicitly 11 converted to// implicitly 11 converted to

// new Integer(11);// new Integer(11);

Integer y = 11;Integer y = 11;

•• AutounboxingAutounboxing –– automatically extract a primitive automatically extract a primitive
typetype
Integer x = new Integer(11);Integer x = new Integer(11);

int int y = x.y = x.intValueintValue();();

int int z = x; // implicitly, x is x.z = x; // implicitly, x is x.intValueintValue();();

21

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 4141

PACKAGES!PACKAGES!

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 4242

Abstract ClassesAbstract Classes

22

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 4343

Example of Abstract classesExample of Abstract classes

•• Calendar (abstract)Calendar (abstract)

•• Gregorian CalendarGregorian Calendar

June 13, 2006June 13, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 4444

ArrayListArrayList

•• Dynamically sized arrayDynamically sized array

