CISC 370: Inheritance, Abstract
Classes, Exceptions

June 15, 2006

Review

Quizzes

Grades on CPM
Conventions

Class names are capitalized

Object names/variables are lower case
String.doStuff();
string.doStuff();

Encapsulation
Inheritance
Packages

June 15, 2006 Sara Sprenkle - CISC370

Encapsulation

Hide implementation details
can change the implementation details without
programmer's relying on it

Protect against accidental or willful stupidity
may have interdependent fields

can't modify one field without updating the
others

to keep in a consistent state --> method can do
all necessary steps

June 15, 2006 Sara Sprenkle - CISC370

Encapsulation

If fields can be manipulated directly, the
number of possibilities you have to test
becomes unmanageable

What could the user do?

Can use methods to perform error checking
What if user set chicken to have a negative
height?

Internal fields and methods visible outside
the class clutter up API

makes class tidy and easier to use and
understand

June 15, 2006 Sara Sprenkle - CISC370

Inheritance

Build new classes based on existing classes
Allows you to reuse code
Use extends keyword to make a subclass

The is a relationship
Classic mark of inheritance

Constructor chaining

June 15, 2006 Sara Sprenkle - CISC370 5

Inheritance

Access modifiers in subclasses

can make access to subclass more restrictive
but not less restrictive

Class fields and methods are noft inherited

Constructors are not inherited

We had to define Rooster(String name, int
height, double weight) event though similar
constructor in Chicken

June 15, 2006 Sara Sprenkle - CISC370 6

Inheritance

If you're uncertain which to use (protected,
package, or private), use the most restrictive
Changing to less restrictive is easy

Changing to more restrictive may break the code
that uses your classes.

June 15, 2006

Sara Sprenkle - CISC370

Member Visibility

Member Visibility

Accessible to

Public Protected Package |Private
Defining Yes Yes Yes Yes
Class
Class in same Yes Yes Yes No
package
Subclass in
different Yes Yes No No
package
Non-subclass
different Yes No No No
yPackage 5 | R

June 15, 2006

Sara Sprenkle - CISC370

Protected

Accessible to subclasses and members of
package
Can’t keep encapsulation “pure”

Don’t want others to access fields directly

May break code if you change your
implementation

Assumption?

someone extending your class with protected
access knows about what they are doing

June 15, 2006 Sara Sprenkle - CISC370 9

Packages

Hierarchical structure of Java classes
Directories of directories
java
— lang
L— Object
— net

— util
L— Date Fully qualified name: java.util.Date

Use import to access packages

June 15, 2006 Sara Sprenkle - CISC370 10

Abstract Classes

Some methods defined, others not defined

Classes in which not all methods are
implemented are abstract classes.
public abstract class ZooAnimal

Blank methods are labeled with the abstract
keyword also
public abstract void exercise();

June 15, 2006 Sara Sprenkle - CISC370 1

Abstract Classes

An abstract class cannot be instantiated

Subclass of an abstract class can only be
instantiated if it overrides each of the
abstract methods of its superclass and
provides implementation

If subclass does not override all abstract
methods, it is also abstract

June 15, 2006 Sara Sprenkle - CISC370 12

Abstract Classes

static, private, and final methods cannot be
abstract
these types cannot be overridden by a subclass
a final class cannot contain any abstract
methods
a class can be declared abstract even if it
does not actually have any abstract methods
the implementation is somehow incomplete and
is meant to serve as a superclass for one or

more subclasses that will complete the
implementation.

June 15, 2006 Sara Sprenkle - CISC370 13

Abstract Classes

Can have an array of objects of the abstract
class

does dynamic dispatch on them

Use abstract when have some partial
implementation

June 15, 2006 Sara Sprenkle - CISC370 14

Examples of abstract classes

Define the abstract methods
Example 1:
java.net.Socket
java.net.SSLSocket (abstract)
Example 2:
java.util.Calendar (abstract)
java.util.GregorianCalendar

June 15, 2006 Sara Sprenkle - CISC370 15

Interfaces

Like abstract classes with only abstract
methods
A set of requirements for classes to conform to

Pure specification, no implementation
Classes implement one or more interfaces.

June 15, 2006 Sara Sprenkle - CISC370 16

Example of an Interface

We have seen before how to make an array
of Chicken object variables.

We can call the Arrays.sort() method, a
method of the Arrays class

Arrays.sort() has the ability to sort arrays of any
object class.

Need a way to decide if one object is less than,
greater than, or equal to another object.

Class of objects must be comparable.
Comparable is an interface...

June 15, 2006 Sara Sprenkle - CISC370 17

java.lang.Comparable

public interface Comparable

{
int compareTo (Object other);

}

Any object that is Comparable must have a
method named compareTo(), which takes an
Object as a parameter and returns an integer

< 0O for less than

0 for equals

> (for greater than

June 15, 2006 Sara Sprenkle - CISC370 18

Implementing an Interface

To make a class implement an interface

In the class definition, you need to specify that
the class will implement the specific interface.

You provide a definition for all of the methods
specified in the interface.
An interface is very similar to an abstract (or
virtual) class in C++...

a set of requirements that any implementing
class must have

June 15, 2006 Sara Sprenkle - CISC370 19

How to determine Chicken order?

What if made the Chicken class
Comparable?

June 15, 2006 Sara Sprenkle - CISC370 20

Comparable Chickens

class Chicken implements Comparable

{

public int compareTo (Object otherObject)
{

Chicken other = (Chicken)otherObject;
if (height < other.getHeight ()) return -1;
if (height > other.getHeight ()) return 1;

return O;

One way: order by height

What if otherObject is not a Chicken?

June 15, 2006 Sara Sprenkle - CISC370

21

Comparable Chickens

class Chicken implements Comparable

{

public int compareTo (Object otherObject)
{

Chicken other = (Chicken)otherObject;

if (height < other.getHeight ()) return -1;
if (height > other.getHeight ()) return 1;
if (weight < other.getWeight ()) return -1;
if (weight > other.getWeight()) return 1;

return O;

Order by height, then weight
Could have more conditions for “breaking ties” -->

comparing names
June 15, 2006 Sara Sprenkle - CISC370

22

11

Comparable Interface in Java Docs

API documentation says what the
compareTo() method should do:

Return a —1 if the first object is less than the
second object (passed as a parameter)

Return a 1 if the second object (passed as a
parameter) is less than the first object

Return a 0 if the two objects are equal

Can see what Java library classes implement
Comparable

June 15, 2006 Sara Sprenkle - CISC370 23

Interfaces

only object (not class) methods
all are public methods
implied if not explicit
error to have protected or private (Why?)
fields are constants that are static and final
Can implement multiple interfaces
separated by commas in definition

June 15, 2006 Sara Sprenkle - CISC370 24

Testing for Interfaces

We can also use the instanceof

operator to see if an object implements a
particular interface

e.g., to determine if an object can be compared
to another object using the Comparable
interface.

if (obj instanceof Comparable) {
// runs if whatever class obj is an instance of
// implements the Comparable interface

}

else {
// runs if it does not implement the interface

}

June 15, 2006 Sara Sprenkle - CISC370 25

Interface Object Variables

We can use an object variable to refer to an object
of any class that implements an interface

Using this object variable, we can only access
methods that are present in the interface.
For example...

Object obj;

if (obj instanceof Comparable)

{
Comparable comp = (Comparable)obj;
boolean res = comp.compareTo (obj2);

}

June 15, 2006 Sara Sprenkle - CISC370 26

Interface Definitions

public interface Comparable

{

int compareTo (Object other);

}

We do not need to specify the methods as
public
All interface methods are public by default

June 15, 2006 Sara Sprenkle - CISC370 27

Interface Definitions and Inheritance

We can also extend interfaces
allows a chain of interfaces that go from general
to more specific with each step
For example, let’s define an interface for a
object which is capable of moving:

public interface Movable

{

void move (double x, double vy);

}

June 15, 2006 Sara Sprenkle - CISC370 28

Interface Definitions and Inheritance

A powered vehicle is also Movable

it must also have a MPG() method, which will
return its gas mileage

public interface Powered extends Movable

{

double miles per gallon();

}

June 15, 2006 Sara Sprenkle - CISC370 29

Constants in an Interface

If a variable is specified in an interface, it
is automatically a constant
public static final variable

public interface Powered extends Movable

{

double miles per gallon();
double SPEED LIMIT = 95;
}

An object that implements the Powered
interface has a constant SPEED LIMIT
defined

June 15, 2006 Sara Sprenkle - CISC370 30

Interface Definitions and Inheritance

Powered interface extends the Movable
interface.

Any object that implements the Powered
interface must satisfy all the requirements of
that interface as well as its superinterface.

A Powered object must have a
miles_per_gallon() and move() method

June 15, 2006 Sara Sprenkle - CISC370 31

Multiple Interfaces

A class can implement multiple interfaces

An interface is a promise to implement given
methods

Can have more than one interface and fulfill the
requirements of each one.

But, NOT possible with inheritance

a class can only extend (or inherit from) one
class.

public final class String implements
Serializable, Comparable, CharSequence { ..

June 15, 2006 Sara Sprenkle - CISC370 32

Using Interfaces

Common use:
define constants for multiple classes/package
Something like global constants

Marker Interface
Interface that is empty

Use to identify an object that has a certain
property

June 15, 2006 Sara Sprenkle - CISC370 33

Using interface or abstract class?

Interfaces

Any class can use (can implement multiple
interfaces)

no implementation

Implementing lots of methods multiple times can be

annoying

Adding a method will break classes that implement
Abstract class

Can contain partial implementation

Can’t extend/subclass multiple classes

Can add non-abstract methods without breaking
subclasses

June 15, 2006 Sara Sprenkle - CISC370 34

One option: Use Both!

Define interface, e.g., Mylnterface

Define abstract class, e.g.,
AbstractMylnterface

implements interface

provides implementation for some methods

June 15, 2006 Sara Sprenkle - CISC370 35

Exceptions

June 15, 2006 Sara Sprenkle - CISC370 36

Errors

Programs encounter errors when they run.
Users may enter data in the wrong form
files that should exist sometimes do not
printers run out of paper in the middle of printing
program code always has bugs.
Errors are bad. When one happens, your
program should do one of two things:
Revert to a stable state and continue.

Allow the user to save data and then exit the
program gracefully.

June 15, 2006 Sara Sprenkle - CISC370 37

Error Codes — Why They Don't
Always Work

The traditional method of indicating an error
in a method (function) call is to return a
specific sentinel value.
the read() function in C returns a —1 if the read
was unsuccessful
What is the general problem with sentinels?

What does a function that returns an integer
return in the case of an error?

It is not always possible to return an error code,
when an error has occurred in a method.

June 15, 2006 Sara Sprenkle - CISC370 38

Methods: An Alternate Ending

Java allows a method to take an alternate
exit path if it is unable to complete its task in
the normal, correct way.

A method can opt to not return a value.
Instead it throws an object that encapsulates the
error information.

Exception: the object that is thrown

A method can return its specified return type
(the normal/correct case) or it can throw an
exception (the error case).

June 15, 2006 Sara Sprenkle - CISC370 39

Methods: An Alternate Ending

If a method throws an exception
it does not return anything
execution does not resume immediately
following the method call (as it would if the
method returns a normal value)
JVM’s exception-handling mechanism
searches for an exception handler
Exception handler: error recovery code
runs to deal with a particular error condition.

June 15, 2006 Sara Sprenkle - CISC370 40

Exception Classification

All exceptions indirectly derive from a class
Throwable.

Subclasses: Error and Exception

Important Throwable methods
getMessage
Detailed message about error
printStackTrace

Prints out where problem occurred and path to
reach that point

Also getStackTrace to get the stack in non-text
format

June 15, 2006 Sara Sprenkle - CISC370 41

Exception Classification: Error

Error is an internal error

JVM-generated in the case of resource
exhaustion or an internal problem

Out of Memory error (When can that happen?)

Program’s code should not and can not throw an
object of this type.

Unchecked exception

June 15, 2006 Sara Sprenkle - CISC370 42

Exception Classification

An Exception is the kind of Throwable
objects programs deal with.
RuntimeException something that happens due
to a programming error you made
Unchecked exception
ArrayOutOfBoundsException «—— Seen before
NullPointerException
ClassCastException
Lots of checked exceptions
e.g., IOException, SQLException

June 15, 2006 Sara Sprenkle - CISC370 43

Exception Classification

So, if something is programmer’s fault

RuntimeException.

otherwise, an Error or another Exception.
Common: IOException

trying to read past the end of a file

trying to open a bad URL

File not found

etc...

June 15, 2006 Sara Sprenkle - CISC370 44

Exception Classification

Throwable

Error

June 15, 2006

IOException

Exception

RuntimeException

SQLException

Sara Sprenkle - CISC370 45

Checked and Unchecked

Unchecked: any exception that derives from
Error or RuntimeException

Checked: any other exception, e.g., from
IOException

Programmer need to create and handle

checked exceptions

not unchecked exceptions (except to try to make
sure that they don’t occur in the first place!)

June 15, 2006

Sara Sprenkle - CISC370 46

Unchecked Exceptions

Two types of unchecked exceptions:

Derived from the class Error:

Any line of code in a Java program can generate
this because it is internal

You don’t need to worry about what to do if this
happens.
Derived from the class RuntimeException
Indicates a bug in the program
Don’t worry about what to do if it happens
»>fix the bug!

June 15, 2006 Sara Sprenkle - CISC370 47

Checked Exceptions

Need to be handled in your program
Advertise the exceptions that a particular
method throws

For each method, tell the compiler:

what the method returns
what could possibly go wrong

As an example, java.io.BufferedReader

June 15, 2006 Sara Sprenkle - CISC370 48

The BufferedReader Class

contains a method, readLine(), which
reads a line from a stream, such as a file or
network connection

Its header looks like:

public String readLine () throws

IOException

readLine can
return a String (if everything went right)
throw an IOException (if something went wrong)

June 15, 2006 Sara Sprenkle - CISC370 49

Programmer-Defined Methods

Advertise only the checked methods that
your method can throw

Your method calls a method that throws a
checked exception

Your method detects an error in its processing
and decides to throw an exception

June 15, 2006 Sara Sprenkle - CISC370 50

Passing an Exception Up

So, if we were to write a method which calls
the readLine() method of a BufferedReader:

String readData (BufferedReader in)
throws IOException
{
String strl;
strl = in.readLine();
return strl;

June 15, 2006 Sara Sprenkle - CISC370 51

Passing an Exception Up

String readData (BufferedReader in)
throws IOException

{

String strl; — Throws the |IOException

strl = in.readLine () ;
return strl;

)
Our readData() method calls a method that
can throw an |OException

readLine() will throw this exception to us

Assuming we don’t want to deal with exceptions,
we simply throw the exception as well

whoever called readData will handle exception

June 15, 2006 Sara Sprenkle - CISC370 52

Throwing Our Own Exception

If we have a program which is reading a
file byte-by-byte. We know in advance
how big this file is supposed to be.

What do we do if we reach an EOF byte
while we should still have data to read in?

We need to generate our own exception.

June 15, 2006 Sara Sprenkle - CISC370 53

Throwing Our Own Exception

For example...

String readBytes (BufferedReader in, int num bytes)
throws EOFException
{

while (. . .)
{

if (char in == EOF)

{

if (number read < num bytes)
throw new EOFException();

}

}
} Fibanacci.java

June 15, 2006 Sara Sprenkle - CISC370

Throwing Our Own Exception

if (num read < num bytes)
throw new EOFException () ;

If we encounter an EOF, we make a new
object of class EOFException

class derived from IOException
After making exception object, we throw it
The method ends at this point

The calling program needs to deal with our
exception, which tells it that we encountered an
EOF before we should have.

June 15, 2006 Sara Sprenkle - CISC370 55

A More Descriptive Exception

There are actually two constructors for all
Exception classes

default (no parameters)
one that takes a String

describe the condition that generated this
exception more fully

if (num read < num bytes)
{
String gripe = “I read “ + num read +
" when I should have read ” + num bytes;
throw new EOFException (gripe);
}

June 15, 2006 Sara Sprenkle - CISC370 56

Creating Our Own Exception Class

The EOFException class described the
error our method encountered well.
not always the case.
Many exceptions derived from IOException, but
plenty more conditions.
What do you do when you cannot find a
predefined exception class the describes
your condition?

Make a new exception class!

June 15, 2006 Sara Sprenkle - CISC370 57

Creating Our Own Exception Class

public class FileFormatException extends IOException

{

public FileFormatException ()
{1}

public FileFormatException (String gripe)
{

super (gripe) ;

}

Now, we are ready to throw exceptions of
type FileFormatException

June 15, 2006 Sara Sprenkle - CISC370 58

Catching Exceptions

After we throw an exception, some part of
our program needs to catch it
some part of our program

knows how to deal with the situation that caused
the exception

receives it
handles the problem
»Hopefully gracefully, without exiting

June 15, 2006 Sara Sprenkle - CISC370 59

The try/catch Block

The simplest way to catch an exception is to
use a try/catch block

Simplest form of this block looks like:

try {
code,
more code;,

}
catch (ExceptionType e)

{

error code for ExceptionType

}

June 15, 2006 Sara Sprenkle - CISC370 60

Try/Catch Block

The code in the try block runs first

If it completes without an exception, the catch
block(s) are skipped

If the try code generates an exception, a catch
block runs

remaining code in the try block is skipped.

June 15, 2006 Sara Sprenkle - CISC370 61

The try/catch Block

If the code inside the try {}
try { block does not throw an
codes . exception of ExceptionType,
) ' the catch {} block is skipped.

catch (ExceptionType e)

error code for If an exception of a type
ExceptionType other than ExceptionType is
) thrown inside the try {} block,
the method exits
immediately and the
program dies.

June 15, 2006 Sara Sprenkle - CISC370 62

The try/catch Block

try { . You can have more than
coae,
e el one catch {} block.
} lets you handle more than
catch (ExceptionTypel e) one type of exception that
{ can be thrown inside your
error code ’ try {} block.
for ExceptionType
} If ExceptionType1 does

catch (ExceptionType2 e) not catch the exception, it
orror code falls to ExceptionType2,
for ExceptionType and so forth

} run the first matching catch

Can catch any type with Exception e {} block.

but won’t have customized messages
June 15, 2006 Sara Sprenkle - CISC370 63

try/catch ... an Example

public void read(BufferedReader in)
{
try {
boolean done = false;
while (!done)
{
String line=in.readLine();
// this could throw IOException!
if (line == null)
done = true;
}
}
catch (IOException exp) {
exp.printStackTrace () ;

} Prints out stack trace to method call that
caused the error
June 15, 2006 Sara Sprenkle - CISC370 64

}

try/catch ... an Example

public void read(BufferedReader in)
{
boolean done = false;
while (!done)
{
try {
String line=in.readLine();
// this could throw IOException!
if (line == null)
done = true;

catch (IOException exp) {
exp.printStackTrace () ;
}
}

} More precise try/catch may help pinpoint error
But could result in messier code
June 15, 2006 Sara Sprenkle - CISC370 65

The finally Block

Can add a finally block after all possible
catch blocks

Code in finally block always runs, after the code
in the try and/or catch blocks

after the try block finishes, or if an exception
occurs, after the catch block finishes.

Allows you to clean up or do maintenance
before the method ends (one way or the
other)

E.g., closing database connections

June 15, 2006 Sara Sprenkle - CISC370 66

The try/catch/finally Blocks

RN Which statements run if:
E— Neither statement 1 nor

} . statement 2 throws an

c{:atch (EOFException e) exception
statement3; Statement 1 throws an

: statementd; EOFException

finally Statement 2 throws an

{ EOFException
Statement Statement 1 throws an

} IOException

June 15, 2006 Sara Sprenkle - CISC370 67

What to do with a Caught Exception?

We dump the stack after the exception occurs
What else can we do?

Often, the best answer is to do nothing but report
the problem

If an exception occurs in the readLine() method, our
read() method should probably pass up to whoever
called it

Instead of catching this exception, simply advertise
that the read() method can throw an IOException.
Let whoever calls the read() method catch and
handle the exception.

June 15, 2006 Sara Sprenkle - CISC370 68

A Further Example

public void read(BufferedReader in)
throws IOException
{
boolean done = false;
while (!done)
{
String line=in.readLine () ;
// this could throw IOException!

if (line == null)
done = true;
}
}
June 15, 2006 Sara Sprenkle - CISC370 69

Checked Exceptions

Why are these called checked exceptions?

the compiler checks to make sure you deal
with such an exception.

If you call a method that could generate a
checked exception, you can either
catch and handle it, or

have your method throw the exception up to
whoever called it by advertising the exception

You MUST do one of these two things

June 15, 2006 Sara Sprenkle - CISC370 70

Methods Throwing Exceptions

The online APl documentation will tell you if a
method can throw an exception.
If so, you must handle it

If your method could possibly throw an
exception (by generating it or by calling
another method that could), advertise it!
If you can’t handle all sorts of errors, that's
OK...let whoever is calling you worry about it.

However, they can only do that if you advertise
any exceptions you can’t deal with.

June 15, 2006 Sara Sprenkle - CISC370 71

Programming with Exceptions

Exception handling is slow

Use one big try block instead of nesting try-
catch blocks too deep

Don't ignore exceptions
it's better to pass them along to higher calls

June 15, 2006 Sara Sprenkle - CISC370 72

Benefits of exceptions?

June 15, 2006 Sara Sprenkle - CISC370 73

Benefits of Exceptions

Force error checking/handling
Otherwise, won’t compile
Does not guarantee “good” exception handling

Ease debugging
Stack trace

June 15, 2006 Sara Sprenkle - CISC370 74

