CISC 370: I/O Streams

Sara Sprenkle
June 20, 2006

Review

Static Methods (Assignment 1)
Inheritance

Exceptions

Scanner

June 20, 2006 Sara Sprenkle - CISC370

June 20, 2006 Sara Sprenkle - CISC370

Streams

Java handles input/output using streams

& Reads
A stream <~ ‘on e

input stream: an object from which we can
read a sequence of bytes

Abstract class: InputStream

June 20, 2006 Sara Sprenkle - CISC370

Streams

Java handles input/output using streams

Writes I'nf

3
9,
" a n dast

A stream =~

output stream: an object to which we can write
a sequence of bytes

Abstract class: OutputStream

June 20, 2006 Sara Sprenkle - CISC370 5

Streams Basics

Java handles input/output using streams
MANY (80+) types of Java streams
In java.io package

Why streams?

information stored in different source (e.g., in a
file, on a web server across the network, a
string) is accessed in essentially the same way
allows the same methods to read or write data,
regardless of its source

create an InputStream or OutputStream of the
appropriate type

June 20, 2006 Sara Sprenkle - CISC370 6

Stream Basics

Streams are automatically opened when created

Close a stream by calling its close() method
close a stream as soon as program is done with it
free up system resources

June 20, 2006 Sara Sprenkle - CISC370 7

Reading & Writing Bytes

The InputStream class has an abstract
method read() that reads one byte from the
stream and returns it.

Concrete input stream classes override read()
to provide the appropriate functionality

e.g., FilelnputStream class: read() reads one
byte from a file

Similarly, OutputStream class has an abstract
method write() to write a byte to the stream

June 20, 2006 Sara Sprenkle - CISC370 8

Reading & Writing Bytes

read() and write() are blocking operations

If a byte cannot be read from the stream, the
method waits (does not return) until a byte is read

isAvailable() allows you to check the number
of bytes that are available for reading before
you call read()

int bytesAvailable = System.in.isAvailable();
if (bytesAvailable > 0)
System.in.read (byteBuffer);

June 20, 2006 Sara Sprenkle - CISC370 9

More Powerful Stream Objects

Reading and writing bytes is very time-
consuming and code-intensive
DatalnputStream class

directly reads Java primitive types through
method calls such as readDouble(), readChar(),

readBoolean()
DataOutputStream class

directly writes all of the Java primitive types
with writeDouble(), writeChar(), ...

June 20, 2006 Sara Sprenkle - CISC370 10

File Input and Output Streams

FileInputStream: provides an input stream
that can read from a disk file
Constructor takes the name of the file:

FileInputStream fin = new
FileInputStream (“chicken.data”);

Or, uses a File object ...

File inputFile = new File(“chicken.data”);
FileInputStream fin = new FileInputStream (inputFile);

Copy.java

June 20, 2006 Sara Sprenkle - CISC370

Filtered Streams

FilelnputStream has no methods to read
numeric types

DatalnputStream has no methods to read
from a file

Java allows you to combine these two types of
streams into a connected stream

June 20, 2006 Sara Sprenkle - CISC370 12

Filtered Streams

Subclasses of FilterInputStream or
FilterOutputStream
Communicate with another stream
Add functionality

Automatically buffered 10

Automatic compression

Automatic encryption

Automatic conversion between objects and bytes
As opposed to Data source streams

communicate with a data source

file, byte array, network socket, or URL

June 20, 2006 Sara Sprenkle - CISC370 13

Filtered Streams: Reading from a file

If we wanted to read numbers from a file
Create a FilelnputStream to read the bytes from the file
Create a DatalnputStream to handle numeric type reading

Connect the DatalnputStream to the
FileInputStream

FilelnputStream gets the bytes from the file and the
DatalnputStream reads them as assembled types

FileInputStream fin = new

FileInputStream (“chicken.data”);
DataInputStream din = new

DataInputStream(fin); “wrap” finin din
double numl = din.readDouble () ;

June 20, 2006 Sara Sprenkle - CISC370 14

Connected Streams

Think of a stream as a “pipe”
FileInputStream knows how to read from a file

DatalnputStream knows how to read an
InputStream into useful types

Connect the out end of the FilelnputStream to the
in end of the DatalnputStream...

char

file FileInputStream DatalnputStream <
™\ double

DatalODemo.java
June 20, 2006 Sara Sprenkle - CISC370 15

Aside: String Buffers vs Strings

Strings are “read-only” or immutable
Use StringBuffer to manipulate a String
Instead of

String str = prevStr + “ more!”;

Which creates a new string
Use

StringBuffer str = new StringBuffer(prevStr);
str.append(“ more!”);

Many StringBuffer methods, including
toString() to get the resultant string back

June 20, 2006 Sara Sprenkle - CISC370 16

Buffered Streams

Use a BufferedIinputStream class object
to buffer your input streams

A pipe in the chain that adds buffering

DatalnputStream din = new DatalnputStream (
new BufferedInputStream (
new FileInputStream (“chicken.data”)));

June 20, 2006 Sara Sprenkle - CISC370 17

A More Connected Stream

/ char
file FilelnputStream [ERIEERIRIOIE =Ll DatalnputStream
\ double

FileInputStream reads bytes from the file

BufferedInputStream buffers bytes
speeds up access to the file.

DatalnputStream reads buffered bytes as types

June 20, 2006 Sara Sprenkle - CISC370 18

Connected Streams

Combine the many different types of streams
to can get the functionality you want
Similar for output
For buffered output to the file and to write types
create a FileOutputStream
attach a BufferedOutputStream
attach a DataOutputStream

perform the typed writing using the methods of the
DataOutputStream object

June 20, 2006 Sara Sprenkle - CISC370 19

Text Streams

We have seen streams that operate on
binary data, not text.

Text streams are somewhat complicated
because Java uses Unicode to represent
characters/strings and some operating
systems do not
we need something that will convert the
characters from Unicode to whatever encoding

the underlying operating system uses, as they
are written out.

June 20, 2006 Sara Sprenkle - CISC370 20

Text Streams

Writing text can be accomplished using classes
derived from Reader and Writer

The terms Reader and Writer generally refer to text I/O in
Java).

make an input reader that will read from the
keyboard
Create an object of type InputStreamReader

InputStreamReader in = new
InputStreamReader (System.in) ;

in will read characters from the keyboard and convert
them into Unicode for Java

June 20, 2006 Sara Sprenkle - CISC370 21

Text Streams and Encodings

You can also attach an InputStreamReader to a
FileInputStream to read from a text file...

InputStreamReader in = new InputStreamReader (
new FileInputStream(“employee.data”));

assumes the file has been encoded in the default
encoding of the underlying operating system

You can specify a different encoding by listing it in the
constructor of the InputStreamReader...

InputStreamReader in = new InputStreamReader (
new FileInputStream(“employee.data”), “ASCII”);

June 20, 2006 Sara Sprenkle - CISC370 22

Convenience Classes

Reading and writing to text files is common

Two convenience classes that combine a
InputStreamReader with a FilelnputStream
and similarly for output of text file.

For example,

FileWriter out = new FileWriter (“output.txt”);

is equivalent to

OutputStreamWriter out = new OutputStreamWriter (
new FileOutputStream (“output.txt”));

June 20, 2006 Sara Sprenkle - CISC370 23

PrintWriters

When writing text output, use PrintWriter
Easiest writer to use
Very similar to a DataOutputStream
No destination
Combine a PrintWriter with a destination writer,
such as a FileWriter

PrintWriter out = new PrintWriter (
new FileWriter (“output.txt”));

To write strings using a PrintWriter, use the same
print() and printin() methods you use with
System.out to display strings

June 20, 2006 Sara Sprenkle - CISC370 24

PrintWriters

Write data to the destination writer
in this case the file...

PrintWriter out = new PrintWriter (new
FileWriter (“output.txt”));

String myName = “Sara ‘InMyDreams’ Sprenkle”;
double mySalary = 325000;

out.print (myName) ;
out.print (% makes “);
out.print (salary);
out.println (% per year.”);
or
out.println (myName + ™ makes “ + salary +

Y per year.”);
June 20, 2006 Sara Sprenkle - CISC370 25

PrintWriters and Buffering

PrintWriters are always buffered

You can set the writer to autoflush mode

causes any writes to be executed directly on
the target destination (in effect defeating the
purpose of the buffering).

constructor with second parameter set to true

// create an autoflushing PrintWriter
PrintWriter out = new PrintWriter (
new FileWriter (“output.txt”), true);

June 20, 2006 Sara Sprenkle - CISC370 26

Formatted Output

PrintStream has new functionality in Java 1.5
printf()

double f1=3.14159, f2=1.45, total=9.43;

// simple formatting...

System.out.printf (“"%6.5f and %5.2f”, f1, f2);

// getting fancy (%n = \n or \r\n)...

System.out.printf ("%-6s%5.2f%n", "Tax:", total);

Can make formatted output easy

before 1.5, required java.util.Formatter objects to
generate the string to be passed to System.out.printin()

June 20, 2006 Sara Sprenkle - CISC370 27

Reading Text from a Stream

There is no PrintReader class

Use a BufferedReader
call readLine()

reads in a line of text and return it as a String
returns null when no more input is available

June 20, 2006 Sara Sprenkle - CISC370 28

Reading Text from a Stream
Make a BufferedReader...

BufferedReader in = new BufferedReader (
new FileReader (“inputfile.txt”));

Read the file, line-by-line...
String line;

while ((line = in.readLine()) != null)

{

// process the line

}

June 20, 2006 Sara Sprenkle - CISC370

29

Reading Text from a Stream

You can also attach a BufferedReader
directly to an InputStreamReader...

BufferedReader in2 = new BufferedReader (
new InputStreamReader (System.in));
BufferedReader in3 = new BufferedReader (

new InputStreamReader (url.openStream())

June 20, 2006 Sara Sprenkle - CISC370

30

Scanners

The best way to read from the console
used to be this combination of a
BufferedReader and InputStreamReader
wrapped around System.in

Scanner: new to 1.5
We used these last time

Scanner sc = new Scanner (System.in);

June 20, 2006 Sara Sprenkle - CISC370 31

Using Scanners
Use nextXXX() to read from it...

long templong;

// create the scanner for the console
Scanner sc = new Scanner (System.in);

// read in an integer and a string
int i = sc.nextInt();
String restOflLine = sc.nextLine();

read in a bunch of long integers

while (sc.hasNextLong())
{ templong = sc.nextLong(); }

June 20, 2006 Sara Sprenkle - CISC370 32

Scanner Details 1

Scanners do not throw |OExceptions!
For a simple console program, main() does not
have to deal with or throw IOExceptions

required with the BufferedReader/InputStreamReader
combination

A Scanner breaks its input into tokens using a
delimiter pattern, which matches whitespace
What is “delimiter pattern”?
What is “whitespace”™?

Resulting tokens are converted into values of
different types using nextXXX()

June 20, 2006 Sara Sprenkle - CISC370 33

Scanner Details II

A Scanner throws an InputMismatchException
when the token does not match the pattern for
the expected type

e.g., nextLong() called with the next token equal to
“AAA”

RuntimeException (no catching required)
You can change the token delimiter from the
default of whitespace
Scanners assume numbers are input as
decimal

Can specify a different radix

Scanners are for Java 1.5 and up only!

June 20, 2006 Sara Sprenkle - CISC370 34

Writing and Reading Objects

So now we know how to write and read
primitive types and text to and from places
What about objects?

To save object data, you need to create an
ObjectOutputStream object

ObjectOutputStream out = new ObjectOutputStream (
FileOutputStream (“chicken.data”));

June 20, 2006 Sara Sprenkle - CISC370 35

Writing Objects

To save objects to the file, call writeObject()
on ObjectOutputStream...

Chicken baby = new Chicken (“Baby”, 10, 2.8);
Rooster foghorn = new Rooster (“Foghorn”, 38, 5.8);

out.writeObject (baby) ;
out.writeObject (foghorn);

June 20, 2006 Sara Sprenkle - CISC370 36

Reading Objects

To read objects, create an
ObjectinputStream object and call
readObiject()

ObjectInputStream in = new ObjectInputStream (

new FileInputStream (“Chickens.data”));
Chicken ¢l = (Chicken)in.readObject ()
Chicken c¢2 = (Chicken)in.readObject ()
June 20, 2006 Sara Sprenkle - CISC370 37

Reading Objects

readObject() reads an object and returns it as an
Object

Make sure you cast it to the appropriate class
Use getClass() to dynamically determine the
class of the object you just read in

Where is getClass() defined?
When reading objects back in, you must carefully

keep track of how many you saved, their order,
and their type

June 20, 2006 Sara Sprenkle - CISC370 38

Object Serialization

Serialization: process of converting an object
to ordered data, to operate with streams
To allow a class of objects to be written and read
with Object[Output/Input]Stream

the class must implement the Serializable interface
Serializable interface contains no methods

“Marker interface”

used to tag a class as able to be serialized

refers to the class’s ability to be converted into a single
byte stream, which is then saved

All classes are inherently serializable
But you have to mark them as Serializable

June 20, 2006 Sara Sprenkle - CISC370 39

Object Serialization

When an object is written to a stream, it is written
as a sequence of bytes.
Stores, in order
fingerprinting information that describes the class
instance fields and their values
a more complete class description.
The ability to convert an object from its “object”
state to a byte stream state is what makes the
direct writing and reading of objects possible

June 20, 2006 Sara Sprenkle - CISC370 40

Using Serialization

Light-weight persistence

Archive an object for use in later invocation of
same program

Remote Method Invocation (RMI)
Communication between objects via sockets

June 20, 2006 Sara Sprenkle - CISC370 41

Object References and Serialization

When an object is serialized and saved to disk,
any instance fields that are references to other
objects need to be handled.

For example, a Chicken object has a String name
If the serialization process stored the object
variable (the pointer), this would not work correctly
when the object was reloaded at a later point

the object is not guaranteed to exist in memory at that
point any longer (or at all!)

June 20, 2006 Sara Sprenkle - CISC370 42

Object References and Serialization

Java will serialize all referred objects in an
object being serialized

allows the complete reconstruction of the state
of that object when it is read back in

Chicken —'_'

Recursive process
any objects referred to inside an object being
serialized will also be serialized
any objects referred to inside those objects will
be serialized
»and so forth.

June 20, 2006 Sara Sprenkle - CISC370 43

Object References and Serialization

What happens if one object is referred to by two
different objects that are both serialized?
for the Chicken class, add an instance field that is an
object variable to a Farmer class object, representing
that owner of the farm
Since more than one chicken can share a farmer,
both chicken1 and chicken2 could refer to the
same farmer object

Chicken2

A

Chicken1 » Farmer

Does farmer get serialized and saved twice?

June 20, 2006 Sara Sprenkle - CISC370 44

Object References and Serialization

No, it does not get serialized more than
once
When an object is serialized and written to
the disk, Java assigns it a serial number.
If that same object is referred to again
Java simply stores the serial number of the
first time it serialized it
Does not serialize again because it is the
same object!

June 20, 2006 Sara Sprenkle - CISC370 45

Object Serialization

Chicken1 Farmer | Chicken2

»

XX000 XX001 | XX002

Serialize Chicken1
Points to Farmer, so serialize Farmer
When Chicken?2 is serialized

Serialize chicken 2 but ...
Points to object with serial number XX001

June 20, 2006 Sara Sprenkle - CISC370 46

Object Serialization

Serialization is completely automatic

Implement the Serializable interface and store
your objects to disk using an
ObjectOutputStream and read them using an
ObjectinputStream

June 20, 2006 Sara Sprenkle - CISC370 47

Using Serialization for Cloning

The complete state of an object can be
converted into a byte stream

allows serialization to be used as an alternate
approach to object cloning
For a class to use serialization to clone itself
implement the Cloneable interface
Inside clone()
serialize the object to a byte stream

read that same byte stream back in and store it
as the clone

June 20, 2006 Sara Sprenkle - CISC370 48

Using Serialization for Cloning

You do not have to write the serialized
version of the object to a file

use a ByteArrayOutputStream to save it in
memory as a byte array

read it using a ByteArraylnputStream object
You can get the generated byte array by

calling output stream object’s toByteArray()
method

June 20, 2006 Sara Sprenkle - CISC370 49

Using Serialization for Cloning

public Object clone()
{
try |
ByteArrayOutputStream bout =
new ByteArrayOutputStream();
ObjectOutputStream out = new ObjectOutputStream (bout) ;
out.writeObject (this);
out.close();
ByteArrayInputStream bin = new ByteArrayInputStream (
bout.toByteArray ());
ObjectInputStream in = new ObjectInputStream (bin);
Object cloned = in.readObject ()
in.close();
return cloned;
} catch (Exception e) {
return null;

}

June 20, 2006 Sara Sprenkle - CISC370 50

Externalizable Interface (FYI)

To control data serialization, implement the
Externalizable interface

void readExternal(Objectinput in)
void writeExternal(ObjectOutput out)

June 20, 2006 Sara Sprenkle - CISC370 51

java.io Classes Overview

Two types of stream classes
Based on datatype: Character, Byte

Character Byte
Streams Streams
June 20, 2006 Sara Sprenkle - CISC370 52

26

Character Streams

—{ BufferedReader H L‘ineNumber‘Reader‘|

For Text

—{ CharArrayReader |

Handle any character
in Unicode set

InputStreamReader H

FileReader |

_{

FilterReader H PushbackReader |

~{ PipedReader |

~{ StringReader |

~| BufferedwWriter |

—| CharArrayWriter |

~| OutputStreamiriter H

FileWriter

Abstract Base Classes

;I Writer |——|

FilterWriter |

Shaded: Read to/write from data sinks
White: Does some processing

_|

PipedWriter

_|

_|

StringwWriter |
PrintWriter |

June 20, 2006 Sara Sprenkle - CISC370 53
«I LineNumberInputStrean ‘
—I DataInputStream ‘
-
—I BufferedInputStream ‘ For blnary data
InputStream I—-l ByteArrayInputStream |
—I PushbackInpurStream ‘
—I CheckedInputStrean ‘
-| CipherInputStream ‘
—I DigestInputStream ‘
«I InflaterInputStream ‘
«I ProgressMani tor InputStream ‘
Abstract Base Classes PipedOutputStrean I DataOutputStream |
| » FilterOutputStream BufferedOutputStream |
= OutputStream
ByteArrayOutputStream | PrintStream |
Shaded: Read to/write from data sinks
White: Does some processing
* In a different package
June 20, 2006 Sara Sprenkle - CISC370 54

27

Readers and Input Streams
Similar APIs for different data types

characters bytes
Reader InputStream
int read() int read()
int read(char cbuf]) int read(byte cbuf[])
int read(char cbuf[], int int read(byte cbuff], int
offset, int length) offset, int length)

Writers, Output Streams are similarly parallel

June 20, 2006 Sara Sprenkle - CISC370 55

java.nio.*

Additional classes for |/O
scalable I/O
fast buffered byte and character 1/O
character set conversion

Designed for performance tuning

June 20, 2006 Sara Sprenkle - CISC370 56

A little bit about Files

More to file management than input and output
Stream classes deal with with contents of a file
File class deals with file functionality

the actual storage of the file on the disk

determine if a particular file exists

when file was last modified

Rename file

Remove/delete file

June 20, 2006 Sara Sprenkle - CISC370 57

Making a File Object

The simplest constructor for a File object simply
takes the full file name (including the path)
If you do not supply a path, Java assumes the current
directory

File fl1 = new File(“chicken.data”);

Creates a File object representing a file named
“chicken.data” in the current directory...

June 20, 2006 Sara Sprenkle - CISC370 58

Making a File Object

Does not create a file with this name on disk

creates a File object that represents a file with
that pathname on the disk, even if file does not
exist

File’s exists() method
Determines if a file exists on the disk

Create a File object that represents file and call
exists() method.

June 20, 2006 Sara Sprenkle - CISC370 59

Other File Constructors

a String for the path and a String for the
filename...

File f2 = new File(
“/home/sprenks/datafiles”, ”chicken.data”);

a File object representing the directory
File f3 = new File(“/home/sprenks/datafiles”);

Plus a String representing the filename
File f4 = new File(f3, “chicken.data”);

June 20, 2006 Sara Sprenkle - CISC370 60

“Break” any of Java’s Principles?

June 20, 2006 Sara Sprenkle - CISC370 61

Not Portable

Accessing the file system is inherently not
portable

In Windows, paths are “c:\\dir”

In Unix, paths are “/home/sprenks/dir”
Relies on underlying file system/operating
system to perform actions

June 20, 2006 Sara Sprenkle - CISC370 62

Handling Portability Issues

Fields in File class
static separator
Unix: “/”
Windows: “\\ Why two \\?
static pathSeparator
For separating a list of paths
Unix: “”
Windows: ;"

Use relative paths, with separators

June 20, 2006 Sara Sprenkle - CISC370

63

Files and Directories

A File object can represent a file or a
directory

directories are special files in most modern
operating systems

Use isDirectory() and/or isFile() to see what

type of file is abstracted in the File object

June 20, 2006 Sara Sprenkle - CISC370

64

The File Class

25+ methods of the File class
manipulate files and directories
creating and removing directories
making, renaming, and deleting files
Information about file (size, last modified)
Creating temporary files

see online APl documentation

June 20, 2006 Sara Sprenkle - CISC370

65

