Inner Classes,
Graphics Programming

Sara Sprenkle
June 27, 2006

Announcements

Changing offices:
Sara: Smith 447
Ke: Smith 440
No office hours on Thursday--moving day!
CPM will be down at least Thursday, maybe longer
Assignment 3: Printed Submission Changes
Do not print Javadocs, include link in README
Do not print Java files again if already in script file
Changes are reflected in assignment writeup

Final Exam: Friday, August 11, 7-9 p.m.

June 27, 2006 Sara Sprenkle - CISC370

Review

Streams
Collections

June 27, 2006 Sara Sprenkle - CISC370

Quiz

June 27, 2006 Sara Sprenkle - CISC370

Using StringBuffer in toString

Example of toString() in Chicken class used
String concatenation

Better to use a StringBuffer
Strings are immutable
StringBuffers are mutable
More code but more efficient

Chicken.java

June 27, 2006 Sara Sprenkle - CISC370 5

Inner/Nested Classes

An inner class is a class that is defined inside
of another class
Why would you want inner classes?

An object of an inner class can directly access
the implementation (private/protected members)
of the object that defined it

Inner classes can be hidden from other classes
in the same package

Inner classes are very convenient with event-
driven (GUI) programming

Can implement helper classes/functions

June 27, 2006 Sara Sprenkle - CISC370 6

An Example — A Timer Callback

Java has a class Timer
generates an action event every interval
Interval: specified when Timer object created
In javax.swing package
Register an object to listen for event

Registered object does something in response
to event

June 27, 2006 Sara Sprenkle - CISC370

Event Handling

Registered object should implement the
java.awt.event.ActionListener interface

ActionListener specifies method:

public void actionPerformed (ActionEvent event);

June 27, 2006 Sara Sprenkle - CISC370

Event Handling — A Simple Example

BankAccount class
add interest to account every second

Create a Timer object that creates an event
every second

balance field is private
no public methods to change balance

need an object that is an ActionListener
and modifies the private balance field of
account object

June 27, 2006 Sara Sprenkle - CISC370 9

Event Handling — A Simple Example

Use an inner class

inner classes can directly access the
private/protected fields of their outer, or
enclosing, object

Inside BankAccount class, create an inner
class, InterestAdder

must implement the ActionListener interface

June 27, 2006 Sara Sprenkle - CISC370 10

The Inner Class: InterestAdder

class BankAccount

{
private double balance;
public BankAccount (double initBalance)
{ balance = initBRalance; }

private class InterestAdder
implements ActionListener
{

private double rate;

public InterestAdder (double intRate)
{ rate = intRate; }

public void actionPerformed (ActionEvent evt)
{ . . .}
}
}

June 27, 2006 Sara Sprenkle - CISC370 11

Creating the Timer and
Registering the Inner Class

add start() to the BankAccount class
create a Timer to create events every second

register the InterestAdder to listen for events
start timer

public void start ()
{
ActionListener adder = new InterestAdder (rate);
// specify callback time in milliseconds
Timer t = new Timer (1000, adder);
t.start():;
}

June 27, 2006 Sara Sprenkle - CISC370 12

The actionPerformed() Method

Implement actionPerformed() method of
InterestAdder class

public void actionPerformed (ActionEvent event)
{
double interest = balance * rate / 100;
balance += interest;
NumberFormat formatter =
NumberFormat.getCurrencyInstance () ;
System.out.println (“balance = “ +
formatter.format (balance));

June 27, 2006 Sara Sprenkle - CISC370 13

Inner Class Data Fields Access

public void actionPerformed (ActionEvent event)

{

double interest = balance * rate / 100;
balance += interest;

rate field is rate field of InterestAdder class

balance field is balance field of the outer BankAccount
class object

an inner class directly accesses its data fields and
those of its outer object

BankAccount.java
Note compiled class names
June 27, 2006 Sara Sprenkle - CISC370 14

Inner Class Data Fields Access

Inner class always has an implicit reference to the
object that created it (the enclosing object)
reference is invisible

allows inner class to directly access all of the fields of the
outer class object

Internally, compiler adds a parameter to the inner
class constructor that is a reference to the outer
object

Compiler does transparently

June 27, 2006 Sara Sprenkle - CISC370 15

Example Summary

Timer object requires an object of a class that
implements the ActionListener interface

If a regular (not inner) class, it would access the
account balance of the BankAccount object through
public methods

BankAccount would need to provide those methods
to all classes, which is not the correct thing to do

The InterestAdder inner class can access the
balance, but no other class has this privilege

June 27, 2006 Sara Sprenkle - CISC370 16

Accessing Inner Classes

InterestAdder: a private inner class
only BankAccount objects could use class

If InterestAddr were public

any other class could have also created and
used InterestAdder objects

refer to outside of the outer class as
OuterClass.InnerClass

any other portions of our program could make
objects of class BankAccount.InterestAdder

June 27, 2006 Sara Sprenkle - CISC370

17

Alternative Inner Class Constructor

using an object of the outer class
public class Bird extends ZooAnimal {
int beakLength;
class Cage {
Shape shape;
Material material;

}
Bird b = new Bird():;
Bird.Cage bc = b.new Cage():;

June 27, 2006 Sara Sprenkle - CISC370

18

Local Inner Classes

Only used inner class name InterestAdder
once when we created it in BankAccount’s
start() method
we can use a local inner class
specific/local to one method only

define inner classes within a block of code

» additionally have access to any final variables
within the block of code

June 27, 2006 Sara Sprenkle - CISC370 19

Local Inner Classes

public void start (double rate)
{
class InterestAdder implements ActionListener
{
public InterestAdder (double intRate)
{ . . .
public void actionPerformed (ActionEvent evt)
{ . . .
private double rate;

}

ActionListener adder = new InterestAdder (rate);
Timer t = new Timer (1000, adder);
t.start ()

June 27, 2006 Sara Sprenkle - CISC370 20

Local Inner Classes

Local classes do not have an access modifier

automatically restricted to the block (method) in which
they are defined

InterestAdder class is completely hidden from
outside world

no method besides start() knows about the class
We could also change the local inner class to
access the local variables on their enclosing
method

must make such variables final first

June 27, 2006 Sara Sprenkle - CISC370 21

Local Inner Classes and Local Variables

public void start(final double rate)
{
// local to start method
class InterestAdder implements ActionListener
{
public void actionPerformed (ActionEvent evt)
{
double interest = balance * rate / 100;
balance += interest;
}
}

ActionListener adder = new InterestAdder();
Timer t = new Timer (1000, adder);
t.start();

}

June 27, 2006 Sara Sprenkle - CISC370 22

Local Inner Classes and Local Variables

InterestAdder class does not need rate
instance variable

uses parameter variable of the method that
contains InterestAdder class definition

InterestAdder class does not have a
constructor

June 27, 2006 Sara Sprenkle - CISC370 23

Anonymous Inner Classes

When using a local inner class, we can take
this process a step further

If you only want to make a single object of a
certain class, you do not need to give the
class a name!

Called an anonymous inner class

June 27, 2006 Sara Sprenkle - CISC370 24

Anonymous Inner Classes

Where construction
parameters would go

public void start(final double rate)
{ v
ActionListener adder = new ActionListener()
{
public void actionPerformed (ActionEvent evt)
{
double interest = balance * rate / 100;
balance += interest;
}
}:
Timer t = new Timer (1000, adder);
t.start();

June 27, 2006 Sara Sprenkle - CISC370 25

Anonymous Inner Classes

Confusing syntax!

Create a new class that implements the
ActionListener interface
required method, actionPerformed(), is defined
inside the braces
Any needed parameters are inside the
parentheses, following the supertype name:

new SuperType (construction parameters)

{

inner class methods and data
h &

June 27, 2006 Sara Sprenkle - CISC370 26

Anonymous Inner Classes

Supertype can be an interface or a class

If an interface, inner class implements the
interface and required methods

If a class, the inner class extends that class

Anonymous inner classes do not have
constructors

Parameters are passed to the superclass
constructor

If your inner class implements an interface,
rather than extend a class, you cannot have
construction parameters

June 27, 2006 Sara Sprenkle - CISC370 27

Anonymous Inner Classes

Carefully differentiate between
construction of a new object of a class

construction of an object of an anonymous inner
class that extends that class...

// this 1s a Person object
Person queen = new Person (“Mary”):;

// this 1is an object of an anonymous

// inner class extending the Person class
Person count = new Person (“Dracula”) {. . .};

June 27, 2006 Sara Sprenkle - CISC370 28

Static Inner Classes

If inner classes are declared as static, they
do not have the implicit reference to an
instance of the outer class

Not associated with an instance of the enclosing
class

Bird.Cage bc = Bird.Cage ()

Useful for grouping classes, similar to
packages

June 27, 2006 Sara Sprenkle - CISC370 29

Enums

More powerful than enums in C
New to Java 1.5
Enums in Java are like inner class

declarations
enum Color { Red, Yellow, Green };
Color current = Color.Red;

Has static values() method
Returns array of values in order declared

Can add functionality to enum cards.Card java
cards.Deal.java

Can be used in switch statements pjanet java

Operation.java
June 27, 2006 Sara Sprenkle - CISC370 30

<

Summary of Inner Classes
Type |Scope |Inner? Summary
Static Member No Can access static fields of
enclosing class.
Accesses static and non-static
Member Member| Yes fields gf enclosmg class.
Associated w/ an instance of
enclosing class.
Local to a block of code. Can
Local Local Yes |access final fields of containing
scope. Java statement.
Only Not named. Class definition and
Anonymous point Yes |object instantiation in same
\ | defined | statement. Java expression.
June 27, 2006 Sara Sprenkle - CISC370 31

AWT Programming

June 27, 2006 Sara Sprenkle - CISC370

32

AWT Programming

Prior to Java 2 (version 1.2), all graphics
programming was done with the Abstract
Window Toolkit (AWT)

AWT relies on peer entities to draw its
graphics components

e.g., an AWT window maps to a system peer
window (a AWT window maps to a Windows or
X-Windows window)

Operating system draws the peer entity
based on what is in the AWT entity

June 27, 2006 Sara Sprenkle - CISC370 33

AWT Programming

Drawing peer entities is a very slow process

A bug in the peer graphics code, e.g., as the
AWT code that makes the window entity,
could cause hard-to-reproduce and platform-
dependent errors

Java 2 introduced Swing, javax.swing
Swing still uses AWT frames
directly draws on them

operating system does not
Makes graphics process platform-independent

Improves speed

June 27, 2006 Sara Sprenkle - CISC370 34

Swing and AWT

Swing does not completely replace AWT
Using the Swing graphics programming
model

speeds things up

allows more efficiently writing graphics program
code

We will write graphics code that uses Swing

We may return to AWT later
what AWT offers that Swing does not

June 27, 2006 Sara Sprenkle - CISC370 35

Frames

Most basic unit of graphics programming
A window that is not contained within
another window

or a top-level window
An example of a container

A container is something that can contain other
user interface components

JFrame Swing class implements a frame

June 27, 2006 Sara Sprenkle - CISC370 36

Frames

The most basic type of frame...

import javax.swing.*;
public class SimpleFrameTest {
public static void main (String args([]) {
SimpleFrame frame = new SimpleFrame();
frame.setVisible (true);

}
}

class SimpleFrame extends JFrame {
public SimpleFrame () {
setSize (WIDTH, HEIGHT) :;
}
public static final int WIDTH
public static final int HEIGHT

300;
200;

}

June 27, 2006 Sara Sprenkle - CISC370

37

Analyzing Example

Import the javax.swing package
javax stands for “Java eXtension”
Swing is an extension to the Java language
A frame has a default size of 0 x 0 pixels
extend the JFrame class with SimpleFrame

constructor of SimpleFrame sets the size of a
SimpleFrame object to WIDTH x HEIGHT

in this case 300 x 200 pixels.

June 27, 2006 Sara Sprenkle - CISC370

38

Frames

Inside the SimpleFrameTest class we
create a new object of type SimpleFrame
Creating a frame does not mean frame is
displayed on screen

have to explicitly call setVisible(true) to have the
system display the frame

Call setVisible(true) in the method that
creates the frame
e.g., the main() method of the test class

June 27, 2006 Sara Sprenkle - CISC370 39

Frame Methods

JFrame is derived from java.awt.Frame
Frame class is derived from Container class
Container: anything that can contain Ul
components

JFrame object (or any class derived from a

JFrame) has methods that are defined in

JFrame, Frame, and Container classes
Can use these methods in any JFrame object

June 27, 2006 Sara Sprenkle - CISC370 40

Components & Containers

Components
Abstract class
Everything you see is a component
Superclass of Container
Many methods
some deprecated: be careful
Container
Concrete implementation of Component
Base class of many classes
Can add and remove components to container

June 27, 2006 Sara Sprenkle - CISC370 41

Container Methods

setSize()
sets the size of the frame in pixels
setLocation()

sets the location of the frame (provide the coordinates of
where the top-left corner should be placed)

setBounds()

sets both the size and location of the frame

provide the information needed for setSize() and
setLocation()

June 27, 2006 Sara Sprenkle - CISC370 42

Container Methods
getSize()

returns size of frame
getLocation()

returns the current location of the frame, relative
to the enclosing container

getLocationOnScreen()

returns the current location of the frame, using
absolute screen coordinates

June 27, 2006 Sara Sprenkle - CISC370 43

Window Methods

Top-level window
No borders
No Menu Bar
dispose()

closes window and reclaims resources associated with it
toBack()

Sends window to back, may lose focus/activation
toFront()

Bring to front, make this the focused window

June 27, 2006 Sara Sprenkle - CISC370 44

Frame & its Methods

Top-level window with title and borders
setTitle()

sets the title of the frame (displayed in the title bar)

setResizable()
can the user resize the frame?

June 27, 2006 Sara Sprenkle - CISC370

45

Frame Methods

getExtendedState()
setExtendedState(int state)

States (defined constants):
NORMAL
ICONIFIED
MAXIMIZED_HORIZ
MAXIMIZED VERT
MAXIMIZED _BOTH

June 27, 2006 Sara Sprenkle - CISC370

46

Screen Resolution

Since people use various screen resolutions,
how can a programmer determine how big
to make the frame?

Determine the screen resolution

Obtain system-information, such as screen
resolution, using a Toolkit object

Toolkit has a method getScreenSize() that
returns the screen resolution as a Dimension
class object

Toolkit, Dimension: part of java.awt package

June 27, 2006 Sara Sprenkle - CISC370 47

Screen Resolution

Dimension object holds a width and height
value, in pixels
public instance fields

Toolkit kit = Toolkit.getDefaultToolKit ();
Dimension screenSize = kit.getScreenSize();
int screenWidth screenSize.width;
int screenHeight screenSize.height;

June 27, 2006 Sara Sprenkle - CISC370 48

Example: A Centered Window

class CenteredFrame extends JFrame
{
public CenteredFrame ()
{
Toolkit kit = Toolkit.getDefaultToolkit () ;
Dimension screenSize = kit.getScreenSize();
int screenHeight = screenSize.height;
int screenWidth screenSize.width;

setSize (screenWidth / 2, screenHeight / 2);
setLocation (screenWidth / 4, screenHeight / 4);

setTitle ("My Centered Frame”) ;

June 27, 2006 Sara Sprenkle - CISC370 49

Drawing on a Frame

JFrame contains ContentPane

a Container object within the JFrame holds
components you add, placing them in the frame

the part of the frame that holds Ul components

June 27, 2006 Sara Sprenkle - CISC370 50

Using a Content Pane

To put a component in a JFrame

get an object variable that refers to the content
pane

make a component
add the component to the content pane

Container contentPane = getContentPane();

Component compl = . . .; // make a component
Component comp2 = . . .; // make a component
contentPane.add(compl); // add compl to the c-panel
contentPane.add (comp2); // add comp2 to the c-panel
June 27, 2006 Sara Sprenkle - CISC370 51

Adding a Panel

JPanel implements a panel
A panel has a surface on which you can draw
A panel is itself a container
can add components to a panel
Useful in designing layouts

June 27, 2006 Sara Sprenkle - CISC370 52

Drawing on a Panel

To draw on a panel:
Define a new class that extends the JPanel class
Override the paintComponent() method in derived class
paintComponent() method takes one parameter
an object of type Graphics
Graphics object: a collection of settings for drawing
images and text, such as colors and fonts

All drawing in Java must go through a Graphics
object

June 27, 2006 Sara Sprenkle - CISC370 53

Drawing on a Panel

class MyPanel extends JPanel

{
public void paintComponent (Graphics g)
{

// code for drawing goes here

June 27, 2006 Sara Sprenkle - CISC370 54

The paintComponent Method()

paintComponent() is called automatically by
the system whenever the container needs
to be redrawn on the screen

Do not call this method yourself

It will be called when it needs to be
If you need to force repainting of the screen,
call the repaint() method

causes paintComponent() to be called for all
needed components with appropriate Graphics
objects

June 27, 2006 Sara Sprenkle - CISC370 55

Drawing on a Panel

The paintComponent() method, which does
the drawing, takes a Graphics object

Measurements on a Graphics object is done
in pixels, as an offset from the top-left corner

The (0,0) coordinates represent the top-left
corner of the container on which you are drawing

June 27, 2006 Sara Sprenkle - CISC370 56

Drawing on a Panel

Displaying text is a special type of drawing,
called rendering text
To render text on a panel, call drawString()

class HelloWorldPanel extends JPanel

{

75;
100;

public static final int MESSAGE X
public static final int MESSAGE Y

public void paintComponent (Graphics g)
{

super.paintComponent (g) ;

g.drawString (“Hello World.”,
MESSAGE X, MESSAGE Y);

}
\iune 27, 2006 Sara Sprenkle - CISC370 57

Drawing on a Panel

Notice we call the superclass (JPanel)
paintComponent() method
The JPanel class has its own idea on how to
draw/paint the panel

Fills in the background color
To make sure background color gets filled,
call the superclass paintComponent()
method

Every JPanel should color its background

June 27, 2006 Sara Sprenkle - CISC370 58

Changing the Text Font

Previous code drew text using default
system font

We can also change the font

We need to determine which fonts are
installed on machine running the program

June 27, 2006 Sara Sprenkle - CISC370 59

Determining the Available Fonts

GraphicsEnvironment class
Represents the graphical environment of the
system
call getAvailableFontFamilyNames()
Returns an array of Strings

Each String contains the name of a font
installed on the system

June 27, 2006 Sara Sprenkle - CISC370 60

Determining the Available Fonts

To list all fonts installed on a particular system:

import java.awt.*;

public class ListFonts

{
public static void main (String[] args)
{

String[] fontNames = GraphicsEnvironment
.getLocalGraphicsEnvironment ()
.getAvailableFontFamilyNames () ;

for (int i=0; i < fontNames.length; i++)
System.out.println (fontNames[i]) ;

}

June 27, 2006 Sara Sprenkle - CISC370 61

Determining the Available Fonts

Your program can look through font to see
if font(s) it wants is available on system

Five fonts are always available

always mapped to some font on machine
running the program

SansSerif
Serif
Monospaced
Dialog
Dialoglnput

June 27, 2006 Sara Sprenkle - CISC370 62

Creating a Font Object

After you know the type of font you want,
make a Font object that represents the font
on the system
constructor for a Font object takes three
arguments:
a String with the font name

a constant (defined in the Font class) that
describes the font style (plain, bold, italic, or bold
italic)

an integer for the point size

June 27, 2006 Sara Sprenkle - CISC370 63

Creating a Font Object

Font sansboldl4
Font helvil2

new Font (“SansSerif”, Font.BOLD, 14);
new Font (“Helvetica”, Font.ITALIC, 12);

After a Font object has been created, you
can change the font that the Graphics
object uses by calling setFont()

For example...

Font sansboldl4 = new Font (“SansSerif”, Font.BOLD, 14);
g.setFont (sansboldl4) ;
g.drawString (“Hello there in SansSerif.”, 75, 100);

June 27, 2006 Sara Sprenkle - CISC370 64

