GUI Programming: Swing
and Event Handling

Sara Sprenkle
June 29, 2006

Announcements

No class next Tuesday

My Fourth of July present to you: No quiz!
Assignment 3 due today
Review

Collections: List, Set, Map

Inner classes

AWT, Swing programming

June 29, 2006 Sara Sprenkle - CISC370

Jar Files

Archives of Java files
Essentially a Zip of the Java class files

Includes a special metadata file with the path META-
INF/MANIFEST.MF

jar creates a default metadata file, if not specified
Why jars?
Package code into a neat bundle
Easier, faster to download
Easier to use
Works similarly to tar
jar cf myapplication.jar *.class

June 29, 2006 Sara Sprenkle - CISC370 3

Jar file: Metadata

Example metadata file that will allow you to execute
the JAR with java

Manifest-Version: 1.0

Main-Class: MyApplication

Note the newline at the end_- Specifying the metadatafile
To create the jar filg/

jar cmf myManifest myapplication.jar *.class
Run it, using java

java —-Jjar myapplication.jar

Useful later when we create applets
June 29, 2006 Sara Sprenkle - CISC370 4

Using jars
Add jar files to CLASSPATH to use classes
in jar file
Example: adding a jar file to the current
classpath variable ($CLASSPATH)

setenv CLASSPATH SCLASSPATH:myapplication.jar

\ Current value of

CLASSPATH

In Eclipse, you need to “Configure Build Path”

June 29, 2006 Sara Sprenkle - CISC370 5

Factories

A Factory class exists just to create
instances of other classes

Often produces compatible instances of several
related classes

Given information about an object, will create
the object

Allows something else to determine the
appropriate customization of object

June 29, 2006 Sara Sprenkle - CISC370 6

Factories

Information
about object

Return —

appropriate
instantiation of Factory
object May have several different
implementations of object to
choose from; makes selection
June 29, 2006 Sara Sprenkle - CISC370
Factories

Tend to have private constructors
Cannot make an object using “new”
Use a static method to get the factory

Ensures that there is only one factory for all
executing classes

Factory factory = Factory.getFactory();

June 29, 2006 Sara Sprenkle - CISC370

Reviewing Swing

Frame/JFrame

Swing Implementation: JFrame

Swing naming convention: begin with J

Basic window with title

Positioning, sizing

Set image if iconified

How handles closing (setDefaultCloseOperation)
Toolkit

Get information about screen size

June 29, 2006 Sara Sprenkle - CISC370 9

Reviewing Swing

Components
Everything you see
JFrame is a component
Use setVisible to display the frame
Windows
activation
Panels
Contain content; useful for layout (more today)
Drawing on panels
Using different fonts

June 29, 2006 Sara Sprenkle - CISC370 10

More GUI components

Label

Basically, just a string
Buttons

Like a label but generates events
Checkbox

Buttons with state about if checked

CheckboxGroup

Radio buttons - only one can be selected at a
time

June 29, 2006 Sara Sprenkle - CISC370 1

More GUI Components

Choice

Drop-down list
FileDialog

Opening and saving files
List

Scrollable

Allows multiple selections
ScrollPane

scrollbars

June 29, 2006 Sara Sprenkle - CISC370 12

More GUI Components

TextField

Single line of text
TextArea

Multiple lines of text

June 29, 2006 Sara Sprenkle - CISC370 13

Menus

MenuBar
Thing across top of frame
Frame.setMenuBar(MenuBar mb);
Menu
The dropdown part
A sequence of Menultems

Menu is a subclass of Menultems, so can have
submenus

June 29, 2006 Sara Sprenkle - CISC370 14

Combining Components

Create a panel with three buttons on it
Use panel’s add method

June 29, 2006 Sara Sprenkle - CISC370 15

Placement of Components

How does the panel know where to place a
button?

How does the panel know where to place
the next button?

How does the panel know where to place
any component that is added to it?

June 29, 2006 Sara Sprenkle - CISC370 16

Layout Managers

Java uses a concept of layout managers to
place components inside a container

The LayoutManager is an object that
handles the placement of components

When a component is added to a container,
through add(), the layout manager decides
where to place the component

June 29, 2006 Sara Sprenkle - CISC370 17

The Border Layout Manager

Default layout manager of the content pane
for JFrame

Lets you choose where you want to place
each component
Center
North
South with respect to the container
East
West

June 29, 2006 Sara Sprenkle - CISC370 18

Border Layout Regions

North

West Center East

South

The edge components are laid out first
Center occupies remaining space

June 29, 2006 Sara Sprenkle - CISC370 19

Border Layout Rules

The border layout grows all components to fill the
available space

The flow layout gives each component its preferred size

If the container is resized, the edge components are
redrawn and the center region size recomputed.

To add a component to a container using a border
layout, say the content pane of a JFrame:

Container contentPane = getContentPane();
contentPane.add(yellowButton, BorderLayout.SOUTH) ;

June 29, 2006 Sara Sprenkle - CISC370 20

Adding Components
Using a Border Layout

Container contentPane = getContentPane();
contentPane.add(yellowButton, BorderLayout.SOUTH) ;

If no region of the layout is specified
Assumes center region

Since border layout grows the component
to fit the specified region

What happens if we add multiple components,
e.g., three buttons, without specifying a region?

June 29, 2006 Sara Sprenkle - CISC370 21

A Border Layout Limitation

Three

The three button grows to completely fill the center region

The one and two buttons were discarded/overwritten by
each subsequently added component

June 29, 2006 Sara Sprenkle - CISC370 22

The Flow Layout Manager

Default layout manager for a panel (not
JFrame)
What | changed our JFrame to use

Lines the components up horizontally until there
is no more room in the container
Then starts a new row of components

If the user resizes the component, the layout
manager automatically reflows the components

June 29, 2006 Sara Sprenkle - CISC370 23

The Flow Layout Manager

You can choose how to arrange the components
in each row
Default: center each row
Other options: left or right align
Change alignment using the setLayout() method
causes the panel to use a flow layout manager, with the
row components aligned to the left

setLayout (new FlowLayout (FlowLayout.LEFT)) ;

Also has hgap and vgap for gaps to put around
components

June 29, 2006 Sara Sprenkle - CISC370 24

Using Panels w/ Border Layout

Panels act as (smaller) containers for Ul
elements
Can be arranged inside a larger panel by a
layout manager
Use additional panels to address Border
Layout problem

create a panel

add some buttons to it

add that panel to the south region of content
pane

June 29, 2006 Sara Sprenkle - CISC370 25

Using Additional Panels

Get fairly accurate and precise placement of
components
Use Nested panels with

Border layouts - for content panes and enclosing
panels

Flow layouts - for panels containing the buttons
and other Ul components

FlexibleLayout.java

June 29, 2006 Sara Sprenkle - CISC370 26

Changing Layout Managers

Any container can use any layout manager

Use setLayout() to change layout manager
before you add components

// sets the layout to a new flow layout manager which

// aligns row components to the left and uses a 20 pixel
// horizontal separation and 20 pixel vertical separation
setLayout (new FlowLayout (FlowLayout.LEFT, 20, 20));

// sets the layout to a new border layout manager which

// uses a 45 pixel horizontal separation between components
// (regions) and a 20 pixel vertical separation

setLayout (new BorderLayout (45, 20));

June 29, 2006 Sara Sprenkle - CISC370 27

The Grid Layout Manager

Divides the container into columns and rows
of equal size, which collectively occupy the
entire container region

Rows and columns are aligned like a
spreadsheet

When the container is resized, the “cells” grow
and/or shrink

Cells always maintain identical sizes

June 29, 2006 Sara Sprenkle - CISC370 28

Grid Layout Manager Construction

The number and rows to be used in the
layout is specified in the construction of the
grid layout manager:

panel.setLayout (new GridLayout (5, 4)); // 5 rows, 4 cols

As with the border and flow layout managers,
you can specify a horizontal and vertical
separation (between rows and columns):

panel.setlLayout (new GridLayout (5, 4, 20, 20));
// 5 rows, 4 cols, 20 pixels between rows & between cols

June 29, 2006 Sara Sprenkle - CISC370 29

Adding Components to a Grid Layout

Components are added to a grid layout
sequentially

The first add() adds the component to the
15t row and 15t column

The second add() adds the component to
the 1st row, 2" column.

And so forth until the 15t row is filled in
Then the 2" row begins with the 15t column
Continues until the entire container is filled

June 29, 2006 Sara Sprenkle - CISC370 30

Grid Layout Rules

When a component is added to a cell, it is
resized to take up the entire cell.

This layout manager is quite restrictive but
can be useful for some applications
Example:

to create a row of buttons with identical size

make a panel that has a grid layout with one
row

add a button to each cell

set some horiz/vert separation, so the buttons
are not touching

June 29, 2006 Sara Sprenkle - CISC370 31

Handling User Interactions

June 29, 2006 Sara Sprenkle - CISC370 32

Event Basics

An event is generated from an event source and is
transmitted to an event listener

Event sources allow event listeners to register with
them

Registered listener is requesting that the event source
send its event to the listener when it occurs

Think of as mailing list for favorite band but notifies of past
releases!

All events are objects of event classes
All event classes derive from EventObject

June 29, 2006 Sara Sprenkle - CISC370 33

Java / AWT Event Handling

Listener object: implements a listener
interface

Event source: can register listener objects
and send them event objects

Event source sends out event objects to all
registered listeners when that event occurs.

Listener objects use the event object to
determine their reaction to the event

June 29, 2006 Sara Sprenkle - CISC370 34

Java / AWT Event Handling

A listener is registered with an event source
by using a line of code similar to...

eventSourceObject.addEventListener (

eventListenerObject) ;

For example...

ActionListener listenerl = . o B
JButton buttonl = new JButton(“Click Me!”);
buttonl.addActionListener (listenerl);

listener1 is notified whenever an “action
event” occurs in the button

For buttons, an action event is a button click

June 29, 2006 Sara Sprenkle - CISC370 35

Listener Objects

A listener object must belong to a class that
implements the appropriate interface
For buttons, that’s ActionListener

The listener class must implement the
method actionPerformed(ActionEvent event)

June 29, 2006 Sara Sprenkle - CISC370 36

Listener Objects and Event Handling

When the user clicks the button (button1 in our
example), the JButton object generates an
ActionEvent object

Which makes JButton a what?
JButton calls the listener object’s actionPerformed()

method and passes that method the generated
event object

A single event source can have multiple listeners
listening for its events

The source calls actionPerformed() on each of its
listeners

June 29, 2006 Sara Sprenkle - CISC370 37

An Example of Event Handling

Suppose we want to make a panel that has
three buttons on it

Each button has a color associated with it

When the user clicks a button, the background
color of the panel changes to the corresponding
color

We need two things:
A panel with three buttons on it

Three listener objects, each registered to listen
for events on one of the buttons

June 29, 2006 Sara Sprenkle - CISC370 38

Event Handling Example

Make some buttons and add them to panel

public class ColoredBackground extends JFrame {
public ColoredBackground () {

JButton red = new JButton ("Red");
red.setForeground (Color.red) ;

JButton yellow = new JButton ("Yellow");
yvellow.setBackground (Color.yellow) ;
JButton blue = new JButton ("Blue");
blue.setForeground (Color.blue) ;
cp.add(red);

cp.add(yellow) ;

cp.add (blue) ; JButton constructor takes a String
(the button’s label)
June 29, 2006 Sara Sprenkle - CISC370 39

Listener Objects

Now that we have buttons (event sources),
we need listeners

An action listener can be any class, as long as it
implements the ActionListener interface.

Make a new class that implements the
interface

actionPerformed method should set the
background color of the panel

June 29, 2006 Sara Sprenkle - CISC370 40

Our Listener Class

class ColorAction implements ActionListener

{

public ColorAction(Color c)
{ backgroundColor = c; }

public void actionPerformed (ActionEvent evtl)

{

// set panel background color here

} \ How can we do this?

private Color backgroundColor;

}

June 29, 2006 Sara Sprenkle - CISC370 41

Registering Our Listener Class

Now that we have a class that listens for the
buttons’ ActionEvents, we need to create
objects and register them with the buttons...

ColorAction yellowAction new ColorAction (Color.yellow) ;
ColorAction blueAction = new ColorAction (Color.blue);
ColorAction redAction new ColorAction (Color.red);

yellow.addActionListener (yellowAction) ;
blue.addActionListener (blueAction) ;
red.addActionListener (redAction) ;

t_/These are JButtons

June 29, 2006 Sara Sprenkle - CISC370 42

Registering Our Listener Class

When a user clicks the button with the label
“Yellow”, the yellow JButton object
generates an ActionEvent

passes this event object to the yellowAction’s
actionPerformed() method

method can then set the background color of
the frame

Any problems?

June 29, 2006 Sara Sprenkle - CISC370 43

The Listener Class & the Frame

The ColorAction objects have no access to the
frame
How can they change the background color?

There are two possible solutions:
Add a frame instance field to the ColorAction class and
set it in the constructor
ColorAction object knows which frame it is associated with
and can call the appropriate method of that frame to
change its background color

Make ColorAction an inner class of ButtonPanel1

June 29, 2006 Sara Sprenkle - CISC370 44

Listener as an Inner Class

Let’s make it an inner class...

class ColoredBackground extends JFrame

{

private class ColorAction implements ActionListener

{

public void actionPerformed (ActionEvent evt)
{
setBackground (backgroundColor) ;
repaint () ;
}
private Color backgroundColor;
}

}
June 29, 2006 Sara Sprenkle - CISC370 45

The actionPerformed() Method

public void actionPerformed (ActionEvent evt) {
setBackground (backgroundColor) ;
repaint () ;

}

ColorAction class does not have setBackground()
or repaint() methods

Since it is an inner class of ColoredBackground, it
can directly access that class’ instance fields and
methods

Inner class calls the outer class’s method using its
own private inner data (backgroundColor)

Then it calls the outer class’s repaint() method

Redraw the frame
June 29, 2006 Sara Sprenkle - CISC370 46

Event Listeners as Inner Classes

A common and beneficial practice
Event listener objects typically need to do
something to other objects when their
corresponding event occurs
It is often possible to place the listener class inside
the class whose state the listener should modify
It makes good sense from an OOP design
standpoint

Not violating encapsulation rules ...

also makes things easier

June 29, 2006 Sara Sprenkle - CISC370 47

A Different Listener Approach

Any object of a class that implements
ActionListener can listen for action events
from a source

we could make our ColoredBackground class
listen for its own buttons’ events

implement the interface and do the correct
registering with the buttons

June 29, 2006 Sara Sprenkle - CISC370 48

A Different Listener Approach

class ColoredBackground?2 extends JFrame
implements ActionListener
{
public ColoredBackground? ()
{

yellow.addActionListener (this) ;
blue.addActionListener (this);
red.addActionListener (this);

}

public void actionPerformed (ActionEvent evt)
{

// set background color

}

June 29, 2006 Sara Sprenkle - CISC370 49

A Different Listener Approach

The ColoredBackground method
actionPerformed() will run whenever any of
the buttons is clicked

How do we find out which button was pressed?

public void actionPerformed (ActionEvent evt)
{
Object source = evt.getSource();
// gets the source that generates this event

if (source == yellow)
else if (source == blue)
else if (source == red)

) Why ==, not equals()?

June 29, 2006 Sara Sprenkle - CISC370 50

Which way is better?

The inner class approach makes sense from an
OOP design point
Each event source gets its own listener, which can
directly modify the panel as it needs to do
Having the panel itself listen is much more
straightforward
Since the panel needs to change, have it listen!
But, the handling method must determine the source of
the event and switch its behavior
Consider: How easy to add additional event
sources for each case?

June 29, 2006 Sara Sprenkle - CISC370 51

Which Way is Better?

Neither way is “better.”
If a container has multiple Ul components
that generate events, the container listening
for and handling them all gets really
confusing and challenging
Inner classes make sense

Somewhat confusing at first

Great benefits

We will tend to use the inner class listeners

June 29, 2006 Sara Sprenkle - CISC370 52

Simplification of our Event Handlers

For each button, we do four things:
Construct the button with a label string
Add the button to the panel

Construct an action listener with the appropriate
color

Register that listener with the button

Make a method that does this for us to
simplify the code

June 29, 2006 Sara Sprenkle - CISC370 53

Simplification of our Event Handlers

void makeButton (String label, Color backgroundColor)
{
JButton button = new JButton(label);
add (button) ;
ColorAction action = new ColorAction (backgroundColor) ;
button.addActionListener (action) ;

Makes the ColoredBackground constructor
much simpler...

public ColoredBackground ()

{
makeButton (“Yellow”,Color.yellow) ;
makeButton (“Blue”,Color.blue) ;

makeButton (“Red”, Color.red) ;
June 29, 2?06 Sara Sprenkle - CISC370 54

One More Step

We only use the ColorAction class in the
makeButton() method

How can we further simplify the code?

June 29, 2006 Sara Sprenkle - CISC370 55

One More Step

Make the ColorAction class an anonymous
inner class

only use this class at one point
define it on the fly

June 29, 2006 Sara Sprenkle - CISC370 56

An Anonymous Class Listener

void makeButton (String label, final Color bgColor)
{
JButton button = new JButton(label);
add (button) ;
button.addActionlListener (new ActionListener ()
{
public void actionPerformed (ActionEvent evt)
{
setBackground (bgColor) ;
repaint () ;

June 29, 2006 Sara Sprenkle - CISC370 57

Window Events

Not every event is as simple to handle as a
button click

When a user closes a window, the window
simply stops being displayed
Program will not end

Suppose we want our program to end when
a certain frame is closed

Closing a frame is a window event
in contrast to an action event

June 29, 2006 Sara Sprenkle - CISC370 58

Window Events

To catch window events, you need to create
an object of a class that implements the
WindowListener interface

WindowListener object is registered with the
frame using the frame’s addWindowListener()
method

Note the parallels with action events

change the type of listener and register it using a
different (but similar) method call

June 29, 2006 Sara Sprenkle - CISC370 59

The WindowListener Interface

The WindowListener interface contains
seven methods
One for each type of window event

A class that implements WindowListener must
have all seven methods

June 29, 2006 Sara Sprenkle - CISC370 60

The WindowListener Interface

public interface WindowListener

{
void
void
void
void
void
void
void

June 29, 2006

windowOpened (WindowEvent e);
windowClosing (WindowEvent e);
windowClosed (WindowEvent e);
windowIconified (WindowEvent e);
windowDeiconified (WindowEvent e);
windowActivated (WindowEvent e);
windowDeactivated (WindowEvent e);

Sara Sprenkle - CISC370 61

Implementing a WindowListener

To create an object that can listen for
window events on a frame and end the
program when the frame is closed...

class Terminator implements WindowListener

{

public void windowClosing (WindowEvent evt)

{

System.exit (0) ;

}

For JFrame’s use setDefaultClosedOperation

public void windowOpened (WindowEvent e) {}
public void windowClosed (WindowEvent e) {}
public void windowIconified (WindowEvent e) {}
public void windowDeiconified (WindowEvent e) {}
public void windowActivated (WindowEvent e) {}
public void windowDeactivated (WindowEvent e) {}

} June 29, 2006

Sara Sprenkle - CISC370 62

31

Adapter Classes

Typing the code for the six methods that don’t do
anything is somewhat tedious

Most AWT listener interfaces have a corresponding
adapter class

Class that implements all of the methods in the interface
but does nothing inside all of them.

There are no adapter classes for AWT interfaces with
only one method (such as ActionListener)

June 29, 2006 Sara Sprenkle - CISC370 63

Adapter Classes

If you want an WindowListener class that
does nothing with six of the seven window
events, but ends the program when the
window is closed
create a new class that extends the
WindowAdapter class and override the
method(s) you are interested in
When could extending a class be a problem?

How big of a concern is that for this specific
casel/type of class?

June 29, 2006 Sara Sprenkle - CISC370 64

Extending an Adapter Class

We can now redefine our Terminator class in
much less code...

class Terminator extends WindowAdapter
{
public void windowClosing (WindowEvent evt)
{
System.exit (0) ;
}
// all other methods are the same as in
// WindowAdapter, all do nothing.

June 29, 2006 Sara Sprenkle - CISC370 65

Registering a WindowListener

Now, we can register our Terminator class to
listen for window events.

Assuming that our “main” window frame is
named frame1 (e.g., if frame1 is closed the
program should exit)...

WindowListener listenerl = new Terminator();
framel.addWindowlListener (listenerl) ;

June 29, 2006 Sara Sprenkle - CISC370 66

One Step Farther...

Using the WindowAdapter class instead of writing
out all the methods in the WindowListener
interface is nice, but we can go one step farther...

framel.addWindowListener (new

WindowAdapter ()

{
public void windowClosing (WindowEvent evt)
{

System.exit (0) ;

}

P

June 29, 2006 Sara Sprenkle - CISC370 67

One Step Farther...

This code does five things:

Defines a new class without a name that extends the
WindowAdapter class

Adds a windowClosing() method to that anonymous
class (the exits the program)

Inherits the remaining six empty methods from the
WindowAdapter class

Creates an object of this new class
This object also does not have a name

Passes this new no-name object to the
addWindowListener method of frame1

June 29, 2006 Sara Sprenkle - CISC370 68

The AWT Event Hierarchy

There are 10 different types of events in the
AWT...

June 29, 2006 Sara Sprenkle - CISC370 69

AWT Event Types — Semantic Events

Four types of semantic events

an event that expresses what a user did, such as clicking
a button.

ActionEvent — button click, menu selection,
selecting a list item, pressing ENTER in a text field

AdjustmentEvent — user adjusted a scroll bar

ItemEvent — user made a selection from a set of
checkboxes or list items

TextEvent — the contents of a text field or text area
were changed

June 29, 2006 Sara Sprenkle - CISC370 70

AWT Event Types — Low-Level Events

6 types low-level events
An event that makes a semantic event possible

ComponentEvent — component was changed
(resized, moved, shown, etc...)

KeyEvent — a key was pressed or released

MouseEvent — the mouse was moved, dragged, or
a button was pressed

FocusEvent — component got or lost focus

WindowEvent — window was activated, closed,
etc.

ContainerEvent — component was added or
deleted.

June 29, 2006 Sara Sprenkle - CISC370 71

AWT Event Types

Example: adjusting a scrollbar is a semantic
event

made possible by some low-level events such as
dragging the mouse

As a general rule, low-level events cause
semantic events to happen

June 29, 2006 Sara Sprenkle - CISC370 72

Event Listeners

11 interfaces that correspond to AWT
event listeners:

ActionListener, AdjustmentListener,
ItemListener, TextListener,
ComponentListener, ContainerListener,
FocusListener, KeyListener,
MouselListener, MouseMotionListener,
and WindowListener.

June 29, 2006 Sara Sprenkle - CISC370 73

Event Listeners

See Javadocs for interfaces and all the
methods that are in them

Each listener interface with more than one
method has a corresponding adapter class
implements the interface with all empty methods

June 29, 2006 Sara Sprenkle - CISC370 74

Components and ComponentEvents

A component is a user interface element
such as a button, textfield, or scrollbar
All low-level events inherit from ComponentEvent

getComponent() returns the component that originated
the event
same thing as getSource(), but it returns the object as a
Component and not an Object
For example, if a key event was generated because of
an input into a text field, then getComponent returns a
reference to that text field

June 29, 2006 Sara Sprenkle - CISC370 75

Containers and ContainerEvents

A container is a screen area or component

can contain components, such as a window or
a panel

A ContainerEvent is generated whenever
a component is added or removed from the
container

supports the programming of dynamically-
changing user interfaces

June 29, 2006 Sara Sprenkle - CISC370 76

FocusEvents

A FocusEvent is generated when a
component gains or loses focus

FocusListener must implement two
methods:

focusGained(): called whenever the event
source the listener is registered with gains the
focus

focusLost(): called whenever the event source
the listener is registered with loses the focus

June 29, 2006 Sara Sprenkle - CISC370 77

KeyEvents

A KeyEvent is generated when a key is
pressed or released.

A KeyListener must implement three
methods:
keyPressed() will run whenever a key is pressed

keyReleased() will run whenever that key is
released

keyTyped() combines the two — it runs when the
key is pressed and then released, and signifies a
keystroke

June 29, 2006 Sara Sprenkle - CISC370 78

KeyEvents

With what type of object does a KeyListener
register with?

What is an event source for a KeyEvent?

Any Component can be an event source for a
KeyEvent

A component generates a KeyEvent whenever a key is
typed in that component

For example, if the user types into a textfield, that
textfield will generate the appropriate KeyEvents

June 29, 2006 Sara Sprenkle - CISC370 79

MouseEvents

MouseEvents are generated like KeyEvents
mousePressed()
mouseReleased()
mouseClicked()
You can ignore the first two if you only care about
clicking
Call getClickCount() on a MouseEvent object to distinguish
between a single and a double click
You can distinguish between the various mouse buttons by
calling getModifiers() on a MouseEvent object
E.g., middle button

June 29, 2006 Sara Sprenkle - CISC370 80

MouseEvents

MouseEvents are also generated when the mouse
pointer enters and leaves components
(mouseEntered() and mouseExited()).

All of those methods are part of the MouseListener
interface

The actual movement of the mouse is handled with
the MouseMotionListener interface.

most applications only care about where you click and
not how and where you move the mouse pointer around

June 29, 2006 Sara Sprenkle - CISC370 81

Model - Viewer - Controller (MVC)

A common design pattern for designing GUIs
Design Pattern: proven way to design something
Separate
Model: application data
View: graphical representation
Controller: input processing

—
Modifies Notifies
Controller |———— Model —>

June 29, 2006 Sara Sprenkle - CISC370 82

View

Model-Viewer-Controller

Can have multiple viewers and controllers

Can modify one component without affecting
others

June 29, 2006 Sara Sprenkle - CISC370 83

Model

Code that carries out some task
Nothing about how view presented to user
Purely functional

Must be able to register views and notify
views of changes

June 29, 2006 Sara Sprenkle - CISC370 84

Multiple Views

Provides GUI interface components for
model

User manipulates view
Informs controller of change

Example of multiple views: spreadsheet data
Rows/columns in spreadsheet
Pie chart

June 29, 2006 Sara Sprenkle - CISC370 85

Multiple Controllers

Update model as user interacts with view
Calls model’s mutator methods

Views are associated with controllers

June 29, 2006 Sara Sprenkle - CISC370 86

Designing a Card Game

What is the
Model
View(s)

Solitaire?
Poker?
Controller(s)

June 29, 2006 Sara Sprenkle - CISC370 87

Project 1: Freecell

Part 1: Understand code base

Given a Solitaire code base, Javadocs (API),
example code that uses code base

Compile, use, and understand

Part 2: Use code base to implement Freecell
GUI, Event handling
Implementing/Enforcing the Freecell rules

June 29, 2006 Sara Sprenkle - CISC370 88

Project 1: Freecell

Submission: printed, electronic, and demo
Submission due Thursday, July 13
New: Test Plan
Individual classes, whole application
Documentation: describe design decisions
Demo with Ke

Schedule demos Monday-Wednesday of
following week

(Project 2 demos with Sara)
Script file doesn’'t make as much sense

June 29, 2006 Sara Sprenkle - CISC370 89

