Concurrent Programming,
Threads

Sara Sprenkle
July 25, 2006

Announcements

Assignment 5 due on Thursday
Assignment 6 out on Thursday
Project 2 out ... soon

Quiz

July 25, 2006 Sara Sprenkle - CISC370

Review: UI Design

July 25, 2006 Sara Sprenkle - CISC370

Review: UI Design

Controlling environment
Settings, options

Consistency

Design for Extremes

Activity-based Planning

Usability Testing

Color

July 25, 2006 Sara Sprenkle - CISC370

Review: Regular Expressions

Character Classes
: any character except line characters
\d : any digit
\D: any non-digit
[]: programmer-defined character classes
Capturing group
Designated by ()

July 25, 2006 Sara Sprenkle - CISC370

Review: Regular Expressions

Some other special characters
A not ([*Z] # [A-Y]), or the beginning of the line
$: end of the line
*: =20 occurrences of pattern
+: =1 occurrences of the pattern
?: matches 0 or 1 occurrences of the pattern

What if want to specify all but the A
character?

July 25, 2006 Sara Sprenkle - CISC370

Review: JUnit

Scope of testing?
What are benefits of JUnit?
Where do tests go?

July 25, 2006 Sara Sprenkle - CISC370

Project 1 Discussion

Why was PileModel an inner class?
Did it have to be an inner class?

How much of the original codebase did you
need to understand?

At what level was your understanding for each
class?

How much of the original codebase did you
modify?

How did you design your code?

July 25, 2006 Sara Sprenkle - CISC370

Multitasking

Very common in modern operating systems

Ability to have more than one program
running at the same time

Or making it ook like this is happening

In reality, the operating system is distributing
resources (most noticeably CPU time) to
create this impression of parallel activity.
Only one program is running at once

the OS simply switches from one to another in
very quick switches

July 25, 2006 Sara Sprenkle - CISC370 9

Multitasking

What are goals of multitasking?

When are “smart” times to switch between
tasks?

Task 1

Task 2

CPU

July 25, 2006 Sara Sprenkle - CISC370 10

Multitasking

Goal: keep CPU completely utilized

Policies
Assign priorities to threads
Switch when one task has to pause for I/O
Set time interval

July 25, 2006 Sara Sprenkle - CISC370

Multithreading

Process: a “program” that can be
multitasked

To view the processes on your machine: ps or

Task Manager
Multithreaded programs (or concurrent
programs)

one program can appear to be doing multiple
things at one time

Thread or thread of execution
A task; a light-weight process
How is a thread different than a process?

July 25, 2006 Sara Sprenkle - CISC370

Threads vs. Processes

A process runs in its own context

Seems to have its own CPU, memory,
reqgisters, ...

Data is not shared between processes
A thread also seems to have its own CPU,
execution stack, and registers

All of the threads in a program share the same
variables and data

Threads run in the context of a program

July 25, 2006 Sara Sprenkle - CISC370 13

Processes in UNIX

‘&’ runs a process in the background

Can use Control-Z to “suspend” process
fg: continue process in foreground

bg: put process in the background, e.g., to get
use of terminal back

July 25, 2006 Sara Sprenkle - CISC370 14

Advantages of Multithreading

Program can do multiple things, while one
task is paused or waiting on something

An internet browser can communicate with
multiple hosts, open an email editing window,

and render images

Java uses multithreading

runs a garbage-collection thread in the
background to deal with memory management

July 25, 2006 Sara Sprenkle - CISC370

Concurrent vs. Parallel Programs

Parallel program: performs more than one
task on more than one processor
E.g., one task on each processor
A concurrent program performs more than
one task on one processor
Logically/usually, one task/thread
In reality, only one thread runs at a time
Each thread runs for a short period of time

After interval, the thread scheduler chooses
another thread to run

July 25, 2006 Sara Sprenkle - CISC370

Using Threads in Java

Use the java.util. Timer class (and others)
Extend the java.lang.Thread class
Implement java.lang.Runnable interface

July 25, 2006 Sara Sprenkle - CISC370 17

java.util. Timer

Execute a task after a delay
Execute a task at a specific time

Each task is represented as a subclass of
TimerTask with the run() method overridden

Tasks should not take a lot of CPU time

Timer starts on construction
Different from threads... Reminder.java

java.swing.Timer
Uses an ActionListener instead

July 25, 2006 Sara Sprenkle - CISC370 18

Creating a Thread: Approach 1

Create a thread by extending the Thread
class

A Thread class object must have a run()
method
runs when the thread starts

causes the thread to exit when the run() method
ends

Example

a thread that will sleep (wait) for a specified
amount of time

then wakes up and prints its info

July 25, 2006 Sara Sprenkle - CISC370 19

class PrintThread extends Thread ({
private int sleepTime;
public PrintThread(String name) {
super (name) ;
sleepTime = (int)Math.random() * 5000;
System.out.println (“Name:” + getName () +
“; Sleep:” + sleepTime);
}
public void run() {
try {
System.out.println (getName () +
Y going to sleep.”);
Thread.sleep (sleepTime) ;
} catch (InterruptedException exp) {
System.out.println (exp) ;
}
System.out.println (getName () +
“ done sleeping.”);

} See corrected version
} July 25, 2006 Sara Sprenkle - CISC370 20

Then, we can make a class to use PrintThread objects...

public class ThreadTester {
public static void main(String argsl[]) {
PrintThread thrl, thr2, thr3, thr4;

}
}

July 25, 2006

thrl =
thr2 =
thr3 =
thrd =

System.

thrl.s
thr2.s
thr3.s
thrd.s

new
new
new
new

tart
tart
tart
tart

out.

PrintThread (“Thread 17);
PrintThread (“Thread 27);
PrintThread (“"Thread 3”);
PrintThread (“Thread 4”)

4

println (“Starting Threads...”);

():
()
():
()

4

4

System.out.println (“Threads started.”);

Sara Sprenkle - CISC370 21

Output from tester class . . .

Name:
Name:
Name:
Name:

Thread 1; S
Thread 2; S
Thread 3; S
Thread 4; S

Starting Threads
Threads Started

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
July 25, 2006

SR NN W

going
going
going
going
done
done
done
done

to
to
to
to

leep: 1446
leep: 40

leep: 1009
leep: 4997

Random times--between
0 and 5 seconds

sleep.
sleep.
sleep.
sleep.

sleeping.
sleeping.
sleeping.
sleeping.
Sara Sprenkle - CISC370 22

Creating a Thread: Approach 1

A thread is created by instantiating an object
of a class derived from Thread
Thread class constructor takes one
parameter: the name of the newly created
thread

Name can be any string you want

Helps programmer to keep track of the threads in
the program

Additional constructors

July 25, 2006 Sara Sprenkle - CISC370 23

Creating a Thread: Approach 2

What if want a class that is already a
subclass to be a thread?

Implement the Runnable interface
Implement a run() method

July 25, 2006 Sara Sprenkle - CISC370 24

Creating a Thread: Approach 2

A Thread object must still be created to run the
thread

Pass the Runnable object to the constructor for the
Thread class

public Thread(Runnable runnableObject)
Can name the thread object as well...

public Thread(Runnable runnableObject,
String threadName)

Registers the run() method of the runnableObject
as the code to run when this Thread object’s start()
method is called

July 25, 2006 Sara Sprenkle - CISC370 25

Other Options

java.swing.Timer

For use in GUIs
java.swing.SwingWorker

Executing threads in the background

July 25, 2006 Sara Sprenkle - CISC370 26

Thread Lifetime

A thread can be in one of four states at any
given moment in time

New

Runnable

Blocked

Dead

July 25, 2006 Sara Sprenkle - CISC370 27

Thread States: New

When a thread has just been created

In this state, the program has not yet started
executing the thread’s internal code

Can only call start()
Otherwise, get lllegalThreadStateException

After the thread’s start() method is called, it
enters the runnable state.

July 25, 2006 Sara Sprenkle - CISC370 28

Thread States: Runnable

Thread is ready to execute

Might not be actually running on the CPU
Operating system must schedule the thread

When OS schedules thread and the thread is
actually running, Java still considers the thread
runnable
In most concurrent programming models,
there is a distinction between the runnable
and running states

July 25, 2006 Sara Sprenkle - CISC370 29

Thread States: Runnable

Each OS has policies for scheduling
threads

Most Java-supporting OSes support
preemptive multithreading and time-slicing

allows one thread to run, then interrupting it to
allow another thread to run

Remember: a runnable thread may or may
not be running at any given moment

- - — - - >

July 25, 2006 Sara Sprenkle - CISC370 30

Thread States: Blocked

A thread enters the blocked state whenever:
The thread calls its sleep() method

The thread calls an operation that blocks on input/output

operation does not return from the call until the I/O
operations are complete

The thread calls wait() method

The thread tries to lock an object that is currently locked
by another thread

A different thread calls the suspend() method of the
thread

suspend() is deprecated; don't call it

When a thread is blocked, another thread is
scheduled to run

July 25, 2006 Sara Sprenkle - CISC370 31

Thread States: Blocked

When a thread is reactivated, it returns to
the runnable state

The thread scheduler checks if the
reactivated thread has a higher priority than
the currently running thread

If thread.getPriority() > running.getPriority()

scheduler preempts currently running thread to
schedule reactivated, higher-priority thread

July 25, 2006 Sara Sprenkle - CISC370 32

Thread States: Blocked

A thread returns to the runnable state from the
blocked state

If the thread called sleep(), the specified number of
milliseconds to sleep has passed

If the thread is waiting for blocked 1/O, the specified |/O
request completed

If the thread called wait(), some other thread must call
notify() or notifyAll()

If the thread is waiting for an object lock held by another
thread, other thread must release the lock
One-to-one correspondence between ways to enter
the blocked state and ways to return from the
blocked state

July 25, 2006 Sara Sprenkle - CISC370 33

Thread States: Dead

A thread can enter the dead state in one of
two cases:

It dies naturally when the run() method exits
normally

It dies abnormally because the run() method
generated an uncaught exception

isAlive() method
To find out if a thread is currently alive
returns true if the thread is runnable or blocked
returns false if the thread is new or dead

July 25, 2006 Sara Sprenkle - CISC370 34

Thread States: Possible Transitions

sleep ()

)4

Not exhaustive
July 25, 2006 Sara Sprenkle - CISC370 35

Thread States and Methods

Some thread methods are only valid when
the thread is in certain states

start() can only be called on a thread in the new
state

sleep() can only be called on a thread in the
runnable state

If a program attempts to calls a method on a
thread that is in invalid state, an
lllegalThreadStateException is thrown.

July 25, 2006 Sara Sprenkle - CISC370 36

Thread States

getState()
NEW
RUNNABLE
BLOCKED

Waiting on a monitor

WAITING
TIMED_WAITING
TERMINATED

July 25, 2006 Sara Sprenkle - CISC370 37

Interrupting Threads

A thread dies when its run() method ends
the only way a thread can end

A thread should periodically test to see if it
should terminate...

public void run() {
while (no die request and still work to do)
{ do work }
// die request or no more work, so end and thread dies

}

July 25, 2006 Sara Sprenkle - CISC370 38

Interrupting Threads

Threads frequently sleep or wait to give other
threads a chance to do work (to use the CPU)

When a thread is sleeping, it cannot actively
check to see if it should terminate

Java provides an interrupt() method

When this method is called on a thread that is
currently blocked, the blocking call (sleep() or
wait()) is terminated with an
InterruptedException

Checked exception What does that mean?

July 25, 2006 Sara Sprenkle - CISC370 39

Interrupting Threads

Interrupting a thread using the interrupt()
method does not necessarily mean that the
thread should terminate

Grabs the attention of the thread

Like poking at a sleeping roommate
Place code that will decide how to react to
the interruption inside the catch clause of the
run() method

July 25, 2006 Sara Sprenkle - CISC370 40

The main execution loop calls sleep or wait. If the thread is
interrupted during one of these calls, the catch clause runs.

public void run() {
try {
// main thread execution loop
while (more work to do)
{
do this work
}
}
catch (InterruptedException exp)
// thread was interrupted during sleep/wait

{
}

// exit the run method, so the thread dies
}

July 25, 2006 Sara Sprenkle - CISC370 41

Interrupting Threads

If the example thread is interrupted when it
is not sleeping or waiting, no
InterruptedException is generated

the thread must check that it has not been
interrupted during the main execution loop

interrupted()
returns true if the thread has been interrupted

while (!interrupted() && more work to do)
{ // main thread execution loop

}

July 25, 2006 Sara Sprenkle - CISC370 42

I/O and Thread Interruptions

If a thread is blocked waiting for 1/O, the
input/output operations will not be interrupted
by the call to interrupt()

Why?

When the blocking I/O operation returns, the

thread will check to see if it has been interrupted

July 25, 2006 Sara Sprenkle - CISC370 43

Waiting for Thread Completion

It is possible to wait for a thread to complete.
Call the thread’s join() method

For instance, to wait for thread1 to complete
call...

threadl.join () ;

A timeout value can also be specified

if the thread does not die within the specified
timeout, an InterruptedException is generated

July 25, 2006 Sara Sprenkle - CISC370 44

Waiting for Thread Completion

To wait for 500 milliseconds for thread1 to die,

specify the timeout value in the call to the
join() method

try {
threadl.join (500) ;

System.out.println (“"Thread exited.”);
}

catch (InterruptedException expl) {
System.out.println(“Timeout expired!”);

}

July 25, 2006 Sara Sprenkle - CISC370 45

Thread Priorities

Each thread has a priority

a numerical representation of the relative

“importance” of the thread running, compared to
the other threads

A thread’s priority can be set using the
setPriority() method

A thread’s priority must be between

MIN_PRIORITY and MAX_PRIORITY
Constants, defined as 1 and 10
NORM_PRIORITY, defined as 5

July 25, 2006 Sara Sprenkle - CISC370 46

Thread Priorities and Scheduling

Fixed-priority Scheduling
Whenever the thread scheduler has to schedule a new
thread to run, it generally picks the highest-priority
runnable thread

The highest-priority thread keeps running until either
it yields by calling the yield() method

it becomes non-runnable (dying or entering the blocked
state)

a higher-priority thread becomes runnable

What happens if there is more than one runnable
thread with the same highest priority?

July 25, 2006 Sara Sprenkle - CISC370 47

Thread Priorities and Scheduling

What happens if there is more than one
runnable thread with the same highest
priority?
Up to the underlying operating system'’s policy
It doesn’t matter which thread is chosen
There is no guarantee this is a fair process!

OS could pick a random choice or pick the first of
the highest-priority threads

July 25, 2006 Sara Sprenkle - CISC370 48

Program Termination and Threads

Whenever at least one thread is alive
(runnable or blocked), the program/process
the thread(s) belong to is still active

Even if the main() method exits, an alive
thread will prevent a program from
terminating

A daemon thread will not prevent a program
from terminating

July 25, 2006 Sara Sprenkle - CISC370 49

Daemon Threads

Daemon thread: a thread that runs solely for the
benefit of other threads
Example: the Java garbage collector

Daemon threads are exactly like normal threads
with one difference
A live daemon thread will not stop the JVM from
terminating
You need to have at least one non-daemon thread to
keep the program alive
To set a thread to be a daemon thread, call
setDaemon() before calling start()

Use isDaemon() to see if a thread is running as a
daemon

July 25, 2006 Sara Sprenkle - CISC370 50

Thread Groups

To simplify working with multithreaded
programs, Java introduces the concept of
thread groups

Thread Group: a convenient way of
grouping related threads

In an internet browser, multiple threads
may load different images all to be
displayed on the same page

If the user clicks the Stop button, all of these

threads should be interrupted, so all of these
threads are in the same thread group

July 25, 2006 Sara Sprenkle - CISC370 51

Thread Groups

Create a new thread group with a name...

ThreadGroup imgThrs = new ThreadGroup (“ImageThreads”) ;

When a thread object is constructed,
specify its group in the constructor...

Thread thrl = new Thread(imgThrs, “Image Thread 1”);

To see if any threads in a group are
runnable, call activeCount(), which will
return an integer number of runnable
threads in the thread group...

if (imgThrs.activeCount()) > 0

July 25, 2006 Sara Sprenkle - CISC370 52

Thread Groups

An entire group of threads can be
interrupted at the same time

imgThrs.interrupt () ;
// interrupts all threads in the thread group

Thread groups can have child subgroups

A newly created thread group is, by default,
a child of the current thread group

Methods such as activeCount() and
interrupt() work on all threads in their group
and in all child groups

July 25, 2006 Sara Sprenkle - CISC370 53

Thread Synchronization

In most applications where multithreading is
used, more than one thread will need to
access the same data

Can turn into a problem when two threads have
access to the same object and then both modify
the state of the object

Depending on the order of data access, the
object can become corrupted

Known as a race condition

July 25, 2006 Sara Sprenkle - CISC370 54

Thread Synchronization

Suppose we have a program that is handling
transactions for a bank

For each transfer, the program starts a
separate thread to perform the transfer

The thread gathers the necessary
information and calls the transfer() method of
the bank object

July 25, 2006 Sara Sprenkle - CISC370 55

The transfer function deducts the transfer amount from the
indicated account and adds it to the indicated account.

class Bank {
int num transfers;

public void transfer (int from, int to,
int amount)
{

if (accounts[from] < amount)

return;
accounts[from] -= amount;
accounts[to] += amount;

num transfers++;

}

July 25, 2006 Sara Sprenkle - CISC370 56

Thread Synchronization

Suppose we have two transfer threads that
run at once

Remember that a thread can be interrupted at

any time
Note that the statement
accounts[from] -= amount;

is really composed of three parts

(1) loading accounts[from] into a register
(2) subtracting amount from it

(3) saving the result back into memory

July 25, 2006 Sara Sprenkle - CISC370 57

Thread Synchronization

The program has two transfer threads
running and they both call the transfer
function of the Bank object, each of which
will execute these three steps

Where is the potential problem?

Thread 1: Thread 2:

LOAD ACCOUNTS[from], RI1 LOAD ACCOUNTS[from], R1
ADD R1, amount ADD R1, amount
SAVE R1, ACCOUNTS|[from] SAVE R1, ACCOUNTS[from]

July 25, 2006 Sara Sprenkle - CISC370 58

Thread Synchronization

Since a thread can be interrupted at any time
for another thread to run, this order of
execution is possible...

THR1: LOAD ACCOUNTS[from], R1 Thread.1 gets preemptgd
THR1: ADD R1, amount before it would have written

its new data out

THR2: LOAD ACCOUNTS[from], R1
THR2: ADD R1, amount .
THR2: SAVE R1, ACCOUNTS[from] (hiSvalue

Thread 2 runs and updates

THR1: SAVE R1, ACCOUNTS[from] Thread 1 runs again and
overwrites Thread 2’s

changes!
July 25, 2006 Sara Sprenkle - CISC370 59

Atomic Operations

The incorrect behavior is possible because
the statement that subtracts the amount
from the account (and the one that adds
the amount to the account) is not an
atomic operation.

Atomic operation: an operation that is
guaranteed to run to completion once it
has begun

The subtract and add operations can be

interrupted after they started and before they
complete

July 25, 2006 Sara Sprenkle - CISC370 60

Atomic Operations

If the transfer method was guaranteed to
run to completion once it was entered, this
problem could not happen

Traditionally, atomic operations are
implemented using mutexes, semaphores,
and critical sections

More in your OS class!
Java introduces a monitor, a simpler way of
handling atomic operations

July 25, 2006 Sara Sprenkle - CISC370 61

Synchronized Methods

A method or block of code can be marked
as atomic

Using keyword synchronized in method’s
return type

After the section of code starts, the code is
guaranteed to complete before another thread
can enter another synchronized section
belonging to that same object

July 25, 2006 Sara Sprenkle - CISC370 62

The transfer function is atomic (synchronized).
After it begins, it cannot be preempted until it
completes.

class Bank {
int num transfers;

public synchronized void transfer
(int from, int to, int amount)

{
if (accounts[from] < amount) return;
accounts[from] -= amount;
accounts[to] += amount;
num transfers++;

July 25, 2006 Sara Sprenkle - CISC370 63

Synchronized Methods & Objects

So, what does making a method synchronized do?

When a thread calls a synchronized method of an
object, that object becomes locked
There is exactly one shared key or lock for an object

To enter any synchronized method of that object, you
must have the key

When you have the key, you unlock the door to the
synchronized method you want to enter and take the key
with you

When another thread attempts to enter a synchronized
method, it cannot find the key, so it blocks

Other thread waits on the doorstep to the object for the key
to return

July 25, 2006 Sara Sprenkle - CISC370 64

Synchronized Methods & Objects

When you return from your synchronized method, you
leave the object’s key behind on the doorstep.

Other threads can retrieve the key and enter one of the
object’s synchronized methods
When a thread calls an object’s synchronized
method, the object (not the specific method) is
locked

Only one key for each object
Key is needed to enter any synchronized method
Key represents the lock in other paradigms

If a synchronized method is entered, no other
synchronized method of that object can be entered.

July 25, 2006 Sara Sprenkle - CISC370 65

Synchronized Methods & Objects

Other threads are can call and execute
unsynchronized (normal) methods of that object

only the synchronized methods are blocked

If a thread owns the lock on an object, it can call
another synchronized method of the same object

The thread releases the lock only after exiting the last
synchronized method

A thread can own the lock on more than one object
at a time

call a synchronized method of one object from inside a
synchronized method of another object

July 25, 2006 Sara Sprenkle - CISC370 66

One Additional Problem

The program should not transfer money out
of an account that does not have the funds
to cover it

We need to check before we start the
transfer.

What is wrong with this approach?

if (bank.getBalance (from) >= amount)
bank.transfer (from, to, amount);

July 25, 2006 Sara Sprenkle - CISC370 67

One Additional Problem

if (bank.getBalance (from) >= amount)
bank.transfer (from, to, amount);

This thread could get preempted after the
test and before the call to transfer()

The newly running thread could transfer
money out of the “from” account, leaving
insufficient funds.

Solution: Move the test inside the
synchronized transfer() method

July 25, 2006 Sara Sprenkle - CISC370 68

One Additional Problem

public synchronized void transfer (int from,
int to, int amt) {
while (accounts[from] < amount)
{ wait }
// then, transfer funds

}

A thread cannot be preempted between the test and
transfer

What should the thread do when there are not
enough funds?

The thread could wait until another thread has added the
necessary funds

What's the problem with this approach?

July 25, 2006 Sara Sprenkle - CISC370 69

The wait() Method

The transfer() method is synchronized!

No other thread can run since the current
thread is in the synchronized method and
waiting

There is a feature of synchronized
methods which takes care of this situation

A thread can call the object’s wait() method to
wait inside of a synchronized method

The current (calling) thread blocks
The object’s lock is released

July 25, 2006 Sara Sprenkle - CISC370 70

wait() and the Wait List

After a thread calls wait(), it is added to a wait list

List of threads waiting on a certain object

The thread scheduler ignores threads on the wait list

Waiting thread does not continue running

To remove the thread from the wait list, some other

thread must call the object’s notify() or notifyAll()

method

notify() removes one arbitrary thread from the
waiting list

notifyAll() removes all waiting threads

July 25, 2006 Sara Sprenkle - CISC370

7

The wait()/notify() Mechanism

After a thread has been removed from the wait
list, the scheduler will eventually run it again

The thread will attempt to lock the object because it
gave up the lock when it called wait()

After the thread gets the lock, it reenters the
object and continues where it left off

after the call to wait()

known as reentry

July 25, 2006 Sara Sprenkle - CISC370

72

The wait()/notify() Mechanism

Other threads must call notify() or notifyAll()
Otherwise, get deadlock

When a thread calls wait(), there is no way of
unblocking it unless another thread calls notify()

The waiting threads are not automatically
reactivated when no other thread has the object
locked

If all threads but one are blocked and the
unblocked thread calls wait(), the program will
wait forever because there is no thread left to call
notify()

July 25, 2006 Sara Sprenkle - CISC370 73

notify() vs. notifyAll()

It is somewhat confusing as to when a program
should call notify()

no control about which thread will become unblocked
Generally, call notifyAll() whenever the state of the
object changes in such a way that might be
advantageous to other threads

Will need to handle that the condition that caused to

block still isn’t met
If the account balance of an account changes,
multiple threads may be blocked based on this
event occurring

wake them all up

July 25, 2006 Sara Sprenkle - CISC370 74

The wait()/notify() Mechanism

Calling notifyAll() does not immediately
activate all of the waiting threads

It unblocks the waiting threads and removes
them from the wait list

The threads still must compete for entry into the
object after the current thread has exited its
synchronized method

July 25, 2006 Sara Sprenkle - CISC370 75

Synchronization Review

To execute a synchronized method, the object
must not be locked

The calling object acquires the lock
Returning from a synchronized method releases
the object’s lock.
Only one thread can execute synchronized
methods of a particular object at one time
When a thread calls wait(), it releases the lock on
the object and enters a wait list

To remove a thread from the wait list, another
thread must call notify() or notifyAll() on the object

July 25, 2006 Sara Sprenkle - CISC370 76

Writing Multithreaded Code

If two or more threads modify an object,
declare the methods that carry out these
modifications as synchronized

Basically, putting a lock on the code
If a thread must wait for the state of an object
to change, it should wait inside the object by
entering the appropriate synchronized
method and calling wait().

July 25, 2006 Sara Sprenkle - CISC370 77

Writing Multithreaded Code

Whenever a method changes the state of an
object, it should call notifyAll()

Gives waiting threads a chance to see if the
situation that caused them to wait has changed,
allowing them to continue
wait() and notify()/notifyAll() are methods of
the object, not the thread

All calls to wait() are matched up with a
notification call on the same object

July 25, 2006 Sara Sprenkle - CISC370 78

Deadlocks

Deadlock: when threads are stuck, waiting
for another to do something first

A deadlock could involve a ring of threads,
waiting for each other or simply one thread
waiting for itself

July 25, 2006 Sara Sprenkle - CISC370 79

Example of Deadlocking

Suppose the bank has two accounts, account #1
has $5000 in it and account #2 has $3750 in it.

Thread #1 wants to transfer $4000 from account
#2 to account #1.

Thread #2 wants to transfer $6000 from account
#1 to account #2.

These two threads are deadlocked, as neither can
run until the other one has finished.

July 25, 2006 Sara Sprenkle - CISC370 80

Avoiding Deadlock

There is no support in Java for avoiding or
preventing deadlock situations

Programmer must be very careful not to write
programs in which deadlock can occur

Careful synchronization: keep it simple

July 25, 2006 Sara Sprenkle - CISC370 81

Starvation

One thread never gets time on the CPU
To avoid starvation

May need higher-priority threads to call sleep or
yield periodically

July 25, 2006 Sara Sprenkle - CISC370 82

Threads in GUIs

Recall ColorChooserDemo.java from 7/117?

Swing isn't thread-safe
Very few methods in Swing are synchronized
If multiple threads update the model, may not
see correct GUI

Swing works in the event dispatch thread
Handles event handling, repainting
Each event will finish before next
Repainting is not interruptable

July 25, 2006 Sara Sprenkle - CISC370 83

Threads in GUIs

public static void invokeLater(Runnable r)

Adds the specified Runnable object to the event
queue

Returns immediately

July 25, 2006 Sara Sprenkle - CISC370 84

Rules of GUI Programming with Threads

If an action takes a long time, fire up a new thread
to do the work. Otherwise, the GUI will appear to be
dead until the work is complete.

If an action might block on IO, perform that action in
a new thread.
If you need to wait for a specific amount of time,
don't sleep in the event dispatch thread

Instead, use a Timer.
One thread to rule them all (single thread rule)

The work that you do in your threads cannot touch the
user interface

Update the GUI from within the event dispatch thread
after the GUI is displayed

July 25, 2006 Sara Sprenkle - CISC370 85

Other Java Classes for Concurrency

Package java.util.concurrent.locks
Lock
Condition
Match more traditional OS synchronization
programming
Synchronized data structure classes in
java.util.concurrent
Hide synchronization details

java.util.concurrent.atomic
Allow thread-safe updates of objects

July 25, 2006 Sara Sprenkle - CISC370 86

