
1

11

Concurrent Programming,Concurrent Programming,
ThreadsThreads

Sara SprenkleSara Sprenkle

July 25, 2006July 25, 2006

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 22

AnnouncementsAnnouncements

•• Assignment 5 due on ThursdayAssignment 5 due on Thursday

•• Assignment 6 out on ThursdayAssignment 6 out on Thursday

•• Project 2 out Project 2 out …… soon soon

•• QuizQuiz

2

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 33

Review: UI DesignReview: UI Design

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 44

Review: UI DesignReview: UI Design

•• Controlling environmentControlling environment
Settings, optionsSettings, options

•• ConsistencyConsistency

•• Design for ExtremesDesign for Extremes

•• Activity-based PlanningActivity-based Planning

•• Usability TestingUsability Testing

•• ColorColor

3

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 55

Review: Regular ExpressionsReview: Regular Expressions

•• Character ClassesCharacter Classes
 .. : any character except line characters : any character except line characters

 \d : any digit\d : any digit

 \D: any non-digit\D: any non-digit

 []: programmer-defined character classes[]: programmer-defined character classes

•• Capturing groupCapturing group
Designated by ()Designated by ()

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 66

Review: Regular ExpressionsReview: Regular Expressions

•• Some other special charactersSome other special characters
 ^̂: not ([^Z]: not ([^Z] ≠≠ [A-Y]), or the beginning of the line [A-Y]), or the beginning of the line

 $$: end of the line: end of the line

 **: : ≥≥0 occurrences of pattern0 occurrences of pattern

 ++: : ≥≥1 occurrences of the pattern1 occurrences of the pattern

 ??: matches 0 or 1 occurrences of the pattern: matches 0 or 1 occurrences of the pattern

•• What if want to specify all but the ^What if want to specify all but the ^
character?character?

4

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 77

Review: Review: JUnitJUnit

•• Scope of testing?Scope of testing?

•• What are benefits of What are benefits of JUnitJUnit??

•• Where do tests go?Where do tests go?

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 88

Project 1 DiscussionProject 1 Discussion

•• Why wasWhy was PileModel PileModel an inner class?an inner class?
Did it have to be an inner class?Did it have to be an inner class?

•• How much of the originalHow much of the original codebase codebase did you did you
need to understand?need to understand?
At what level was your understanding for eachAt what level was your understanding for each

class?class?

•• How much of the originalHow much of the original codebase codebase did youdid you
modify?modify?

•• How did you design your code?How did you design your code?

5

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 99

MultitaskingMultitasking

•• Very common in modern operating systemsVery common in modern operating systems
•• Ability to have more than one programAbility to have more than one program

running at the same timerunning at the same time
Or making it Or making it looklook like this is happening like this is happening

•• In reality, the operating system is distributingIn reality, the operating system is distributing
resources (most noticeably CPU time) toresources (most noticeably CPU time) to
create this impression of parallel activity.create this impression of parallel activity.

•• Only one program is running at onceOnly one program is running at once
the OS simply switches from one to another inthe OS simply switches from one to another in

very quick switchesvery quick switches

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1010

MultitaskingMultitasking

•• What are goals of multitasking?What are goals of multitasking?

•• When are When are ““smartsmart”” times to switch between times to switch between
tasks?tasks?

CPU

Task 1

Task 2

6

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1111

MultitaskingMultitasking

•• Goal: keep CPU completely utilizedGoal: keep CPU completely utilized

•• PoliciesPolicies
Assign priorities to threadsAssign priorities to threads

Switch when one task has to pause for I/OSwitch when one task has to pause for I/O

Set time intervalSet time interval

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1212

MultithreadingMultithreading
•• ProcessProcess: a : a ““programprogram”” that can be that can be

multitaskedmultitasked
To view the processes on your machine:To view the processes on your machine: psps oror

Task ManagerTask Manager

•• MultithreadedMultithreaded programs (or programs (or concurrentconcurrent
programs)programs)
one program can appear to be doing multipleone program can appear to be doing multiple

things at one timethings at one time

•• ThreadThread or or thread of executionthread of execution
A task; a light-weight processA task; a light-weight process

•• How is a thread different than a process?How is a thread different than a process?

7

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1313

Threads vs. ProcessesThreads vs. Processes

•• A process runs in its own contextA process runs in its own context
Seems to have its own CPU, memory,Seems to have its own CPU, memory,

registers, registers, ……

Data is not shared between processesData is not shared between processes

•• A thread also seems to have its own CPU,A thread also seems to have its own CPU,
execution stack, and registersexecution stack, and registers
All of the threads in a program share the sameAll of the threads in a program share the same

variables and datavariables and data

 Threads run in the context of a programThreads run in the context of a program

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1414

Processes in UNIXProcesses in UNIX

•• ‘‘&&’’ runs a process in the background runs a process in the background

•• Can use Control-Z to Can use Control-Z to ““suspendsuspend”” process process
 fgfg: continue process in foreground: continue process in foreground

 bgbg: put process in the background, e.g., to get: put process in the background, e.g., to get
use of terminal backuse of terminal back

8

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1515

Advantages of MultithreadingAdvantages of Multithreading

•• Program can do multiple things, while oneProgram can do multiple things, while one
task is paused or waiting on somethingtask is paused or waiting on something
An internet browser can communicate withAn internet browser can communicate with

multiple hosts, open an email editing window,multiple hosts, open an email editing window,
and render imagesand render images

•• Java uses multithreadingJava uses multithreading
runs a garbage-collection thread in theruns a garbage-collection thread in the

background to deal with memory managementbackground to deal with memory management

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1616

Concurrent Concurrent vsvs. Parallel Programs. Parallel Programs

•• Parallel program:Parallel program: performs more than one performs more than one
task on task on more than one processormore than one processor
E.g., one task on each processorE.g., one task on each processor

•• A concurrent program performs more thanA concurrent program performs more than
one task on one task on oneone processorprocessor
Logically/usually, one task/threadLogically/usually, one task/thread
In reality, only one thread runs at a timeIn reality, only one thread runs at a time
Each thread runs for a short period of timeEach thread runs for a short period of time
After interval, the After interval, the thread schedulerthread scheduler chooseschooses

another thread to runanother thread to run

9

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1717

Using Threads in JavaUsing Threads in Java

•• Use the java.Use the java.utilutil.Timer class (and others).Timer class (and others)

•• Extend the java.Extend the java.langlang.Thread class.Thread class

•• Implement java.Implement java.langlang..Runnable Runnable interfaceinterface

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1818

java.java.utilutil.Timer.Timer
•• Execute a task after a delayExecute a task after a delay
•• Execute a task at a specific timeExecute a task at a specific time
•• Each task is represented as a subclass ofEach task is represented as a subclass of

TimerTaskTimerTask with the with the run()run() method overriddenmethod overridden
•• Tasks should not take a lot of CPU timeTasks should not take a lot of CPU time
•• Timer starts on constructionTimer starts on construction

Different from threadsDifferent from threads……

•• java.swing.Timerjava.swing.Timer
Uses an Uses an ActionListenerActionListener instead instead

Reminder.java

10

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 1919

Creating a Thread: Approach 1Creating a Thread: Approach 1
•• Create a thread by extending the Create a thread by extending the ThreadThread

classclass
•• A Thread class object must have a A Thread class object must have a runrun()()

methodmethod
runs when the thread startsruns when the thread starts
causes the thread to exit when the run() methodcauses the thread to exit when the run() method

endsends

•• ExampleExample
a thread that will sleep (wait) for a specifieda thread that will sleep (wait) for a specified

amount of timeamount of time
then wakes up and prints its infothen wakes up and prints its info

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2020

class PrintThread extends Thread {
private int sleepTime;
public PrintThread(String name) {

super(name);
sleepTime = (int)Math.random() * 5000;
System.out.println(“Name:” + getName() +

“; Sleep:” + sleepTime);
}
public void run() {

try {
System.out.println(getName() +

“ going to sleep.”);
Thread.sleep(sleepTime);

} catch (InterruptedException exp) {
System.out.println(exp);

}
System.out.println(getName() +

“ done sleeping.”);
}

}
See corrected version

11

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2121

Then, we can make a class to use PrintThread objects…

public class ThreadTester {
public static void main(String args[]) {

PrintThread thr1, thr2, thr3, thr4;
thr1 = new PrintThread(“Thread 1”);
thr2 = new PrintThread(“Thread 2”);
thr3 = new PrintThread(“Thread 3”);
thr4 = new PrintThread(“Thread 4”);

System.out.println(“Starting Threads...”);

thr1.start();
thr2.start();
thr3.start();
thr4.start();

System.out.println(“Threads started.”);
}

}

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2222

Output from tester class . . .

Name: Thread 1; Sleep: 1446
Name: Thread 2; Sleep: 40
Name: Thread 3; Sleep: 1009
Name: Thread 4; Sleep: 4997

Starting Threads
Threads Started

Thread 1 going to sleep.
Thread 3 going to sleep.
Thread 2 going to sleep.
Thread 4 going to sleep.
Thread 2 done sleeping.
Thread 3 done sleeping.
Thread 1 done sleeping.
Thread 4 done sleeping.

Random times--between
0 and 5 seconds

12

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2323

Creating a Thread: Approach 1Creating a Thread: Approach 1

•• A thread is created by instantiating an objectA thread is created by instantiating an object
of a class derived from Threadof a class derived from Thread

•• Thread class constructor takes oneThread class constructor takes one
parameter: the parameter: the namename of the newly created of the newly created
threadthread
Name can be any string you wantName can be any string you want

•• Helps programmer to keep track of the threads inHelps programmer to keep track of the threads in
the programthe program

Additional constructorsAdditional constructors

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2424

Creating a Thread: Approach 2Creating a Thread: Approach 2

•• What if want a class that is already aWhat if want a class that is already a
subclass to be a thread?subclass to be a thread?
Implement theImplement the RunnableRunnable interfaceinterface

Implement a Implement a runrun() method() method

13

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2525

Creating a Thread: Approach 2Creating a Thread: Approach 2

•• A Thread object must still be created to run theA Thread object must still be created to run the
threadthread
 Pass thePass the Runnable Runnable object to the constructor for theobject to the constructor for the

Thread classThread class

 Can name the thread object as wellCan name the thread object as well……

•• Registers the run() method of theRegisters the run() method of the runnableObject runnableObject
as the code to run when this Thread objectas the code to run when this Thread object’’s start()s start()
method is calledmethod is called

public Thread(Runnable runnableObject)

public Thread(Runnable runnableObject,
 String threadName)

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2626

Other OptionsOther Options

•• java.swing.Timerjava.swing.Timer
 For use in GUIsFor use in GUIs

•• java.swing.java.swing.SwingWorkerSwingWorker
Executing threads in the backgroundExecuting threads in the background

14

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2727

Thread LifetimeThread Lifetime
•• A thread can be in one of four states at anyA thread can be in one of four states at any

given moment in timegiven moment in time
NewNew

RunnableRunnable

BlockedBlocked

DeadDead

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2828

Thread States: NewThread States: New

•• When a thread has just been createdWhen a thread has just been created

•• In this state, the program has not yet startedIn this state, the program has not yet started
executing the threadexecuting the thread’’s internal codes internal code

•• Can only call start()Can only call start()
Otherwise, get Otherwise, get IllegalThreadStateExceptionIllegalThreadStateException

•• After the threadAfter the thread’’s start() method is called, its start() method is called, it
enters the enters the runnable staterunnable state..

15

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 2929

Thread States: RunnableThread States: Runnable

•• Thread is ready to executeThread is ready to execute
•• Might not be actually running on the CPUMight not be actually running on the CPU

Operating system must schedule the threadOperating system must schedule the thread
When OS schedules thread and the thread isWhen OS schedules thread and the thread is

actually running, Java still considers the threadactually running, Java still considers the thread
runnablerunnable

•• In most concurrent programming models,In most concurrent programming models,
there is a distinction between the runnablethere is a distinction between the runnable
and running statesand running states

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3030

Thread States: RunnableThread States: Runnable

•• Each OS has policies for schedulingEach OS has policies for scheduling
threadsthreads

•• Most Java-supporting OSes supportMost Java-supporting OSes support
preemptivepreemptive multithreading and multithreading and time-slicingtime-slicing
allows one thread to run, then interrupting it toallows one thread to run, then interrupting it to

allow allow another another thread to runthread to run

•• Remember: a Remember: a runnable runnable thread may or maythread may or may
not be running at any given momentnot be running at any given moment

16

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3131

Thread States: BlockedThread States: Blocked
•• A thread enters the A thread enters the blocked stateblocked state whenever: whenever:

 The thread calls its sleep() methodThe thread calls its sleep() method
 The thread calls an operation that blocks on input/outputThe thread calls an operation that blocks on input/output

•• operation does not return from the call until the I/Ooperation does not return from the call until the I/O
operations are completeoperations are complete

 The thread calls wait() methodThe thread calls wait() method
 The thread tries to lock an object that is currently lockedThe thread tries to lock an object that is currently locked

by another threadby another thread
 A different thread calls the suspend() method of theA different thread calls the suspend() method of the

threadthread
•• suspend() is deprecated; donsuspend() is deprecated; don’’t call itt call it

•• When a thread is blocked, another thread isWhen a thread is blocked, another thread is
scheduled to runscheduled to run

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3232

Thread States: BlockedThread States: Blocked
•• When a thread is reactivated, it returns toWhen a thread is reactivated, it returns to

the the runnablerunnable state state

•• The thread scheduler checks if theThe thread scheduler checks if the
reactivated thread has a higher priority thanreactivated thread has a higher priority than
the currently running threadthe currently running thread
If thread.If thread.getPrioritygetPriority() > running.() > running.getPrioritygetPriority()()

•• scheduler preempts currently running thread toscheduler preempts currently running thread to
schedule reactivated, higher-priority threadschedule reactivated, higher-priority thread

17

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3333

Thread States: BlockedThread States: Blocked

•• A thread returns to the A thread returns to the runnablerunnable state from thestate from the
blockedblocked state state
 If the thread called sleep(), the specified number ofIf the thread called sleep(), the specified number of

milliseconds to sleep has passedmilliseconds to sleep has passed
 If the thread is waiting for blocked I/O, the specified I/OIf the thread is waiting for blocked I/O, the specified I/O

request completedrequest completed
 If the thread called wait(), some other thread must callIf the thread called wait(), some other thread must call

notify() ornotify() or notifyAll notifyAll()()
 If the thread is waiting for an object lock held by anotherIf the thread is waiting for an object lock held by another

thread, other thread must release the lockthread, other thread must release the lock

•• One-to-one correspondence between ways to enterOne-to-one correspondence between ways to enter
the blocked state and ways to return from thethe blocked state and ways to return from the
blocked stateblocked state

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3434

Thread States: DeadThread States: Dead
•• A thread can enter the A thread can enter the dead statedead state in one of in one of

two cases:two cases:
 It dies naturally when the run() method exitsIt dies naturally when the run() method exits

normallynormally
 It dies abnormally because the run() methodIt dies abnormally because the run() method

generated an uncaught exceptiongenerated an uncaught exception

•• isAliveisAlive() method() method
 To find out if a thread is currently aliveTo find out if a thread is currently alive
 returns true if the thread isreturns true if the thread is runnable runnable or blockedor blocked
 returns false if the thread is new or deadreturns false if the thread is new or dead

18

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3535

Thread States: Possible TransitionsThread States: Possible Transitions

new

runnable

dead

blocked

start()

run method exits

sleep()

done sleeping

wait()

notify()

block
on I/O

 I/O
complete

Not exhaustive

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3636

Thread States and MethodsThread States and Methods
•• Some thread methods are only valid whenSome thread methods are only valid when

the thread is in certain statesthe thread is in certain states
start() can only be called on a thread in the newstart() can only be called on a thread in the new

statestate
sleep() can only be called on a thread in thesleep() can only be called on a thread in the

runnable staterunnable state

•• If a program attempts to calls a method on aIf a program attempts to calls a method on a
thread that is in invalid state, anthread that is in invalid state, an
IllegalThreadStateExceptionIllegalThreadStateException is thrown.is thrown.

19

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3737

Thread StatesThread States

•• getStategetState()()
NEW

RUNNABLE

BLOCKED
• Waiting on a monitor

WAITING

TIMED_WAITING

TERMINATED

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3838

Interrupting ThreadsInterrupting Threads

•• A thread dies when its run() method endsA thread dies when its run() method ends
the only way a thread can endthe only way a thread can end

•• A thread should periodically test to see if itA thread should periodically test to see if it
should terminateshould terminate……

public void run() {
while (no die request and still work to do)
{ do work }

// die request or no more work, so end and thread dies
}

20

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 3939

Interrupting ThreadsInterrupting Threads

•• Threads frequently sleep or wait to give otherThreads frequently sleep or wait to give other
threads a chance to do work (to use the CPU)threads a chance to do work (to use the CPU)

•• When a thread is sleeping, it cannot activelyWhen a thread is sleeping, it cannot actively
check to see if it should terminatecheck to see if it should terminate

•• Java provides an Java provides an interruptinterrupt() method() method
When this method is called on a thread that isWhen this method is called on a thread that is

currently blocked, the blocking call (sleep() orcurrently blocked, the blocking call (sleep() or
wait()) is terminated with anwait()) is terminated with an
InterruptedExceptionInterruptedException
•• Checked exceptionChecked exception What does that mean?

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 4040

Interrupting ThreadsInterrupting Threads

•• Interrupting a thread using the interrupt()Interrupting a thread using the interrupt()
method does not necessarily mean that themethod does not necessarily mean that the
thread should terminatethread should terminate
Grabs the attention of the threadGrabs the attention of the thread

Like poking at a sleeping roommateLike poking at a sleeping roommate

•• Place code that will decide how to react toPlace code that will decide how to react to
the interruption inside the the interruption inside the catchcatch clause of the clause of the
run() methodrun() method

21

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 4141

public void run() {
try {

// main thread execution loop
while (more work to do)
{

do this work
}

}
catch (InterruptedException exp)
// thread was interrupted during sleep/wait
{

. . .
}

// exit the run method, so the thread dies
}

The main execution loop calls sleep or wait. If the thread is
interrupted during one of these calls, the catch clause runs.

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 4242

Interrupting ThreadsInterrupting Threads

•• If the example thread is interrupted when itIf the example thread is interrupted when it
is not sleeping or waiting, nois not sleeping or waiting, no
InterruptedException InterruptedException is generatedis generated
the thread must check that it has not beenthe thread must check that it has not been

interrupted during the main execution loopinterrupted during the main execution loop

interrupted()interrupted()
•• returns true if the thread has been interruptedreturns true if the thread has been interrupted

while (!interrupted() && more work to do)
{ // main thread execution loop
}

22

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 4343

I/O and Thread InterruptionsI/O and Thread Interruptions

•• If a thread is blocked waiting for I/O, theIf a thread is blocked waiting for I/O, the
input/output operations will not be interruptedinput/output operations will not be interrupted
by the call to interrupt()by the call to interrupt()
Why?Why?

When the blocking I/O operation returns, theWhen the blocking I/O operation returns, the
thread will check to see if it has been interruptedthread will check to see if it has been interrupted

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 4444

Waiting for Thread CompletionWaiting for Thread Completion

•• It is possible to wait for a thread to complete.It is possible to wait for a thread to complete.
Call the threadCall the thread’’s join() methods join() method

For instance, to wait for thread1 to completeFor instance, to wait for thread1 to complete
callcall……

•• A timeout value can also be specifiedA timeout value can also be specified
if the thread does not die within the specifiedif the thread does not die within the specified

timeout, an timeout, an InterruptedExceptionInterruptedException is generatedis generated

thread1.join();

23

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 4545

Waiting for Thread CompletionWaiting for Thread Completion

•• To wait for 500 milliseconds for thread1 to die,To wait for 500 milliseconds for thread1 to die,
specify the timeout value in the call to thespecify the timeout value in the call to the
join() methodjoin() method

try {
thread1.join(500);
System.out.println(“Thread exited.”);

}
catch (InterruptedException exp1) {

System.out.println(“Timeout expired!”);
}

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 4646

Thread PrioritiesThread Priorities

•• Each thread has a Each thread has a prioritypriority
a numerical representation of the relativea numerical representation of the relative

““importanceimportance”” of the thread running, compared to of the thread running, compared to
the other threadsthe other threads

•• A threadA thread’’s priority can be set using thes priority can be set using the
setPrioritysetPriority() method() method

•• A threadA thread’’s priority must be betweens priority must be between
MIN_PRIORITY and MAX_PRIORITYMIN_PRIORITY and MAX_PRIORITY
Constants, defined as 1 and 10Constants, defined as 1 and 10

NORM_PRIORITY, defined as 5NORM_PRIORITY, defined as 5

24

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 4747

Thread Priorities and SchedulingThread Priorities and Scheduling
•• Fixed-priority SchedulingFixed-priority Scheduling

Whenever the thread scheduler has to schedule a newWhenever the thread scheduler has to schedule a new
thread to run, it generally picks the thread to run, it generally picks the highest-priorityhighest-priority
runnablerunnable thread thread

•• The highest-priority thread keeps running until eitherThe highest-priority thread keeps running until either
 it yields by calling the yield() methodit yields by calling the yield() method

 it becomes non-runnable (dying or entering the blockedit becomes non-runnable (dying or entering the blocked
state)state)

 a higher-priority thread becomes a higher-priority thread becomes runnablerunnable

•• What happens if there is more than one What happens if there is more than one runnablerunnable
thread with the same highest priority?thread with the same highest priority?

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 4848

Thread Priorities and SchedulingThread Priorities and Scheduling

•• What happens if there is more than oneWhat happens if there is more than one
runnablerunnable thread with the same highest thread with the same highest
priority?priority?
Up to the underlying operating systemUp to the underlying operating system’’s policys policy

•• It doesnIt doesn’’t matter which thread is chosent matter which thread is chosen

There is no guarantee this is a fair process!There is no guarantee this is a fair process!

•• OS could pick a random choice or pick the first ofOS could pick a random choice or pick the first of
the highest-priority threadsthe highest-priority threads

25

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 4949

Program Termination and ThreadsProgram Termination and Threads

•• Whenever at least one thread is aliveWhenever at least one thread is alive
(runnable or blocked), the program/process(runnable or blocked), the program/process
the thread(s) belong to is still activethe thread(s) belong to is still active

•• Even if the main() method exits, an aliveEven if the main() method exits, an alive
thread will prevent a program fromthread will prevent a program from
terminatingterminating

•• A daemon thread will not prevent a programA daemon thread will not prevent a program
from terminatingfrom terminating

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 5050

Daemon ThreadsDaemon Threads
•• Daemon thread: Daemon thread: a thread that runs solely for thea thread that runs solely for the

benefit of other threadsbenefit of other threads
Example: the Java garbage collectorExample: the Java garbage collector

•• Daemon threads are exactly like normal threadsDaemon threads are exactly like normal threads
with one differencewith one difference
A live daemon thread will not stop the JVM fromA live daemon thread will not stop the JVM from

terminatingterminating
You need to have at least one non-daemon thread toYou need to have at least one non-daemon thread to

keep the program alivekeep the program alive

•• To set a thread to be a To set a thread to be a daemondaemon thread, call thread, call
setDaemonsetDaemon() before calling start()() before calling start()

•• UseUse isDaemon isDaemon() to see if a thread is running as a() to see if a thread is running as a
daemondaemon

26

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 5151

Thread GroupsThread Groups
•• To simplify working with multithreadedTo simplify working with multithreaded

programs, Java introduces the concept ofprograms, Java introduces the concept of
thread groupsthread groups

•• Thread GroupThread Group: a convenient way of: a convenient way of
grouping related threadsgrouping related threads

•• In an internet browser, multiple threadsIn an internet browser, multiple threads
may load different images all to bemay load different images all to be
displayed on the same pagedisplayed on the same page
If the user clicks the Stop button, all of theseIf the user clicks the Stop button, all of these

threads should be interrupted, so all of thesethreads should be interrupted, so all of these
threads are in the same thread groupthreads are in the same thread group

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 5252

Thread GroupsThread Groups

•• Create a new thread group with a nameCreate a new thread group with a name……

•• When a thread object is constructed,When a thread object is constructed,
specify its group in the constructorspecify its group in the constructor……

•• To see if any threads in a group areTo see if any threads in a group are
runnable, call runnable, call activeCountactiveCount(), which will(), which will
return an integer number of return an integer number of runnablerunnable
threads in the thread groupthreads in the thread group……

ThreadGroup imgThrs = new ThreadGroup(“ImageThreads”);

Thread thr1 = new Thread(imgThrs, “Image Thread 1”);

if (imgThrs.activeCount()) > 0

27

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 5353

Thread GroupsThread Groups

•• An entire group of threads can beAn entire group of threads can be
interrupted at the same timeinterrupted at the same time

•• Thread groups can have child subgroupsThread groups can have child subgroups
•• A newly created thread group is, by default,A newly created thread group is, by default,

a child of the current thread groupa child of the current thread group
•• Methods such asMethods such as activeCount activeCount() and() and

interrupt() work on all threads in their groupinterrupt() work on all threads in their group
and in all child groupsand in all child groups

imgThrs.interrupt();
// interrupts all threads in the thread group

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 5454

Thread SynchronizationThread Synchronization

•• In most applications where multithreading isIn most applications where multithreading is
used, more than one thread will need toused, more than one thread will need to
access the access the same datasame data
Can turn into a problem when two threads haveCan turn into a problem when two threads have

access to the same object and then both modifyaccess to the same object and then both modify
the state of the objectthe state of the object

Depending on the order of data access, theDepending on the order of data access, the
object can become corruptedobject can become corrupted

Known as a Known as a race conditionrace condition

28

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 5555

Thread SynchronizationThread Synchronization

•• Suppose we have a program that is handlingSuppose we have a program that is handling
transactions for a banktransactions for a bank

•• For each transfer, the program starts aFor each transfer, the program starts a
separate thread to perform the transferseparate thread to perform the transfer

•• The thread gathers the necessaryThe thread gathers the necessary
information and calls the transfer() method ofinformation and calls the transfer() method of
the bank objectthe bank object

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 5656

class Bank {
int num_transfers;
. . .
public void transfer(int from, int to,

 int amount)
{

if (accounts[from] < amount)
return;

accounts[from] -= amount;
accounts[to] += amount;
num_transfers++;

}
}

The transfer function deducts the transfer amount from the
indicated account and adds it to the indicated account.

29

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 5757

Thread SynchronizationThread Synchronization

•• Suppose we have two transfer threads thatSuppose we have two transfer threads that
run at oncerun at once
Remember that a thread can be interrupted atRemember that a thread can be interrupted at

any timeany time

•• Note that the statementNote that the statement
accounts[from] -= amount;accounts[from] -= amount;

is really composed of three partsis really composed of three parts

(1) loading accounts[from] into a register(1) loading accounts[from] into a register

(2) subtracting amount from it(2) subtracting amount from it

(3) saving the result back into memory(3) saving the result back into memory

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 5858

Thread SynchronizationThread Synchronization

•• The program has two transfer threadsThe program has two transfer threads
running and they both call the transferrunning and they both call the transfer
function of the Bank object, each of whichfunction of the Bank object, each of which
will execute these three stepswill execute these three steps

•• Where is the potential problem?Where is the potential problem?

Thread 1:

LOAD ACCOUNTS[from], R1
ADD R1, amount
SAVE R1, ACCOUNTS[from]

Thread 2:

LOAD ACCOUNTS[from], R1
ADD R1, amount
SAVE R1, ACCOUNTS[from]

30

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 5959

Thread SynchronizationThread Synchronization

•• Since a thread can be interrupted at any timeSince a thread can be interrupted at any time
for another thread to run, this order offor another thread to run, this order of
execution is possibleexecution is possible……

THR1: LOAD ACCOUNTS[from], R1
THR1: ADD R1, amount

THR2: LOAD ACCOUNTS[from], R1
THR2: ADD R1, amount
THR2: SAVE R1, ACCOUNTS[from]

THR1: SAVE R1, ACCOUNTS[from]

Thread 1 gets preempted
before it would have written
its new data out

Thread 2 runs and updates
this value

Thread 1 runs again and
overwrites Thread 2’s
changes!

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 6060

Atomic OperationsAtomic Operations

•• The incorrect behavior is possible becauseThe incorrect behavior is possible because
the statement that subtracts the amountthe statement that subtracts the amount
from the account (and the one that addsfrom the account (and the one that adds
the amount to the account) is not anthe amount to the account) is not an
atomic operationatomic operation..

•• Atomic operationAtomic operation: an operation that is: an operation that is
guaranteed to run to completion once itguaranteed to run to completion once it
has begunhas begun
The subtract and add operations can beThe subtract and add operations can be

interrupted after they started and before theyinterrupted after they started and before they
completecomplete

31

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 6161

Atomic OperationsAtomic Operations

•• If the transfer method was guaranteed toIf the transfer method was guaranteed to
run to completion once it was entered, thisrun to completion once it was entered, this
problem could not happenproblem could not happen

•• Traditionally, atomic operations areTraditionally, atomic operations are
implemented using mutexes, semaphores,implemented using mutexes, semaphores,
and critical sectionsand critical sections
More in your OS class!More in your OS class!

•• Java introduces a Java introduces a monitormonitor, a simpler way of, a simpler way of
handling atomic operationshandling atomic operations

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 6262

Synchronized MethodsSynchronized Methods

•• A method or block of code can be markedA method or block of code can be marked
as atomicas atomic
Using keyword Using keyword synchronized synchronized in methodin method’’ss

return typereturn type

After the section of code starts, the code isAfter the section of code starts, the code is
guaranteed to complete before another threadguaranteed to complete before another thread
can enter another synchronized sectioncan enter another synchronized section
belonging to that same objectbelonging to that same object

32

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 6363

class Bank {
int num_transfers;
. . .
public synchronized void transfer

(int from, int to, int amount)
{

if (accounts[from] < amount) return;
accounts[from] -= amount;
accounts[to] += amount;
num_transfers++;

}
}

The transfer function is atomic (synchronized).
After it begins, it cannot be preempted until it
completes.

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 6464

Synchronized Methods & ObjectsSynchronized Methods & Objects

•• So, what does making a method synchronized do?So, what does making a method synchronized do?
•• When a thread calls a synchronized method of anWhen a thread calls a synchronized method of an

object, that object becomes lockedobject, that object becomes locked
 There is exactly There is exactly one sharedone shared key or lock for an object key or lock for an object
 To enter any To enter any synchronizedsynchronized method of that object, you method of that object, you

must have the keymust have the key
When you have the key, you unlock the door to theWhen you have the key, you unlock the door to the

synchronized method you want to enter and take the keysynchronized method you want to enter and take the key
with youwith you

When another thread attempts to enter a synchronizedWhen another thread attempts to enter a synchronized
method, it cannot find the key, so it blocksmethod, it cannot find the key, so it blocks
•• Other thread waits on the doorstep to the object for the keyOther thread waits on the doorstep to the object for the key

to returnto return

33

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 6565

Synchronized Methods & ObjectsSynchronized Methods & Objects
When you return from your synchronized method, youWhen you return from your synchronized method, you

leave the objectleave the object’’s key behind on the doorstep.s key behind on the doorstep.

Other threads can retrieve the key and enter one of theOther threads can retrieve the key and enter one of the
objectobject’’s synchronized methodss synchronized methods

•• When a thread calls an objectWhen a thread calls an object’’s synchronizeds synchronized
method, the method, the object (object (not the specific method) not the specific method) isis
lockedlocked

•• Only one key for each objectOnly one key for each object
Key is needed to enter any synchronized methodKey is needed to enter any synchronized method

Key represents the Key represents the locklock in other paradigms in other paradigms

 If a synchronized method is entered, no otherIf a synchronized method is entered, no other
synchronized method of that object can be entered.synchronized method of that object can be entered.

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 6666

Synchronized Methods & ObjectsSynchronized Methods & Objects
•• Other threads are can call and executeOther threads are can call and execute

unsynchronized (normal) methods of that objectunsynchronized (normal) methods of that object
only the synchronized methods are blockedonly the synchronized methods are blocked

•• If a thread owns the lock on an object, it can callIf a thread owns the lock on an object, it can call
another synchronized method of the same objectanother synchronized method of the same object
 The thread releases the lock only after exiting the lastThe thread releases the lock only after exiting the last

synchronized methodsynchronized method

•• A thread can own the lock on more than one objectA thread can own the lock on more than one object
at a timeat a time
 call a synchronized method of one object from inside acall a synchronized method of one object from inside a

synchronized method of another objectsynchronized method of another object

34

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 6767

One Additional ProblemOne Additional Problem

•• The program should not transfer money outThe program should not transfer money out
of an account that does not have the fundsof an account that does not have the funds
to cover itto cover it

•• We need to check before we start theWe need to check before we start the
transfer.transfer.

•• What is wrong with this approach?What is wrong with this approach?

if (bank.getBalance(from) >= amount)
bank.transfer(from, to, amount);

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 6868

One Additional ProblemOne Additional Problem

•• This thread could get preempted after theThis thread could get preempted after the
test and before the call to transfer()test and before the call to transfer()

•• The newly running thread could transferThe newly running thread could transfer
money out of the money out of the ““fromfrom”” account, leaving account, leaving
insufficient funds.insufficient funds.

•• Solution: Move the test inside theSolution: Move the test inside the
synchronized transfer() methodsynchronized transfer() method

if (bank.getBalance(from) >= amount)
bank.transfer(from, to, amount);

35

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 6969

One Additional ProblemOne Additional Problem

•• A thread cannot be preempted between the test andA thread cannot be preempted between the test and
transfertransfer

•• What should the thread do when there are notWhat should the thread do when there are not
enough funds?enough funds?
 The thread could wait until another thread has added theThe thread could wait until another thread has added the

necessary fundsnecessary funds
WhatWhat’’s the problem with this approach?s the problem with this approach?

public synchronized void transfer(int from,
int to, int amt) {

while (accounts[from] < amount)
{ wait }

// then, transfer funds
}

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 7070

The wait() MethodThe wait() Method

•• The transfer() method is synchronized!The transfer() method is synchronized!
•• No other thread can run since the currentNo other thread can run since the current

thread is in the synchronized method andthread is in the synchronized method and
waitingwaiting

•• There is a feature of synchronizedThere is a feature of synchronized
methods which takes care of this situationmethods which takes care of this situation
A thread can call the objectA thread can call the object’’s s waitwait() method to() method to

wait inside of a synchronized methodwait inside of a synchronized method
The current (calling) thread blocksThe current (calling) thread blocks
The objectThe object’’s lock is releaseds lock is released

36

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 7171

wait() and the Wait Listwait() and the Wait List

•• After a thread calls wait(), it is added to a After a thread calls wait(), it is added to a wait listwait list
 List of threads waiting on a certain objectList of threads waiting on a certain object

•• The thread scheduler ignores threads on the wait listThe thread scheduler ignores threads on the wait list
Waiting thread does not continue runningWaiting thread does not continue running

•• To remove the thread from the wait list, some otherTo remove the thread from the wait list, some other
thread must call the objectthread must call the object’’s notify() or s notify() or notifyAllnotifyAll()()
methodmethod

•• notifynotify() removes one arbitrary thread from the() removes one arbitrary thread from the
waiting listwaiting list

•• notifyAllnotifyAll() removes all waiting threads() removes all waiting threads

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 7272

The wait()/notify() MechanismThe wait()/notify() Mechanism

•• After a thread has been removed from the waitAfter a thread has been removed from the wait
list, the scheduler will eventually run it againlist, the scheduler will eventually run it again
 The thread will attempt to lock the object because itThe thread will attempt to lock the object because it

gave up the lock when it called gave up the lock when it called waitwait()()

•• After the thread gets the lock, it reenters theAfter the thread gets the lock, it reenters the
object and continues where it left offobject and continues where it left off
 after the call to wait()after the call to wait()

 known as known as reentryreentry

37

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 7373

The wait()/notify() MechanismThe wait()/notify() Mechanism

•• Other threads Other threads mustmust call notify() or call notify() or notifyAllnotifyAll()()
Otherwise, get Otherwise, get deadlockdeadlock

•• When a thread calls wait(), there is no way ofWhen a thread calls wait(), there is no way of
unblocking it unless another thread calls notify()unblocking it unless another thread calls notify()

•• The waiting threads are not automaticallyThe waiting threads are not automatically
reactivated when no other thread has the objectreactivated when no other thread has the object
lockedlocked

•• If all threads but one are blocked and theIf all threads but one are blocked and the
unblocked thread calls wait(), the program willunblocked thread calls wait(), the program will
wait forever because there is no thread left to callwait forever because there is no thread left to call
notify()notify()

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 7474

notify() vs. notify() vs. notifyAllnotifyAll()()

•• It is somewhat confusing as to when a programIt is somewhat confusing as to when a program
should call notify()should call notify()
 no control about which thread will become unblockedno control about which thread will become unblocked

•• Generally, call Generally, call notifyAllnotifyAll() whenever the state of the() whenever the state of the
object changes in such a way that might beobject changes in such a way that might be
advantageous to other threadsadvantageous to other threads
Will need to handle that the condition that caused toWill need to handle that the condition that caused to

block still isnblock still isn’’t mett met

•• If the account balance of an account changes,If the account balance of an account changes,
multiple threads may be blocked based on thismultiple threads may be blocked based on this
event occurringevent occurring
wake them all upwake them all up

38

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 7575

The wait()/notify() MechanismThe wait()/notify() Mechanism
•• Calling Calling notifyAllnotifyAll() does not immediately() does not immediately

activate all of the waiting threadsactivate all of the waiting threads
It unblocks the waiting threads and removesIt unblocks the waiting threads and removes

them from the wait listthem from the wait list
The threads still must compete for entry into theThe threads still must compete for entry into the

object after the current thread has exited itsobject after the current thread has exited its
synchronized methodsynchronized method

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 7676

Synchronization ReviewSynchronization Review
•• To execute a synchronized method, the objectTo execute a synchronized method, the object

must not be lockedmust not be locked
 The calling object acquires the lockThe calling object acquires the lock

•• Returning from a synchronized method releasesReturning from a synchronized method releases
the objectthe object’’s lock.s lock.

•• Only one thread can execute synchronizedOnly one thread can execute synchronized
methods of a particular object at one timemethods of a particular object at one time

•• When a thread calls wait(), it releases the lock onWhen a thread calls wait(), it releases the lock on
the object and enters a wait listthe object and enters a wait list

•• To remove a thread from the wait list, anotherTo remove a thread from the wait list, another
thread must call notify() or thread must call notify() or notifyAllnotifyAll() on the object() on the object

39

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 7777

Writing Multithreaded CodeWriting Multithreaded Code

•• If two or more threads modify an object,If two or more threads modify an object,
declare the methods that carry out thesedeclare the methods that carry out these
modifications as modifications as synchronizedsynchronized
Basically, putting a lock on the codeBasically, putting a lock on the code

•• If a thread must wait for the state of an objectIf a thread must wait for the state of an object
to change, it should wait to change, it should wait insideinside the object by the object by
entering the appropriate synchronizedentering the appropriate synchronized
method and calling wait().method and calling wait().

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 7878

Writing Multithreaded CodeWriting Multithreaded Code

•• Whenever a method changes the state of anWhenever a method changes the state of an
object, it should call object, it should call notifyAllnotifyAll()()
Gives waiting threads a chance to see if theGives waiting threads a chance to see if the

situation that caused them to wait has changed,situation that caused them to wait has changed,
allowing them to continueallowing them to continue

•• wait() and notify()/wait() and notify()/notifyAllnotifyAll() are methods of() are methods of
the the objectobject, not the thread, not the thread

•• All calls to wait() are matched up with aAll calls to wait() are matched up with a
notification call on the same objectnotification call on the same object

40

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 7979

DeadlocksDeadlocks

•• DeadlockDeadlock: when threads are stuck, waiting: when threads are stuck, waiting
for another to do something firstfor another to do something first
A deadlock could involve a ring of threads,A deadlock could involve a ring of threads,

waiting for each other or simply one threadwaiting for each other or simply one thread
waiting for itselfwaiting for itself

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 8080

Example of DeadlockingExample of Deadlocking

•• Suppose the bank has two accounts, account #1Suppose the bank has two accounts, account #1
has $5000 in it and account #2 has $3750 in it.has $5000 in it and account #2 has $3750 in it.

•• Thread #1 wants to transfer $4000 from accountThread #1 wants to transfer $4000 from account
#2 to account #1.#2 to account #1.

•• Thread #2 wants to transfer $6000 from accountThread #2 wants to transfer $6000 from account
#1 to account #2.#1 to account #2.

•• These two threads are deadlocked, as neither canThese two threads are deadlocked, as neither can
run until the other one has finished.run until the other one has finished.

41

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 8181

Avoiding DeadlockAvoiding Deadlock

•• There is no support in Java for avoiding orThere is no support in Java for avoiding or
preventing deadlock situationspreventing deadlock situations

•• Programmer must be very careful not to writeProgrammer must be very careful not to write
programs in which deadlock can occurprograms in which deadlock can occur
Careful synchronization: keep it simpleCareful synchronization: keep it simple

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 8282

StarvationStarvation

•• One thread never gets time on the CPUOne thread never gets time on the CPU

•• To avoid starvationTo avoid starvation
May May need higher-priority threads to call sleep orneed higher-priority threads to call sleep or

yield periodicallyyield periodically

42

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 8383

Threads in GUIsThreads in GUIs

•• Recall Recall ColorChooserDemoColorChooserDemo.java from 7/11?.java from 7/11?

•• Swing isn't thread-safeSwing isn't thread-safe
Very few methods in Swing are synchronizedVery few methods in Swing are synchronized
 If multiple threads update the model, may notIf multiple threads update the model, may not

see correct GUIsee correct GUI
•• Swing works in the Swing works in the event dispatch threadevent dispatch thread

Handles event handling, repainting
Each event will finish before next
Repainting is not interruptable

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 8484

Threads in GUIsThreads in GUIs

•• public static voidpublic static void invokeLater invokeLater((RunnableRunnable r r))
Adds the specifiedAdds the specified Runnable Runnable object to the event object to the event

queuequeue
Returns immediatelyReturns immediately

43

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 8585

Rules of GUI Programming with ThreadsRules of GUI Programming with Threads
•• If an action takes a long time, fire up a new threadIf an action takes a long time, fire up a new thread

to do the work. Otherwise, the GUI will appear to beto do the work. Otherwise, the GUI will appear to be
dead until the work is complete.dead until the work is complete.

•• If an action might block on IO, perform that action inIf an action might block on IO, perform that action in
a new thread.a new thread.

•• If you need to wait for a specific amount of time,If you need to wait for a specific amount of time,
don't sleep in the event dispatch threaddon't sleep in the event dispatch thread
 Instead, use a Timer.Instead, use a Timer.

•• One thread to rule them allOne thread to rule them all ((single thread rulesingle thread rule))
 The work that you do in your threads cannot touch theThe work that you do in your threads cannot touch the

user interfaceuser interface
 Update the GUI from within the event dispatch threadUpdate the GUI from within the event dispatch thread

after the GUI is displayedafter the GUI is displayed

July 25, 2006July 25, 2006 Sara Sprenkle - CISC370Sara Sprenkle - CISC370 8686

Other Java Classes for ConcurrencyOther Java Classes for Concurrency

•• Package Package java.java.utilutil.concurrent.locks.concurrent.locks
 LockLock

ConditionCondition

Match more traditional OS synchronizationMatch more traditional OS synchronization
programmingprogramming

•• Synchronized data structure classes inSynchronized data structure classes in
java.java.utilutil.concurrent.concurrent
Hide synchronization detailsHide synchronization details

•• java.java.utilutil.concurrent.atomic.concurrent.atomic
Allow thread-safe updates of objectsAllow thread-safe updates of objects

