Objectives

- More arithmetic operators
- Software development practices
> Testing
$>$ Debugging
> Iteration
- Broader Issue

Review

- How can we tell our program display output?
- How can we store information?
- What is the syntax to do the last step?
- What are the rules and conventions for variable names?
$>$ What is another word for "variable names"
- What are the types of information we can store?

Review: NOT Math Class

- Need to write out all operations explicitly

Write this way in Python

What are the values?

After executing the following statements, what are the values of each variable?
$>a=5$
$>y=a+-1 * a$
$>z=a+y / 2$
$>a=a+3$
$>y=(7+x) * z$
$>x=z^{*} 2$

What are the values?

After executing the following statements, what are the values of each variable?
$>a=5$
$>y=a+-1 * a$
$>z=a+y / 2$
$>a=a+3$
$>y=(7+x) * z \quad$ Runtime error:
$>x=z^{*} 2 \quad x$ doesn't have a value yet!

- We say " x was not initialized"
- Can't use a variable on RHS until seen on LHS!*

Python Interpreter

1. Validates Python programming language expression(s)

- Enforces Python syntax rules
- Reports syntax errors

2. Executes expression(s) Have a lot of these early on!

Two Modes to Execute Python Code

- Interactive/Shell: using the interpreter

Try out Python expressions

- Batch: execute scripts (i.e., files containing Python code)
$>$ What we'll write usually

```
Bringing It All Together:
A simple program
```

```
# Demonstrates arithmetic operations and
```


Demonstrates arithmetic operations and

assignment statements

assignment statements

by Sara Sprenkle

by Sara Sprenkle

x = 3
x = 3
y = 5
y = 5
print("x =", x)
print("x =", x)
print("y =", y)
print("y =", y)
print("x * y =", x*y)
print("x * y =", x*y)

alternatively:

alternatively:

result = x * y

result = x * y

print("x*y =", result)

print("x*y =", result)

 arith_and_assign.py
    ```
    arith_and_assign.py
```


Parts of an Algorithm

- Input, Output
- Primitive operations

$>$ What data you have, what you can do to the data
- Naming
$>$ Identify things we're using
- Sequence of operations
- Conditionals
> Handle special cases
- Repetition/Loops
- Subroutines
> Call, reuse similar techniques

Two Division Operators

/ Float Division

- Result is a float
- Examples:
$>6 / 3 \rightarrow 2.0$
$\rightarrow 10 / 3 \rightarrow$
3.3333333333333335
$>3.0 / 6.0 \rightarrow 0.5$
$>19 / 10 \rightarrow 1.9$

// Integer Division

- Result is an int
- Examples:
$>6 / / 3 \rightarrow 2$
$>10 / / 3 \rightarrow 3$
$>3.0 / / 6.0 \rightarrow 0.0$
$\rightarrow 19 / / 10 \rightarrow 1$
Integer division is the default division used in most programming languages

Division Practice

$a=12 / / 4$
$4 / / 6$ * 5.0
$b=6 / 12$
6.0//12
$z=a / b$

More on Arithmetic Operations

| Symbol | Meaning | Associativity |
| :---: | :---: | :---: |
| + | Addition | Left |
| - | Subtraction | Left |
| $*$ | Multiplication | Left |
| $/$ | Division | Left |
| $\%$ | Remainder ("mod") | Left |
| $* *$ | Exponentiation (power) | Right |

Precedence rules: PE - DM\% AS
$\uparrow_{\text {negation }}$

Sprenkle - CSCI111

Associativity matters when you have the same operation multiple times. It tells you where you should start computing.

Math Practice

$$
\begin{aligned}
& 5+3 * 2 \\
& 2 * 3 * * 2 \\
& -3 * * 2 \\
& 2 * * 3 * * 3
\end{aligned}
$$

> How should we verify our answers?

Modulo Operator: \%

Modular Arithmetic: Remainder from division
$>x$ \% y means the remainder of x / y
$>$ Read as "x mod y"

- Example: 6 \% 4
$>$ Read as "six mod four"
$>6 / / 4$ is 1 with a remainder of 2 , so $6 \% 4$ evaluates to 2
- Works only with integers
> Typically just positive numbers
- Precedence rules: P E - DM\% AS

Modulo Practice

7 \% 2
3 \% 6
6 \% 2
7 \% 14
14 \% 7
6 \% 0

Brainstorm

- What useful thing does $\% 10$ do?
> $3 \% 10=$
> $51 \% 10=$
> $40 \% 10=$
> $678 \% 10=$
> 12543 \% $10=$
- What useful thing does // 10 do (integer division)?
$>3 / / 10=$
> $51 / / 10=$
> $40 / / 10=$
> 678 // $10=$
> 12543 // $10=$
- What useful thing does \% 2 do?

Broader Issue Groups

Introduce yourselves!

| Aimee |
| :--- |
| Tristan |
| Turner |
| Utkrist |

| Annie B. | Amalia | Abhi | |
| :---: | :---: | :---: | :---: |
| Daniel | Chris | Alex | Liam |
| Isaac | Drew | Angel | Pengrui |
| Max | Pranam | Katlin | Rinn |
| Prakriti | Sam | Landon | |

Broader CS Issues

- Good summaries!
$>$ Good English, complete sentences
- Good, thoughtful questions
- Mechanics details
$>$ Follow instructions on BI Forum about what summary should contain
> Should be able to edit your own posts
> Characters from Word
- Click button "Paste from Word"
> Don't attach Word documents

Al Everywhere

- "An algorithm is, essentially, a brainless way of doing clever things... Brainlessness, in other words, is no impediment to intelligence. "
- What are examples of algorithms that you do every day?
- What is Al (which is based on algorithms) useful for?
$>$ What aren't algorithms useful for?
- What would be some useful algorithms, specific to W\&L students?
$>$ What are problems that are difficult—but useful-to solve?

Looking Ahead

- Pre-lab assignment due before lab on Tuesday

