Objectives

Defining your own functions
» Control flow
» Scope, variable lifetime

Refactoring
Testing

Oct 9, 2017 Sprenkle - CSCI111

Review

What are benefits of functions?
What is the syntax for creating a function?

What is the special keyword that means “this is
the output for the function”?

Oct 9, 2017 Sprenkle - CSCI111

Review: Syntax of Function Definition

Keyword Function Input Name/
Name Parameter

;

average2(numl, numZ2): Function header

o
D ——
-

Parameters: two numbers to be averaged.
Returns the average of two numbers

nnn Function documentation

average = (numl + num2)/2
return average

(or function definition)

Body

Keyword: Output
How to give output
Oct 9, 2017 Sprenkle - CSCI111 3

Review: Calling your own functions

Same as calling someone else’s functions ...

average = averageZ(100, 50)

J I

Ol.ltpUt 'S Function Input
assigned to
Name
average

Oct 9, 2017 Sprenkle - CSCI111 ave r'ageZ Py 4

Review: Function Output

When the code reaches a statement like

return x
» The function stops executing

» X is the output returned to the place where the
function was called

For functions that don't have explicit output,
return does not have a value with it, e.g.,
return
Optional: don't need to have return
» Function automatically returns at the end

Oct 9, 2017

Sprenkle - CSCI111 5

Review: Example program with a main()

def main(Q):

printVerse("dog", "ruff")
printVerse("duck", "quack™)

animal_type = "cow"

animal_sound = "moo"
printVerse(animal_type, animal_sound)

def printVerse(animal, sound):
print(BEGIN_END + EIEIO)
print("And on that farm he had a " + animal + EIEIO)
print("With a " + sound + ", " + sound + " here")
print("And a " + sound + ", + sound + " there™)
print("Here a", sound)
print("There a", sound)
print("Everywhere a "
print(BEGIN_END + EIEIO)

print()

main()

Constants, comments
are in example program

" "

+ sound + ", " + sound)

In what order does this program execute!?
What is output from this program?

- oldmac.py

Review:&xample program with a main()

def main(Q): |. Set definition of main

printVerse("dog”, "ruff"y 2. Set definition of printVerse
printVerse("duck”, "quack™) 3. Call main function

animal_type = "cow" 4. Execute main function
animal_sound = "moo , 5. Call, execute printVerse
printVerse(animal_type, ammal_sound%

def printVerse(animal, sound):

print(BEGIN_END + EIEIO)

print("And on that farm he had a " + animal + EIEIO)
o print("With a " + sound + ", " + sound + " here")

print("And a " + sound + ", + sound + " there™)
print("Here a", sound)

print("There a", sound)

print("Everywhere a " + sound + ", " + sound)
print(BEGIN_END + EIEIO)

print()

main() e oldmac.py

Review: Program Organization

Larger programs require functions to maintain
readability

> Use main() and other functions to break up program into
smaller, more manageable chunks

» “Abstract away” the details
As before, can still write smaller scripts without any
functions

» Can try out functions using smaller scripts

Need the main() function when using other functions
to keep “driver” at top

» Otherwise, functions need to be defined before use

Oct 9, 2017 Sprenkle - CSCI111 8

Words in Different Contexts

“Time flies like an arrow.
Fruit flies like bananas.”
— Groucho Marx.

Output from a function
» What is returned from the function

» If the function prints something, it's what the
function displays (rather than outputs).

Output from a program
» What is displayed by the program

Oct 9, 2017 Sprenkle - CSCI111 9

VARIABLE LIFETIMES AND SCOPE

Oct 9, 2017 Sprenkle - CSCI111 10

What does this program output?

def main():
x = 10

sum = sumkvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit):

total = 0
for x in range(@, 1limit, 2):
total += x

return total

main()

0Oct 9, 2017 Sprenkle - CSCI111 mystery.py 11

Function Variables

def main():
x = 10

sum = sumkvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit):

total = 0@
for x in range(@, 1limit, 2):
total += x
TR ALIL Why can we name two
mainC) different variables x?

0Oct 9, 2017 Sprenkle - CSCI111 mystery.py 12

Tracing through Execution

(def mainQ): When you call main(), that means you
2 x =10 want to execute this function
,8 sum = sumkvens(x)
9 print("The sum of even #s up to", x, "is", sum)
=]
g— def sumEvens(limit):
S total = 0@
@) for x in range(@, 1limit, 2):

total += x
return total
sy main()
Oct 9, 2017 Sprenkle - CSCI111 13

Function Variables

def main() :
x = 10

sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :

total = 0@
for x in range(@, limit, 2):
total += x
return total Memory stack Variable names
. are like first names
mainCJ main | x 10 Ar"—’—

Function names are like last names
Define the SCOPE of the variable

Oct 9, 2017 Sprenkle - CSCI111 14

Function Variables

def main(Q) :
x = 10

sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) : Called the function sumEvens
total = @ Add its parameters to the stack
for x in range(@, 1limit, 2):
total += x
sum |, .
return total Evens limit 10
main()
main x 10

Oct 9, 2017 Sprenkle - CSCI111 15

Function Variables

def main() :
x = 10

sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :

total = 0
for x in range(@, limit, 2):
total += x

sum |total O

return total Evens | limit 10

main()
main x 10

Oct 9, 2017 Sprenkle - CSCI111 16

Function Variables

def main(Q) :
x = 10

sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :

total = 0
for x in range(@, 1limit, 2):
total += x sum x 0
return total Evens total O
limit 10
main()
main x 10

Oct 9, 2017 Sprenkle - CSCI111

Function Variables

def main() :
x = 10

sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :

total = 0
for x in range(@, limit, 2):
total += x sum x 8
return total Evens total 20
limit 10
main()
main x 10

Oct 9, 2017 Sprenkle - CSCI111

Function Variables

def main(Q) :
x = 10

sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :

total = 0@ Function sumEvens returned
for x in range(@, limit, 2): < no longer have to keep track of
total += x its variables on stack
return total ¢ lifetime of those variables is over
main
O main sum 20
x 10
Oct 9, 2017 Sprenkle - CSCI111 19

Function Variables

def main() :
x = 10

sum = sumkvens(x)

def sumEvens(limit) :

total = 0
for x in range(@, limit, 2):
total += x

return total

main() x 10

main
sum 20

Oct 9, 2017 Sprenkle - CSCI111 20

Variable Scope

Functions can have the same parameter and variable
names as other functions

» Need to look at the variable’s scope to determine which one
you’re looking at

» Use the stack to figure out which variable you’re using
Scope levels
» Local scope (also called function scope)
Can only be seen within the function
» Global scope (also called file scope)

Whole program can access
More on these later

Oct 9, 2017 Sprenkle - CSCI111 21

Summary: Why Write Functions?

Allows you to break up a hard problem into smaller,
more manageable parts

Makes your code easier to understand
Hides implementation details (abstraction)
» Provides interface (input, output)

Makes part of the code reusable so that you:

» Only have to write function code once
» Can debug it all at once

Isolates errors

» Can make changes in one function (maintainability)

Similar to benefits of OO Programming

Oct 9, 2017 Sprenkle - CSCI111 22

11

REFACTORING

Oct 9, 2017 Sprenkle - CSCI111 23

Refactoring

After you’ve written some code and it passes all your test
cases, the code is probably still not perfect

Refactoring is the process of improving your code without
changing its functionality
» Organization
» Abstraction
Example: Easier to read, change
» Easier to test
Part of iterative design/development process
Where to refactor with functions
» Duplicated code
“Code smell”
» Reusable code
» Multiple lines of code for one purpose

Oct 9, 2017 Sprenkle - CSCI111 24

12

Example: PB & J

Gather materials (bread, PB, J, knives, plate)

Open bread

Put 2 pieces of bread on plate

Spread PB on one side of one slice

Spread Jelly on one side of other slice

Place PB-side facedown on Jelly-side of bread

Close bread
Clean knife

* Which of these are the “core” part
of making a PB & J sandwich?
* How would you describe the rest of

Put away materials| the parts?

Oct 9, 2017

Sprenkle - CSCI111 25

Example: PB & J

Open bread

Gather materials (bread, PB, J, knives, plate)

\/ Put 2 pieces of bread on plate \/
Spread PB on one side of one slice

Spread Jelly on one side of other slice

_ Place PB-side facedown on Jelly-side of bread /

Close bread
Clean knife

Put away materials

Oct 9, 2017

Sprenkle - CSCI111 26

13

Example: PB & J as Functions
Gather materials (bread, PB, J, knives, plate)
L Open bread)
(" Put2 pieces of bread on plate)

Spread PB on one side of one slice
Spread Jelly on one sidaafathar clica

: def main():
_ Place PB-side facedo prepare()
Close bread makePBJSandwich()
Clean knife mainC)

Put away materials

Oct 9, 2017

How would you make 10 PB&J sandwiches?

Example: PB & J as Functions, 10 x

Gather materials (bread, PB, J, knives, plate)

.~ Open brnadf e

e] €T main .
Put 2 pie prepare()
Spread P for sandwich in range(10):
Spread Ji makePBJSandwich()

_ Place PB main()
Close bread
Clean knife

Put away materials

Oct 9, 2017

Sprenkle - CSCI111 28

14

Refactoring:

Converting Functionality into Functions

Identify functionality that should be put into a
function

» What should the function do?

» What is the function’s input?

» What is the function’s output (i.e., what is returned)?
Define the function

» Write comments

Call the function where appropriate

Create a madin function that contains the “driver”
for your program

» Put at top of program
Call main at bottom of program

Oct 9, 2017 Sprenkle - CSCI111 29

Refactoring Practice

circleShiftAnim.py

Where are places that we can refactor and add
functions?

» Look for blocks of several lines of code that are all for
a single purpose
» Don’t want too much

Oct 9, 2017 Sprenkle - CSCI111 30

15

Animate Circle Shift

input animateCircleMove output

What it does: circle is animated, moving to a new
position

Input: circle, new center point
Output: nothing returned

Oct 9, 2017 Sprenkle - CSCI111 31

TESTING FUNCTIONS

Oct 9, 2017 Sprenkle - CSCI111 32

16

Testing Functions

Functions make it easier for us to test our code

We can write code to test the functions
» Test Case:
Input: parameters
Expected Output: what we expect to be returned
» We can verify the function programmatically

“programmatically” — automatically execute test cases
and verify that the actual returned result is what we
expected

No user input required!

Oct 9, 2017 Sprenkle - CSCI111 33

Example: Testing sumEvens
import test

def main(): This is the actual result
actual = sumEvens(10) from our function

= 20 This is what we expect the result to be
test.testEqual(actual,)

def sumEvens(limit):

total = 0
for x in range(@, 1limit, 2):
total += x

return total
testSumEvens.py

Oct 9, 2017 Sprenkle - CSCI111 34

17

This Week

Lab 4
» Due Wednesday

Prelab due before class tomorrow
» Updated by 4 p.m.

No broader issues this week

Oct 9, 2017 Sprenkle - CSCI111

35

18

