
1	

Lab	4	
• Review	Lab	3	

Ø Run	Anima1ons!	

• Func1on	review	

Oct	10,	2017	 Sprenkle	-	CSCI111	 1	

Lab	3	
•  Itera1ve	Fibonacci	Sequence	was	a	ques1on	on	
one	student’s	interview	

Oct	10,	2017	 Sprenkle	-	CSCI111	 2	

2	

Oct	10,	2017	 Sprenkle	-	CSCI111	

Lab	3	Feedback	
• Con1nuing	to	get	tougher	in	grading	

Ø Paying	more	aLen1on	to	style	(e.g.,	variable	names),	
efficiency,	readability,	good	output	

Ø High-level	descrip1ons	
Ø More	strict	on	adhering	to	problem	specifica1on	
Ø Constants	
Ø Demonstrate	program	more	than	once	if	gets	input	
from	user	or	outcome	changes	when	run	again	
•  Find	errors	before	I	do!	

3	

Program	Organiza1on	

Oct	10,	2017	 Sprenkle	-	CSCI111	 4	

high-level description
author name

import statements

CONSTANT_DEFNS = …

program_statements ...
program_statements ...
program_statements …

3	

Program	Organiza1on	

Oct	10,	2017	 Sprenkle	-	CSCI111	 5	

high-level description
author name

import statements

CONSTANT_DEFNS = …

def main():
 statements…
 statements...

def otherfunction():
 statement...

Discussion	
• Why	link	from	your	Lab	2	page	to	your	home	
page?	

Oct	10,	2017	 Sprenkle	-	CSCI111	 6	

4	

Run	Anima1ons	

Oct	10,	2017	 Sprenkle	-	CSCI111	 7	

Refactoring:		
Conver1ng	Func1onality	into	Func1ons	
1.  Iden1fy	func1onality	that	should	be	put	into	a	

func1on	
Ø What	should	the	func1on	do?	
Ø What	is	the	func1on’s	input?	
Ø What	is	the	func1on’s	output	(i.e.,	what	is	returned)?	

2.  Define	the	func1on	
Ø Write	comments	

3.  Call	the	func1on	where	appropriate	
4.  Create	a	main	func1on	that	contains	the	“driver”	

for	your	program	
Ø Put	at	top	of	program	

5.  Call	main	at	boLom	of	program	
Oct	10,	2017	 Sprenkle	-	CSCI111	 8	

5	

Animate	Circle	Shi_	

• What	it	does:	circle	is	animated,	moving	to	a	new	
posi1on	
•  Input:	circle,	new	center	point	
• Output:	nothing	returned	

Oct	10,	2017	 Sprenkle	-	CSCI111	 9	

animateCircleMoveinput	 output	

WHAT	MAKES	A	FUNCTION	GOOD?	

Oct	10,	2017	 Sprenkle	-	CSCI111	 10	

6	

Oct	10,	2017	 Sprenkle	-	CSCI111	 11	

Wri1ng	a	“Good”	Func1on	

• Should	be	an	“intui1ve	chunk”	
Ø Doesn’t	do	too	much	or	too	liLle	
Ø If	does	too	much,	try	to	break	into	more	
func1ons	

• Should	be	reusable	
• Always	have	comment	that	tells	what	the	
func1on	does	

Wri1ng	Comments	for	Func1ons	
• Good	style:	Each	func1on	must	have	a	comment	

Ø Describes	func1onality	at	a	high-level	
Ø Include	the	precondi)on,	postcondi)on	
Ø Describe	the	parameters	(their	types)	and	the	result	
of	calling	the	func1on	(precondi1on	and	
postcondi1on	may	cover	this)	

Oct	10,	2017	 Sprenkle	-	CSCI111	 12	

7	

Wri1ng	Comments	for	Func1ons	
•  Include	the	func1on’s	pre-	and	post-	condi1ons	
• PrecondiAon:	Things	that	must	be	true	for	
func1on	to	work	correctly	
Ø E.g.,	num	must	be	even	

• PostcondiAon:	Things	that	will	be	true	when	
func1on	finishes	(if	precondi1on	is	true)	
Ø E.g.,	the	returned	value	is	the	max	

Oct	10,	2017	 Sprenkle	-	CSCI111	 13	

Example	Comment	
• Describes	at	high-level	
• Describes	parameters	

Oct	10,	2017	 Sprenkle	-	CSCI111	 14	

def printVerse(animal, sound):
 """
 Prints a verse of Old MacDonald, plugging in the
 animal and sound parameters (which are strings),
 as appropriate.
 """
 print(BEGIN_END + EIEIO)
 print("And on that farm he had a " + animal + EIEIO)
 …

Comment style: Docstring
“documentation string”

Comments from docstrings show up when you use help function

8	

def sumList(listOfNumbers):
 """
 Pre: listOfNumbers is a list of numbers.
 Post: returns the sum of the numbers in the list
 """
 …

Pre/Post	Condi1ons	

Oct	10,	2017	 Sprenkle	-	CSCI111	 15	

TESTING	FUNCTIONS	

Oct	10,	2017	 Sprenkle	-	CSCI111	 16	

9	

Tes1ng	Func1ons	
• Func1ons	make	it	easier	for	us	to	test	our	code	
• We	can	write	code	to	test	the	func1ons	

Ø Test	Case:	
•  Input:	parameters	
•  Expected	Output:	what	we	expect	to	be	returned	

Ø We	can	verify	the	func1on	programma1cally	
•  “programma1cally”	–	automa1cally	execute	test	cases	
and	verify	that	the	actual	returned	result	is	what	we	
expected	
• No	user	input	required!	

Oct	10,	2017	 Sprenkle	-	CSCI111	 17	

Example:	Tes1ng	sumEvens	
import test

def main():
 actual = sumEvens(10)
 expected = 20
 test.testEqual(actual, expected)

def sumEvens(limit):
 total = 0
 for x in range(0, limit, 2):
 total += x
 return total

Oct	10,	2017	 Sprenkle	-	CSCI111	 18	

testSumEvens.py

This is the actual result
from our function

This is what we expect the result to be

10	

Evening	Help	Student	Assistants	
• 7	–	9	p.m.,	in	Parmly	405,	Sun	-	Thurs	

Oct	10,	2017	 Sprenkle	-	CSCI111	 19	

Lab	4	Overview	
• Filling	in	a	func1on,	tes1ng	func1ons	
• Refactoring	
• Wri1ng	a	program	with	a	func1on	from	scratch	

Oct	10,	2017	 Sprenkle	-	CSCI111	 20	

