
1	

Review	
• Dic*onaries	

Ø What	are	things	we	can	do	with	dic*onaries?	

• Why	do	we	create	classes?	
• How	do	we	create	a	class?	

Ø What	are	important	methods	to	implement?	
Ø How	do	we	implement	them?	

Lab	9	Review	
• What	was	the	last	problem	we	worked	on?	

Nov	28,	2017	 Sprenkle	-	CSCI111	 2	

2	

Lab	10	
• Most	common	names	
• Social	Network	

Nov	28,	2017	 Sprenkle	-	CSCI111	 3	

Most	Common	Names	
• Given	a	class	that	packages	together	a	name	and	
its	count,	find	the	most	common	names.	

• Goal:	create	file	of	names,	ordered	by	their	count	

Nov	28,	2017	 Sprenkle	-	CSCI111	 4	

3	

Graphing	
•  I	provide	code	that	will	create	a	bar	chart	using	
the	matplotlib	library	
Ø generateFreqGraphs.py	

• You	will	need	to	provide	the	appropriate	
informa*on	to	the	Python	code	to	generate	the	
graph	
Ø You	can	either		

• Use	the	user	interface	
• Write	code	to	directly	call	the	plotFrequencyData	
func*on	

Nov	14,	2017	 Sprenkle	-	CSCI111	 5	

Graphing:	Using	the	User	Interface	

Nov	14,	2017	 Sprenkle	-	CSCI111	 6	

$ python3 generateFreqGraphs.py
What is the name of your properly-formatted data file?
data/lastnames.dat
How many results do you want to display? 6
What is the title of this graph? Most Common Last Names at
W&L
What is the y-axis label of this graph? Number of Students
['Smith', '18']
['Williams', '12']
['Miller', '10']
['Lee', '9']
['Jones', '8']
['Murphy', '8']

Generates Graph:

Can save generated graph
by clicking save icon

4	

Graphing:	Using	Func*on	Calls	

Nov	14,	2017	 Sprenkle	-	CSCI111	 7	

from generateFreqGraphs import *

labels, values = processDataFile("data/lastnames.dat", 6)

plot = plotFrequencyData(labels, values, \
 "Most Commonly Occurring Last Names at W&L", \
 "Number of Students")

plot.savefig("data/lastnames.png")

We could then put this code
into a loop to run it for all the files
and updating the title accordingly.

autoGraphingExample.py

Lab	10	Design	
• 3	files:	person.py, social.py,
facespace.py

Nov	28,	2017	 Sprenkle	-	CSCI111	 8	

SocialNetwork	
(test	func*ons)	

social.py

Driver	

• Uses	SocialNetwork	object	
• Gets	command-line	arguments	
• Handles	UI	
•  Calls	methods	on	the	SN	object	

facespace.py

Person	
(test	func*ons)	

person.py

5	

Social	Network	Classes/Driver	Data	
•  Person	

Ø  Id	
Ø Name	
Ø  Friends	

•  Social	Network	
Ø  People	in	network	

•  Driver	(UI)	
Ø  Social	network	

Nov	28,	2017	 Sprenkle	-	CSCI111	 9	

What are the data types
for each class’s data?

SN	Classes/Driver	Func*onality	
•  Person	

Ø Ge^ers	(accessors)	
Ø  String	rep	
Ø  Se^ers	

•  Social	Network	
Ø Ge^ers	
Ø  String	rep	
Ø Add	people	to	network	
Ø Add	connec*ons	
Ø Wri*ng	to	a	file	

•  Driver	
Ø Ge`ng	user	input	to	

•  Read	people,	
connec*ons	files	

•  Store	social	network	to	
file	

•  Add	a	person	
•  Add	connec*ons	

Ø  Summary:	call	appropriate	
methods	on	classes	to	do	
above	

Nov	28,	2017	 Sprenkle	-	CSCI111	 10	

How should we test these?

6	

Towards	a	Solu*on	and	Hints	
• Given	“stubs”	for	each	of	the	files	
• social.py	is	the	most	filled	out	

Ø Has	the	methods	and	docstrings	defined	
Ø BUT	s*ll	refer	to	the	descrip*on	in	the	lab	on	the	
web	for	all	informa*on	

• For	whatever	variable	you’re	dealing	with,	think	
about	its	data	type	and	API		
Ø SocialNetwork	API	handout	
Ø Add	your	Person	class’s	API	to	the	handout	

Nov	28,	2017	 Sprenkle	-	CSCI111	 11	

Problem:	People	Files	
•  Given	a	people	file	that	has	the	format	

	
• Write	algorithm	to	create	Person	objects	to	represent	
each	person,	add	to	SocialNetwork	object	

Nov	28,	2017	 Sprenkle	-	CSCI111	 12	

<num_users>
<user_id>
<name>
…
<user_id_n>
<name_n>

7	

Problem:	People	Files	
•  Algorithm:	

Ø Open	file	
Ø  Read	the	first	line	in	the	file	

•  	that	represents	the	number	of	users	in	the	file	

Ø  Repeat	<number	of	users>	*mes	
•  Read	the	line	à	that’s	the	userid/username	
•  Read	the	line	à	that’s	the	name	of	the	user	
•  Create	a	Person	object	

Ø  Update	the	Person’s	name	

•  Add	the	Person	object	to	the	dic*onary	
Ø  Close	the	file	

Nov	28,	2017	 Sprenkle	-	CSCI111	 13	

<num_users>
<user_id>
<name>
…
<user_id_n>
<name_n>

fileobj.readline() always
reads in the next line of the file

Problem:	Connec*on	Files	
• Given	a	connec*on	file	that	has	the	format	

• Each	line	represents	a	friend/connec*on	
Ø Symmetric	rela*onship	
Ø Each	is	a	friend	of	the	other	

• Update	SocialNetwork	object	

Nov	28,	2017	 Sprenkle	-	CSCI111	 14	

<user_id> <user_id>
<user_id> <user_id>
…
<user_id> <user_id>

8	

UI	Specifica*on	
•  Checks	if	user	entered	command-line	argument	

Ø Default	files	otherwise	
•  Read	people,	connec*ons	from	files	
•  Repeatedly	gets	selected	op*ons	from	the	user,	un*l	
user	quits	

•  Repeatedly	prompts	for	new	selec*on	if	invalid	op*on	
•  Executes	the	appropriate	code	for	the	selec*on	
•  Stops	when	user	quits	
•  Stores	the	social	network	into	the	file	

Nov	28,	2017	 Sprenkle	-	CSCI111	 15	Write	pseudocode	

(see later slides)

UI	Pseudocode	

Nov	28,	2017	 Sprenkle	-	CSCI111	 16	

Use	default	files	if	only	one	command-line	argument	
Read	people,	connec*ons	from	files	
while	True:	

	display	menu	op*ons	
	prompt	for	selec*on	
	while	invalid	op*on	
	 	print	error	message	
	 	prompt	for	selec*on	
	break	if	selected	quit	
	otherwise,	do	selected	op*on	

Store	social	network	to	designated	file	

Why	not	a	GUI?	

9	

Implementa*on	Plan	
1.  Implement	Person	class	

Ø  Test	(write	test	func*on,	e.g.,	testPerson())	
2.  Implement	SocialNetwork	class	

Ø  Example	runs	in	lab	write	up	
Ø Note:	Methods	for	classes	will	not	prompt	for	input;		

Use	input	parameters	
Ø  Test	

3.  Implement	driver	program	

Nov	28,	2017	 Sprenkle	-	CSCI111	 17	

Plan	for	Implemen*ng	a	Class	
• Write	the	constructor	and	string	representa*on/
print	methods	first	

• Write	func*on	to	test	them	
Ø See	card.py	for	example	test	func*ons	

• While	more	methods	to	implement	…	
Ø Write	method	
Ø Test	
Ø REMINDER:	methods	should	not	be	using	input	
func*on	but	ge`ng	the	input	as	parameters	to	the	
method	

Nov	28,	2017	 Sprenkle	-	CSCI111	 18	

10	

Export	SocialNetwork	to	Files	
•  I	provide	method	to	write	connec*ons	to	a	file	

Ø Because	only	want	connec*on	once	
•  You	handle	wri*ng	to	people	file	

Ø Must	be	in	same	format	that	you	read	in	
Ø Just	“undoing”	the	read	

• Good	test:	if	you	read	in	a	people	file,	export	it	to	
another	file	à	original	and	exported	file	should	look	
similar	
Ø  If	you	read	in	that	exported	file,	should	see	same	social	
network	

Ø Files	themselves	may	not	be	exactly	the	same	because	of	
order	printed	out	

Nov	28,	2017	 Sprenkle	-	CSCI111	 19	

Test	Data	
• SocialNetwork	requires:	People	file,	Connec*ons	
file	

• Social	Networks:	
Ø Simple	
Ø Hollywood	
Ø Randomly	generated	files	

•  From	W&L	first	and	last	names,	randomly	combined,	
connected	

• Can	combine	different	files	to	create	larger	social	
network	

Nov	28,	2017	 Sprenkle	-	CSCI111	 20	

11	

COMMAND-LINE	ARGUMENTS	

Nov	28,	2017	 Sprenkle	-	CSCI111	 21	

Command-line	Arguments	
• We	can	run	programs	from	terminal	(i.e.,	the	
“command-line”)	and	from	IDLE	

• From	the	command-line,	can	pass	in	arguments,	
similar	to	how	we	use	Unix	commands	
Ø Ex:	cp <source> <dest>

Ø Ex:	python3 myprog.py 3
• Makes	input	easier	

Ø Don’t	have	to	retype	each	*me	executed	
Nov	28,	2017	 Sprenkle	-	CSCI111	 22	

Command-line	arguments	

12	

Command-line	Arguments	
• Using	the	sys	module	

Ø What	else	did	we	use	from	the	sys	module?	

• How	can	we	access	“<filename>”?	
Ø Then	we	can	use	in	our	program	

Nov	28,	2017	 Sprenkle	-	CSCI111	 23	

python3 command_line_args.py <filename>

List	of	arguments,	named	sys.argv

python3 myprogram.py 3

Command-line	Arguments	
• Using	the	sys	module	

	
• How	can	we	access	“<filename>”?	

Ø sys.argv is	a	list	of	the	arguments	
Ø sys.argv[0] is	the	name	of	the	program
Ø sys.argv[1]	is	the	filename	

Nov	28,	2017	 Sprenkle	-	CSCI111	 24	command_line_args.py

python3 command_line_args.py <filename>

sys.argv command_line_args.py <filename>
0		 1	

13	

Using	Command-line	Arguments	
•  In	general	in	Python:	

Ø sys.argv[0] is	the	Python	program’s	name	
• Have	to	run	program	from	terminal	(not	from	
IDLE)	
Ø Can	edit	program	in	IDLE	though	

è Useful	trick:	
Ø If	can’t	figure	out	bug	in	IDLE,	try	running	from	
command-line	
• May	get	different	error	message	

Nov	28,	2017	 Sprenkle	-	CSCI111	 25	

Use	in	Lab	10	
• Ease	execu*ng	FaceSpace	
• Examples:	

Ø  python3 facespace.py <peopleFile.txt>
<connectionsFile.txt>

Ø  python3 facespace.py data_files/hollywood.txt
data_files/hollywood_connections.txt

Nov	28,	2017	 Sprenkle	-	CSCI111	 26	

