Objective
for loop

Lab Review

- Follow examples
$>$ Find solutions to similar problems
$>$ Understand the solution
>Adapt the solution to your problem

Task	Objective
Creating snowperson	Using an API to solve a new problem
Making a picture	Allow you to show your creativity!
Celebrate your successes!	

Lab Review: Preferred Scenario

You: What about this test case? It's similar to a test case I used in an earlier problem, but it doesn't work here.

- Me: Good! You should consider that test case! But you don't need to demo it because we can't handle that issue yet

Recommendations

- Review the slides, example programs, and/or textbook every day to review what we discussed
$>$ This problem made sense in class... Does it still make sense?
- Practice a problem every day
>I rarely use problems from the text book so they're good practice
- Ask questions
- "sense of accomplishment after lab"

Benefits of Object-Oriented Programming

- Abstraction
>Hides details of underlying implementation
$>$ Easier to change implementation
- Collects related data/methods together
>Easier to reason about data/write code
- Less code in main program
> Example: Our program code is relatively simple, but graphics.py has a ton of code in it

FOR LOOPS

Parts of an Algorithm

- Input, Output
- Primitive operations
$>$ What data you have, what you can do to the data
- Naming
> Identify things we're using
- Sequence of operations
- Conditionals
> Handle special cases
- Repetition/Loops
- Subroutines
> Call, reuse similar techniques

Looping/Repetition

We know how to make a PB\&J
Sandwich:

Looping/Repetition

Make PB\&J sandwich

What Goes in the Loop Body?

- Make PB\&J Sandwich

1. Gather materials (bread, PB, J, knives, plate)
2. Open bread
3. Put 2 pieces of bread on plate
4. Spread PB on one side of one slice
5. Spread Jelly on one side of other slice
6. Place PB-side facedown on Jelly-side of bread
7. Close bread
8. Clean knife
9. Put away materials

What Goes in the Loop Body?

- Make PB\&J Sandwich

The for Loop

- Use when know how many times loop will execute \rightarrow Repeat N times

for Loop Syntax and Semantics

- Use when know how many times loop will execute \rightarrow Repeat N times
Times to repeat
for x in range(10):
statement_1
statement_2
i.

statement_n \quad\begin{tabular}{c}
"Body" of for loop

- Gets repeated

- Note indentation
\end{tabular}

Analyzing range()

range is a generator

- What does range do, exactly, with respect to the loop variable i?

```
for i in range(5):
    print(i)
    print("Horray!")
print("After the loop:", i)
    range_analysis.py

\section*{Analyzing range()}

\title{
1 Setito 0 \\ for \(i\) in range(5): print(i) (2) Display the value of \(i\) print("Horray!") 3 Display Horray! print("After the loop:", i)
}
range_analysis.py

\section*{Analyzing range()}

> 4 Setito 1
> for i in range(5): print (i) 5 Display the value of \(i\) print("Horray!") 6 Display Horray! print("After the loop:", i)
range_analysis.py

\section*{Analyzing range()}

\title{
13) Setito 4 \\ for i in range(5): print ( \(i\) ) 14 Display the value of \(i\) print("Horray!") 15 Display Horray! print("After the loop:", i) 16
}

\section*{for loop analysis}

\section*{for i in range(5):}
\# like assigning i the values(0,1,2,3,4)
\# consecutively, changing each time through loop
\# then, execute the loop body ...
When we have range (5),
\(>i\) is set to the values \((0,1,2,3,4)\)
\(>\) Which means that loop executes 5 times
range([start,] stop[, step])
- \(x X x]\) means that \(x x x\) is optional
- 1 argument: range(stop)

2 arguments: range(start, stop)
- 3 arguments: range(start, stop, step)

\section*{range([start,] stop[, step])}

1 argument: range(stop)
>Defaults: start = 0, step = 1
\(>\) Iterates from 0 to stop-1 with step size=1
- 2 arguments: range(start, stop)
>Default: step = 1
>Iterates from start to stop-1 with step size=1
- 3 arguments: range(start, stop, step)
>Iterates from start to stop-1 with step size=step

\section*{range}
range is a number generator
\(>1\) argument: range(stop)
\(>2\) arguments: range(start, stop)
\(>3\) arguments: range(start, stop, step)
\[
\begin{gathered}
\text { range }(10) \\
\text { range }(0,10) \\
\text { range }(0,10,1)
\end{gathered}
\]

\section*{Sequence generated by range}


\section*{Practice}

Place these:
Which direction?


\section*{Practice Solution}


\section*{Practicing for Loops}
- Write the Python code to display the following:
\(\rightarrow\) A) 1
2
3
4
5
>B) 2
5
8
11


Questions to ask:
- What is getting repeated?
- How many times?

How do the answers to those questions inform your solution?

\section*{Using for loops in Programs}
- Use a for loop when you want to repeat something
- Process of solving loop problems
\(>\) What is getting repeated?
- Informs what goes in the loop body
>How many times?
- Informs what the arguments to range should be

\section*{Programming Building Blocks}
- Adding to your tool set!
- We can combine them to create more complex programs
\(>\) Solutions to problems


\section*{Practice}
- Problem: Add 5 numbers, inputted by the user
\(>\) We could have implemented this program before learning loops, BUT we want to apply what we learned today.
- Consider what program should do - example behavior
\(>\) Consider if problem specification changes to adding 3 numbers or 10 numbers
- After implementing solution, simulate running on computer
\(>\) You can pretend to be the computer

Generalizing Solution:
Accumulator Design Pattern
1. Initialize accumulator variable
2. Loop until done
\(>\) Update the value of the accumulator
3. Display result

\section*{Discussion: Programming Practice}
- Problem: Add 5 numbers, inputted by the user
- We could have implemented this program last week
\(>5\) separate input statements, add up the numbers
- Consider how much easier this program is to change if we want a different number of numbers added up

\section*{Practicing for Loops}

\section*{What is getting repeated? \\ How many times?}
>A) 1
2
3
>C) \(\begin{aligned} & 10 \\ & 9\end{aligned}\)
8
3 7
4
Tell me that you
love me more
\(\Rightarrow\) B) I had the time of my life And I never felt this way before And I swear this is true And I owe it all to you


\section*{Looking Ahead}
- Broader Issue: Algorithm Bias due Thursday at 11:59 p.m.
- Lab 2 due Friday before class```

