
1

Objectives
•Defining your own functions

ØVariable Scope
ØDocumentation

•Broader Issue: ChatGPT

Feb 3, 2023 Sprenkle - CSCI111 1

1

Review
• What are benefits of functions?
• What is the syntax for creating our own functions?

ØHow do we indicate that our function requires input?
ØHow do we indicate that our function has output?

• What’s the difference between output from a function and
output from a program?

• How do we call a function we created?
• With respect to functions, what are options for how we

organize a program?
Feb 3, 2023 Sprenkle - CSCI111 2

2

2

Review: Why Write Functions?
• Allows you to break up a problem into smaller, more manageable

parts
• Makes your code easier to understand
• Hides implementation details (abstraction)

Ø Provides interface (input, output)

• Makes part of the code reusable so that you:
Ø Only have to write function code once
Ø Can debug it all at once

• Isolates errors
Ø Can make changes in one function (maintainability)

Feb 3, 2023 Sprenkle - CSCI111 3

3

Function Definition Example without Output

Feb 3, 2023 Sprenkle - CSCI111 4

def moveCircle(circle, newCenter):
"""
Moves a Circle object to a new location.
circle: the Circle to be moved
newCenter: the center point of where circle
should be moved
"""
centerPoint = circle.getCenter()

diffInX = newCenter.getX() - centerPoint.getX()
diffInY = newCenter.getY() - centerPoint.getY()

circle.move(diffInX, diffInY)

Keyword
Function

Name
Input Name/
Parameter

Bo
dy

(o
r f

un
ct

io
n

de
fin

iti
on

)

Function header

Function documentation

4

3

Function Definition Example with Output

Feb 3, 2023 Sprenkle - CSCI111 5

def average2(num1, num2):
"""
Parameters: two numbers to be averaged.
Returns the average of two numbers
"""

average = (num1 + num2)/2
return average

Keyword Function
Name

Input Name/
Parameter

Bo
dy

(o
r f

un
ct

io
n

de
fin

iti
on

)

Keyword:
How to give output

Function header

Output

Function documentation

5

Review: return vs print
• In general, whenever we want output from a function,

we’ll use return
ØResults in a more flexible, reusable function
ØLet whoever called the function figure out what to display

• Use print for
ØDebugging your function (then remove)

• Otherwise, unintended side effect of calling the function
ØWhen you have a function that is supposed to display something

• Sometimes, that is what you want.
Feb 3, 2023 Sprenkle - CSCI111 6

6

4

Review: Where are Functions Defined?
•Functions can go inside program script

ØIf no main() function, defined before use/called
ØIf main() function, defined anywhere in script

•Functions can go inside a separate module

Feb 3, 2023 Sprenkle - CSCI111 7

7

Divergence from Text Book: Conventions
Us: main at the top
• See an overview of the code

(driver) at the top
• Need to scroll down to see

function definitions to understand
what the main does
Ø Mitigated by having descriptive

function names

• Need to call main at the bottom

Book: main at the bottom
• All functions have already been

defined before main
• Need to scroll down to the bottom

to see the driver/overview of the
program

• Need to call main at the bottom

Feb 3, 2023 Sprenkle - CSCI111 8

8

5

Variable Scope
• Functions can have the same parameter and variable names

as other functions
ØNeed to look at the variable’s scope to determine which one you’re

looking at
ØUse the stack to figure out which variable you’re using

• Scope levels
ØLocal scope (also called function scope)

• Can only be seen within the function
ØGlobal scope (also called file scope)

• Whole program can access
• More on these later

Feb 3, 2023 Sprenkle - CSCI111 9

9

Tracing through Execution

Feb 3, 2023 Sprenkle - CSCI111 10

def main():
x = 10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit):
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

D
ef

in
es

 fu
nc

tio
ns

When you call main(), that means you
want to execute this function

10

6

def main() :
x=10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Function Variables

Feb 3, 2023 Sprenkle - CSCI111 11

main

Memory stack

x 10

Function names are like last names
Define the SCOPE of the variable

Variable names
are like first names

11

def main() :
x=10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Function Variables

Feb 3, 2023 Sprenkle - CSCI111 12

main x 10

sum
Evens

limit 10

Called the function sumEvens
Add its parameters to the stack

12

7

def main() :
x=10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Function Variables

Feb 3, 2023 Sprenkle - CSCI111 13

main x 10

sum
Evens

total 0
limit 10

13

def main() :
x=10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Function Variables

Feb 3, 2023 Sprenkle - CSCI111 14

main x 10

sum
Evens

x 0
total 0
limit 10

14

8

def main() :
x=10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Function Variables

Feb 3, 2023 Sprenkle - CSCI111 15

main x 10

sum
Evens

x 8
total 20
limit 10

15

def main() :
x=10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Function Variables

Feb 3, 2023 Sprenkle - CSCI111 16

main sum 20
x 10

Function sumEvens returned
• no longer have to keep track of

its variables on stack
• lifetime of those variables is over

16

9

def main() :
x=10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Function Variables

Feb 3, 2023 Sprenkle - CSCI111 17

main x 10
sum 20

17

Variable Scope
• Functions can have the same parameter and variable names

as other functions
ØNeed to look at the variable’s scope to determine which one you’re

looking at
ØUse the stack to figure out which variable you’re using

• Scope levels
ØLocal scope (also called function scope)

• Can only be seen within the function
ØGlobal scope (also called file scope)

• Whole program can access
• More on these later

Feb 3, 2023 Sprenkle - CSCI111 18

18

10

Practice: Trace through the Program’s Execution
•What is the output of this program?

ØExample: user enters 4

Feb 3, 2023 Sprenkle - CSCI111 19

def main():
num = eval(input("Enter a number to be squared: "))
squared = square(num)
print("The square is", squared)

def square(n):
return n * n

main()

practice1.py

19

Practice: Trace through the Program’s Execution
•What is the output of this program?

ØExample: user enters 4

Feb 3, 2023 Sprenkle - CSCI111 20

def main():
num = eval(input("Enter a number to be squared: "))
squared = square(num)
print("The square is", squared)

def square(n):
return n * n

main()

practice1.py

Enter a number to be squared: 4
The square is 16

20

11

•What is the output of this program?
ØExample: user enters 4

def main():
num = eval(input("Enter a number to be squared: "))
square(num)
print("The square is", computed)

def square(n):
computed = n * n
return computed

main()

Practice

Feb 3, 2023 Sprenkle - CSCI111 21practice2.py

21

•What is the output of this program?
ØExample: user enters 4

def main():
num = eval(input("Enter a number to be squared: "))
square(num)
print("The square is", computed)

def square(n):
computed = n * n
return computed

main()

Practice

Feb 3, 2023 Sprenkle - CSCI111 22

Error! computed does
not have a value in
function main()

practice2.py

22

12

Practice
•What is the output of this program?

ØExample: user enters 4

Feb 3, 2023 Sprenkle - CSCI111 23

def main():
num = eval(input("Enter a number to be squared: "))
squared = square(num)
print("The square is", squared)
print("The original num was", n)

def square(n):
return n * n

main()

practice3.py

23

def main():
num = eval(input("Enter a number to be squared: "))
squared = square(num)
print("The square is", squared)
print("The original num was", n)

def square(n):
return n * n

main()

Practice
•What is the output of this program?

ØExample: user enters 4

Feb 3, 2023 Sprenkle - CSCI111 24

Error! n does not
have a value in

function main()

24

13

Review: Variable Scope
• Know “lifetime” of variable

ØOnly during execution of function
ØRelated to idea of “scope”

• Consider: how many functions probably use a variable like
x or i? What would the impact be on our programs if all
variables had global scope?
ØExample: round(x, n)

• In general, our only global variables will be constants
because we don’t want them to change value
Øe.g., EIEIO

Feb 3, 2023 Sprenkle - CSCI111 25

25

WHAT ARE CHARACTERISTICS OF A GOOD
FUNCTION?

Feb 3, 2023 Sprenkle - CSCI111 26

26

14

Feb 3, 2023 Sprenkle - CSCI111 27

Writing a “Good” Function
• Should be an “intuitive chunk”

ØDoesn’t do too much or too little
ØIf does too much, try to break into more functions

• Should be reusable
• Should have a descriptive, “action” name
• Should have a comment that tells what the function does

27

Writing Documentation for Functions
• Good style: Each function* must have a comment that documents

its use
Ø *main() usually doesn’t have a doc string because it is covered by the

program’s description

• Describes functionality at a high-level
• Include the precondition, postcondition
• Describe the parameters (their types) and the result of calling the

function (precondition and postcondition may cover this)
• The exact format matters less than that the content is there

Ø I’ll show a few different ways to write the documentation

Feb 3, 2023 Sprenkle - CSCI111 28

28

15

Writing Comments for Functions
• Include the function’s pre- and post- conditions
•Precondition: Things that must be true for function to

work correctly
ØE.g., num must be even; circle must be a Circle object

•Postcondition: Things that will be true when function
finishes (if precondition is true)
ØE.g., the returned value is the max; circle will be moved to

the new point
•Again, the exact format matters less than the content

Feb 3, 2023 Sprenkle - CSCI111 29

29

Example Documentation
•Describes at high-level
•Describes parameters

Feb 3, 2023 Sprenkle - CSCI111 30

def printVerse(animal, sound):
"""
Prints a verse of Old MacDonald, plugging in the
animal and sound parameters (which are strings),
as appropriate.
"""
print(BEGIN_END + EIEIO)
print("And on that farm he had a ", animal, EIEIO)
…

Comment style: Docstring
“documentation string”

When you use the help function, it shows the docstrings.

30

16

Another Example Comment
•Describes at high-level
•Describes parameters

Feb 3, 2023 Sprenkle - CSCI111 31

def average2(num1, num2):
"""
Parameters: two numbers to be averaged
Returns the average of the two numbers
"""
average = (num1 + num2)/2
return average

Comment style: Docstring
“documentation string”

When you use the help function, it shows the docstrings.

31

def main() :
x=10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
"""

"""
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Write the Docstring Comment for sumEvens

Feb 3, 2023 Sprenkle - CSCI111 32

32

17

def main() :
x=10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
"""
Returns the sum of even numbers from 0 up to but
not including limit, which is an integer
"""
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Write the Docstring Comment for sumEvens

Feb 3, 2023 Sprenkle - CSCI111 33

Many other correct doc strings

33

Exam Next Friday
• Do not panic
• In-class, on paper

Ø Emphasis on critical thinking
Ø Lab was to experiment and cement you’re learning. Now you’re ready!

• Exam Preparation Document is on course web page
• Similar problems to class and lab

Ø Review questions
Ø Worksheets
Ø Problems

• Content: up through Tuesday’s lab 4
Ø Practicing what we learned Wed – Mon

• No broader issue next week
Feb 3, 2023 Sprenkle - CSCI111 34

34

18

ChatGPT
• Is ChatGPT for assignments an honor code violation?

ØWill it always be? Compare with, say, using a calculator to do
math problems

• Big question: Is all AI biased? Does it have to be?
ØThe developers of ChatGPT tried to make sure that it couldn’t be

racist or spread misinformation
• What did they do to try to prevent it?
• What else should they have done?

• With functions, I talk about the benefits of black-box.
What are the tradeoffs with a black box? What are the
implications for our programming with functions vs AI?

Feb 3, 2023 Sprenkle - CSCI111 35

35

Looking Ahead
•Pre-Lab due before lab on Tuesday
•Exam next Friday

Feb 3, 2023 Sprenkle - CSCI111 36

36

