Objectives

Defining your own functions
Variable Scope
Documentation
Testing

Feb 12, 2024 Sprenkle - CSCI111

Extra Credit Opportunity

Attend talk by
Professor George Bent on
Tuesday, Feb 13 at 5:30 p.m.

.)
» Wilson Hall’s Concert Hall Sfriar Gallery Presents

Write up on Canvas for 10 FLORENCE
points extra credit AS IT WAS

THE DIGITAL

Can earn up to 50 points extra RECONSTRUCTION
OF A MEDIEVAL CITY

credit between “special events” This exhibition presents the ongaing ot followed by a reception

historical project Florence As I+ Was, which Tuesdqy, Februqry 13

d CS M h aims to digitally reconstruct the ltalian city 5:30pm in Wilson Hall's Concert Hall
an In t e neWS posts the way it appeared at the end of the For More Information:
fifteenth century. This exhibition features 540-458-8861
some of the 27 point clouds and 181 https://florenceasitwas.wlu.edu
photogrammetry models that have been ALL ARE WELCOME!

produced by David Pfaff, George Bent, The exhibition, presentation, and
Mackenzie Brooks, and a host of W&L reception are free and open to the
public. The exhibition is open M-F

t ts si th ject's i tion in 2016.
students since the project’s inception in 2016, from 9-5pm. Directions fo Gallery:

Feb 12, 2024 Sprenkle - CSCI111

https://my.wlu.edu/staniar-gallery

Review

What are benefits of functions?

What is the syntax for creating our own functions?
How do we indicate that our function requires input?
How do we indicate that our function has output?

What's the difference between output from a function
and output from a program?

How do we call a function we created?
With respect to functions, what are options for how we
organize a program?

Feb 12, 2024 Sprenkle - CSCI111

Review: Why Write Functions?

Functions do not allow you to solve any new problems,
so why write them?

Allows you to break up a problem into smaller, more manageable parts
Makes your code easier to understand
Hides implementation details (abstraction)
Provides interface (input, output)
Makes part of the code reusable so that you:

Only have to write function code once
Can debug it all at once
Isolates errors

Can make changes in one function (maintainability)

Feb 12, 2024 Sprenkle - CSCI111

Function Definition Example without Output

Feb 12, 2024

Keyword

a
o =
-

Body

(or function definition)

Function Input Name/
Name Parameter

moveCircle(circle, newCenter): Function header

mimn

Moves a Circle object to a new location.
circle: the Circle to be moved
newCenter: the center point of where circle

should be moved Function documentation

mimn

centerPoint = circle.getCenter()

diffInX
diffInY

newCenter.getX() - centerPoint.getX()
newCenter.getY() - centerPoint.getY()

circle.move(diffInX, diffInY)

Sprenkle - CSCI111

Function Definition Example with Output

Keyword Function Input Name/
1 Name Parameter

def aver'ageZCnuml, NnumMZ2) : Function header

Parameters: two numbers to be averaged.

Returns the average of two numbers
nmnn Function documentation

average = (numl + num2)/2
return average

/N

Keyword: Output
How to give output
Feb 12, 2024 Sprenkle - CSCI111

(or function definition)

Body

Review: returnvs print

In general, whenever we want output from a function,
we’ll use return
Results in a more flexible, reusable function

Let whoever called the function figure out what to display
Use print for

Debugging your function (then remove)
Otherwise, unintended side effect of calling the function
When you have a function that is supposed to display something
Sometimes, that is what you want.

Feb 12, 2024 Sprenkle - CSCI111 7

Review: Where are Functions Defined?

Functions can go inside program script
If no main() function, defined before use/called
Ifmain() function, defined anywhere in script

Functions can go inside a separate module

Feb 12, 2024 Sprenkle - CSCI111

Divergence from Text Book: Conventions

Us: main at the top Book: main at the bottom
See an overview of the code All functions have already been
(driver) at the top defined before main
Need to scroll down to see Need to scroll down to the bottom
function definitions to understand to see the driver/overview of the
what the main does program

Mitigated by having descriptive
function names

Need to call main at the bottom Need to call main at the bottom

Feb 12, 2024 Sprenkle - CSCI111 9

Variable Scope

Functions can have the same parameter and variable names
as other functions

Need to look at the variable’s scope to determine which one you're
looking at

Use the stack to figure out which variable you’re using

Scope levels
Local scope (also called function scope) _
Can only be seen within the function
Global scope (also called file scope)
Whole program can access
More on these later

Feb 12, 2024 Sprenkle - CSCI111 10

Tracing through Execution

def main():
x = 10

sum = sumEvens(x)
print("The sum of even #s up to", X,

def sumEvens(limit):
total = 0
for x in range(@, limit, 2):
total += x
return total

main()

Feb 12, 2024 Sprenkle - CSCI111

1s

, sum)

11

Tracing through Execution

(def main(): When you call main(), that means you

X = 10 want to execute this function
sum = sumkEvens(x)

print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit):
total = 0
for x in range(@, limit, 2):
total += x
return total

Defines functions
AL

\.
‘ ~main()

Feb 12, 2024 Sprenkle - CSCI111

Function Variables

def main() :
x = 10

sum = sumEvens(x)

print("The sum of even #s up to", X,

def sumEvens(limit) :

total = 0

for x in range(@, limit, 2):

total += X

return total

main()

=

Memory stack

main

X

10

Function names are like last names
Define the SCOPE of the variable

Sprenkle - CSCI111

Feb 12, 2024

1s", sum)

Variable names
are like first names

«~

Function Variables

def main() :
x = 10

sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)
. Called the function sumEvens
def sumEvens(limit) :

total = 0 Add its parameters to the stack

for x in range(@, limit, 2):
total += x St

return total limit 10
Evens

main()
main x 10

Feb 12, 2024 Sprenkle - CSCI111

Function Variables

def main() :
x = 10

sum = sumEvens(x)

print("The sum of even #s up to", x, "is", sum)
def sumEvens(limit) :

total = 0

for x in range(@, limit, 2):

t0t011f= X sum | total 0

return tota Evens | limit 10

main()
main x 10

Feb 12, 2024 Sprenkle - CSCI111

15

Function Variables

def main() :
x = 10

sum = sumEvens(x)

print("The sum of even #s up to", X,

def sumEvens(limit) :
total = 0
for x in range(@, limit, 2):
total += x
return total

main()

Feb 12, 2024 Sprenkle - CSCI111

"1s", sum)
sum -
Evens total O

limit 10
main x 10

Function Variables

def main() :
x = 10

sum = sumEvens(x)

print("The sum of even #s up to", X,

def sumEvens(limit) :
total = 0
for x in range(@, limit, 2):
total += Xx
return total

main()

Feb 12, 2024 Sprenkle - CSCI111

"1s", sum)
sum -
Evens total 20

limit 10
main x 10

17

Function Variables

def main() :
x = 10

sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
total = 0 Function sumEvens returned
for x in range(@, limit, 2): «no longer have to keep track of
total += x its variables on stack
return total * lifetime of those variables is over

main() sum 20

main x 10

Feb 12, 2024 Sprenkle - CSCI111 18

Function Variables

def main() :
x = 10

sum = sumEvens(x)

print("The sum of even #s up to", x,

def sumEvens(limit) :
total = 0
for x in range(@, limit, 2):
total += Xx
return total

main()

Feb 12, 2024 Sprenkle - CSCI111

"1s", sum)
main A
sum 20

Variable Scope

Functions can have the same parameter and variable names
as other functions

Need to look at the variable’s scope to determine which one you're
looking at

Use the stack to figure out which variable you’re using

Scope levels
Local scope (also called function scope) _
Can only be seen within the function
Global scope (also called file scope)
Whole program can access
More on these later

Feb 12, 2024 Sprenkle - CSCI111 20

Practice: Trace through the Program’s Execution

What is the output of this program?
Example: user enters 4

def main():
num = eval(input("Enter a number to be squared: "))
squared = square(num)
print("The square 1is", squared)

def square(n):
return n * n

main()

Feb 12, 2024 Sprenkle - CSCI111 p racticel. PY 21

Practice: Trace through the Program’s Execution

What is the output of this program?
Example: user enters 4

def main():

num = eval(input("Enter a number to be squared: "))
squared = square(num)
print("The square 1is", squared)

def square(n):

return n * n Enter a number to be squared: 4

The square 1s 16
main()

Feb 12, 2024 Sprenkle - CSCI111 p racticel. PY 22

Practice: Trace through the Program’s Execution

What is the output of this program?

Example: user enters 4

def main():

num = eval(input("Enter a number to be squared: "))
square(num)
print("The square 1is", computed)

def square(n):
computed = n * n
return computed

main()

Feb 12, 2024 Sprenkle - CSCI111 p racticel. PY 23

Practice: Trace through the Program’s Execution

What is the output of this program?

Example: user enters 4

def main():
num = eval(input("Enter a number to be squared: "))
square(num)
print("The square 1is", computed)

‘1~.__.~

def square(n):

computed = n * n Error! computed does
return computed not have a value in
. function main
main() O

Feb 12, 2024 Sprenkle - CSCI111 p racticel. PY 24

Practice: Trace through the Program’s Execution

One possible fix:

def main():

num = eval(input("Enter a number to be squared: "))
squared = square(num)
print("The square 1is", squared)

def square(n):
computed = n * n
return computed

main()

Feb 12, 2024 Sprenkle - CSCI111 p racticel. PY

Practice: Trace through the Program’s Execution

What is the output of this program?

Example: user enters 4

def main():
num = eval(input("Enter a number to be squared: "))
squared = square(num)
print("The square 1is", squared)
print("The original num was", n)

def square(n):
return n * n

main()

Feb 12, 2024 Sprenkle - CSCI111 p ractice3. PY 26

Practice: Trace through the Program’s Execution

What is the output of this program?

Example: user enters 4

def main():
num = eval(input("Enter a number to be squared: "))
squared = square(num)
print("The square 1is", squared)

print("The original num was", n)-‘h__~.~.

def square(n): Error! n does not
3 .
return n * n have a value in
main() function main()

Feb 12, 2024 Sprenkle - CSCI111

Practice: Trace through the Program’s Execution

One possible fix

def main():
num = eval(input("Enter a number to be squared: "))
squared = square(num)
print("The square 1is", squared)
print("The original num was", num)

def square(n):
return n * n

main()

Feb 12, 2024 Sprenkle - CSCI111

28

Synthesis: Variable Scope

“Lifetime” of variable: only during execution of function
Related to idea of “scope”
Consider: how many functions probably use a variable like

x or i? What would the impact be on our programs if all
variables had global scope?

Example: round(x, n)

In general, our only global variables will be constants
because we don’t want them to change value

e.g., EIEIO

Feb 12, 2024 Sprenkle - CSCI111 29

WHAT ARE CHARACTERISTICS OF A GOOD
FUNCTION?

Feb 12, 2024 Sprenkle - CSCI111

30

Writing a “Good” Function

Should be an “intuitive chunk”
Doesn’t do too much or too little

If does too much, try to break into more functions

Should be reusable
Should have a descriptive, “action” name

Should have a comment that tells what the function does

Feb 12, 2024 Sprenkle - CSCI111 31

Writing Documentation for Functions

Good style: Each function®* must have a comment that documents

its use
*main() usually doesn’t have a doc string because it is covered by the

program’s description
Describes functionality at a high-level
Does not describe its implementation
Focus on the interface/how to use the function:

Include the precondition, postcondition
Describe the parameters (their types) and the result of calling the
function (precondition and postcondition may cover this)

The exact format matters less than that the content is there

I’ll show a few different ways to write the documentation

Feb 12, 2024 Sprenkle - CSCI111 32

Writing Documentation for Functions

Tell the function caller how to use the function

Include the function’s pre- and post- conditions

Precondition: Things that must be true for function to work
correctly

E.g., num must be even; circle must be a Circle object

Postcondition: Things that will be true when function finishes (if
precondition is true)

E.g., the returned value is the max; circle will be moved to the
new point

Again, the exact format matters less than the content

Feb 12, 2024 Sprenkle - CSCI111 33

Example Documentation

Describes at high-level

Note: does not discuss implementation
Describes parameters
def printVerse(,):

mimrn

Prints a verse of 0ld MacDonald, plugging in the
animal and sound parameters (which are strings),

as appropriate. Comment style: Docstring

mimrn

print(BEGIN_END + EIEIO) “documentation string”
print("And on that farm he had a", animal, EIEIO)

When you use the help function, it shows the docstrings.

Feb 12, 2024 Sprenkle - CSCI111 34

Another Example Comment

Describes at high-level

Describes parameters
def average2(,):

mimrn

Note: does not discuss implementation

Parameters: two numbers to be averaged
Returns the average of the two numbers

mimrn

Comment style: Docstring

average = (numl + num2)/2 » , L,
documentation string

return average

When you use the help function, it shows the docstrings.

Feb 12, 2024 Sprenkle - CSCI111 35

Write the Docstring Comment for sumEvens

def main() :
x=10

sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :

total = 0

for x in range(@, limit, 2):
total += X

return total

main()
Feb 12, 2024 Sprenkle=CSCi111

36

Write the Docstring Comment for sumEvens

def main() :
x=10

sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :

Returns the sum of even numbers from @ up to but
not including limit, which is an integer

total = @ Many other correct doc strings

for x in range(@, limit, 2):
total += X
return total

main()

Feb 12, 2024 Sprenkle=CSCI111 37

TESTING FUNCTIONS

llllllllllllllllllllllllll

Testing Functions

Functions make it easier for us to test our code

We can write code to test the functions
Test Case:
Input: parameters

Expected Output: what we expect to be returned
» Or if state changed as we expected

We can verify the function programmatically

“programmatically” — automatically execute test cases and
verify that the actual returned result is what we expected

No user input required!

Feb 12, 2024 Sprenkle - CSCI111

39

test Module

Not a standard module
Included with our textbook

More sophisticated testing modules exist but this is sufficient for
us

Function:
testEqual(actual, expected[, places=5])
Parameters: actual and expected results for a function.

Displays "Pass" and returns True if the test case passes.

Displays error message, with expected and actual results, and
returns False if test case fails.

Feb 12, 2024 Sprenkle - CSCI111 40

Example: Testing sumEvens

import test

def testSumEvens(): This is the actual result
actual = sumEvens(1@) from our function
= 20 This is what we expect the result to be
test.testEqual(actual,)
test.testEqual(sumEvens(12), 30)

.. What th d test ?
def sumEvens(limit): at are other good test cases

total = 0

for x in range(@, limit, 2):
total += x

return total

Feb 12, 2024 Sprenkle - CSCI111 testSumEvenS . py 41

Exam Friday

Do not panic
In-class, on paper

Emphasis on critical thinking

Lab was to experiment and cement you’re learning. Now you’re ready!
Exam Preparation Document is on course web page
Similar problems to class and lab

Review questions

Worksheets

Problems
Content: up through Tuesday’s lab 4

Practicing what we learned Wed — Mon
No broader issue next week

Feb 12, 2024 Sprenkle - CSCI111

42

Looking Ahead

Pre-Lab due before lab on Tuesday
Exam Friday

llllllllllllllllllllllllll

