
Objectives
•Conditionals
•Exam review

Feb 14, 2024 Sprenkle - CSCI111 1

Your Learning Journey
•You’re learning a lot

ØStruggle is part of the learning

Feb 14, 2024 Sprenkle - CSCI111 2

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Learning In Lab

Learning

Your Learning Journey
•But struggle affects your confidence

ØConfidence != Learning

Feb 14, 2024 Sprenkle - CSCI111 3

Lab ends and … ???

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Learning vs Confidence in Lab

Learning Confidence

0
5

10
15
20
25
30
35
40
45
50

1 2 3 4 5 6 7 8 9 10 11 12

After Lab...

Learning Confidence

Your Learning Journey
•But struggle affects your confidence

ØConfidence != Learning

Feb 14, 2024 Sprenkle - CSCI111 4

Keep reviewing, practicing
Learning may not increase as much,
but confidence should

Lab Progression
1. Functions defined for you; you call them
2. Refactor code you already wrote/tested/debugged into a

function that takes no parameters and doesn’t return
anything

3. Refactor code you already wrote/tested/debugged into a
function that takes a parameter and returns something

Ø Can programmatically test
4. Implement functions that return things within a module

Ø Uses functionality from the random module
5. Bottom-up development of functions

Feb 14, 2024 Sprenkle - CSCI111 5

Justifications
•Why refactoring?

ØCommon practice: write
code, then realize it would
be better (more readable,
reusable, easier to test, …)
if it were in a function

• Why test programmatically
(when possible)?
Ø Test-driven development: think

about what function should do
first

Ø Automatically execute test cases
and verify that the actual
returned result is what we
expected
• No user input required!
• Can rerun quickly/efficiently if

implementation changes

Feb 14, 2024 Sprenkle - CSCI111 6

Course Progression: Building Blocks
•Adding to your tool set
•We can combine them to create more complex

programs
ØSolutions to problems

Feb 14, 2024 Sprenkle - CSCI111 8

Assign.

print for

input import

functions

Evolving General Design Patterns
•General design pattern:

1. Optionally, get user input
2. Do some computation
3. Display results

•General design pattern with functions:
1. Optionally, get user input
2. Do some computation by calling functions, get results
3. Display results

Feb 14, 2024 Sprenkle - CSCI111 9

Python Visualizer

Feb 14, 2024 Sprenkle - CSCI111 10

https://pythontutor.com

https://pythontutor.com/

Parts of an Algorithm
• Input, Output
• Primitive operations

Ø What data you have, what you can do to the data
• Naming

Ø Identify things we’re using
• Sequence of operations
• Conditionals

Ø Handle special cases
• Repetition/Loops
• Subroutines

Ø Call, reuse similar techniques

Feb 14, 2024 Sprenkle - CSCI111 11

Feb 14, 2024 Sprenkle - CSCI111 12

Making Decisions
• Sometimes, we do things only if some condition holds (i.e., “is true”)
• Examples

Ø If the PB is new (has a safety seal)
• Then, I will take off the safety seal

Ø If it is raining and it is cold
• Then, I will wear a raincoat

Ø If it is Saturday or it is Sunday
• Then, I will wake up at 9 a.m.
• Otherwise, I wake up at 7 a.m.

Ø If the shirt is purple or the shirt is on sale and blue
• Then, I will buy the shirt

Conditionals
•Sometimes, we only want to execute a statement in

certain cases
•Example: Finding the absolute value of a number

•|4| = 4
•|-10| = 10

ØTo get the answer, we multiply the number by -1 only if it’s a
negative number

ØCode:

Feb 14, 2024 Sprenkle - CSCI111 13

if x < 0 :
 abs = x*-1

Feb 14, 2024 Sprenkle - CSCI111 14

if Statements
•Change the control flow of the program

fahr = eval(input("…"))

celsius = 5/9*(fahr-32)

print("celsius=", celsius)

x = eval(input("…"))

x < 0

abs = x * -1 abs = x

print("abs=", abs)

True False

Choose
the path

Other Constructs That Change Control Flow
•for loops

ØRepeats a loop body a fixed number of times before going to
the next statement after the for loop

Feb 14, 2024 Sprenkle - CSCI111 15

for x in range(10):

print("Hello")

print("Goodbye")

next_statement …

for x in range(10):
 print("Hello")
 print("Goodbye")
next_statement …

Other Constructs That Change Control Flow
•Function calls

Ø“Go execute some other code and then come back with the
result”

Feb 14, 2024 Sprenkle - CSCI111 16

x = function()
…

…

…

function()

Syntax of if statement: Simple Decision

Feb 14, 2024 Sprenkle - CSCI111 17

if condition :
statement1
statement2
…
statementn English Examples:

if it is raining :
I will wear a raincoat

if the PB is new :
Remove the seal

“then” Body
• Note indentation

ke
yw

or
d

Feb 14, 2024 Sprenkle - CSCI111 18

Conditions
•Syntax (typical, others later):

Ø<expr> <relational_operator> <expr>
•Evaluates to either True or False

ØBoolean type

Relational Operators
• Syntax: <expr> <relational_operator> <expr>
• Evaluates to either True or False

ØBoolean type

Feb 14, 2024 Sprenkle - CSCI111 19

Relational Operator Meaning

< Less than?

<= Less than or equal to?

> Greater than?

>= Greater than or equal to?

== Equals?

!= Not equals?

Use Python interpreter

Lo
w

 p
re

ce
de

nc
e

A
ft

er
 a

ri
th

m
et

ic
 o

pe
ra

to
rs

Feb 14, 2024 Sprenkle - CSCI111 20

Example: Using Conditionals
•Determine if a number is even or odd

evenorodd.py

x = eval(input("Enter a number: "))
remainder = x % 2
if remainder == 0 :
 print(x, "is even")
if remainder == 1:
 print(x, "is odd")

Common Mistake:
Assignment Operator vs. Equality Operator

•Assignment operator: =
•Equality operator: ==

Feb 14, 2024 Sprenkle - CSCI111 21

x = eval(input("Enter a number: "))
remainder = x%2
if remainder = 0 :
 print(x, "is even.")

Syntax error

Syntax of if statement: Two-Way Decision

Feb 14, 2024 Sprenkle - CSCI111 22

if condition :
statement1
statement2
…
statementn

else :
statement1
statement2
…
statementn

English Example:
if it is Saturday or it is Sunday :
 I wake up at 9 a.m.
else :
 I wake up at 7 a.m.

“then” Body

“else” Body

ke
yw

or
ds

Feb 14, 2024 Sprenkle - CSCI111 23

If-Else statements (absolute values)

x < 0

abs *= -1

print("abs=", abs)

True

x < 0

abs = x * -1 abs = x

print("abs=", abs)

True FalseFalse: jump to next
statement

If statement If-else statement

abs = x
if x < 0 :
 abs *= -1
print("abs=", abs)

if x < 0 :
 abs = x * -1
else:
 abs = x
print("abs=", abs)

Example: Using Conditionals
•Determine if a number is even or odd
•More efficient implementation

ØDon’t need to check if remainder is 1 because if it’s not 0, it
must be 1

Feb 14, 2024 Sprenkle - CSCI111 24

x = eval(input("Enter a number: "))
remainder = x % 2
if remainder == 0:
 print(x, "is even")
else:
 print(x, "is odd")

Feb 14, 2024 Sprenkle - CSCI111 25

Practice: Draw the Flow Chart
print("This program determines your birth year")
print("given your age and current year")
print()
age = eval(input("Enter your age: "))

if age > 120:
 print("Don't be ridiculous, you can't be that old.")
else:
 currentYear = eval(input("Enter the current year: "))
 birthyear = currentYear – age
 print()
 print("You were either born in", birthyear, end=' ')
 print("or", birthyear-1)
print("Thank you. Come again.")

What does this code do?

Flow of Control
• max: Given two numbers, returns

the greater number

Feb 14, 2024 Sprenkle - CSCI111 26

def max(num1, num2):
 if num1 >= num2:
 theMax = num1
 else:
 theMax = num2
 return theMax

Is this implementation of
the function correct?

Flow of Control

Feb 14, 2024 Sprenkle - CSCI111 27

theMax=num1

num1 >= num2
True False

theMax=num2

def max(num1, num2):

return to caller

def max(num1, num2):
 if num1 >= num2:
 theMax = num1
 else:
 theMax = num2
 return theMax

return theMax

Flow of Control: Using return
• max: Given two numbers, returns

the greater number

Feb 14, 2024 Sprenkle - CSCI111 28

def max(num1, num2):
 if num1 >= num2:
 return num1
 else:
 return num2

Is this implementation of
the function correct?

Flow of Control: Using return

Feb 14, 2024 Sprenkle - CSCI111 29

return num1

num1 >= num2
True False

return num2

def max(num1, num2):

return to caller

def max(num1, num2):
 if num1 >= num2:
 return num1
 else:
 return num2

Is this implementation of
the function correct?

Flow of Control: Using return

Feb 14, 2024 Sprenkle - CSCI111 30

def max(num1, num2):
 if num1 >= num2:
 return num1
 return num2

Is this implementation of
the function correct?

Flow of Control: Using return

Feb 14, 2024 Sprenkle - CSCI111 31

return num1

num1 >= num2
True

return num2

def max(num1, num2):

return to caller

Implicit false branch:
Only way got here is if

the condition was
not True

def max(num1, num2):
 if num1 >= num2:
 return num1
 return num2

Is this implementation of
the function correct?

Feb 14, 2024 Sprenkle - CSCI111 32

Practice: Speeding Ticket Fines
•Any speed clocked over the limit results in a fine of at

least $50, plus $5 for each mph over the limit, plus a
penalty of $200 for any speed over 90mph.

•Our function
ØInput: speed limit and the clocked speed
ØOutput: the appropriate fine
•What should the appropriate fine be if the user is not

speeding?
•Write test cases first!

speedingticket.py

Exam Friday
• In-class, on paper

ØEmphasis on critical thinking
• Exam Preparation Document is on course web page
• Similar problems to class and lab

ØReview questions
ØWorksheets
ØProblems

• Content: up through Lab 4
• No broader issue this week

Feb 14, 2024 Sprenkle - CSCI111 33

Change in today’s office hours: 11:30-1:30
Friday: I will be observing another class

Looking Ahead
•Lab 4

ØPracticing functions
ØDue Friday

•Exam Friday
•No broader issue this week

Feb 14, 2024 Sprenkle - CSCI111 34

