Objectives

- Computer's representations of data types

Lab 6 Reflection

- Reflection: How far have I come in Computer Science?
- Indefinite loops require a different way of thinking
- Likely, hardest problem was second rather than last
- Even more tools that you can combine-with new tools or old tools!
$>$ A lot of String operations
- Previously: a lot of arithmetic operations, but you're familiar with those
- Break down problems
> Solve what you can; break down what you can't
$>$ Not necessarily linear development
- May do something and then undo it for the next step

Representations of Data

Computer needs to represent different types of data
$>$ Eventually, all boils down to 1 s and 0 s
Computer needs to translate between what humans know to what computer knows and back again

decimal, strings

decimal, strings

Decimal Representations

- Decimal is base 10
- Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Each position in a decimal number represents a power of 10

Decimal Representations

- Decimal is base 10
- Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Each position in a decimal number represents a power of 10
${ }^{\circ}$ Example: 54,087

5	4	0	8	7
10^{4}	10^{3}	10^{2}	10^{1}	10^{0}

$=5^{*} 10^{4}+4^{*} 10^{3}+0^{*} 10^{2}+8^{*} 10^{1}+7^{*} 10^{0}$
$=5^{*} 10,000+4^{*} 1000+0 * 100+8^{*} 10+7^{*} 1$

Number Representations

Characteristic	Decimal	Binary
Base	10	2
Digits	$0,1,2,3,4$, $5,6,7,8,9$	0,1
Position represents	Power of 10	Power of 2

- Binary: two values (0,1)
$>$ Like a light switch (either off or on) or booleans (either True or False)
- 0 and 1 are binary digits or bits
$>$ 64-bit machine: represents numbers (and other data) with 64 bits

Binary Representation

- Binary number: 1101

1	1	0	1
2^{3}	2^{2}	2^{1}	2^{0}

$=1^{*} 2^{3}+1^{*} 2^{2}+0^{*} 2^{1}+1^{*} 2^{0}$
$=1^{*} 8+1^{*} 4+0^{*} 2+1^{*} 1$
>Decimal value: 13
Practice: what is the decimal value of the binary number IOIIO?

Binary Representation

- Binary number: 10110

1	0	1	1	0
2^{4}	2^{3}	2^{2}	2^{1}	2^{0}

$=1^{*} 2^{4}+0^{*} 2^{3}+1^{*} 2^{2}+1^{*} 2^{1}+0^{*} 2^{0}$

- $=1^{*} 16+0^{*} 8+1^{*} 4+1^{*} 2+0^{*} 1$
>22

Converting Binary to Decimal

1. Design function API: binaryToDecimal(binaryNum)

Takes as parameter the binary number as a string and returns the decimal value of the given binary number
2. Define good test cases for this function
> Input, expected results
3. Generalize this process into an algorithm
4. "Run" your algorithm on these test cases
5. Implement your algorithm

Algorithm 1: Converting Binary \rightarrow Decimal
Left to right traversal of binary number
Accumulator design pattern
Given the binary number as a string

1. Initialize the result to zero
2. The starting exponent will be the length of the string-1
3. For each bit in the binary number
$>$ Multiply the bit by the appropriate power of 2
$>$ Add this to the result
$>$ Reduce the exponent by 1
4. Return the result

Algorithm 2: Converting Binary \rightarrow Decimal
Right to left traversal of binary number

Accumulator design pattern

Given the binary number as a string

1. Initialize the result to zero
2. Initialize the exponent to zero
3. Iterate over the positions of the binary number from right to left
$>$ Determine the bit at that position in the binary number
$>$ Multiply the bit by the appropriate power of 2
$>$ Add this to the result
$>$ Increase the exponent by 1
4. Return the result

Practice

- Implement both algorithms
$>$ Test!

After implementing, you can compare with my solutions
> binaryToDecimalIterateOverCharacters.py
> binaryToDecimalIterateOverExponents.py

Converting Decimal \rightarrow Binary

- What should the function API be?

Define test cases

Algorithm: Converting Decimal \rightarrow Binary

Given the decimal as an integer...

1. Initialize the result to the empty string
2. Repeat until the decimal is 0 :
>result = str(decimal \% 2) + result
$>$ decimal $=$ decimal // 2
3. Return the result
4. Try out algorithm with 22 as input
5. Implement algorithm in function decimalToBinary

Looking Ahead

- Lab 6 due Friday

Broader Issue: Autonomous Vehicles

