
Objectives
•A new data type: Lists

March 13, 2024 Sprenkle - CSCI111 1

Lab 7 Retrospective
•Things we learned in the past keep coming back!
ØCombining with the new things!

•That’s the power of computing/programming!

March 13, 2024 Sprenkle - CSCI111 2

Sequences of Data
• Data types model various information

ØNumbers, strings, rectangles, …
• Sequences so far …

Østr: sequence of characters
Ørange: generator (sequence of numbers)

• We commonly group a sequence of data together and refer to
them by one name
ØDays of the week: Sunday, Monday, Tuesday, …
ØMonths of the year: Jan, Feb, Mar, …
ØShopping list

• Can represent this data as a list in Python
ØSimilar to arrays in other languages

March 13, 2024 Sprenkle - CSCI111 4

Lists: A Sequence of Data Elements

•Elements in lists can be any data type

March 13, 2024 Sprenkle - CSCI111 5

"Sun" "Mon" "Tue" "Wed" "Thu" "Fri" "Sat"
0 1 2 3 4 5 6

element

Position/index
in the list

len(daysInWeek) is 7

daysInWeek

What does this look similar to, in structure?

Example Lists in Python: []
•Empty List: []
•List of strs:

Ø daysInWeek=["Sun", "Mon", "Tue", "Wed", "Thu", "Fri",
"Sat"]

•List of floats
Ø highTemps=[60.4, 70.2, 63.8, 55.7, 54.2]

•Lists can contain >1 type
Ø wheelOfFortune=[250, 1000, "Bankrupt", "Free Play"]

March 13, 2024 Sprenkle - CSCI111 6

Benefits of Lists
•Group related items together

ØInstead of creating separate variables
•sunday = "Sun"
•monday = "Mon"

•Convenient for dealing with large amounts of data
ØExample: could keep all the temperature data in a list if

needed to reuse later
•Functions and methods for handling, manipulating

lists

March 13, 2024 Sprenkle - CSCI111 7

List Operations

March 13, 2024 Sprenkle - CSCI111 8

Concatenation <seq> + <seq>
Repetition <seq> * <int-expr>
Indexing <seq>[<int-expr>]
Length len(<seq>)
Slicing <seq>[:]
Iteration for <var> in <seq>:
Membership <expr> in <seq>

Similar to operations for strings

"Sun" "Mon" "Tue" "Wed" "Thu" "Fri" "Sat"
0 1 2 3 4 5 6

Lists: A Sequence of Data Elements

March 13, 2024 Sprenkle - CSCI111 9

• <listname>[<int_expr>]
Ø Similar to accessing characters in a string
Ø daysInWeek[-1] is "Sat"
Ø daysInWeek[0] is "Sun"

element

Position
in the list len(daysInWeek) is 7

daysInWeek

Iterating through a List
•Read as
ØFor every element in the list …

•Output equivalent to

March 13, 2024 Sprenkle - CSCI111 10

for item in list:
 print(item)

An item in the list list object

for x in range(len(list)):
 print(list[x])

Iterates through
positions in list

Iterates through
items in list

daysOfWeek.py

Example Code

March 13, 2024 Sprenkle - CSCI111 11friends.py

friends = ["Alice", "Bjorn", "Casey", "Duane", "Elsa", "Farrah"]

for name in friends:
 print("I know " + name + ".")
 print(name, "is a friend of mine.")

print("Those are the people I know.")

Example Code

March 13, 2024 Sprenkle - CSCI111 12friends.py

Practice on your own: Rewrite as an “iterate over positions in list” loop

friends = ["Alice", "Bjorn", "Casey", "Duane", "Elsa", "Farrah"]

for name in friends:
 print("I know " + name + ".")
 print(name, "is a friend of mine.")

print("Those are the people I know.")

Complete Old MacDonald

March 13, 2024 Sprenkle - CSCI111 13

animals = ["cow", "pig", "duck"]
sounds = ["moo", "oink", "quack"]

for i in range(len(animals)):

 printVerse(

oldmac.py

printVerse(animal, sound)
 Prints a verse of Old MacDonald, plugging in the animal
 and sound parameters (which are strings), as appropriate.

Doc String (as seen using help function):

Practice
•Get a list of weekdays and a list of weekend days

from the days of the week list
ØdaysInWeek=["Sun", "Mon", "Tue",
"Wed", "Thu", "Fri", "Sat"]

Øweekdays =
Øweekend_days =

March 13, 2024 Sprenkle - CSCI111 14

Practice
•Get a list of weekdays
ØdaysInWeek=["Sun", "Mon", "Tue",
"Wed", "Thu", "Fri", "Sat"]

ØweekDays = daysInWeek[1:6]

March 13, 2024 Sprenkle - CSCI111 15

Practice
•Get the list of weekend days from the days of the

week list
Ø daysInWeek=["Sun", "Mon", "Tue", "Wed", "Thu",
"Fri", "Sat"]

Ø weekend = daysInWeek[:1] + daysInWeek[-1:]

or
Ø weekend = [daysInWeek[0]] + [daysInWeek[-1]]

March 13, 2024 Sprenkle - CSCI111 16

Gives back a list

Gives back an element of list,
which is a str

Membership
•Check if a list contains an element
•Example usage

Øenrolledstudents is a list of students who are enrolled
in the class

ØWant to check if a student who attends the class is enrolled in
the class

March 13, 2024 Sprenkle - CSCI111 17

if student not in enrolledstudents:
 print(student, "is not enrolled")

Making Lists of Integers Quickly
•If you want to make a list of integers that are

evenly spaced, you can use the range generator
•Example: to make a list of the even numbers from

0 to 99:
ØevenNumList = list(range(0, 99, 2))

March 13, 2024 Sprenkle - CSCI111 18

Converts the generated numbers into a list

str Method Flashback
•string.split([sep])
ØReturns a list of the words in the string string,

using sep as the delimiter string
ØIf sep is not specified or is None, any whitespace

(space, new line, tab, etc.) is a separator
ØExample:

March 13, 2024 Sprenkle - CSCI111 19

phrase = "Hello, Computational Thinkers!"
x = phrase.split()

What is x? What is its data type? What does x contain?

str Method Flashback
•string.join(iterable)
ØReturn a string which is the concatenation of the
strings in the iterable/sequence. The separator
between elements is string.

ØExample:

March 13, 2024 Sprenkle - CSCI111 20

x = ["1","2","3"]
phrase = " ".join(x)

What is x’s data type?
What is phrase’s data type?
What does phrase contain?

List Methods

March 13, 2024 Sprenkle - CSCI111 21

Method Name Functionality
<list>.append(x) Add element x to the end

<list>.sort() Sort the list

<list>.reverse() Reverse the list

<list>.index(x) Returns the index of the first occurrence
of x, Error if x is not in the list

<list>.insert(i, x) Insert x into list at index i

<list>.count(x) Returns the number of occurrences of x in
list

<list>.remove(x) Deletes the first occurrence of x in list

<list>.pop(i) Deletes the i th element of the list and
returns its value

Note: methods do not return a copy of the list …

Lists vs. Strings
•Strings are immutable

ØCan’t be mutated?
ØErr, can’t be

modified/changed

• Lists are mutable
ØCan be changed

• Called “change in place”

ØChanges how we call/use
methods

March 13, 2024 Sprenkle - CSCI111 22

groceryList=["milk", "eggs", "bread", "Doritos", "OJ", "sugar"]

groceryList[0] = "skim milk"
groceryList[3] = "popcorn"

groceryList is now ["skim milk", "eggs", "bread", "popcorn", "OJ", "sugar"]

Practice in Interactive Mode
• myList = [7,8,9]
• myString = "abc"
• myList[1]
• myString[1]
• myString.upper()
• myList.reverse()
• myString
• myList
• myString = myString.upper()
• myList = myList.reverse()
• myString
• myList

March 13, 2024 Sprenkle - CSCI111 23

Special Value: None
•Special value we can use
ØE.g., Return value from function/method when there

is an error
ØOr if function/method does not return anything

•If you execute

ØPrints None because list.sort() does not return
anything

March 13, 2024 Sprenkle - CSCI111 24

(Similar to null in Java)

list = list.sort()
print(list)

What should we write instead?

Returning to the Fibonacci Sequence
•Goal: Solve using list
•F0=0, F1=1
•Fn=Fn-1 + Fn-2

•Example sequence: 1, 1, 2, 3, 5, 8, 13, 21, …

March 13, 2024 Sprenkle - CSCI111 25

Fibonacci Sequence
•Create a list of the 1st 20 Fibonacci numbers
ØF0=0; F1=1; Fn=Fn-1+ Fn-2

March 13, 2024 Sprenkle - CSCI111 26

fibs = [] # create an empty list
fibs.append(0) # append the first two Fib numbers
fibs.append(1)

fibs.py

Grow list as we go

Fibonacci Sequence
•Create a list of the 1st 20 Fibonacci numbers
ØF0=0; F1=1; Fn=Fn-1+ Fn-2

March 13, 2024 Sprenkle - CSCI111 27

fibs = [] # create an empty list
fibs.append(0) # append the first two Fib numbers
fibs.append(1)
for x in range(2, 20): # compute the next 18 numbers
 newfib = fibs[x-1] + fibs[x-2]
 fibs.append(newfib) # add next number to the list

print(fibs) # print out the list as a list in one line

fibs.py

Grow list as we go

Fibonacci Sequence
•Create a list of the 1st 20 Fibonacci numbers
ØF0=0; F1=1; Fn=Fn-1+ Fn-2

March 13, 2024 Sprenkle - CSCI111 28

fibs = [] # create an empty list
fibs.append(0) # append the first two Fib numbers
fibs.append(1)
for x in range(2, 20): # compute the next 18 numbers

newfib = fibs[-1] + fibs[-2]
 fibs.append(newfib) # add next number to the list

print(fibs) # print out the list as a list in one line

fibs.py

Alternative

Lists vs. Arrays
•Briefly, lists are similar to arrays in other

languages
ØMore similar to Vectors in C++ and ArrayLists in Java

•Typically, arrays have fixed lengths
ØCan’t insert and remove elements from arrays to

change the length of the array
ØNeed to make the array as big as you’ll think you’ll

need

March 13, 2024 Sprenkle - CSCI111 29

Fibonacci Sequence: Array-like Implementation
•Create a list of the 1st 20 Fibonacci numbers
ØF0=F1=1; Fn=Fn-1+ Fn-2

March 13, 2024 Sprenkle - CSCI111 30

fibs = [0]*20 # creates a list of size 20,
 # containing all 0s
fibs[0] = 0
fibs[1] = 1

fibs2.py

• Create whole list
• Update values

•Create a list of the 1st 20 Fibonacci numbers
ØF0=F1=1; Fn=Fn-1+ Fn-2

Fibonacci Sequence: Array-like implementation

March 13, 2024 Sprenkle - CSCI111 31

fibs = [0]*20 # creates a list of size 20,
 # containing all 0s
fibs[0] = 0
fibs[1] = 1

for x in range(2, len(fibs)):
 newfib = fibs[x-1] + fibs[x-2]
 fibs[x] = newfib

for num in fibs: # print each num in list on sep lines
 print(num)

fibs2.py

• Create whole list
• Update values

Looking Ahead
•Lab 7 – due Friday
•Broader Issue: Cryptography – due Thursday

night

March 13, 2024 Sprenkle - CSCI111 32

