
Objectives
•Exception Handling
•Searching

Apr 5, 2024 Sprenkle - CSCI111 1

EXCEPTION HANDLING

Apr 5, 2024 Sprenkle - CSCI111 2

Runtime Errors: Exceptions
•“Raised” at runtime
•A signal that something “ain’t quite right”

ØSomething has occurred that can’t be easily handled using
typical Python structures

•When an exception is raised
ØProgram execution stops
ØPython prints out the traceback
•A report of the function calls made in your code to reach

this point

Apr 5, 2024 Sprenkle - CSCI111 3

Example Traceback

Apr 5, 2024 Sprenkle - CSCI111 4

$ python yearborn.py
This program determines your birth year
given your age and the current year

Enter your age: seven
Traceback (most recent call last):
 File "/Users/sprenkles/Box/CSCI111/inclass/24-dictionaries/yearborn.py",
 line 31, in <module>
 main()
 File "/Users/sprenkles/Box/CSCI111/inclass/24-dictionaries/yearborn.py",
 line 12, in main
 age = int(input("Enter your age: "))
ValueError: invalid literal for int() with base 10: 'seven'

Shows the problem (ValueError) and
the line where the error occurred and the execution path to get there
à called main on line 31, error is on line 12 in main

Handling Exceptions
•Using try/except statements
•Syntax:

•Example:

Apr 5, 2024 Sprenkle - CSCI111 5

try:
 <body>
except [<errorType>] :
 <handler>

try:
 age = int(input("Enter your age: "))
 currentyear = int(input("Enter the current year: "))
except:
 print("Error: Your input was not in the correct form.")
 print("Enter integers for your age and the current year")
 sys.exit(1)

yearborn.py

Optional: use this to handle
specific error types appropriately

try body: Typical behavior/
No errors

Exception-Specific Handling
•Using try/except statements
•Syntax:

•Example:

Apr 5, 2024 Sprenkle - CSCI111 6

try:
 <body>
except [<errorType>] :
 <handler>

yearborn2.py

Optional: use this to handle
specific error types appropriately

try:
 age = int(input("Enter your age: "))
 currentyear = int(input("Enter the current year: "))
except ValueError:
 print("Error: Your input was not in the correct form.")
 print("Enter integers for your age and the current year")
 sys.exit(1)

Discussion: sys.exit([status])
•What is sys.exit([status])?
ØA way to exit the program

•Where does it come from?
ØThe sys module; need to import
Øimport sys

Apr 5, 2024 Sprenkle - CSCI111 7

exit(...)
 exit([status])

 Exit the interpreter by raising SystemExit(status).
 If the status is omitted or None, it defaults to zero (i.e., success).
 If the status is an integer, it will be used as the system exit status.
 If it is another kind of object, it will be printed and the system
 exit status will be one (i.e., failure).

Examples of Types of Exceptions
•IndexError
ØWhen index is not found in the sequence

•KeyError
ØWhen a key is not found in the dictionary

•IOError:
ØFileNotFoundError: File doesn’t exist
ØPermissionError: Don’t have permission to read/write

file
Apr 5, 2024 Sprenkle - CSCI111 8

Exception Handling

•Exceptions are objects
•We can get more information about the exception

by printing them out
Apr 5, 2024 Sprenkle - CSCI111 9

try:
 inFile = open(infileName, "r")
 # typically, would process file here…
 inFile.close()
except IOError as exc :
 print("Error reading \"" + infileName + "\".")
 # could be a variety of different problems,
 # so print out the exception and its type
 print(exc)
 print(type(exc))
 sys.exit(1)

file_handle.py

Best Practices
•Prevent errors as best you can
ØExample: use if statements to verify data
•Confirm key is in the dictionary before trying to

access

•For errors you can’t prevent, handle them!
ØExample: We can check if a file exists before trying to

read it BUT between the check and actually reading
the file, the file could be deleted from the system!

Apr 5, 2024 Sprenkle - CSCI111 10

Review
•We discussed two different search techniques:
ØWhat were they?
ØHow do they compare?
ØWhat are their pros and cons?

•Continue working on the problem we ended with
(implementing the second search technique)

Apr 5, 2024 Sprenkle - CSCI111 11

Review: Search Using in Review
•Iterates through a list, checking if the element is

found
•Known as linear search
•Implementation:

Apr 5, 2024 Sprenkle - CSCI111 12

def linearSearch(searchlist, key):
 for elem in searchlist:
 if elem == key:
 return True
 return False

8 5 3 7

0 1 2 3

What are the strengths and weaknesses of implementing search this way?

value

pos

Review: Linear Search
•Overview: Iterates through a list, checking if the

element is found
•Benefits:
ØWorks on any list

•Drawbacks:
ØSlow, on average: needs to check each element of list

if the element is not in the list

Apr 5, 2024 Sprenkle - CSCI111 13

Review: Binary Search:
Eliminate Half the Possibilities
•Repeat until find value (or looked through all values)

ØGuess middle value of possibilities
•(not middle position)

ØIf match, found!
ØOtherwise, find out too high or too low
ØModify your possibilities
•Eliminate the possibilities from your number and

higher/lower, as appropriate
•Known as Binary Search

Apr 5, 2024 Sprenkle - CSCI111 14

Binary Search Implementation

Apr 5, 2024 Sprenkle - CSCI111 15

def search(searchlist, key):
 low=0
 high = len(searchlist)-1
 while low <= high :
 mid = (low+high)//2
 if searchlist[mid] == key:
 return mid # return True
 elif key > searchlist[mid]:
 low = mid+1
 else:
 high = mid-1
 return -1 # return False

If you just want to
know if it’s in the list

Binary Search
• Example of a Divide and Conquer algorithm

ØBreak into smaller pieces that you can solve
• Benefits:

ØFaster to find elements (especially with larger lists)
• Drawbacks:

ØRequires that data can be compared
•__lt__, __eq__ methods implemented by the class (or

another solution)
ØList must be sorted before searching

•Takes time to sort

Apr 5, 2024 Sprenkle - CSCI111 16

Key Questions in Computer Science
•How can we efficiently organize data?
•How can we efficiently search for data, given

various constraints?
ØExample: data may or may not be sortable

•What are the tradeoffs?

Apr 5, 2024 Sprenkle - CSCI111 17

Empirical Study of Search Techniques

•How long does it take to find various keys?
ØMeasure by the number of comparisons
ØVary the size of the list and the keys
ØWhat are good tests for the lists and the keys?

Apr 5, 2024 Sprenkle - CSCI111 18search_compare.py

Goal: Determine which technique is
better under various circumstances

Empirical Study of Search Techniques
•Analyzing Results …
ØBy how much did the number of comparisons for

linear search vary?
ØBy how much did the number of comparisons for

binary search vary?

•What conclusions can you draw from these
results?

Apr 5, 2024 Sprenkle - CSCI111 19

search_compare.py

Search Strategies Summary
•Which search strategy should I use under the

following circumstances?
ØI have a short list

ØI have a long list

ØI have a long sorted list

Apr 5, 2024 Sprenkle - CSCI111 20

Search Strategies Summary
• Which search strategy should I use under the following

circumstances?
ØI have a short list

•How short? How many searches? Linear (in)
ØI have a long list

•Linear (in) - because don’t know if in order, comparable
•Alternatively, may want to sort the list and then perform

binary search, if sorting first won’t be more effort than just
searching.

ØI have a long sorted list
•Binary

Apr 5, 2024 Sprenkle - CSCI111 21

Extensions to Search

Apr 5, 2024 Sprenkle - CSCI111 22

In InstaFace, we want to find people who have a certain name.

Consider what happens when searchlist is a list of Persons
and key is a name (a str)

We want to find a Person whose name matches the
key and return the Person

List of Person objects

Apr 5, 2024 Sprenkle - CSCI111 23

Example: looking for a person with the name “Tom”…

0 1 2 3 4

Person
Id:“1”
“Gal”

Person
Id:“2”

“Scarlett”

Person
Id:“3”
“Tom”

Person
Id: “4”
“Ben”

Person
Id: “5”

“Samuel”

List of Person objects

Apr 5, 2024 Sprenkle - CSCI111 24

0 1 2 3 4

Person
Id:“1”
“Gal”

Person
Id:“2”

“Scarlett”

Person
Id:“3”
“Tom”

Person
Id: “4”
“Ben”

Person
Id: “5”

“Samuel”

0 1 2 3 4

Person
Id: “4”
“Ben”

Person
Id: “1”
“Gal”

Person
Id:“5”

“Samuel”

Person
Id:“2”

“Scarlett”

Person
Id:“3”
“Tom”

Sorted by name, e.g., personList.sort(key=Person.getName)

Extensions to Solution

Apr 5, 2024 Sprenkle - CSCI111 25

def search(searchlist, key):
 low=0
 high = len(searchlist)-1
 while low <= high :
 mid = (low+high)//2
 if searchlist[mid] == key:
 return mid
 elif key > searchlist[mid]:
 # look in upper half
 low = mid+1
 else:
 # look in lower half
 high = mid-1
 return -1

Consider what happens when
searchlist is a list of Persons
sorted by name, key is a str
representing a name
Goal: return a Person object with that
name (key)

0 1 2 3 4

Person
Id: “4”
“Ben”

Person
Id: “1”
“Gal”

Person
Id:“5”

“Samuel”

Person
Id:“2”

“Scarlett”

Person
Id:“3”
“Tom”

Extensions to Solution

Apr 5, 2024 Sprenkle - CSCI111 26

def search(searchlist, key):
 low=0
 high = len(searchlist)-1
 while low <= high :
 mid = (low+high)//2
 if searchlist[mid] == key:
 return mid
 elif key > searchlist[mid]:
 # look in upper half
 low = mid+1
 else:
 # look in lower half
 high = mid-1
 return -1

What can we do to make
search results more intuitive?

Consider what happens when
searchlist is a list of Persons
sorted by name, key is a str
representing a name
Goal: return a Person object with that
name (key)

0 1 2 3 4

Person
Id: “4”
“Ben”

Person
Id: “1”
“Gal”

Person
Id:“5”

“Samuel”

Person
Id:“2”

“Scarlett”

Person
Id:“3”
“Tom”

Summary of Extensions to Solution
•Check the name of the Person at the midpoint
•Represent, handle when no Person matches
•What could we do if more than one person has that

name?

•Note: we’re not implementing “name contains”
ØHow could we implement that?

Apr 5, 2024 Sprenkle - CSCI111 27

Looking Ahead
•Lab 11

Apr 5, 2024 Sprenkle - CSCI111 28

