
Objectives
•Two-dimensional lists

Apr 8, 2024 Sprenkle - CSCI111 1

Review
• What is exception handling?

Ø How do we implement it in our
code? What is the structure?

Ø What are best practices?

• What are the two types of search
we discussed?
Ø How do they work?
Ø How do they compare?
Ø What are the tradeoffs between

using linear search and binary
search?

• Lists (for today’s lesson…)
Ø How do we find the number of

elements in the list?
Ø How can we find the value of the

third element in the list?

Apr 8, 2024 Sprenkle - CSCI111 2

Review: Handling Exceptions
•Using try/except statements
•Syntax:

•Example:

Apr 8, 2024 Sprenkle - CSCI111 3

try:
 <body>
except [<errorType>] :
 <handler>

try:
 age = int(input("Enter your age: "))
 currentyear = int(input("Enter the current year: "))
except:
 print("Error: Your input was not in the correct form.")
 print("Enter integers for your age and the current year")
 sys.exit(1)

yearborn.py

Optional: use this to handle
specific error types appropriately

Typical/normal behavior

Handle exception

Review: Best Practices
•Prevent errors as best you can
ØExample: use if statements to verify data

•For errors you can’t prevent, handle them!
ØExample: We can check if a file exists before trying to

read it BUT between the check and actually reading
the file, the file could be deleted from the system!

Apr 8, 2024 Sprenkle - CSCI111 4

Review: Search Using in Review
•Iterates through a list, checking if the element is

found
•Known as linear search
•Implementation:

Apr 8, 2024 Sprenkle - CSCI111 5

def linearSearch(searchlist, key):
 for elem in searchlist:
 if elem == key:
 return True
 return False

8 5 3 7

0 1 2 3

value

pos

Alternative: Like index method
•Iterates through positions in a list, checking if the

element is found
•Still known as linear search
•Implementation:

Apr 8, 2024 Sprenkle - CSCI111 6

def linearSearch(searchlist, key):
 for pos in len(range(searchlist)):
 if searchlist[pos] == key:
 return pos
 return -1

Review: Linear Search
•Overview: Iterates through a list, checking if the

element is found
•Benefits:
ØWorks on any list

•Drawbacks:
ØSlow, on average: needs to check each element of list

if the element is not in the list

Apr 8, 2024 Sprenkle - CSCI111 7

Review: Binary Search:
Eliminate Half the Possibilities
• Repeat until find value (or looked through all values)

ØGuess middle value of possibilities
• (not middle position)

ØIf match, found!
ØOtherwise, find out too high or too low
ØModify your possibilities

•Eliminate the possibilities from your number and
higher/lower, as appropriate

• Benefits: faster than linear search
• Drawbacks: requires sorted list

Apr 8, 2024 Sprenkle - CSCI111 8

2D LISTS

Apr 8, 2024 Sprenkle - CSCI111 9

Lists
• We’ve used lists that contain

ØIntegers
ØStrings
ØCards (Deck class)
ØPersons (your Person class)

• We discussed that lists can contain multiple types of
objects within the same list
ØWheel of Fortune: [“Bankrupt”, 250, 350, …]

• Lists can contain any type of object
ØEven LISTS!

Apr 8, 2024 Sprenkle - CSCI111 10

Review of Regular (1D) Lists

Apr 8, 2024 Sprenkle - CSCI111 11

onedlist = [7, -1, 23]

Elements in the list

• How do we find the number of elements in the list?
• How can we find the value of the third element in the list?

Review of Regular (1D) Lists

•len(onedlist) is 3
•onedlist[2] is 23

Apr 8, 2024 Sprenkle - CSCI111 12

onedlist = [7, -1, 23]

Elements in the list

list
twod[2]

list
twod[1]

A List of Lists: 2-Dimensional List

Apr 8, 2024 Sprenkle - CSCI111 13

twod

twod = [[1,2,3,4], [5,6], [7,8,9,10,11]]

list
twod[0]

twod[0] twod[1] twod[2]

1st dimension

A List of Lists: 2-Dimensional list

• “Rows” within 2-dimensional list do not need to be the same
length

• However, it’s often easier if they’re the same length!
Ø We’ll focus on “rectangular” 2D lists

Apr 8, 2024 Sprenkle - CSCI111 14

twod = [[1,2,3,4], [5,6], [7,8,9,10,11]]

list
twod[2]

list
twod[1]

list
twod[0]

twod

Handling Rectangular Lists

• What does each component of twod[1][2] mean?
• How can we programmatically determine the number of rows in
twod? The number of columns in a given row?
Apr 8, 2024 Sprenkle - CSCI111 15

list

list

list

twod[0]

twod[1]

twod[2]
twod[2][3]

twod[0][0]

twod[1][2] = 42twod

Handling Rectangular Lists

• How can we programmatically determine the number of rows in twod?
Ø rows = len(twod)

• The number of columns in a given row?
Ø cols = len(twod[whichRow])

Apr 8, 2024 Sprenkle - CSCI111 16

list

list

list

twod[0]

twod[1]

twod[2]

42

twod[1][2] = 42

twod[2][3]

twod[0][0]

Row pos
Col pos

2-d list var

Assignment

twod

def mystery(twod):
 """ ‘run’ this on twod, at right """
 for row in range(len(twod)):
 for col in range(len(twod[row])):
 if row == col:
 twod[row][col] = 42
 else:
 twod[row][col] += 1

2D List Practice
Starting with the 2D list twod shown,

what are the values in twod after
running this code?

Apr 8, 2024 Sprenkle - CSCI111 17

1 2 3 4
 5 6 7 8
 9 10 11 12

twod Before

twod After

row 0
row 1

row 2

col 0 col 1 col 2 col 3

mystery.py

def mystery(twod):
 """ ‘run’ this on twod, at right """
 for row in range(len(twod)):
 for col in range(len(twod[row])):
 if row == col:
 twod[row][col] = 42
 else:
 twod[row][col] += 1

2D List Practice
Starting with the 2D list twod shown,

what are the values in twod after
running this code?

Apr 8, 2024 Sprenkle - CSCI111 18

1 2 3 4
 5 6 7 8
 9 10 11 12

twod Before

twod After

row 0
row 1

row 2

col 0 col 1 col 2 col 3

mystery.py

42 3 4 5

6 42 8 9

10 11 42 13

Example Process for Creating a 2D List
twod = []

• Create a row of the list, e.g.,
row = [1, 2, 3, 4] or row = list(range(1,5))
or row = [0] * 4 or …

• Then append that row to the list
twod.append(row)
print(twod)

• [[1, 2, 3, 4]]

• Repeat
row = list(range(1,5))
twod.append(row)
print(twod)

• [[1, 2, 3, 4], [1, 2, 3, 4]]
Apr 8, 2024 Sprenkle - CSCI111 19

Generalize Creating a 2D List
•Create a function that returns a 2D list with width

cols and height rows
ØInitialize each element in (sub) list to 0

Apr 8, 2024 Sprenkle - CSCI111 20

def create2DList(rows, cols):

Generalize Creating a 2D List
•Create a function that returns a 2D list with width

cols and height rows
ØInitialize each element in (sub) list to 0

Apr 8, 2024 Sprenkle - CSCI111 21

def create2DList(rows, cols):
 twodlist = []
 # for each row
 for rowPos in range(rows):
 row = []
 # for each column, in each row
 for colPos in range(cols):
 row.append(0)
 twodlist.append(row)
 return twodlist

Generalize Creating a 2D List
•Create a function that returns a 2D list with width

cols and height rows
ØInitialize each element in (sub) list to 0

Apr 8, 2024 Sprenkle - CSCI111 22

def create2DList(rows, cols):
 twodlist = []
 # for each row
 for rowPos in range(rows):
 row = []
 # for each column, in each row
 for colPos in range(cols):
 row.append(0)
 twodlist.append(row)
 return twodlist

Change here for different
elements added into the list

Example: Creating 2D List – 3 rows, 4 cols

Apr 8, 2024 Sprenkle - CSCI111 23

list
twodList

list

row = []

Example: Creating 2D List – 3 rows, 4 cols

Apr 8, 2024 Sprenkle - CSCI111 24

list
twodList

list

0 0 0 0

row For every column, append 0

Example: Creating 2D List – 3 rows, 4 cols

Apr 8, 2024 Sprenkle - CSCI111 25

twodList[0]

list
twodList

list

0 0 0 0

row

Append row to twodlist

For every column, append 0

Example: Creating 2D List – 3 rows, 4 cols

Apr 8, 2024 Sprenkle - CSCI111 26

twodList[0]

list
twodList

list

list

0 0 0 0

row = []

Example: Creating 2D List – 3 rows, 4 cols

Apr 8, 2024 Sprenkle - CSCI111 27

twodList[0]

list
twodList

list

list

0 0 0 0

0 0 0 0

row For every column, append 0

twodList[1]

Example: Creating 2D List – 3 rows, 4 cols

Apr 8, 2024 Sprenkle - CSCI111 28

twodList[0]

list
twodList

list

list

0 0 0 0

0 0 0 0

Append row to twodList

row

twodList[2]

twodList[1]

Example: Creating 2D List – 3 rows, 4 cols

Apr 8, 2024 Sprenkle - CSCI111 29

twodList[0]

list
twodList

list

list

list

0 0 0 0

0 0 0 0

0 0 0 0

Generalize Creating a 2D List
•Create a function that returns a 2D list with width

cols and height rows
ØInitialize each element in (sub) list to 0

Apr 8, 2024 Sprenkle - CSCI111 30

def create2DList(rows, cols):
 twodlist = []
 # for each row
 for rowPos in range(rows):
 row = []
 # for each column, in each row
 for colPos in range(cols):
 row.append(0)
 twodlist.append(row)
 return twodlist

Change here for different
elements added into the list

Incorrect: Creating a 2D List
•The following code won’t work. Why?

Apr 8, 2024 Sprenkle - CSCI111 31

def noCreate2DList(rows, cols):
 twodlist = []
 row = []

 for col in range(cols):
 row.append(0)

 for r in range(rows):
 twodlist.append(row)
 return twodlist

twod_exercises.py

Incorrect Matrix Creation:

Matrix:
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]

Assigning matrix[1][2] = 3

Result:
[[0, 0, 3, 0], [0, 0, 3, 0], [0, 0, 3, 0]]

Explain this output from using this [incorrect]
function to create a 2D list

All Rows of 2D List Point at
Same Block of Memory
•Each “row” points to the same list in memory

Apr 8, 2024 Sprenkle - CSCI111 32

twodlist

twodlist[0]

twodlist[1]

twodlist[2]

0 0 0 0

row

create row …
twodlist.append(row)
twodlist.append(row)
twodlist.append(row)

All Rows of 2D List Point at
Same Block of Memory
•Each “row” points to the same list in memory

Apr 8, 2024 Sprenkle - CSCI111 33

twodlist

twodlist[0]

twodlist[1]

twodlist[2]

0 0 3 0

row

twodlist[1][2] = 3

Graphical Representation of 2D Lists
•Module: csplot
•Allows you to visualize your 2D list

ØNumbers are represented by different colors

Apr 8, 2024 Sprenkle - CSCI111 34

import csplot
…
create 2D list…
twodlist=[[0,0,0], [1,1,1], [2,2,2]]
display list graphically
csplot.show(twodlist)

Graphical Representation of 2D Lists
•Can map colors to numbers

Apr 8, 2024 Sprenkle - CSCI111 35

import csplot
…
create 2D list…
twodlist=[[0,0,0], [1,1,1], [2,2,2]]
create dictionary of numbers to color rep
numToColor = {0:"purple", 1:"blue", 2:"green"}
csplot.show(twodlist, numToColor)

Graphical Representation of 2D Lists

Apr 8, 2024 Sprenkle - CSCI111 36

matrix = [[0,0,0], [1,1,1], [0,1,2]]

What values map to
which colors by default?

Other observations?

Graphical Representation of 2D Lists

Apr 8, 2024 Sprenkle - CSCI111 37

matrix = [[0,0,0], [1,1,1], [0,1,2]]

What values map to
which colors by default?

•Note representation of
list/rows is not how we’ve
been visualizing

Game Board for Connect Four
•6 rows, 7 columns board
•Players alternate dropping red/black checker into

slot/column
•Player wins when have four checkers in a row

vertically, horizontally, or diagonally

Apr 8, 2024 Sprenkle - CSCI111 38

How do we represent the board as a 2D list,
using a graphical representation?

Representing Connect Four Game Board
•Using a 2D list

Apr 8, 2024 Sprenkle - CSCI111 39

Number Meaning Color

0 Free Yellow

1 Player 1 Red

2 Player 2 Black

Representing Connect Four Game Board
•Using a 2D list

Apr 8, 2024 Sprenkle - CSCI111 40

Number Meaning Color

0 Free Yellow

1 Player 1 Red
2 Player 2 Black

Row 0

Row 5

ConnectFour Class
•What is the data associated with the class?
•What methods should we implement?

Apr 8, 2024 Sprenkle - CSCI111 41

ConnectFour Class
•Data

ØConstants
ØBoard

•6 rows, 7 columns
•All spaces FREE to start

•Methods
ØConstructor
ØDisplay the board
ØPlay the game
ØGet input/move from user
ØCheck if valid move
ØMake move
ØCheck if win

Apr 8, 2024 Sprenkle - CSCI111 42

ConnectFour Constants

Apr 8, 2024 Sprenkle - CSCI111 43

class ConnectFour:
 """ Class representing the game Connect Four. """

 # Represent different values on the board
 FREE = 0
 PLAYER1 = 1
 PLAYER2 = 2

 # Represent the dimensions of the board
 ROWS = 6
 COLS = 7

To reference class’s constants, use ConnectFour.CONSTANT

ConnectFour Class
•Implementation of play the game method

ØRepeat:
• Get input/move from user

(depending on whose
turn it is)

• Make move
• Display board
• Check if win
• Change player

Apr 8, 2024 Sprenkle - CSCI111 44

def play(self):
won = False
player = ConnectFour.PLAYER1

while not won:
 print("Player {:d}'s move".format(player))
 if player == ConnectFour.PLAYER1:
 col = self._userChooseColumn()
 else: # computer is player 2
 # pause because otherwise move happens too
 # quickly and looks like an error
 sleep(.75)
 col = self._computerChooseColumn()

 row = self.makeMove(player, col)
 self.showBoard()
 won = self._isWon(row, col)

 # alternate players
 player = player % 2 + 1

Connect Four (C4): Making moves
•User clicks on a column
Ø“Checker” is filled in at that column

Apr 8, 2024 Sprenkle - CSCI111 45

gets the column where user clicked
col = csplot.sqinput()

def _userChooseColumn(self):
 """Allow the user to pick a column."""
 col = csplot.sqinput()
 validMove = self._isValidMove(col)
 while not validMove:
 print("NOT A VALID MOVE.")
 print("PLEASE SELECT AGAIN.")
 print()
 col = csplot.sqinput()
 validMove = self._isValidMove(col)
 return col

Problem: C4 - Valid move?
•Need to enforce valid moves
ØIn physical game, run out of spaces for checkers if not

a valid move

•How can we determine if a move is valid?
ØHow do we know when a move is not valid?

Apr 8, 2024 Sprenkle - CSCI111 46

Problem: C4 - Valid move?
•Solution: check the “top” spot
ØIf the spot is FREE, then it’s a valid move

Apr 8, 2024 Sprenkle - CSCI111 47

Problem: C4 - Making a Move
•The player clicks on a column, meaning that’s

where the player wants to put a checker
•How do we update the board?

Apr 8, 2024 Sprenkle - CSCI111 48

Looking Ahead
•Lab 11 – Tomorrow
ØPre lab: Exception Handling
•review nested lists, classes

ØReview implementation of binary search

•Broader Issue Friday

Apr 8, 2024 Sprenkle - CSCI111 49

