Objectives

· Computer's representations of data types

Feb 17, 2016

Sprenkle - CSCI111

Reflection

• How far have I come in Computer Science?

Feb 17, 2016

Sprenkle - CSCI111

Big Step Forward

- A lot of String operations
 - A lot of arithmetic operations, but you're familiar with those
- As we move forward, requires a lot more "play" and practice
 - > Handouts and your notes help with review

Feb 17, 2016

Sprenkle - CSCI111

The Rules

- No "I don't know" → "I'll figure it out"
 - We are problem-solving
 - Part of problem-solving is figuring out what you know and putting the pieces together until you solve the whole thing
 - "figuring out" step improves learning
- Break down problems into smaller pieces
 - Also part of problem solving
 - Wait on user input
 - Hardcode a value to start

Feb 17, 2016

Sprenkle - CSCI111

Review

- What are the two ways to iterate over strings?
- How can we get fine-grained control to format output?
- What is the syntax for a format specifier?
- What is the format specifier to format a dollar
- If a method returns something, what does that usually mean we should do?

Feb 17, 2016

Sprenkle - CSCI111

Representations of Data

- Computer needs ways to represent different types of data
 - Eventually, all boils down to 1s and 0s
- Computer needs to translate between what humans know to what computer knows and back again

decimal, strings

Feb 17, 2016 Seems like a divergence on strings but just wait...

Decimal Representations

- Decimal is base 10
- Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Each position in a decimal number represents a power of 10

Feb 17, 2016

Sprenkle - CSCI111

Decimal Representations

- Decimal is base 10
- Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Each position in a decimal number represents a power of 10
- Example: 54,087

5	4	0	8	7
10 ⁴	10 ³	10 ²	10 ¹	10 ⁰

- $= 5*10^4 + 4*10^3 + 0*10^2 + 8*10^1 + 7*10^0$
- \bullet = 5*10,000 + 4*1000 + 0*100 + 8*10 + 7*1

Feb 17, 2016 Sprenkle - CSCI111

8

Number Representations

Characteristic	Decimal	Binary
Base	10	2
Digits	0, 1, 2, 3, 4, 5, 6, 7, 8, 9	0, 1
Position represents	Power of 10	Power of 2

- Binary: two values (0, 1)
 - Like a light switch (either off or on) or booleans (either True or False)
- 0 and 1 are binary digits or bits
 - 64-bit machine: represents numbers (and other data) with 64 bits

Feb 17, 2016 Sprenkle - CSCI111

Binary Representation

• Binary number: 1101

1	1	0	1
2 ³	2 ²	2 ¹	2 ⁰

- $= 1*2^3 + 1*2^2 + 0*2^1 + 1*2^0$
- = 1*8 + 1*4 + 0*2 + 1*1
 - ➤ Decimal value: 13

Practice: what is the decimal value of the binary number 10110?

Feb 17, 2016 Sprenkle - CSCI111

1010000 100000

Binary Representation

• Binary number: 10110

1	0	1	1	0
24	2 ³	2 ²	2 ¹	2 ⁰

- $= 1*2^4 + 0*2^3 + 1*2^2 + 1*2^1 + 0*2^0$
- = 1*16 + 0*8 + 1*4 + 1*2 + 0*1

≥ 22

Generalize this process into an algorithm...

Feb 17, 2016

Sprenkle - CSCI111

Algorithm: Converting Binary → Decimal

Accumulator design pattern

- 1. Read in the binary number as a string
 - ➤ The starting exponent will be the length of the string-1
- 2. Initialize the result to zero
- 3. For each bit in the binary number
 - Multiply the bit by the appropriate power of 2
 - Add this to the result
 - Reduce the exponent by 1
- 4. Display the result

Implement algorithm binaryToDecimal.py

Feb 17, 2016

11

Sprenkle - CSCI111

Algorithm: Converting Decimal → Binary

- 1. Read in the decimal as an integer
- 2. Initialize the result to the empty string
- We don't know how 3. Repeat until the decimal is 0: to implement yet result = str(decimal % 2) + result
 - decimal = decimal // 2
- 4. Display the result

Try out algorithm with 22

13

15

Feb 17, 2016

Sprenkle - CSCI111

String Representations

- A string is a sequence of characters
- Each character is stored as a binary number
- ASCII (American Standard Code for Information Interchange) is one standard encoding for characters
 - ➤ Limitation: ASCII is based on the English language
 - Cannot represent other types of characters
- Unicode is a new standard

Feb 17, 2016

Sprenkle - CSCI111 ASCII Table Handout

ASCII Questions

- Lowercase letters are represented by what range of numbers?
- Uppercase letters are represented by what range of numbers?
- What is the difference between the decimal encoding of 'M' and 'N'?

> Between 'm' and 'n'?

Feb 17, 2016

Sprenkle - CSCI111

ASCII Questions

 Lowercase letters are represented by what range of numbers?

 Uppercase letters are represented by what range of numbers?

 What is the difference between the decimal encoding of 'M' and 'N'?

▶ Between 'm' and 'n'?

≥1

Feb 17, 2016 Sprenkle - CSCI111

Translating to/from ASCII

• Translate a character into its ASCII numeric code using built-in function ord

• Translate an ASCII numeric code into its character using built-in function chr

ascii_table.py

Feb 17, 2016 Sprenkle - CSCI111 ascii.py

Encryption

- Process of encoding information to keep it secure
- One technique: Substitution Cipher
 - Each character in message is replaced by a new character

Feb 17, 2016 Sprenkle - CSCI111

Caesar Cipher

- Replace with a character X places away
 - > X is the key
- Julius Caesar used technique to communicate with his generals
- "Wrap around"
- Write program(s) to do this in next lab

Feb 17, 2016

Sprenkle - CSCI111

Caesar Cipher

 Using the ASCII handout, what would be the encoded messages?

Message	Key	Encoded Message
apple	5	
zebra	5	
the eagle flies at midnight	-5	

20

Feb 17, 2016 Sprenkle - CSCI111

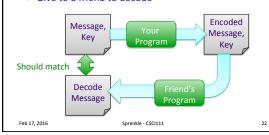
Caesar Cipher

Message	Key	Encoded Message
apple	5	fuuqj
zebra	5	ejgwf
the eagle flies at midnight	-5	ocz zvbgz agdzn vo hdyidbco

What is your algorithm for the encoding process? How would you *decode* an encrypted message?

Feb 17, 2016

Sprenkle - CSCI111


Next Lab Write an

19

21

23

- Write an encoding/decoding program
 - Encode a message
 - > Give to a friend to decode

Caesar Cipher (Partial) Algorithm

- For each character in the message
 - Check if the character is a space; if it is, it stays a space
 - ➤ Otherwise
 - Convert the character to its ASCII value
 - Add the key to that value
 - Make sure that the new value is a "valid" ASCII value, i.e., that that new value is in the range of lowercase letter ASCII values
 - If not, "wrap around" to adjust that value so that it's in the valid range
 - Convert the ASCII value into a character

Feb 17, 2016

Sprenkle - CSCI111

Looking Ahead

- Friday:
 - ➤ Broader Issue: Automated Cars
 - ► Lab 5
- Over Feb Break
 - > I'll finish grading BI and the extra credit submissions

Feb 17, 2016

Sprenkle - CSCI111