Objectives

Wrap up functions
» Top-down Design
» Default parameters

Modules
Exception Handling

Mar 9, 2016 Sprenkle - CSCI111

Lab Review http://retrievalpractice.org/

“...we have that students
remember material better when they test
themselves and try to retrieve information from
their own minds. And yet most students still
study by reviewing their notes over and over
again — probably the least-effective study
strategy they can employ. ”
http://chronicle.com/article/Small-Changes-in-Teaching-The/235583

Mar 9, 2016 Sprenkle - CSCI111 2

Labs

Main skill you’re learning: given a problem, find and
apply appropriate solutions

» Often involves reviewing examples and slides

> Includes reading/understanding documentation
Learning good organization, documentation,
problem-solving techniques

» Good to consider why those are best practices
Make sure you understand what is happening in
examples

» Copy and execute the code

» Modify the code and execute it to see how your
modifications change the execute

Mar 9, 2016 Sprenkle - CSCI111 3

Lab Review: Design Decisions

My suggestions for how to design your code
(e.g., how to design your functions) are based on
some more advanced rules about code
organization

» Reusability

» Separation of concerns

Mar 9, 2016 Sprenkle - CSCI111 4

Testing at Different Levels

Why is a function that automatically tests
another function
not sufficient/complete testing?

Mar 9, 2016 Sprenkle - CSCI111 5

Testing at Different Levels

Why is a function that automatically tests
another function not sufficient/complete
testing?
» The test function does not test the user input/the
message that is displayed

Mar 9, 2016 Sprenkle - CSCI111 6

Review: Refactoring

Converting Functionality into Functions
Identify functionality that should be putinto a
function
» What is the function’s input?

» What is the function’s output?

Define the function

» Write comments

Call the function where appropriate

Create a main function that contains the “driver”
for your program

» Put at top of program

Call main at bottom of program

Mar 9, 2016 Sprenkle - CSCI111 7

Practice: Refactoring Palindrome

Convert the functionality for checking if a phrase
is a palindrome into a function

Ehruse:input("what is your phrase? ")

lowerPhrase=phrase.lower()
1phrasenospace=lowerPhrase.replace(" ","")

end=len(1lphrasenospace)

phrase_backwards=""

for x in range(end-1,-1,-1):
phrase_backwards=phrase_backwards+1lphrasenospace[x]

if phrase_backwards==1phrasenospace:
print(phrase, "is a palindrome")

else:

print(phrase, "is not a palindrome")

Mar 9, 2016 Sprenkle - CSCI111 8

TOP-DOWN DESIGN

Mar 9, 2016 Sprenkle - CSCI111 9

Designing Code

1st Approach: Bottom-up
» Create functions
» Call functions
2" Approach: Refactoring
» Write code
» Refactor code to have functions
» Call those functions
3rd approach: Top-down Design -
» Write code, calling functions
» Write “stub” functions
» Fill-in functions later

Mar 9, 2016 Sprenkle - CSCI111 10

Top-Down Design:

Alternative Approach to Development
Create overview, e.g., in main

Define functions later

def main():
get the binary number from the user, as a string
binNum = input("Please enter a binary number: ")
isBinary = checkBinary(binNum)
if not isBinary : # equivalent to isBinary == False
print(binNum, "is not a binary number.")
sys.exit()

decVal = binaryToDecimal (binNum)
print(binNum, "is", decval)

Mar 9, 2016 11

Problem: Create a Summary Report

Given: a file containing students names and their
years (first years, sophomore, junior, or senior)
for this class

Problem: create a report (in a file) that says the
year and how many students from that year are
in this class, on the same line.

writeSumReport.py

Mar 9, 2016 Sprenkle - CSCI111 12

Problem: Create a Summary Report

Given: a file containing students names and their
years (first years, sophomore, junior, or senior) for
this class

Problem: create a report (in a file) that says the year
and how many students from that year are in this
class, on the same line.

def mainQ):
get name of data file
open output file
for searchTerm in searchTerms:
numFound = numOccurrences(searchTerm, dataFileName)
outputFile.write("%s %d\n" % (searchTerm, numFound))
close output file
Example of top-down design:

» Can fill in details, e.g., the comments, the function numOccurrences

Pseudocode for program

Development Advice

Build up your program in steps
» Always write small pieces of code

» Test function separately from other code, using a
test function

» Test, debug. Repeat
Development Options:
» Refactor:
Write function body as part of main, test
Then, separate out into its own function
» Top-down design
» Bottom-up design

Mar 9, 2016 Sprenkle - CSCI111 14

PARAMETER DEFAULTS

Defaults for Parameters

Can assign a default value to a parameter

» In general, in function header, default
parameter(s) should come after all the parameters
that need to be defined

Example: range function

> Didn’t have to specify start or increment when
calling the function

» Default start =0
> Default increment =1

Mar 9, 2016 Sprenkle - CSCI111 16

Using Default Parameters

By default, the genWinningNum function

could assume that there are 4 numbers
Assigns a value to numNums
ONLY IF not passed a parameter
def genWinningNum(CnumNums=4):
winNum = ""
for i in range(numNums):
winNum += str(randint(MIN_VALUE ,MAX_VALUE))
return winNum

Examples of calling function: genWinningNum(6)
genWinningNum()
genWinningNum(4)

Mar 9, 2016 Sprenkle - CSCI111 17

CREATING MODULES

Mar 9, 2016 Sprenkle - CSCI111 18

Where are Functions Defined?

Functions can go inside of program script
> Defined before use/called (if no main() function)
> Or, below the main() function (preferred)

Functions can go inside a separate module-

Mar 9, 2016 Sprenkle - CSCI111 19

Creating Modules

Modules group together related functions and
constants

Unlike functions, no special keyword to define a
module

Justa
» A module is named by its filename Python file!

Example, oldmac.py
> In Python shell: import oldmac
» Explain what happened

Mar 9, 2016 Sprenkle - CSCI111 20

Defining Constants in Modules

Constantin oldmac.py
»EIEIO

Mar 9, 2016 Sprenkle - CSCI111 21

Creating Modules

So that our program doesn’t execute when it is
imported in a program, at bottom, add

if __name__ == '__main__'

main()
Not important how this works;

just know when to use
Then, to callmain function
»oldmac.main()

Note the sub-directories now listed in the
directory

Mar 9, 2016 Sprenkle - CSCI111 22

Creating Modules

Then, to call main function
»oldmac.main()
Why would you want to call a module’s main
function?
» Automation

> Use main function as driver to test functions in
module

To access one of the defined constants
»oldmac.EIEIO

Mar 9, 2016 Sprenkle - CSCI111 23

Benefits of Defining Functions in Separate Module

Reduces code in primary driver script
Easier to reuse by importing from a module
Maintains the “black box”

» Abstraction

Isolates testing of function

Write “test driver” scripts to test functions
separately from use in script

Mar 9, 2016 Sprenkle - CSCI111 24

EXCEPTION HANDLING

Mar 9, 2016 Sprenkle - CSCI111 25

Handling Exceptions

Using try/except statements
Optional: use this to

handle specific error
<body> / types appropriately
except [<errorType>] :

<handler>

Syntax: try:

Example:

try:
age = evdl(input("Enter your age: "))
currentyear = int(input("Enter the current year: "))
except:
print("ERROR: Your input was not in the correct form.")
print("Enter integers for your age and the current year")
sys.exit()

Mar 9, 2016 Sprenkle - CsCl11l ye(l rborn. py 26

Handling Exceptions

Other types of exceptions
» File exceptions:
File doesn’t exist
Don’t have permission to read/write file

Mar 9, 2016 Sprenkle - CSCI111 File_handle.py 27

Looking Ahead

For Friday
> Llab 7
» Broader Issue: CS Education

Next Friday — Exam 2

Mar 9, 2016 Sprenkle - CSCI111 28

