Objectives

Review
Lab 2
» Programming practice

Jan 26, 2016 Sprenkle - CSCI111 1

Feedback on Lab 1

Overall good
Notes
» Saved output from each program
With user input, try several different test cases
» Want good output
think about what the user wants to see
» High-level comments
Describes what the program does
» Helps for quick overview when reviewing
» Electronic submission
In directory — looked good!
» Easter Egg — extra credit in the slides

Jan 26, 2016 Sprenkle - CSCI111

Review

What program do we use to develop programs?
» What is the command you execute to start it?

What is our process for developing programs?

Jan 26, 2016 Sprenkle - CSCI111 3

- ‘

s 4 W

HONEY BADGER

DOESN'T TEST CODE

el

Jan 26,2016 Sprenkle - CSCI111

Review

How can we make our program interactive with a
user?

How can we find the remainder of a division?
What are the two types of division?

How can we make something repeat a certain
number of times?

Jan 26, 2016 Sprenkle - CSCI111 5

IDLE Review
Runusingidle3 &

Jan 26, 2016 Sprenkle - CSCI111

Review: Arithmetic Operations

Symbol Meaning Associativity
+ Addition Left
- Subtraction Left
* Multiplication Left
/ Division Left
% Remainder (“mod”) Left
** Exponentiation (power) Right

Associativity matters when
you have the same
operation multiple times

Precedence rules: P E - DM% AS

negation
Jan 26, 2016 Sprenkle - CSCI111 7

Review: Two Division Operators

/ Float Division // Integer Division
Resultis a float Resultis an int
Examples: Examples:

> 6/3 > 2.0 > 6//3 > 2

> 10/3 > > 10//3 > 3
3.3333333333333335 > 3.0//6.0 > 0

> 3.0/6.0 > 0.5 > 10//9 > 1

> 10/9 > 1.9

Jan 26, 2016 Sprenkle - CSCI111 8

Review: Formalizing Process of
Developing Computational Solutions
Think about the test cases
a. Input, expected output
Create a sketch of how to solve the problem
(the algorithm)
Fill in the details in Python
Test the Python program with good test cases
a. If errors found, debug program
b. Repeat step 3

Jan 26, 2016 Sprenkle - CSCI111 9

Good Development Practices

Design the algorithm
» Break into pieces

Implement and Test each piece separately
» Identify the best pieces to make progress
» Iterate over each step to improve it

Write comments FIRST for each step

» Elaborate on what you’re doing in comments when
necessary

Jan 26,2016 Sprenkle - CSCI111 10

for Loop Syntax and Semantics

Use when know how many times loop will
execute

» Repeat N times Times to repeat

for i in range(10):
statement_1

statement_2 “Body” of for loop

- Gets repeated

statement_n - Note indentation

Jan 26, 2016 Sprenkle - CSCI111 1

for loop review

for x in range(5):
like assigning x values(0,1,2,3,4)
consecutively, each time through loop

rest of loop body ..
Note: when have range(5),

» x gets values (0, 1, 2, 3, 4)

» Which means that loop executes 5 times

Optional: start and step parameters

Jan 26, 2016 Sprenkle - CSCI111 12

Practicing for Loops

How many times?

What is getting repeated?

»A) 1 C) 10

2 9

8

3 7

4 e

Tell me that you 1

love me more Blast off
» B) | had the time of my life

And | never felt this way before | 3 times,

And | swear this is true followed by Dirty bit
And | owe it all to you

Jan 26, 2016 Sprenkle - CSCI111 13

Review: Programming Practice

Add 5 numbers, inputted by the user
» After implementing, simulate running on computer

Key questions:
* What is getting repeated?
* How many times?

Jan 26, 2016 Sprenkle - CSCI111 Sums - p.y 14

Comparing Solutions

sum5. py sum5_no_loop.py

print("This program will add up 5 print("This program will add up 5
numbers given by the user.") numbers given by the user.")

total = 0 numl = eval(input("Input number: "))
num2 = eval(input("Input number: "))
num3 = eval(input("Input number: "))
num4 = eval(input("Input number: "))
numS = eval(input("Input number: "))

for x in range(5):

num = eval(input("Input
number: "))

total = num + total total = numl + num2 + num3 + numd +
numS
print("The total of the inputted
numbers is ", total) print("The total of the inputted

numbers is ", total

Jan 26, 2016 Sprenkle - CSCI111 15

Comparing Solutions

Both are valid solutions

sum5_no_loop.py is conceptually simpler
» Don’t need to understand what the loop does

sumb5.py has less repeated code

» Makes it easier to change if we decide to change
what gets repeated

sumb5.py is easier to change how many numbers
are input
» More on that on Wednesday

Jan 26,2016 Sprenkle - CSCI111 16

Generalizing Solution:
Accumulator Design Pattern

Initialize accumulator variable

Loop until done
» Update the value of the accumulator

Display result

Jan 26, 2016 Sprenkle - CSCI111 17

Generalizing Solution:
Accumulator Design Pattern

Initialize accumulator variable

Loop until done
» Update the value of the accumulator

Display result

How does this pattern relate to the sum5.py solution?

Jan 26, 2016 Sprenkle - CSCI111 18

Generalizing Solution:
Accumulator Design Pattern

total is the accumulator variable

Initialize
accumulator total = @
variable for x in range(5):
. num = eval(input("Input
Loop untildone | o n. "
» Update the value total = num + total

of the accumulator print("The total of the inputted

D|5p|ay result numbers is ", total)

Jan 26, 2016 Sprenkle - CSCI111 19

Programming Building Blocks

Each type of statement is a building block
» Initialization/Assignment
So far: Arithmetic, functions Assign.
» Print
> For for

print

input
» Input (also with assignment) P

We can combine them to create more complex
programs

» Solutions to problems
When solving problems, think, “To solve this part
of the problem, | need this building block.”

Jan 26, 2016 Sprenkle - CSCI111 20

Lab 2 Expectations

Comments in programs

» High-level comments, author

» Notes for your algorithms, implementation
Testing programs

» What are good test cases for your programs?

» Show the output from those test cases

» But don’t go overboard by testing every possible

number!

Add “honey badger” into one of your programs
for 2 extra credit points

Jan 26, 2016 Sprenkle - CSCI111 21

Lab 2 Expectations: Example Output

For programs that take user input, run multiple
times to demonstrate that the program works.

Example output that should be saved in the .out file
oss S
Python 3.4.3 (v3.4.3:9573f1c3e601, Feb 23 2015, 02:52:03)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "copyright", “credits” or "license()" for more information.
START

55>
This program will evaluate the equation 2 +3j - 5

Enter value for

Enter value for j: 2

The equation evaluates to 50.0

>>> RESTART
55>

This program will evaluate the equation "2 + 3j - 5

Enter value for i: -1.5

Enter value for j: 0

The equation evaluates to -2.75

>>> RESTART
>>>

This program will evaluate the equation "2 + 3j - 5

Enter value for i: 100

Enter value for J: 2.1

The equation evaluates to 9988.7 2

>>>

Lab 2 Expectations

Nice, readable, understandable output

» Think about if you were the user of the program:
what would you want to see?

» Don’t show me any of your “scratch work” from
earlier versions of the program that don’t work.

Honor System
» Pledge the Honor Code on printed sheets

Jan 26, 2016 Sprenkle - CSCI111 23

