
1	

Lab	7	
•  Lab	6	Review	
• Review	for	Lab	7	

March	8,	2016	 Sprenkle	-	CSCI111	 1	

Lab	Musings	
• As	we	learn	more	computer	science,	we’re	
moving	toward	a	much	higher	ra(o	of	thinking	
to	coding		
Ø Give	yourself	the	Ime	and	room	to	think	

• Going	beyond	simply	correctness	in	soluIons	
Ø Looking	for	understanding	of	good	coding	pracIces	
•  TesIng,	readability,	usability,	documentaIon,	
organizaIon,	efficiency	
Ø (not	necessarily	in	that	order)	

March	8,	2016	 Sprenkle	-	CSCI111	 2	

Lab	Musings	
•  Lab	benefit:	access	to	other	students,	lab	
assistants,	and	instructor	to	help	
•  Lab	limitaIon:	may	not	be	the	best	environment	

Ø Seems	to	cause	a	compeIIve	atmosphere,	increased	
anxiety	for	some	students	

Ø You	have	unIl	Friday	to	complete	the	lab	
Ø Work	at	your	pace,	think	clearly	and	deeply	

March	8,	2016	 Sprenkle	-	CSCI111	 3	

Compare	SoluIons	

March	8,	2016	 Sprenkle	-	CSCI111	 4	

words = sentence.split()	
	
shorthandList = []	
for word in words:	
 shorthandList.append(word[0])	
	
shorthand = "".join(shorthandList)	
	
shorthand = shorthand.lower()	
	
print("Shorthand is:", shorthand)	

words = sentence.split()	
	
shorthand=""	
for word in words:	
 shorthand += word[0]	
	
shorthand = shorthand.lower()	
	
print("Shorthand is:", shorthand)	

Compare	SoluIons	

March	8,	2016	 Sprenkle	-	CSCI111	 5	

words = sentence.split()	
	
shorthandList = []	
for word in words:	
 shorthandList.append(word[0])	
	
shorthand = "".join(shorthandList)	
	
shorthand = shorthand.lower()	
	
print("Shorthand is:", shorthand)	

words = sentence.split()	
	
shorthand=""	
for word in words:	
 shorthand += word[0]	
	
shorthand = shorthand.lower()	
	
print("Shorthand is:", shorthand)	

Both are valid solutions. 	
I’m not sure which is more
efficient in practice.	
	
However, the solution at left
has more conceptual
complexity (appending to a
list and then converting to a
string, as opposed to just
creating the string).	

In general, looking for less
complex solutions.	
	
Saw similar, more complex
solutions for the password
generation problem. 	

March	8,	2016	 Sprenkle	-	CSCI111	 6	

GeneraIng	a	Random	Password	
CHOOSE_NUM=0	
CHOOSE_LOWER=1	
CHOOSE_UPPER=2	
	
password=""	
len_password = randint(6,8)	
	
for charPos in range(len_password):	

	#determines if character is number, uppercase, or lowercase	
	char_type = randint(0,2)	
	#for each case, randomly assigns ASCII val	
	if char_type == CHOOSE_NUM:	

 asciival = randint(48,57)	
	elif char_type == CHOOSE_LOWER:	

 asciival = randint(97,122)	
	elif char_type == CHOOSE_UPPER:	

 asciival = randint(65,90)	
	

	char = chr(asciival)	
	password += char	

Even better to use
constants for ASCII values.	
(I’m short on space)	
	
Consider:	
	MIN_NUM=ord('0')	

+ Good variable names	

Define outside of
for loop	

2	

Review	Caesar	Cipher	
• Consider	the	following	soluIons	

March	8,	2016	 Sprenkle	-	CSCI111	 7	

for char in message:	
 if char == " ":	
 …	
 else:	
 …	

for char in message:	
 asciiVal = ord(char)	
 if asciiVal == 32:	
 …	
 else:	
 …	

Which	is	easier	to	
read	and	understand?	

Review	Caesar	Cipher	
• Consider	the	following	soluIons	

March	8,	2016	 Sprenkle	-	CSCI111	 8	

I	know	what	"	"	means.	
I	don’t	immediately	know	
what	32	means.	
Lesson:	prefer	words	

over	numbers.	

for char in message:	
 if char == " ":	
 …	
 else:	
 …	

for char in message:	
 asciiVal = ord(char)	
 if asciiVal == 32:	
 …	
 else:	
 …	

Caesar	Cipher	with	Files	
• High-level	descripIon	explaining	what	you’re	
doing	at	the	top	of	the	program	
• How	to	debug	

Ø Look	at	the	input	files	
• Common	issues	

Ø Not	handling	new	lines	("\n")	in	the	file	
•  Similar	to	handling	spaces	

Ø Close	files	as	soon	as	possible	

March	8,	2016	 Sprenkle	-	CSCI111	 9	

Review	
•  What	is	the	keyword	we	use	to	create	a	new	funcIon?	
•  How	do	we	get	output	from	a	funcIon?	
•  What	happens	in	the	program	execuIon	when	a	funcIon	
reaches	a	return	statement?	
•  Why	do	we	write	funcIons?	
•  Why	do	we	write	funcIons?	
•  What	makes	a	good	funcIon?	
•  How	should	you	comment	your	funcIons?	
•  What	is	the	name	for	the	process	for	changing	a	program	
to	improve	readability/organizaIon/readability	without	
changing	funcIonality?	

March	8,	2016	 Sprenkle	-	CSCI111	 10	

Review:	FuncIons	

March	8,	2016	 Sprenkle	-	CSCI111	 11	

def main():	
 first = eval(input("Enter the first number: "))	
 second = eval(input("Enter the second number: "))	
 computedVal = myFunction(first, second)	
 print("The answer is", computedVal)	
 	
def myFunction(x, y):	
 result = x*x + y*y + 12	
 return result	
 	
main()	

What does this program do?	
What is the control flow/execution path?	

What variables can
function “see” here?	

What vars can’t it see?	

March	8,	2016	 Sprenkle	-	CSCI111	 12	

Review:	PracIce	
• What	is	the	output	of	this	program?	

Ø Example:	user	enters	4	

def main():	
 num = eval(input("Enter a number to be squared: "))	
 squared = square(num)	
 print("The square is", squared)	
 print("The original num was", n)	
	
def square(n):	
 return n * n	
	
main()	

practice2.py	

3	

TesIng	FuncIons	
1.  Create	test	cases	

Ø Input,	expected	output	
2. Write	a	funcIon	that	creates	lists	of	the	input	

and	expected	output	and	automaIcally	tests	
your	funcIon	

3.  Call	the	funcIon	to	test	your	funcIon	
4.  Iterate	

Ø Add	addiIonal	test	cases	if	needed	to	help	debug	
your	funcIon	

March	8,	2016	 Sprenkle	-	CSCI111	 13	

Review:	TesIng	FuncIons	

March	8,	2016	 Sprenkle	-	CSCI111	 14	

def testBinaryToDecimal():	
 """Test the binaryToDecimal function. 	
 Displays the correctness or incorrectness of the  
 function.	
 Nothing is returned."""	
 	
 paramInputs = ["0", "1", "10", "1001", "10000"]	
 expectedResults = [0, 1, 2, 9, 16]	
 for index in range(len(paramInputs)):	
 paramInput = paramInputs[index]	
 expectedResult = expectedResults[index]	
 actualResult = binaryToDecimal(paramInput) 	
 if actualResult != expectedResult:	
 print("**ERROR!**", paramInput, "should be", \  

	 	 	 	 	 	expectedResult)	
 print("Instead, got", actualResult)	
 else:	
 print("Success on binary to decimal conversion for",\  

	 	 	 	 paramInput, "-->", actualResult)	

testBinaryToDecimal()	Call function to test: 	

March	8,	2016	 Sprenkle	-	CSCI111	 15	

Review:	WriIng	a	“Good”	FuncIon	

• Should	be	an	“intuiIve	chunk”	
Ø Doesn’t	do	too	much	or	too	lidle	
Ø If	does	too	much,	try	to	break	into	more	
funcIons	

• Should	be	reusable	
• Always	have	comment	that	tells	what	the	
funcIon	does	

WriIng	Comments	for	FuncIons	
• Good	style:	Each	funcIon	must	have	a	comment	

Ø Describes	funcIonality	at	a	high-level	
Ø Include	the	precondi)on,	postcondi)on	
Ø Describe	the	parameters	(their	types)	and	the	result	
of	calling	the	funcIon	(precondiIon	and	
postcondiIon	may	cover	this)	

March	8,	2016	 Sprenkle	-	CSCI111	 16	

WriIng	Comments	for	FuncIons	
•  Include	the	funcIon's	pre-	and	post-	condiIons	
• Precondi(on:	Things	that	must	be	true	for	
funcIon	to	work	correctly	
Ø E.g.,	num	must	be	even	

• Postcondi(on:	Things	that	will	be	true	when	
funcIon	finishes	(if	precondiIon	is	true)	
Ø E.g.,	the	returned	value	is	the	max	

March	8,	2016	 Sprenkle	-	CSCI111	 17	

Example	Comment	
• Describes	at	high-level	
• Describes	parameters	

March	8,	2016	 Sprenkle	-	CSCI111	 18	

def printVerse(animal, sound):	
 """	
 Prints a verse of Old MacDonald, plugging in the 	
 animal and sound parameters (which are strings), 	
 as appropriate.	
 """	
 print(BEGIN_END + EIEIO)	
 print("And on that farm he had a " + animal + EIEIO)	
 …	

Comment style: Docstring	
	“documentation string”	

Comments from docstrings show up when you use help function	

4	

def binaryToDecimal(binary_string):	
	 	"""	
	 	pre: binary_string is a string that contains	
	 	only 0s and 1s	
	 	post: returns the decimal value for the binary	
	 	string	
	 	"""	
	 	dec_value = 0	
 for pos in range(len(binNum)):	
	 	 	exp = len(binNum) - pos – 1	
	 	 	bit = int(binNum[pos])	
 	
 	# compute the decimal value of this bit	
 	val = bit * 2 ** exp	
 	
 	 	# add it to the decimal value	
 	decVal += val	
	
 return dec_value	

Pre/Post	CondiIons	

March	8,	2016	 Sprenkle	-	CSCI111	 19	

FuncIon	comments	

March	8,	2016	 Sprenkle	-	CSCI111	 20	

def printHeadings(): 	
 """displays table column headings"""	

def printHeadings(): 	
 """defines the printHeader function"""	

Not descriptive.	
Says what you’re doing, not what function does	
Need to tell programmer how to use function	

Good. Describes function at high level	

Gefng	DocumentaIon	
• dir:	funcIon	that	returns	a	list	of	methods	and	
adributes	in	an	object	
Ø dir(<type>)	
• help:	get	documentaIon	

•  In	the	Python	shell	
Ø help(<type>)	
Ø import <modulename>	
Ø help(<modulename>)	

March	8,	2016	 Sprenkle	-	CSCI111	 21	

Where	is	DocumentaIon	Coming	From?	
• Comes	from	the	code	itself	in	“doc	strings”	

Ø i.e.,	“documentaIon	strings”	

• Doc	strings	are	simply	strings	a.er	the	funcIon	
header	
Ø Typically	use	triple-quoted	strings	because	
documentaIon	goes	across	several	lines	

March	8,	2016	 Sprenkle	-	CSCI111	 22	

def printVerse(animal, sound): 	
 """prints a verse of Old MacDonald,  
 filling in the strings for animal  
 and sound """ 	

Summary	“Good”	FuncIon	
• Reusable	funcIonality	
• Good	funcIon	name	
• Good	parameter	names	
• Good	documentaIon	

Ø Well-described	input,	output	

March	8,	2016	 Sprenkle	-	CSCI111	 23	

Review:	Refactoring	
ConverIng	FuncIonality	into	FuncIons	
1.  IdenIfy	funcIonality	that	should	be	put	into	a	

funcIon	
Ø What	is	the	funcIon’s	input?	
Ø What	is	the	funcIon’s	output?	

2.  Define	the	funcIon	
Ø Write	comments	

3.  Call	the	funcIon	where	appropriate	
4.  Create	a	main	funcIon	that	contains	the	“driver”	

for	your	program	
Ø Put	at	top	of	program	

5.  Call	main	at	bodom	of	program	

March	8,	2016	 Sprenkle	-	CSCI111	 24	

5	

TOP-DOWN	DESIGN	

March	8,	2016	 Sprenkle	-	CSCI111	 25	

Designing	Code	
•  1st	Approach:	Bodom-up	

Ø Create	funcIons	
Ø Call	funcIons	

•  2nd	Approach:	Refactoring	
Ø Write	code	
Ø Refactor	code	to	have	funcIons	
Ø Call	those	funcIons	

•  3rd	approach:	Top-down	Design	
Ø Write	code,	calling	funcIons	
Ø Write	“stub”	funcIons	
Ø Fill-in	funcIons	later	

March	8,	2016	 Sprenkle	-	CSCI111	 26	

Top-Down	Design:	
AlternaIve	Approach	to	Development	
1.  Create	overview,	e.g.,	in	main	
2.  Define	funcIons	later	

March	8,	2016	 Sprenkle	-	CSCI111	 27	

def main():	
 # get the binary number from the user, as a string	
 binNum = input("Please enter a binary number: ")	
 isBinary = checkBinary(binNum)	
 if not isBinary : # equivalent to isBinary == False	
 print(binNum, "is not a binary number.")	

	 	sys.exit()	
 	
 decVal = binaryToDecimal(binNum) 	
 print(binNum, "is", decVal)	

Benefits:	
•  Know	what	funcIons	you	need	
•  Know	the	requirements	for	your	funcIons	

•  What	is	each	funcIon’s	input,	output	 March	8,	2016	 Sprenkle	-	CSCI111	 28	

Problem:	Create	a	Summary	Report	
• Given:	a	file	containing	students	names	and	their	
years	(first	years,	sophomore,	junior,	or	senior)	
for	this	class	
• Problem:	create	a	report	(in	a	file)	that	says	the	
year	and	how	many	students	from	that	year	are	
in	this	class,	on	the	same	line.	

writeSumReport.py	

March	8,	2016	 Sprenkle	-	CSCI111	 29	

Problem:	Create	a	Summary	Report	
• Given:	a	file	containing	students	names	and	their	
years	(first	years,	sophomore,	junior,	or	senior)	for	
this	class	
•  Problem:	create	a	report	(in	a	file)	that	says	the	year	
and	how	many	students	from	that	year	are	in	this	
class,	on	the	same	line.	

def main():	
 # get name of data file	
 # open output file	
 for searchTerm in searchTerms:	
 numFound = numOccurrences(searchTerm, dataFileName)	
 outputFile.write("%s %d\n" % (searchTerm, numFound))	
 # close output file	

Example of top-down design:	
- Can fill in details, e.g., the comments, the function numOccurrences	

Pseudocode for program	

March	8,	2016	 Sprenkle	-	CSCI111	 30	

Development	Advice	
•  Build	up	your	program	in	steps	

Ø Always	write	small	pieces	of	code	
Ø Test	func)on	separately	from	other	code,	using	a	test	
funcIon	

Ø Test,	debug.	Repeat	
• Development	OpIons:		

Ø Refactor:	
• Write	funcIon	body	as	part	of	main,	test	
•  Then,	separate	out	into	its	own	funcIon	

Ø Top-down	design	
Ø Bodom-up	design	

May	use	more	than	one	
approach	in	a	program	

Example:	Could	sIll	refactor		
aler	using	these	opIons	

6	

Lab	7	
• FuncIon	pracIce	
• Defining	funcIons	(refactoring)	
• File	pracIce	

March	8,	2016	 Sprenkle	-	CSCI111	 31	

