Lab 7

Lab 6 Review
Review for Lab 7

March 8, 2016 Sprenkle - CSCI111 1

Lab Musings

As we learn more computer science, we’re
moving toward a much higher ratio of thinking
to coding

» Give yourself the time and room to think
Going beyond simply correctness in solutions

» Looking for understanding of good coding practices

Testing, readability, usability, documentation,
organization, efficiency
» (not necessarily in that order)

March 8, 2016 Sprenkle - CSCI111 2

Lab Musings

Lab benefit: access to other students, lab
assistants, and instructor to help
Lab limitation: may not be the best environment

» Seems to cause a competitive atmosphere, increased
anxiety for some students

» You have until Friday to complete the lab
» Work at your pace, think clearly and deeply

March 8, 2016 Sprenkle - CSCI111 3

Compare Solutions

words = sentence.split()
shorthandList = []
for word in words:
shorthandList.append(word[0])
shorthand = "".join(shorthandList)
shorthand = shorthand.lower()
print("Shorthand is:", shorthand)
words = sentence.split()
shorthand=""
for word in words:
shorthand += word[0]
shorthand = shorthand.lower()

print("Shorthand is:", shorthand)

March 8, 2016 Sprenkle - CSCI111 4

Com pare Solutions Both are valid solutions.

i I’'m not sure which is more
words = sentence.split() efficient in practice.

shorthandList = []
for word in words:

r However, the solution at left
shorthandList.append(word[0])

has more conceptual
shorthand = "".join(shorthandList) complexity (appending to a
list and then converting to a
string, as opposed to just
print("Shorthand is:", shorthand) creating the string).

shorthand = shorthand.lower()

In general, looking for less words = sentence.split()

complex solutions. shorthand=""

for word in words:

Saw similar, more complex shorthand += word[0]

solutions for the password shorthand = shorthand.lower()

generation problem. . .
print("Shorthand is:", shorthand)

March 8, 2016 Sprenkle - CSCI111 5

Generating a Random Password

CHOOSE_NUM=0 i
CHOOSE LOWER=1 Define outside of

CHOOSE_UPPER=2 for loop

password="" .
len_password = randint(6,8) + Good variable names
for charPos in range(len_password):
#determines if character is number, uppercase, or lowercase
char_type = randint(0,2)
#for each case, randomly assigns ASCII val
if char_type == CHOOSE_NUM:
asciival = randint(48,57) Even better to use
elif char‘_ty{:e == C(I;OOS(E_LOWER): constants for ASCII values.
asciival = randint(97,122)
elif char_type == CHOOSE_UPPER: (Fmishort on space)
asciival = randint(65,90)
Consider:
char = chr(asciival) MIN_NUM=ord('@")
password += char -

March 8, 2016 Sprenkle - CSCI111 6

Review Caesar Cipher

Consider the following solutions

for char in message:
asciiVal = ord(char) Which is easier to
if asciiVal == 32: read and understand?

else:
for char in message:
if char == " ":
else:
March 8, 2016 Sprenkle - CSCI111 7

Review Caesar Cipher

Consider the following solutions

for char in message:
asciiVal = ord(char)
if asciiVal == 32:

else:
| know what " " means. for ghar‘ Lt mesﬁaﬁ‘?:

e . if char == :
| don’t immediately know

what 32 means.
Lesson: prefer words

else:

over numbers.

March 8, 2016 Sprenkle - CSCI111 8

Caesar Cipher with Files

High-level description explaining what you're
doing at the top of the program
How to debug

Look at the input files
Common issues

Not handling new lines ("\n") in the file

Similar to handling spaces
Close files as soon as possible

March 8, 2016 Sprenkle - CSCI111 9

Review

What is the keyword we use to create a new function?
How do we get output from a function?

What happens in the program execution when a function
reaches a return statement?

Why do we write functions?

Why do we write functions?

What makes a good function?

How should you comment your functions?

What is the name for the process for changing a program
to improve readability/organization/readability without
changing functionality?

March 8, 2016 Sprenkle - CSCI111 10

Review: Functions

What does this program do?
What is the control flow/execution path?

def main():
first = eval(input("Enter the first number: "))
second = eval(input("Enter the second number: "))
computedVal = myFunction(first, second)
print("The answer is", computedVal)

def myFunction(x, y): i VWhat variables can
result = X*>1< +y*y + 12 function “see” here?
return result < What vars can’t it see?
main()
March 8, 2016 Sprenkle - CSCI111 11

Review: Practice

What is the output of this program?
Example: user enters 4

def main(Q):
num = eval(input("Enter a number to be squared: "))
squared = square(num)
print("The square is", squared)
print("The original num was", n)

def square(n):
return n * n

main(Q)

Marchs, 2016 grence-cscns Practicez.py o,

Testing Functions

Create test cases

» Input, expected output

Write a function that creates lists of the input
and expected output and automatically tests
your function

Call the function to test your function

Iterate

» Add additional test cases if needed to help debug
your function

March 8, 2016 Sprenkle - CSCI111 13

Review: Testing Functions

def testBinaryToDecimal():
"""Test the binaryToDecimal function.
Displays the correctness or incorrectness of the
function.
Nothing is returned."""

paramInputs = ["@", "1", "1@", "1001", "10000"]
expectedResults = [0, 1, 2, 9, 16]
for index in range(len(paramInputs)):
paramInput = paramInputs[index]
expectedResult = expectedResults[index]
actualResult = binaryToDecimal(paramInput)
if actualResult != expectedResult:
print("**ERROR!**" = paramInput, "should be", \
expectedResult)
print("Instead, got", actualResult)
else:
print("Success on binary to decimal conversion for",\
paramInput, "-->", actualResult)

Call function to test: testBinaryToDecimal()
March 8, 2016 Sprenkle - CSCI111 14

Review: Writing a “Good” Function

Should be an “intuitive chunk”
»Doesn’t do too much or too little

» If does too much, try to break into more
functions

Should be reusable

Always have comment that tells what the
function does

March 8, 2016 Sprenkle - CSCI111 15

Writing Comments for Functions

Good style: Each function must have a comment
» Describes functionality at a high-level
» Include the precondition, postcondition

» Describe the parameters (their types) and the result
of calling the function (precondition and
postcondition may cover this)

March 8, 2016 Sprenkle - CSCI111 16

Writing Comments for Functions

Include the function's pre- and post- conditions
Precondition: Things that must be true for
function to work correctly

» E.g., num must be even
Postcondition: Things that will be true when
function finishes (if precondition is true)

» E.g., the returned value is the max

March 8, 2016 Sprenkle - CSCI111 17

Example Comment

Describes at high-level
Describes parameters
def printVerseCanimal, sound):

Prints a verse of 0ld MacDonald, plugging in the
animal and sound parameters (which are strings),

asNappiopRIctet Comment style: Docstring

print(BEGIN_END + EIEIO) “documentation string”
print("And on that farm he had a " + animal + EIEIO)

Comments from docstrings show up when you use help function

March 8, 2016 Sprenkle - CSCI111 18

Pre/Post Conditions
def binaryToDecimal(binary_string):

pre: binary_string is a string that contains
only @s and 1s
post: returns the decimal value for the binary
string
dec_value = @
for pos in range(len(binNum)):

exp = len(binNum) - pos - 1

bit = int(binNum[pos])

compute the decimal value of this bit
val = bit * 2 ** exp

add it to the decimal value
decVal += val

return dec_value

March 8, 2016 Sprenkle - CSCI111 19

Function comments

def printHeadings():
"""displays table column headings

nun

Good. Describes function at high level

def printHeadings():
"""defines the printHeader function

nun

Not descriptive.
Says what youre doing, not what function does
Need to tell programmer how to use function

March 8, 2016 Sprenkle - CSCI111 20

Getting Documentation

dir: function that returns a list of methods and
attributes in an object

»dir(<type>)
help: get documentation

In the Python shell
»help(<type>)
»import <modulename>
> help(<modulename>)

March 8, 2016 Sprenkle - CSCI111 21

Where is Documentation Coming From?

Comes from the code itself in “doc strings”
» i.e., “documentation strings”

Doc strings are simply strings after the function

header

» Typically use triple-quoted strings because
documentation goes across several lines

def printVerse(animal, sound):

nnn

prints a verse of Old MacDonald,
filling in the strings for animal
and sound """

March 8, 2016 Sprenkle - CSCI111 22

Summary “Good” Function

Reusable functionality
Good function name
Good parameter names
Good documentation

» Well-described input, output

March 8, 2016 Sprenkle - CSCI111 23

Review: Refactoring

Converting Functionality into Functions
Identify functionality that should be put into a
function

» What is the function’s input?

» What is the function’s output?

Define the function

» Write comments

Call the function where appropriate

Create a main function that contains the “driver”
for your program

» Put at top of program

Call main at bottom of program

March 8, 2016 Sprenkle - CSCI111 2

TOP-DOWN DESIGN

March 8, 2016 Sprenkle - CSCI111 25

Designing Code
15t Approach: Bottom-up

» Create functions

» Call functions
2" Approach: Refactoring

» Write code

» Refactor code to have functions

» Call those functions
31 approach: Top-down Design -
» Write code, calling functions

» Write “stub” functions

» Fill-in functions later

March 8, 2016 Sprenkle - CSCI111 26

Top-Down Design:

Alternative Approach to Development
Create overview, e.g., inmain
Define functions later

def main():
get the binary number from the user, as a string

binNum = input("Please enter a binary number: ")
isBinary = checkBinary(binNum)

if not isBinary : # equivalent to isBinary == False
print(binNum, "is not a binary number.")
sys.exit()

decVal = binaryToDecimal(binNum)
print(binNum, "is", decVal)

Benefits:
* Know what functions you need

* Know the requirements for your functions
March 8, 2016] * What is each function’s input, output 2

Problem: Create a Summary Report

Given: a file containing students names and their
years (first years, sophomore, junior, or senior)
for this class

Problem: create a report (in a file) that says the
year and how many students from that year are
in this class, on the same line.

writeSumReport.py

March 8, 2016 Sprenkle - CSCI111 28

Problem: Create a Summary Report

Given: a file containing students names and their
years (first years, sophomore, junior, or senior) for
this class

Problem: create a report (in a file) that says the year
and how many students from that year are in this
class, on the same line.
def mainQ): Pseudocode for program
get name of data file
open output file
for searchTerm in searchTerms:
numFound = numOccurrences(searchTerm, dataFileName)

outputFile.write("%s %d\n" % (searchTerm, numFound))
close output file

Example of top-down design:
- Can fill in details, e.g., the comments, the function numOccurrences
March 8, 2016 Sprenkle - CSCI111 29

Development Advice

Build up your program in steps
» Always write small pieces of code
» Test function separately from other code, using a test

function
» Test, debug. Repeat
. . May use more than one
Development Options: approach in a program
» Refactor:

Write function body as part of main, test
Then, separate out into its own function

» Top-down design Example: Could still refactor
> Bottom—up design after using these options

March 8, 2016 Sprenkle - CSCI111 30

Lab 7

Function practice
Defining functions (refactoring)
File practice

March 8, 2016 Sprenkle - CSCI111 31

