
1	

Lab	10	Feedback	
• Adhere	to	interface	

Ø Accepted	parameter	types	
Ø Type	of	what	is	returned	
• Use	methods	you’ve	already	wri?en	

Ø Example:	use	addPerson in addPeople
• What	to	return	when	errors	

Apr	5,	2016	 Sprenkle	-	CSCI111	 1	 Apr	5,	2016	 Sprenkle	-	CSCI111	 2	

Lab	11:	Three	Parts	
•  Linux	pracMce:	

Ø Using	the	wc	command	

• Social	Network	extensions	
Ø Binary	search	–	find	people	with	a	certain	name	
Ø UI:	add	search	funcMonality	
• Two-dimensional	lists	

Ø Including	Connect	Four	

Apr	5,	2016	 Sprenkle	-	CSCI111	 3	

wc	Command	
• wc:	Word	Count	

Ø Count	up	the	lines	of	Social	Network	code	from	Lab	
10	

Ø Compare	with	code	for	this	assignment	

• Specific	direcMons	are	in	the	lab	

Apr	5,	2016	 Sprenkle	-	CSCI111	 4	

Social	Network,	Extended	
• Searching	Overview	

Ø Allows	you	to	search	for	people	by	their	name–	
lowercased	for	more	intuiMve	results	

Ø Update	SocialNetwork	class	and	UI	
appropriately	

Summary	of	ModificaMons	to	Binary	Search	
•  Add	a	search	method	

Ø Takes	as	parameter	the	network	to	search	for	
•  Check	the	name	of	the	Person	that	is	at	the	
midpoint,	lowercased	
•  AWer	found,	add	to	the	list	of	Persons	who	match	

Ø Get	the	Persons	before	and	aWer	that	person	in	the	list	
that	have	the	same	name	and	add	to	list	

•  Represent	(in	method)	and	handle	(in	UI)	when	no	
people	with	that	name	
•  For	“most	intuiMve”	results:	

Ø Lowercase	the	key	
•  Changes	algorithm	again	slightly	

Apr	5,	2016	 Sprenkle	-	CSCI111	 5	

Search	
• What	does	your	implemented	binary	search	
algorithm	become	in	“the	worst	case”?	

• AssumpMon:	only	a	few	people	will	have	the	
same	name	
Ø Otherwise,	may	_e	just	as	well	to	use	linear	search	

Apr	5,	2016	 Sprenkle	-	CSCI111	 6	

2	

Apr	5,	2016	 Sprenkle	-	CSCI111	 7	

SocialNetwork	Code	
• Fix	the	major	problems	in	your	code	first	
• Or,	use	the	code	in	the	handouts/lab11/
solution directory	
Ø person.py,	social.py,	facespace.py	
	

2D	LISTS	

Apr	5,	2016	 Sprenkle	-	CSCI111	 8	

Review	
• How	do	you	create	a	2D	list?	
• How	do	you	get	the	2nd	element	in	the	3rd	“row”	
of	a	list?	
• How	do	you	find	the	number	of	lists	in	a	2D	list?	
• How	do	you	find	the	number	of	elements	in	one	
of	those	lists?		

Apr	5,	2016	 Sprenkle	-	CSCI111	 9	

Handling	Rectangular	Lists	

•  What	does	each	component	of	twod[1][2]	mean?	
•  How	many	rows	does	twod	have,	in	general?	

Ø  rows = len(twod)	
•  How	many	columns	does	twod	have,	in	general?	

Ø  cols = len(twod[0])
Apr	5,	2016	 Sprenkle	-	CSCI111	 10	

list
twod

list

list

list

twod[0]

twod[1]

twod[2]

		42	
	

twod[1][2] = 42

twod[2][3]

twod[0][0]

Row	pos	
Col	pos	

2-d	list	var	

Assignment	

Generalize	CreaMng	a	2D	List	
• Create	a	funcMon	that	returns	a	2D	list	with	
width	cols	and	height	rows	
Ø IniMalize	each	element	in	list	to	0	

Apr	5,	2016	 Sprenkle	-	CSCI111	 11	

def create2DList(rows, cols):
twodlist = []
for each row

 for row in range(rows):
row = []
for each column, in each row
for col in range(cols):
 row.append(0)
twodlist.append(row)

 return twodlist

Game	Board	for	Connect	Four	
• 6	rows,	7	columns	board	
• Players	alternate	dropping	red/black	checker	
into	slot/column	
• Player	wins	when	have	four	checkers	in	a	row	
verMcally,	horizontally,	or	diagonally	

Apr	5,	2016	 Sprenkle	-	CSCI111	 12	

How do we represent the board as a 2D list, �
using a graphical representation?

3	

Game	Board	for	Connect	Four	
• How	to	represent	board	in	2D	list,	using	graphical	
representaMon?	

Apr	5,	2016	 Sprenkle	-	CSCI111	 13	

Number	 Meaning	 Color	

0	 Free	 Yellow	

1	 Player	1	 Red	

2	 Player	2	 Black	

Game	Board	for	Connect	Four	
• How	to	represent	board	in	2D	list,	using	graphical	
representaMon?	

Apr	5,	2016	 Sprenkle	-	CSCI111	 14	

Number	 Meaning	 Color	

0	 Free	 Yellow	

1	 Player	1	 Red	
2	 Player	2	 Black	

Row	0	

Row	5	

Connect	Four	(C4):	Making	moves	
• User	clicks	on	a	column	

Ø “Checker”	is	filled	in	at	that	column	

Apr	5,	2016	 Sprenkle	-	CSCI111	 15	

gets the column of where user clicked
col = csplot.sqinput()

Problem:	C4	-	Valid	move?	
• Need	to	enforce	valid	moves	

Ø In	physical	game,	run	out	of	spaces	for	checkers	if	
not	a	valid	move	

• How	can	we	determine	if	a	move	is	valid?	
Ø How	do	we	know	when	a	move	is	not	valid?	

Apr	5,	2016	 Sprenkle	-	CSCI111	 16	

ConnectFour	Class	
• Play	the	game	method	implementaMon	

Ø  Repeat:		
•  Get	input/move	from	user	
•  Check	if	valid	move	
•  Make	move	
•  Display	board	
•  Check	if	win	
•  Change	player	

April	4,	2016	 Sprenkle	-	CSCI111	 17	

won = False
player = ConnectFour.PLAYER1

while not won:
 print("Player %d's move" % player)
 if player == ConnectFour.PLAYER1:
 col = self._userMakeMove()
 else: # computer is player 2
 # pause because otherwise move happens too  
 # quickly and looks like an error
 sleep(.75)
 col = self._computerMakeMove()

 row = self.makeMove(player, col)
 self.showBoard()
 won = self._isWon(row, col)

 # alternate players
 player = player % 2 + 1

Connect	Four	(C4):	Making	moves	
• User	clicks	on	a	column	

Ø “Checker”	is	filled	in	at	that	column	

April	4,	2016	 Sprenkle	-	CSCI111	 18	

gets the column of where user clicked
col = csplot.sqinput()

 def _userMakeMove(self):
 """ Allow the user to pick a column."""
 col = csplot.sqinput()
 validMove = self._isValidMove(col)
 while not validMove:
 print("NOT A VALID MOVE.")
 print("PLEASE SELECT AGAIN.")
 print()
 col = csplot.sqinput()
 validMove = self._isValidMove(col)
 return col

4	

Problem:	C4	-	Making	a	Move	
• The	player	clicks	on	a	column,	meaning	that’s	
where	the	player	wants	to	put	a	checker	
• How	do	we	update	the	board?	

Apr	5,	2016	 Sprenkle	-	CSCI111	 19	 Apr	5,	2016	 Sprenkle	-	CSCI111	 20	

Looking	Ahead	
• Bring	your	final	exam	envelopes	to	me	by	Friday	
• Bring	your	final	exam	quesMons	Friday	

	

Thanks to Azmain, Perry,
Sarah Anne, and Shane

for their help this semester!

