
1/18/17	

1	

Objec+ves	
• More	arithme+c	operators	
• So9ware	development	prac+ces	

Ø Tes+ng	
Ø Debugging	
Ø Itera+on	

Jan	18,	2017	 Sprenkle	-	CSCI111	 1	

Review	
• What	are	the	two	ways	we	can	use	Python?	
• What	are	the	commands	we	use	to	be	able	to	
use	Python	in	those	ways?	

Jan	18,	2017	 Sprenkle	-	CSCI111	 2	

Jan	18,	2017	 Sprenkle	-	CSCI111	

Python	Interpreter	
1.  Validates	Python	programming	language	expression(s)	

•  Enforces	Python	syntax	rules	
•  Reports	syntax	errors	

2.  Executes	expression(s)	

Python	
Interpreter	

Expression	

Output	 Executable	
bytecode	

Have a lot of these early on!

Only if no
syntax errors

3	 Jan	18,	2017	 Sprenkle	-	CSCI111	

Two	Modes	to	Execute	Python	Code	
• Interac(ve/Shell:	using	the	interpreter	

Ø Try	out	Python	expressions	

• Batch:	execute	scripts	(i.e.,	files	containing	
Python	code)	
Ø What	we’ll	write	usually	

4	

1/18/17	

2	

Lessons	from	Lab	
• Look	at	examples!	

Ø “I	was	able	to	do	this	in	that	other	program.		How	did	
I	do	that?”	

• Explore!	
Ø Try	things	out	in	interac+ve	mode	
Ø Then,	put	the	ones	that	work	into	a	script/program	

• Follow	all	of	the	direc+ons!	

Jan	18,	2017	 Sprenkle	-	CSCI111	 5	

Review:	NOT	Math	Class	
• Need	to	write	out	all	opera+ons	explicitly	

Ø In	math	class,	a	(b+1)	meant	a * (b+1)

Jan	18,	2017	 Sprenkle	-	CSCI111	 6	

Write this way in Python

Review	
• What	are	Python’s	primi+ve	data	types	and	what	
do	they	represent?	

• How	do	we	name	variables?	
Ø What	is	another	word	for	“variable	name”	in	
programming?	

• How	do	we	give	variables	values?	

Jan	18,	2017	 Sprenkle	-	CSCI111	 7	

Parts	of	an	Algorithm	
•  Input,	Output	
•  Primi+ve	opera+ons	

Ø What	data	you	have,	what	you	can	do	to	the	data	
•  Naming	

Ø  Iden+fy	things	we’re	using	
•  Sequence	of	opera+ons	
•  Condi+onals	

Ø Handle	special	cases	
•  Repe++on/Loops	
•  Subrou+nes	

Ø  Call,	reuse	similar	techniques	

Jan	18,	2017	 Sprenkle	-	CSCI111	 8	

1/18/17	

3	

Two	Division	Operators	

/	 	Float	Division	
•  Result	is	a	float
•  Examples:

Ø  6/3 à 2.0
Ø  10/3 à

3.3333333333333335
Ø  3.0/6.0 à 0.5
Ø  19/10 à 1.9

// 		Integer	Division	
•  Result	is	an	int	
•  Examples:	

Ø  6//3 à 2
Ø  10//3 à 3
Ø  3.0//6.0 à 0.0
Ø  19//10 à 1

Jan	18,	2017	 Sprenkle	-	CSCI111	 9	

Integer division is the default
division used in most

programming languages

Integer	Division	Prac+ce	

• a = 12//4
• 4 // 6 * 5.0
• b = 6/12
• 6.0//12
• z = a / b

Jan	18,	2017	 Sprenkle	-	CSCI111	 10	

More	on	Arithme+c	Opera+ons	

Jan	18,	2017	 Sprenkle	-	CSCI111	 11	

Symbol	 Meaning	 Associa(vity	

+ Addi+on	 Le9	

- Subtrac+on	 Le9	

* Mul+plica+on	 Le9	

/ Division	 Le9	

% Remainder	(“mod”)	 Le9	

** Exponen+a+on	(power)	 Right	

Precedence	rules:	P	E	-	DM%	AS	

negation

Associativity matters
when you have the same
operation multiple times.

It tells you where you
should start computing.

Math	Prac+ce	

Jan	18,	2017	 Sprenkle	-	CSCI111	 12	

5 + 3 * 2
2 * 3 ** 2
-3 ** 2
2 ** 3 ** 3

How should we verify our answers?

1/18/17	

4	

Modulo	Operator:	%	
• Modular	Arithme+c:	Remainder	from	division	

Ø x % y means	the	remainder	of	x//y	
Ø Read	as	“x	mod	y”	

• Example:	6 % 4
Ø Read	as	“six	mod	four”	
Ø 6//4	is	1	with	a	remainder	of	2,	so	6%4	evaluates	to	2	

• Works	only	with	integers	
Ø Typically	just	posi+ve	numbers	

• Precedence	rules:	P	E	-	DM%	AS	

Jan	18,	2017	 Sprenkle	-	CSCI111	 13	 Jan	18,	2017	 Sprenkle	-	CSCI111	

Modulo	Prac+ce	
• 7 % 2
• 3 % 6
• 6 % 2
• 7 % 14
• 14 % 7
• 6 % 0

14	

Jan	18,	2017	 Sprenkle	-	CSCI111	 15	

Brainstorm	
• What	useful	thing	does	%	10	do?	

Ø  3	%	10	=		
Ø  51	%	10	=	
Ø  40	%	10	=	
Ø  678	%	10	=	
Ø  12543	%	10	=		

• What	useful	thing	does	//	10	do	(integer	division)?	
Ø  3	//	10	=	
Ø  51	//	10	=		
Ø  40	//	10=	
Ø  678	//	10	=	
Ø  12543	//	10	=	

• What	useful	thing	does	%	2	do?		

Formalizing	Process	of		
Developing	Computa+onal	Solu+ons	
1. Create	a	sketch	of	how	to	solve	the	problem	

(the	algorithm)	

Jan	18,	2017	 Sprenkle	-	CSCI111	 16	

1/18/17	

5	

Formalizing	Process	of		
Developing	Computa+onal	Solu+ons	
1. Create	a	sketch	of	how	to	solve	the	problem	

(the	algorithm)	
2. Fill	in	the	details	in	Python	

Jan	18,	2017	 Sprenkle	-	CSCI111	 17	

Errors	
• Some+mes	the	program	doesn’t	work		
• Types	of	programming	errors:	

Ø Syntax	error	
•  Interpreter	shows	where	the	problem	is	

Ø Logic/seman+c	error	
• answer	=	2+3	
• No,	answer	should	be	2*3	

Ø Excep+ons/Run+me	errors	
• answer	=	2/0	
• Undefined	variable	name	

Jan	18,	2017	 Sprenkle	-	CSCI111	 18	

Expose errors when Testing

Tes+ng	Process	

Jan	18,	2017	 Sprenkle	-	CSCI111	 19	

Program	

•  Test	case:	input	used	to	test	the	program,	expected	
output	given	that	input	

•  Verify	if	output	is	what	you	expected	

Verify	output	

Output	Input	

Expected	
Output	

Test	Case	

Tes+ng	Process	

Jan	18,	2017	 Sprenkle	-	CSCI111	 20	

•  Need	good	test	cases	to	help	determine	if	program	is	
correct	
Ø Tester	plays	devil’s	advocate	
Ø Want	to	expose	all	errors!	
Ø Find	before	customer/professor!	

Input	 Program	 Output	

Expected	
Output	

Verify	output	
Test	Case	

If output is not what you expect…

1/18/17	

6	

Debugging	
•  A9er	iden+fying	errors	during	tes,ng	
•  Iden+fy	the	problems	in	your	code	

Ø  Edit	the	program	to	fix	the	problem	
Ø  Re-execute/test	un+l	all	test	cases	pass	

•  The	error	is	called	a	“bug”	or	a	“fault”	
•  Diagnosing	and	fixing	error	is	called	debugging	

Jan	18,	2017	 Sprenkle	-	CSCI111	 21	

Interpreter	
(python)	

Program	
text	file	

program.py			
Output	

Text	Editor	
(jEdit	or	IDLE)	

ERROR! (from testing)

Identify bug, fix

Formalizing	Process	of		
Developing	Computa+onal	Solu+ons	

1. Create	a	sketch	of	how	to	solve	the	problem	
(the	algorithm)	

2. Fill	in	the	details	in	Python	
3. Test	the	Python	program	with	good	test	cases	

a.  If	errors	found,	debug	program	
b.  Repeat	step	3	

Jan	18,	2017	 Sprenkle	-	CSCI111	 22	

Prac+ce:	A	Computa+onal	Algorithm	
• Find	the	average	of	two	numbers	

Jan	18,	2017	 Sprenkle	-	CSCI111	 23	

Prac+ce:	A	Computa+onal	Algorithm	
• Find	the	average	of	two	numbers	
• Test	cases:	

Jan	18,	2017	 Sprenkle	-	CSCI111	 24	

Input	
num1	 num2	 Expected	Output	

1/18/17	

7	

A	Computa+onal	Algorithm	
• Algorithm	for	finding	the	average	of	two	
numbers:	
Ø Op+onal:	get	the	two	numbers	from	user	

• Alterna+ve:	“hard-code”	two	numbers	
Ø Calculate	average	
Ø Print	average	

• Test	cases	for	finding	the	average	
Ø Test	both	integers	
Ø Test	with	at	least	one	float	
Ø Test	numbers	less	than	or	equal	to	0	

Jan	18,	2017	 Sprenkle	-	CSCI111	 25	average2.py

Looking	Ahead	
• Broader	Issue:		

Ø “What	happens	when	an	algorithm	is	sexist?	New	
guidelines	seek	accountability”		

Ø Check	out	the	examples	cited	in	the	ar+cle	
• At	least	one	of	which	you	read	the	whole	ar+cle	

Jan	18,	2017	 Sprenkle	-	CSCI111	 26	

