Objectives

- More arithmetic operators
- Software development practices
$>$ Testing
$>$ Debugging
$>$ Iteration

Jan 18, 2017
Sprenkle - CSCI111

Python Interpreter

1. Validates Python programming language expression(s)

- Enforces Python syntax rules
- Reports syntax errors

2. Executes expression(s) Have a lot of these early on!

Jan 18, 2017

Review

- What are the two ways we can use Python?
- What are the commands we use to be able to use Python in those ways?

Jan 18, 2017

Two Modes to Execute Python Code
 - Interactive/Shell: using the interpreter
 $>$ Try out Python expressions
 Batch: execute scripts (i.e., files containing Python code)
 $>$ What we'll write usually

Lessons from Lab

- Look at examples!
$>$ "I was able to do this in that other program. How did I do that?"
- Explore!
$>$ Try things out in interactive mode
$>$ Then, put the ones that work into a script/program
- Follow all of the directions!

Jan 18, 2017
Sprenkle - CSCI111

Review

- What are Python's primitive data types and what do they represent?
- How do we name variables?
$>$ What is another word for "variable name" in programming?
- How do we give variables values?

Jan 18, 2017
Sprenkle - CSC1111

Review: NOT Math Class

- Need to write out all operations explicitly
$>$ In math class, $a(b+1)$ meant $a{ }^{*}(b+1)$
Write this way in Python

Jan 18, 2017
Sprenkle - cSCI111

Parts of an Algorithm

- Input, Output

- Primitive operations
$>$ What data you have, what you can do to the data

- Naming

> Identify things we're using

- Sequence of operations
- Conditionals
> Handle special cases
- Repetition/Loops
- Subroutines
> Call, reuse similar techniques
Jan 18, 2017
Sprenkle - CSCl111
8

Two Division Operators

/ Float Division

- Result is a float
// Integer Division
- Result is an int
- Examples:

Examples:
$\rightarrow 6 / / 3 \rightarrow 2$
$\rightarrow 10 / 3 \rightarrow$
$>10 / / 3 \rightarrow 3$
> 3.0//6.0 $\rightarrow 0.0$
$>19 / / 10 \rightarrow 1$
$>3.0 / 6.0 \rightarrow 0.5$
$>19 / 10 \rightarrow 1.9$
Integer division is the default division used in most programming languages

```
Integer Division Practice
a = 12//4
* 4 // 6 * 5.0
-b = 6/12
0.0//12
Oz=a/b
```

Jan 18, 2017 Sprenkle - CSCl111

Math Practice

$5+3 * 2$
$2 * 3 * * 2$
-3 ** 2
$2^{* *} 3^{* *} 3$

How should we verify our answers?

Jan 18, 2017
Sprenkle - CSCl111

Modulo Operator: \%

- Modular Arithmetic: Remainder from division
$>x \%$ y means the remainder of $x / / y$
$>$ Read as "x mod y "
- Example: 6 \% 4
$>$ Read as "six mod four"
$>6 / / 4$ is 1 with a remainder of 2 , so $6 \% 4$ evaluates to 2
- Works only with integers
> Typically just positive numbers
- Precedence rules: P E - DM\% AS

Jan 18, 2017
Sprenkle - CSC1111

Brainstorm

- What useful thing does $\% 10$ do?
> $3 \% 10=$
> $51 \% 10=$
> $40 \% 10=$
> $678 \% 10=$
> $12543 \% 10=$
- What useful thing does // 10 do (integer division)?
> $3 / / 10=$
> $51 / / 10=$
> $40 / / 10=$
> $678 / / 10=$
> $12543 / / 10=$
- What useful thing does \% 2 do?

Jan 18, 2017
Sprenkle - CSC1111

Modulo Practice
- 7 \% 2
- 3 \% 6
- 6 \% 2
- 7 \% 14
-14\%7
- 6 \% 0

Jan 18, 2017
Sprenkle - CSCI111

Formalizing Process of
Developing Computational Solutions

1. Create a sketch of how to solve the problem (the algorithm)

Jan 18, 2017
Sprenkle - csclin1

Testing Process

- Test case: input used to test the program, expected output given that input
- Verify if output is what you expected

Errors

- Sometimes the program doesn't work
- Types of programming errors:
> Syntax error
- Interpreter shows where the problem is
> Logic/semantic error
- answer $=2+3$
- No, answer should be 2*3
\rightarrow Exceptions/Runtime errors
- answer = 2/0
- Undefined variable name

Expose errors when Testing
Jan 18, 2017
Sprenkle - CSCl111

Testing Process

- Need good test cases to help determine if program is correct
$>$ Tester plays devil's advocate
$>$ Want to expose all errors!
$>$ Find before customer/professor!
If output is not what you expect..
Jan 18, $2017 \quad$ Sprenkle - CSCI111

Debugging

- After identifying errors during testing
- Identify the problems in your code
$>$ Edit the program to fix the problem
$>$ Re-execute/test until all test cases pass
- The error is called a "bug" or a "fault"
- Diagnosing and fixing error is called debugging

Practice: A Computational Algorithm

- Find the average of two numbers

Jan 18, 2017
Sprenkle - CSC1111

Formalizing Process of
 Developing Computational Solutions

1. Create a sketch of how to solve the problem (the algorithm)
2. Fill in the details in Python
3. Test the Python program with good test cases
a. If errors found, debug program
b. Repeat step 3

Jan 18, 2017
Sprenkle - CSCl111

Practice: A Computational Algorithm

- Find the average of two numbers
- Test cases:

Jan 18, 2017

A Computational Algorithm

- Algorithm for finding the average of two numbers:
> Optional: get the two numbers from user
- Alternative: "hard-code" two numbers
$>$ Calculate average
$>$ Print average
- Test cases for finding the average
$>$ Test both integers
$>$ Test with at least one float
$>$ Test numbers less than or equal to 0
Jan 18, 2017
Sprenkle - CSC1111
average2.py ${ }^{25}$

Looking Ahead

Broader Issue:
> "What happens when an algorithm is sexist? New guidelines seek accountability"
$>$ Check out the examples cited in the article - At least one of which you read the whole article

