Objectives

- Computer's representations of data types

Feb 15, 2017

Big Step Forward

- A lot of String operations
\rightarrow A lot of arithmetic operations, but you're familiar with those
- As we move forward, requires a lot more "play" and practice
$>$ Handouts and your notes help with review

Reflection

- How far have I come in Computer Science?

Feb 15, 2017
Sprenkle - cSCl111

The Rules

- No "I don't know" \rightarrow "I'll figure it out"
$>$ We are problem-solving
> Part of problem-solving is figuring out what you know and putting the pieces together until you solve the whole thing
$>$ "figuring out" step improves learning
- Break down problems into smaller pieces
$>$ Also part of problem solving
\Rightarrow Wait on user input
- Hardcode a value to start

Feb 15, 2017
Sprenkle - CSCl111

Review

- How can we get fine-grained control to format output?
- If a method returns something, what does that usually mean we should do?

Decimal Representations

- Decimal is base 10
- Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Each position in a decimal number represents a power of 10

Representations of Data

- Computer needs ways to represent different types of data
$>$ Eventually, all boils down to 1 s and 0 s
- Computer needs to translate between what humans know to what computer knows and back again
 Intuind
decimal, strings
4bitich
decimal, strings
Feb 15, 2017 Seems like a divergence on strings but just wait...

Decimal Representations

- Decimal is base 10
- Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Each position in a decimal number represents a power of 10
- Example: 54,087

5	4	0	8	7
10^{4}	10^{3}	10^{2}	10^{1}	10^{0}

${ }^{\circ}=5^{*} 10^{4}+4^{*} 10^{3}+0^{*} 10^{2}+8^{*} 10^{1}+7^{*} 10^{0}$

- $=5^{*} 10,000+4^{*} 1000+0^{*} 100+8^{*} 10+7^{*} 1$

Feb 15, 2017
Sprenkle - CSCl111

| Number Representations |
| :---: | :---: | :---: |
| Characteristic Decimal Binary
 Base 10 2
 Digits $0,1,2,3,4$,
 $5,6,7,8,9$ 0,1
 Position represents Power of 10 Power of 2 |$>.$

- Binary: two values $(0,1)$
$>$ Like a light switch (either off or on) or booleans (either True or False)
- 0 and 1 are binary digits or bits
$>$ 64-bit machine: represents numbers (and other data) with 64 bits
Feb 15, 2017
Sprenkle - CSCI111 9

Binary Representation

- Binary number: 1101

1	1	0	1
2^{3}	2^{2}	2^{1}	2^{0}

$=1^{*} 2^{3}+1^{*} 2^{2}+0^{*} 2^{1}+1^{*} 2^{0}$

- $=1^{*} 8+1^{*} 4+0^{*} 2+1^{*} 1$
> Decimal value: 13

Practice: what is the decimal value of the binary number IOIIO?

Feb 15, 2017
Sprenkle - CSCl111

Algorithm: Converting Binary \rightarrow Decimal

Accumulator design pattern

1. Read in the binary number as a string
$>$ The starting exponent will be the length of the string-1
2. Initialize the result to zero
3. For each bit in the binary number
$>$ Multiply the bit by the appropriate power of 2
$>$ Add this to the result
$>$ Reduce the exponent by 1
4. Display the result

Feb 15, 2017
Sprenkle - CSCl111

Implement algorithm binaryToDecimal.py

Algorithm: Converting Decimal \rightarrow Binary

1. Read in the decimal as an integer
2. Initialize the result to the empty string
3. Repeat until the decimal is 0 : We don't know how $\begin{gathered}\text { to implement yet }\end{gathered}$
$>$ result $=\operatorname{str}($ decimal $\% 2)+$ result
$>$ decimal $=$ decimal $/ / 2$
4. Display the result

Try out algorithm with 22

Feb 15, 2017
Sprenkle - CSCl111
13

String Representations

- A string is a sequence of characters
- Each character is stored as a binary number
- ASCII (American Standard Code for Information Interchange) is one standard encoding for characters
$>$ Limitation: ASCII is based on the English language
> Cannot represent other types of characters
- Unicode is a new standard

Feb 15, 2017
sprenkle - csCl111 ASCII Table Handout

ASCII Questions

- Lowercase letters are represented by what range of numbers?

$$
>97-122
$$

- Uppercase letters are represented by what range of numbers?

$$
>65-90
$$

- What is the difference between the decimal encoding of ' M ' and ' N ' ?
$>$ Between ' m ' and ' n '?
>1

Feb 15, 2017
Sprenkle - CSC1111

Translating to/from ASCII

- Translate a character into its ASCII numeric code using built-in function ord
>ord('a') ==> 97
- Translate an ASCII numeric code into its character using built-in function chr

$$
>\operatorname{chr}(97)==>\quad \text { 'a' }
$$

Caesar Cipher

- Replace with a character X places away

$$
>X \text { is the key }
$$

- Julius Caesar used technique to communicate with his generals
- "Wrap around"
- Write program(s) to do this in next lab

Encryption

- Process of encoding information to keep it secure
- One technique: Substitution Cipher
$>$ Each character in message is replaced by a new character

Feb 15, 2017
Sprenkle - CSCl111

Caesar Cipher

- Using the ASCII handout, what would be the encoded messages?

Message	Key	Encoded Message
apple	5	
zebra	5	
the eagle flies at midnight	-5	

Feb 15, 2017
Sprenkle - CSCl111

Caesar Cipher

Message	Key	Encoded Message
apple	5	fuuqj
zebra	5	ejgwf
the eagle flies at midnight	-5	ocz zvbgz agdzn vo hdyidbco

What is your algorithm for the encoding process? How would you decode an encrypted message?

Next Lab

- Write an encoding/decoding program
> Encode a message
$>$ Give to a friend to decode

Looking Ahead

- Friday:
> Broader Issue: Cryptography
$>$ Lab 5
- Over Feb Break
$>$ I'll work on grading BI and the extra credit submissions i.e., that that new value is in the range of lowercase letter ASCII values
> If not, "wrap around" to adjust that value so that it's in the valid range
- Convert the ASCII value into a character

Exam 1 Results		
	Total	
Average	82.7\%	
Median	82.5\%	
- Out of 100 points		
>103 points possible, plus 2 bonus points		
- Discussion		
$>$ "Edit code above"		
> No comments necessary unless helped you		
Feb 15, 2017	Sprenke - Csclin	25

Midterm Grades	
For those who get midterm grades, I will	
compute as follows:	
$>50 \%$ exam	
$>50 \%$ labs	
Feb 15,2017	

