Objectives

Defining your own functions
» Control flow
» Scope, variable lifetime

Mar 1, 2017 Sprenkle - CSCI111

Looking behind the curtain...

DEFINING OUR OWN FUNCTIONS

Mar 1, 2017 Sprenkle - CSCI111 2

Functions

We've used functions

> Built-in functions: len, input, eval

» Functions from modules, e.g., math and random
Benefits

> Reuse, reduce code

» Easier to read, write (because of abstraction)

Today, we'll learn how to
define our own functions!

Mar 1, 2017 Sprenkle - CSCI111

Review: Functions

Function is a black box

» Implementation doesn't matter

» Only care that function generates appropriate
output, given appropriate input

Example:

> Didn't care how input function was implemented

> Use:user_input = input(prompt)

Input I w Output
(arguments) p (return value)
npu

prompt user_1
Saved output in a variable
4

Mar 1, 2017 Sprenkle - CSCI111

Creating Functions

A function can have
>
» 0 or 1 outputs

When we define a function, we know its inputs
and if it has output

Input I unction Output
(arguments) j (return value)

Mar 1, 2017 Sprenkle - CSCI111

Why Write Functions?

Allows you to break up a hard problem into smaller,
more manageable parts

Makes your code easier to understand
Hides implementation details (abstraction)
» Provides interface (input, output)
Makes part of the code reusable so that you:
» Only have to write function code once
» Can debug it all at once
Isolates errors

» Can make changes in one function (maintainability)

Similar to benefits of OO Programming

Mar 1, 2017 Sprenkle - CSCI111

Writing a Function

| want a function that averages two numbers

* What is the input to this function?
* What is the output to this function?

Mar 1, 2017 Sprenkle - CSCI111

Writing a Function

| want a function that averages two numbers
What is the input to this function?

» The two numbers
What is the output to this function?

» The average of those two numbers, as a float

These are key questions to ask yourself when
designing your own functions.

* Inputs:What are the parameters?

* Output:What is getting returned?

Mar 1, 2017 Sprenkle - CSCI111

Averaging Two Numbers

numl, average

input average?z output

num2

Input: the two numbers
Output: the average of two numbers

Mar 1, 2017 Sprenkle - CSCI111 9

Syntax of Function Definition

Keyword Function Input Name/
Name Parameter

}

def average2(numl, num2): Function header
Parameters: two numbers to be averaged.
Returns the average of two numbers

nuw Function documentation

average = (numl + num2)/2
return average

(or function definition)

Body

Keyword: Output
How to give output
Mar 1, 2017 Sprenkle - CSCI111 10

Calling your own functions

Same as calling someone else's functions ...

average = average2(100, 50)

J I

o‘.ltp utis Function Input
assigned to
Name
average

Mar 1, 2017 Sprenkle - CSCI111 ave r‘ageZ .py 1

Functions: Similarity to Math

In math, a function definition looks like:

Cf)=x2+2

Plug values in for x

Example:
»f(3)=32+2=11
» 3 is your input, assigned to x

» 11 is output

Mar 1, 2017 Sprenkle - CSCI111 12

Parameters

The inputs to a function are called parameters or
arguments, depending on the context
When calling/using functions, arguments must
appear in same order as in the function header
> Example: round(x, n)
x is the float to round
nis int of decimal places to round x to

Mar 1, 2017 Sprenkle - CSCI111 13

Parameters

Formal Parameters are the variables named in
the function definition

Actual Parameters or Arguments are the
variables or literals that really get used when the
function is called. Formal

Defined: def round(x, n) :
Use: roundCelc = round(fahrTemp, 3)

Actual

Formal & actual parameters must match
in order, number, and type!

Mar 1, 2017 Sprenkle - CSCI111 14

Passing Parameters

Only copies of the actual parameters are given to
the function for immutable data types

» Immutable types: most of what we've talked about
so far

Strings, integers, floats

» The actual parameters in the calling code do not
change

(Lists are mutable and have different rules)

Mar 1, 2017 Sprenkle - CSCI111 15

Function Output

When the code reaches a statement like

return x
» The function stops executing
» X is the output returned to the place where the
function was called
For functions that don't have explicit output,
return does not have a value with it, e.g.,
return

Optional: don't need to have return

» Function automatically returns at the end
Mar 1, 2017 Sprenkle - CSCI111 16

CONTROL FLOW WITH FUNCTIONS

Mar 1, 2017 Sprenkle - CSCI111 17

Flow of Control

When program calls a function, the program
jumps to the function and executes it

After executing the function, the program
returns to the same place in the calling code
where it left off

Value of distl (100)is assigned to meters

Calling code: def metersToMiles(meters) :
Make conversions M2MI=.0006215
distl = 100 miles = meters * M2MI

milesl = metersToMiles(distl) «=——return miles

Mar 1, 2017 Sprenkle - CSCI111 18

Flow of Control

def max(Cnuml, num2):
result = 0
if numl >= num2:
result = numl
else:
result = num?2
return result

X =12
y = eval(input("Enter a number: "))
= max(x, y)

z
print("The max is", z)

Mar 1, 2017 sprenkle-cscnr - T Low_example.py 1

Flow of Control

def max(numl, num2): ‘What does this function do?
result = 0
if numl >= num2:
result = numl
else:
result = num2
return result

Function definitions:
* Save functions for later use,
nothing executed
* Similar to adding a contact
into your phone book
- not actually calling

12 == Program starts “doing stuff”

float(input("Enter a number: "))

z = max(x, y)
print("The max is", z)

X
y

Mar 1, 2017 Sprenkle - CSCI111 20

Flow of Control

def max(Cnuml, num2):
result = 0
if numl >= num2:
result = numl
else:
result = num?2
return result

X
y
z = max(x, y)

print("The max is", z)

To input and
then float
function x=12

|

y = float(input("..."))

z=mvax(7x, Yl

12 == Program starts “doing stuff”
float(input("Enter a number: "))

Mar 1, 2017 Sprenkle - CSCI111 21

numl is set to value of X
numZ is set to value of y

Flow of Control

Toinput and

then float — def max(huml, num2):
function x=12 ‘ . - -
| \ ‘ result=0
y = float(input(""))
o~ 1 Gets dssigned
e o _max’s output numl >= num2
‘\C&\ 7= ,Y)
W 1 True False
print("The max is", z) result=numl result=num2
def max(numl, num2):
result = 0
if numl >= num2: - peturn result
result = numl
else: return to caller
result = num2
Mar 1, 201 return result renkle - CSCI111 22

Flow of Control: Using return

Is this implementation of
the function correct?

def max(numl, num2):
if numl >= num2:
return numl
else:
return num?2

Mar 1, 2017 Sprenkle - CSCI111 23

Flow of Control: Using return

Is this implementation of
the function correct?

def max(numl, num2): def max(numl, numz):

if numl >= num2:

return numl
else: numl >= num?2

return num2 425?/’/\\\\£it

return numl return num2

< I o I

return to caller

Mar 1, 2017 Sprenkle - CSCI111 24

Flow of Control: Using return

Is this implementation of
the function correct?

def max(numl, num2):
if numl >= num2:
return numl
return num2

Mar 1, 2017 Sprenkle - CSCI111 25

Flow of Control: Using return

Is this implementation of
the function correct?

def max(numl, num2): def max(numl, numz):

if numl >= num2:
return numl

return num2 numl >= num2
True 1
1
return numl
l " Implicit false branch:
: Only way got here is if
¥ the condition was

return to caller return num?2 not True

Mar 1, 2017 Sprenkl“ﬁﬂﬁ.\—l 26

Function Input and Output

BEGIN_END = "Old McDonald had a farm"
EIEIO = ", E-I-E-I-0"

* What does this function do?
* Identify function's input and output

def printVerse(animal, sound):
print(BEGIN_END + EIEIO)
print("And on that farm he had a " + animal + EIEIO)
print("With a " + sound + ", " + sound + " here")
print("And a " + sound + ", " + sound + " there")
print("Here a", sound)
print("There a", sound)
print("Everywhere a " + sound + ", " + sound)
print(BEGIN_END + EIEIO)

printQ)

Mar 1, 2017 Sprenkle - CSCI111 27

Function Input and Output

2 inputs: animal and sound

0 outputs
> Displays something but does not return anything (None)

def printVerse(animal, sound):
print(BEGIN_END + EIEIO)
print("And on that farm he had a " + animal + EIEIO)
print("With a " + sound + ", " + sound + " here")
print("And a " + sound + ", " + sound + " there")
print("Here a", sound)
print("There a", sound)
print("Everywhere a " + sound + ", " + sound)
print(BEGIN_END + EIEIO)

Pr'"lnl tQO Function exits here

Mar 1, 2017 Sprenkle - CSCI111 28

PROGRAM ORGANIZATION

Mar 1, 2017 Sprenkle - CSCI111 29

Where are Functions Defined?

Functions can go inside program script
> If no main() function, defined before use/called
averagel.py
> 1fmain() function, defined anywhere in script

Functions can go inside a separate module

Mar 1, 2017 Sprenkle - CSCI111

30

Program Organization: main function

In many languages, you put the “driver” for your
program in amain function

» You can (and should) do this in Python as well
Typically main functions are defined at the top
of your program

» Readers can quickly see an overview of what
program does

main usually takes no arguments
» Example: def main():

Mar 1, 2017 Sprenkle - CSCI111 31

Using amain Function

callmain() at the bottom of your program

Side effects:

> Do not need to define functions before main
function

> main can “see” all other functions
Note: main is a function that calls other
functions

» Any function can call other functions

Mar 1, 2017 Sprenkle - CSCI111

32

Example program with a main()

def main():
printVerse("dog", "ruff")

printVerse("duck", "quack") Constants, comments

are in example program

animal_type = "cow"
animal_sound = "moo"
printVerse(animal_type, animal_sound)

def printVerse(animal, sound):
print(BEGIN_END + EIEIO)
print("And on that farm he had a " + animal + EIEIO)
print("With a " + sound + ", " + sound + " here")
print("And a " + sound + ", " + sound + " there")
print("Here a", sound)
print("There a", sound)
print("Everywhere a " + sound + ", " + sound)
print(BEGIN_END + EIEIO)

o print("With a " + sound + ", " + sound + " here")

printQ In what order does this program execute?
main() What is output from this program?

i oldmac.py

|. Set definition of main

2. Set definition of printVe
3. Call main function
animal_type = "cow" 4. Execute main function

animal_sound = "moo" . 5. Call, execute printVerse
printVerse(animal_type, ammal_sound%

Examplearogram with a main()

def main():
printVerse("dog", "ruff")
printVerse("duck", "quack™)

def printVerse(animal, sound):
print(BEGIN_END + EIEIO)
print("And on that farm he had a " + animal + EIEIO0)
print("And a " + sound + ", " + sound + " there")
print("Here a", sound)
print("There a", sound)
print("Everywhere a " + sound + ", " + sound)
print(BEGIN_END + EIEIO)
print()

mainQ) e oldmac.py

rse

Summary: Program Organization

Larger programs require functions to maintain
readability

> Use main() and other functions to break up program into
smaller, more manageable chunks

> “Abstract away” the details
As before, can still write smaller scripts without any
functions

» Can try out functions using smaller scripts
Need the main() function when using other functions
to keep “driver” at top

» Otherwise, functions need to be defined before use

Mar 1, 2017 Sprenkle - CSCI111 35

VARIABLE LIFETIMES AND SCOPE

Mar 1, 2017 Sprenkle - CSCI111 36

What does this program output?
def main():
x = 10

sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit):
total = @
for x in range(@, limit, 2):
total += x
return total

main()

Mar 1, 2017 Sprenkle - CSCI111 mystery.py 37

Function Variables
def main():
x = 10

sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit):

total = @
for x in range(@, limit, 2):
total += x
return total Why can we name two
mainC) different variables x?
Mar 1, 2017 Sprenkle - CSCI111 mystery.py 38

Tracing through Execution

[def main(): When you call main(), that means you
2 x =10 want to execute this function
-8 sum = sumEvens(x)
g print("The sum of even #s up to", x, "is", sum)
=]
§- def sumEvens(limit):
S total = @
a for x in range(@, limit, 2):
total += x
return total
h__“,main()

Mar 1, 2017 Sprenkle - CSCI111 39

Function Variables

def main(Q) :
x=10
sum = sumEvens(x)
print("The sum of even #s up to", x,

" n

is", sum)
def sumEvens(limit) :
total = @
for x in range(@, limit, 2):
total += x
return total Memory stack Variable names
are like first names

main | x 10 AA—"———

Function names are like last names
Define the SCOPE of the variable

Mar 1, 2017 Sprenkle - CSCI111 40

main()

10

Function Variables

def main() :
x=10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) : Called the function sumEvens
total = 0 Add its parameters to the stack
for x in range(@, limit, 2):
total += x ST

return total Evens limit 10

main()
main x 10

Mar 1, 2017 Sprenkle - CSCI111 41

Function Variables

def main() :
x=10

sum = sumEvens(x)

print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
total = @
for x in range(@, limit, 2):
total += x
return total

main()

Mar 1, 2017 Sprenkle - CSCI111

sum |total 0
Evens | limit 10

main x 10

42

Function Variables

def main(Q) :
x=10

sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :

total = @
for x in range(@, limit, 2):
total += x sum % 0
return total Evens | total 0
limit 10
main()
main | x 10
Mar 1, 2017 Sprenkle - CSCI111 43

Function Variables

def main(Q) :
x=10

sum = sumEvens(x)

print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
total = @
for x in range(@, limit, 2):
total += x
return total

main()

Mar 1, 2017 Sprenkle - CSCI111

m x 8
ét;ns total 20
limit 10

main x 10

44

11

Function Variables

def main() :
x=10

sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :

total = 0 Function sumEvens returned
for x in range(@, limit, 2): < no longer have to keep track of
total += x its variables on stack
return total * lifetime of those variables is over
main
O main sum 20
x 10
Mar 1, 2017 Sprenkle - CSCI111 45

Variable Scope

Functions can have the same parameter and variable
names as other functions

» Need to look at the variable’s scope to determine which one
you're looking at

» Use the stack to figure out which variable you’re using
Scope levels
» Local scope (also called function scope)
Can only be seen within the function
» Global scope (also called file scope)
Whole program can access
More on these later

Mar 1, 2017 Sprenkle - CSCI111 47

Function Variables

def main() :
x=10

sum = sumEvens(x)

def sumEvens(limit) :
total = @
for x in range(@, limit, 2):
total += x
return total

main() x 10

main
sum 20

Mar 1, 2017 Sprenkle - CSCI111 46

Function Scope

What variables can we “see” (i.e., use)?

def main():
binary_string = input("Enter a binary #: ")
if not isBinary(binary_string):
print("That_is not a binary string")
sys.exit()<_
decVal = binaryToDecimal(binary_string)
print("The decimal value is", decVal)

def isBinary(string):
for bit in string: g
if bit != "@" and bit != "1":
return False
return True

Mar 1, 2017 Sprenkle - CSCI111 48

12

Summary: Why Write Functions?

Allows you to break up a hard problem into smaller,
more manageable parts

Makes your code easier to understand

Hides implementation details (abstraction)

» Provides interface (input, output)
Makes part of the code reusable so that you:

» Only have to write function code once

» Can debug it all at once

Isolates errors
» Can make changes in one function (maintainability)

Similar to benefits of OO Programming

Mar 1, 2017 Sprenkle - CSCI111 49

Looking Ahead
Lab 6

Broader Issue: Smart Houses

Mar 1, 2017

Sprenkle - CSCI111

50

13

