
1	

Objec(ves	
• Designing	our	own	classes	

Ø Represen(ng	a8ributes/data	
Ø What	func(onality	to	provide	

• Using	our	defined	classes	

Mar	22,	2017	 Sprenkle	-	CSCI111	 1	

Where	We	Are	
• With	what	you	now	know	(OO	programming)	

Ø Opens	up	the	possibili(es	for	what	you	kinds	of	
programs	you	can	write	

Ø Just	about	anything	computa(onal	is	possible	

• Example:	Car	
Ø Data	to	model	for	a	Car?	
Ø API	for	a	Car?	

Mar	22,	2017	 Sprenkle	-	CSCI111	 2	

Review:	Classes	and	Objects	
• Car	class	
• Each	car	has	these	a"ributes:	

Ø Make	
Ø Model	
Ø Year	
Ø Transmission	
Ø Exterior	color	

• Methods	
Ø getYear()	
Ø setGear()	
Ø …	

Mar	22,	2017	 Sprenkle	-	CSCI111	 3	

Cars all have these attributes, �
different values for the attributes

Each car is an instance of
the Car class

Review:	Object-Oriented	Programming	
• Why	do	we	want	to	define	classes/new	data	
types?	

• What	is	the	keyword	to	create	a	new	class?	
• How	do	you	define	a	method?	

Ø What	parameter	is	needed	in	every	method?	

• How	do	you	create	a	new	object	of	a	given	class?	
Ø What	method	does	this	call?	

• How	do	we	access	instance	variables	in	other	
methods?	

Mar	22,	2017	 Sprenkle	-	CSCI111	 4	

2	

Algorithm	for	Crea(ng	Classes	
1.  Iden(fy	need	for	a	class	
2.  Iden(fy	state	or	a8ributes	of	a	class/an	object	

in	that	class	
Ø  Write	the	constructor	(__init__)	and	__str__	

methods	

3.  Iden(fy	methods	the	class	should	provide	
Ø  How	will	a	user	call	those	methods	(parameters,	

return	values)?	
•  Develop	API	

Ø  Implement	methods	
Mar	22,	2017	 Sprenkle	-	CSCI111	 5	

Review:	Classes	and	Objects	
c1 = Card(14, "spades")
c2 = Card(13, "hearts")

Mar	22,	2017	 Sprenkle	-	CSCI111	 6	

Instance variables,
attributes, or fields

Object	c1	of	
type	Card

_rank	=	14	
_suit	=	"spades"	

Object	c2	of	
type	Card

_rank	=	13	
_suit	=	"hearts"	

c1	and	c2	are	
instances	of	the	
Card	class	

Instance variables: named beginning with _

Card	Class	(Incomplete)	

Mar	22,	2017	 Sprenkle	-	CSCI111	 7	

class Card:
 """ A class to represent a standard playing card.
 The ranks are ints: 2-10 for numbered cards, 11=Jack,
12=Queen, 13=King, 14=Ace.
 The suits are strings: 'clubs', 'spades', 'hearts',
'diamonds’."""
 def __init__(self, rank, suit):
 """Constructor for class Card takes int rank and

string suit."""
 self._rank = rank
 self._suit = suit

 def getRank(self):
 "Returns the card’s rank."
 return self._rank

 def getSuit(self):
 "Returns the card’s suit."
 return self._suit

Doc String

card.py

M
et
ho

ds
	 Methods are like functions

defined in a class

Defining	the	Constructor	
• __init__	method	is	like	the	constructor	
•  In	constructor,	define	instance	variables	

Ø Data	contained	in	every	object	
Ø Also	called	a"ributes	or	fields	

• Constructor	never	returns	anything	

Mar	22,	2017	 Sprenkle	-	CSCI111	 8	

def __init__(self, rank, suit):
 """Constructor for class Card takes int rank

and string suit."""
 self._rank = rank
 self._suit = suit

First parameter of every method is self
-  pointer to the object that method acts on

Instance
variables

3	

Using	the	Constructor	
• As	defined,	constructor	is	called	using	
Card(<rank>,<suit>)
Ø Do	not	pass	anything	for	the	self	parameter	
Ø Python	handles	for	us,	passing	the	parameter	
automa(cally	

• Example:		
Ø card = Card(2, "hearts")
Ø Creates	a	2	of	Hearts	card	
Ø Python	passes	card as self for	us	

Mar	22,	2017	 Sprenkle	-	CSCI111	 9	

def __init__(self,
 rank, suit):

Object	card	
of	type	Card

_rank	=	2	
_suit	=	"hearts"	

Accessor	Methods	
• Need	to	be	able	to	get	informa(on	about	the	
object	

• These	methods	will	get	called	as	
card.getRank()	and	card.getSuit()
Ø Python	plugs card in	for self

Mar	22,	2017	 Sprenkle	-	CSCI111	 10	

def getRank(self):
"Returns the card’s rank."
return self._rank

def getSuit(self):
"Returns the card’s suit."
return self._suit

•  Have self
parameter
•  Return data/

information

Another	Special	Method:	__str__
•  Returns	a	string	
that	describes	the	
object	

• Whenever	you	print	
an	object,	Python	
checks	if	the	object’s	
__str__	method	is	
defined	
Ø  Prints	result	of	calling	
__str__	method	

• str(<object>)
also	calls	__str__
method	

Mar	22,	2017	 Sprenkle	-	CSCI111	 11	

def __str__(self):
 """Returns a string

describing the card as  
'rank of suit'."""

 result = ""
 if self._rank == 11:
 result += "Jack"
 elif self._rank == 12:
 result += "Queen"
 elif self._rank == 13:
 result += "King"
 elif self._rank == 14:
 result += "Ace"
 else:
 result += str(self._rank)
 result += " of " + self._suit
 return result

self is a
Card object

Using	the	Card	Class	

Mar	22,	2017	 Sprenkle	-	CSCI111	 12	

def main():
 c1 = Card(14, "spades")
 print(c1)
 c2 = Card(13, "hearts")
 print(c2)

Invokes	the	
__str__	method	

Displays:	
Ace	of	spades	
King	of	hearts	

Object	c1	of	
type	Card

_rank	=	14	
_suit	=	“spades”	

Object	c2	of	
type	Card

_rank	=	13	
_suit	=	“hearts”	

4	

Crea(ng	a	Deck	Class	(Par(al)	
• List	of	Card	objects	

Mar	22,	2017	 Sprenkle	-	CSCI111	 13	

from card import *

class Deck:
 def __init__(self):
 self._listOfCards = []
 for suit in ["clubs","hearts","diamonds","spades"]:
 for rank in range(2,15):
 self._listOfCards.append(Card(rank, suit))

 def __str__(self):
 deckRep= ""
 for c in self._listOfCards:
 deckRep += str(c) + "\n"
 return deckRep

Represents	cards	
on	separate	lines	

Ini(alize	instance	variable,	
self._listOfCards

Creates	and	returns	a	string	

Actual code should have doc strings

Deck	Class	
• What	does	the	Deck	API	look	like	so	far?	

Mar	22,	2017	 Sprenkle	-	CSCI111	 14	

Deck	API	
• Deck()
• __str__()

Mar	22,	2017	 Sprenkle	-	CSCI111	 15	

Constructor	

Deck	API	

Mar	22,	2017	 Sprenkle	-	CSCI111	 16	

• What additional methods should our
Deck class provide?
• What do the method headers look like?
• Deck’s API

• What should they return?
• How do we implement them?

5	

Deck	API	
• Deck()
• shuffle()
• draw()
• deal(num_cards)
• numRemaining()
• isEmpty()
• __str__()

Mar	22,	2017	 Sprenkle	-	CSCI111	 17	

Constructor	

__LT__	and	__EQ__	METHODS	

Mar	22,	2017	 Sprenkle	-	CSCI111	 18	

__eq__:		Compare	Objects	of	Same	Type	

• Header:	def __eq__(self, other)
Ø AssumpAon:	other	is	another	object	of	the	same	type	

• Returns	
Ø True	if	self	is	equivalent	to	other
Ø False	otherwise	

• Can	now	use	objects	in	comparison	expressions	
Ø ==

Mar	22,	2017	 Sprenkle	-	CSCI111	 19	

How would you determine if two
Card objects are equivalent?

__lt__:	Compare	Objects	of	Same	Type	

• Header:	def __lt__(self, other)
Ø AssumpAon:	other	is	another	object	of	the	same	type	

• Returns	
Ø True	if	self	<	other
Ø False	otherwise	

• Can	now	use	objects	in	comparison	expressions	
Ø <,	sort

Mar	22,	2017	 Sprenkle	-	CSCI111	 20	

How do you compare �
two Card objects?

6	

Comparing	Objects	of	the	Same	Type	

Mar	22,	2017	 Sprenkle	-	CSCI111	 21	card.py	

def __lt__(self, other):
""" Compares Card objects by their ranks ""”
if type(self) != type(other):

return False

return self.rank < other.rank

def __eq__(self, other):
""" Compares Card objects by their ranks and suits ""”
if type(self) != type(other):

return False

return self.rank == other.rank and self.suit == other.suit

Could compare by black jack or rummy value

Frequency	Object	

Mar	22,	2017	 Sprenkle	-	CSCI111	 22	

def __lt__(self, other):
 """Compares this object with other, which is  

also a FrequencyObject. Used by default when
using the  

list's sort method."""

return self.count < other.count

HELPER	METHODS	

Mar	22,	2017	 Sprenkle	-	CSCI111	 23	

Helper	Methods	
• Part	of	the	class	
• Not	part	of	the	API	

• Make	your	code	easier	but	others	outside	the	
class	shouldn’t	use	

• Conven(on:	method	name	begins	with	“_”	

Mar	22,	2017	 Sprenkle	-	CSCI111	 24	

Let’s	create	a	method	that	determines	if	a	Card	is	a	face	card!	

7	

Example	Helper	Methods	
• Only	loosely	enforces	that	other	can’t	use	

Ø Doesn’t	show	up	in	help
Ø Does	show	up	in dir

Mar	22,	2017	 Sprenkle	-	CSCI111	 25	

def _isFaceCard(self):
if self._rank > 10 and self._rank < 14:

return True
return False

Helper	Method:		

def rummyValue(self):
if self._isFaceCard():

return 10
elif self._rank == 10:

return 10
elif self._rank == 14:

return 15
else:

return 5

In	use:	

card2.py

Summary:	Designing	Classes	
• What	does	the	object/class	represent?	
• How	to	model/represent	the	class’s	data?	

Ø Instance	variable	
Ø Data	type	

• What	func0onality	should	objects	of	the	class	
have?	
Ø How	will	others	want	to	use	the	class?		
Ø Put	into	methods	for	others	to	call	(API)	

Mar	22,	2017	 Sprenkle	-	CSCI111	 26	

Looking	Ahead	
• Lab	9:	Analysis	of	student	names	at	W&L	

Ø Staggered	extension	
Ø MUST	complete	first	two	ques(ons	by	Friday	at	class	

• Run	turnin	script	to	get	credit	that	you	turned	in	the	
first	two	ques(ons.	

Ø All	due	Monday	before	class	
Ø Keep	in	mind:	no	students	assistants	or	office	hours	
over	the	weekend	

• Exam	2	

Mar	22,	2017	 Sprenkle	-	CSCI111	 27	

Exam	2	
• Cumula(ve	
• Focused	on	things	aper	first	exam	(see	prep	
document)	

Mar	22,	2017	 Sprenkle	-	CSCI111	 28	

8	

Exam	2:	Prac(ce!	
• Read,	understand	code	

Ø Write	down	what	you	think	the	result	will	be	
Ø Run	the	code	to	verify	
Ø Check	out	interac(ve	exercises	in	the	book	

• Func(ons	
Ø Calling	func(ons	
Ø Wri(ng	func(ons	
Ø What	should	you	do	with	what	the	func(on	returns?	
Ø Refactoring	code	

Mar	22,	2017	 Sprenkle	-	CSCI111	 29	

