
1	

Objec(ves	
• Search	strategies	

Ø Review	
Ø Extensions	

• Broader	Issue:	Text	Analysis	

March	31,	2017	 Sprenkle	-	CSCI111	 1	

Reviewing	Lab	10	
• Created	two	classes	

Ø Used	one	class	within	another	class	
Ø Tested	them	
Ø Example	of	a	backend	to	a	real	applica(on	

•  Could	add	a	different	user	interface	
•  “Good	judgment	comes	from	experience”	

Ø Test	methods	aTer	wri(ng	it	
Ø Remember	your	data	types	
Ø Refer	to	the	data	type’s	API	

• What	could	you	do	to	improve	your	development	
process?	

March	31,	2017	 Sprenkle	-	CSCI111	 2	

Text UI

Backend

Data
Store

Graphical UI

Review	
• We	discussed	two	different	search	techniques:	

Ø What	were	they?	
Ø How	do	they	compare?	

March	31,	2017	 Sprenkle	-	CSCI111	 3	

Review:	Search	Using	in Review	
•  Iterates	through	a	list,	checking	if	the	element	is	
found	

• Known	as	linear	search	
• Implementa*on:	

March	31,	2017	 Sprenkle	-	CSCI111	 4	

def linearSearch(searchlist, key):
for elem in searchlist:

if elem == key:
return True

return False

search.py

8	 5	 3	 7	

0	 1	 2	 3	

What are the strengths and weaknesses
of implementing search this way?

value	

pos	

2	

Review:	Linear	Search	
• Overview:	Iterates	through	a	list,	checking	if	the	
element	is	found	

• Benefits:	
Ø Works	on	any	list	

• Drawbacks:	
Ø Slow,	on	average:	needs	to	check	each	element	of	
list	if	the	element	is	not	in	the	list	

March	31,	2017	 Sprenkle	-	CSCI111	 5	

Review:	Binary	Search:	Eliminate	Half	the	
Possibili(es	
• Repeat	un(l	find	value	(or	looked	through	all	
values)	
Ø Guess	middle	value	of	possibili(es	

•  (not	middle	posi,on)	
Ø If	match,	found!	
Ø Otherwise,	find	out	too	high	or	too	low	
Ø Modify	your	possibili(es	

• Eliminate	the	possibili(es	from	your	number	and	
higher/lower,	as	appropriate	

• Known	as	Binary	Search	
March	31,	2017	 Sprenkle	-	CSCI111	 6	

Binary	Search	Implementa(on	

March	31,	2017	 Sprenkle	-	CSCI111	 7	

def search(searchlist, key):
low=0
high = len(searchlist)-1
while :

mid = (low+high)//2
if searchlist[mid] == key:

return mid
elif key > searchlist[mid]:

low = mid+1
else:

high = mid-1

search2.py

Our	condi(on?	
What	if	not	found?	

Binary	Search	Implementa(on	

March	31,	2017	 Sprenkle	-	CSCI111	 8	

def search(searchlist, key):
low=0
high = len(searchlist)-1
while low <= high :

mid = (low+high)//2
if searchlist[mid] == key:

return mid # return True
elif key > searchlist[mid]:

low = mid+1
else:

high = mid-1
return -1 # return False

search2.py

If you just want to
know if it’s in the list

3	

Binary	Search	
• Example	of	a	Divide	and	Conquer	algorithm	

Ø Break	into	smaller	pieces	that	you	can	solve	

• Benefits:	
Ø Faster	to	find	elements	(especially	with	larger	lists)	

• Drawbacks:	
Ø Requires	that	data	can	be	compared	
• __lt__, __eq__ methods	implemented	by	the	
class	(or	another	solu(on)	

Ø List	must	be	sorted	before	searching	
• Takes	(me	to	sort	

March	31,	2017	 Sprenkle	-	CSCI111	 9	

Key	Ques(ons	in	Computer	Science		
• How	can	we	efficiently	organize	data?	
• How	can	we	efficiently	search	for	data,	given	
various	constraints?	
Ø Example:	data	may	or	may	not	be	sortable	

• What	are	the	tradeoffs?	

March	31,	2017	 Sprenkle	-	CSCI111	 10	

Empirical	Study	of	Search	Techniques	

• How	long	does	it	take	to	find	various	keys?	
Ø Measure	by	the	number	of	comparisons	
Ø Vary	the	size	of	the	list	and	the	keys	
Ø What	are	good	tests	for	the	lists	and	the	keys?	

March	31,	2017	 Sprenkle	-	CSCI111	 11	

search_compare.py

Goal: Determine which technique is
better under various circumstances

Empirical	Study	of	Search	Techniques	
• Analyzing	Results	…	

Ø By	how	much	did	the	number	of	comparisons	for	
linear	search	vary?	

Ø By	how	much	did	the	number	of	comparisons	for	
binary	search	vary?	

• What	conclusions	can	you	draw	from	these	
results?	

March	31,	2017	 Sprenkle	-	CSCI111	 12	

search_compare.py

4	

Search	Strategies	Summary	
• Which	search	strategy	should	I	use	under	the	
following	circumstances?	
Ø I	have	a	short	list	

Ø I	have	a	long	list	

Ø I	have	a	long	sorted	list	

March	31,	2017	 Sprenkle	-	CSCI111	 13	

Search	Strategies	Summary	
• Which	search	strategy	should	I	use	under	the	
following	circumstances?	
Ø I	have	a	short	list	

• How	short?		How	many	searches?	Linear	(in)	
Ø I	have	a	long	list	

• Linear	(in)	-	because	don’t	know	if	in	order,	
comparable	

• Alterna(vely,	may	want	to	sort	the	list	and	then	
perform	binary	search,	if	sor(ng	first	won’t	be	more	
effort	than	just	sor(ng.	

Ø I	have	a	long	sorted	list	
• Binary	

March	31,	2017	 Sprenkle	-	CSCI111	 14	

Extensions	to	Search	

March	31,	2017	 Sprenkle	-	CSCI111	 15	

In FaceSpace, we want to find people who have a
certain name.

Consider what happens when searchlist is a list
of Persons and key is a name (a str)

We want to find a Person whose name matches
the key and return the Person

List	of	Person	objects	

March	31,	2017	 Sprenkle	-	CSCI111	 16	

Example:	looking	for	a	person	with	the	name	“Chris”…	

0	 1	 2	 3	 4	

Person
Id:“1”	
“Henry”	

Person
Id:“2”	

“Natalie”	

Person
Id:“3”	
“Chris”	

Person
Id:	“4”	
“Ben”	

Person
Id:	“5”	

“Samuel”	

5	

List	of	Person	objects	

March	31,	2017	 Sprenkle	-	CSCI111	 17	

0	 1	 2	 3	 4	

Person
Id:“1”	
“Henry”	

Person
Id:“2”	

“Natalie”	

Person
Id:“3”	
“Chris”	

Person
Id:	“4”	
“Ben”	

Person
Id:	“5”	

“Samuel”	

0	 1	 2	 3	 4	

Person
Id:	“4”	
“Ben”	

Person
Id:“3”	
“Chris”	

Person
Id:	“1”	
“Henry”	

Person
Id:“2”	

“Natalie”	

Person
Id:“5”	

“Samuel”	

Sorted	by	name	using:	
 personList.sort(key=Person.getName)

Extensions	to	Solu(on	

March	31,	2017	 Sprenkle	-	CSCI111	 18	

def search(searchlist, key):
low=0
high = len(searchlist)-1
while low <= high :

mid = (low+high)//2
if searchlist[mid] == key:

return mid
elif key > searchlist[mid]:

look in upper half
low = mid+1

else:
look in lower half
high = mid-1

return -1

Consider	what	happens	when	
searchlist	is	a	list	of	
Persons, key is	a	str	
represen(ng	the	name	
• Goal:	find	a	person	with	a	
certain	name	

0	 1	 2	 3	 4	

Person
Id:	“4”	
“Ben”	

Person
Id:“3”	
“Chris”	

Person
Id:	“1”	
“Henry”	

Person
Id:“2”	

“Natalie”	

Person
Id:“5”	

“Samuel”	

Extensions	to	Solu(on	

March	31,	2017	 Sprenkle	-	CSCI111	 19	

def search(searchlist, key):
low=0
high = len(searchlist)-1
while low <= high :

mid = (low+high)//2
if searchlist[mid] == key:

return mid
elif key > searchlist[mid]:

look in upper half
low = mid+1

else:
look in lower half
high = mid-1

return -1

What	can	we	do	to	make	search	
results	more	intui(ve?	

Consider	what	happens	when	
searchlist	is	a	list	of	Persons,
key is	a	str	represen(ng	the	name	
• Goal:	find	a	person	with	a	certain	
network	

0	 1	 2	 3	 4	

Person
Id:	“4”	
“Ben”	

Person
Id:“3”	
“Chris”	

Person
Id:	“1”	
“Henry”	

Person
Id:“2”	

“Natalie”	

Person
Id:“5”	

“Samuel”	

Summary	of	Extensions	to	Solu(on	
•  Check	the	name	of	the	Person	at	the	midpoint	
•  Represent,	handle	when	no	Person	matches	
• What	could	we	do	if	more	than	one	person	has	that	
name?	

•  Note:	we’re	not	implemen(ng	“name	contains”	
Ø How	could	we	implement	that?	

March	31,	2017	 Sprenkle	-	CSCI111	 20	

6	

Broader	Issue	

March	31,	2017	 Sprenkle	-	CSCI111	 21	

Digital	Humani(es:	Text	Analysis	
• What	were	the	most	interes(ng/surprising	
ques(ons	asked/answered?	

• What	are	new	ques(ons	you	would	like	
answered?	
Ø Could	you	implement	those	with	what	you	currently	
know?	

March	31,	2017	 Sprenkle	-	CSCI111	 22	

Google	n-grams	
• hops://books.google.com/ngrams	

March	31,	2017	 Sprenkle	-	CSCI111	 23	

Looking	Ahead	
• Lab	11	

Ø Extensions	to	FaceSpace	
• Broader	Issue:	Social	Media	algorithms	

March	31,	2017	 Sprenkle	-	CSCI111	 24	

