
1	

Objec(ves	
• Review	
• Lab	2	

Ø Programming	prac(ce	

Jan	24,	2017	 Sprenkle	-	CSCI111	 1	

Feedback	on	Lab	1	
• Overall	good	
• Notes	

Ø Saved	output	from	each	program	
• With	user	input,	try	several	different	test	cases	

Ø Want	good	output	
•  think	about	what	the	user	wants	to	see	

Ø High-level	comments	
• Describes	what	the	program	does	

Ø Helps	for	quick	overview	when	reviewing	
Ø Electronic	submission	

•  In	directory	–	looked	good!	
Jan	24,	2017	 Sprenkle	-	CSCI111	 2	

Review	
• What	program	do	we	use	to	develop	programs?	

Ø What	is	the	command	you	execute	to	start	it?	

• What	is	our	process	for	developing	programs?	

• How	can	we	make	our	program	interac(ve	with	a	
user?	

Jan	24,	2017	 Sprenkle	-	CSCI111	 3	

You	can	install	Python/IDLE	on	your	own	computers		
to	prac(ce	between	labs.	

IDLE	Review	
• Run	using	idle3 &

Jan	24,	2017	 Sprenkle	-	CSCI111	 4	

2	

Tes(ng	

Jan	24,	2017	 Sprenkle	-	CSCI111	 5	

Honey	Badger	gets	bad	grade	in	CSCI111	

Recommenda(on	
• Get	user	input	last	–	this	is	a	fairly	rou(ne	step	
• Develop/test	without	ge]ng	input	first	

Ø Speeds	up	process	
• Then,	add	user	input	

Jan	24,	2017	 Sprenkle	-	CSCI111	 6	

Review	
• What	are	the	two	types	of	division?	
• How	can	we	find	the	remainder	of	a	division?	
• How	can	we	make	something	repeat	a	certain	
number	of	(mes?	

Jan	24,	2017	 Sprenkle	-	CSCI111	 7	

Review:	Arithme(c	Opera(ons	

Jan	24,	2017	 Sprenkle	-	CSCI111	 8	

Symbol	 Meaning	 Associa9vity	

+ Addi(on	 Lec	

- Subtrac(on	 Lec	

* Mul(plica(on	 Lec	

/ Division	 Lec	

% Remainder	(“mod”)	 Lec	

** Exponen(a(on	(power)	 Right	

Precedence	rules:	P	E	-	DM%	AS	

nega(on	

Associativity matters when
you have the same

operation multiple times

3	

Review:	Two	Division	Operators	

/	 	Float	Division	
•  Result	is	a	float
•  Examples:

Ø  6/3 à 2.0
Ø  10/3 à

3.3333333333333335
Ø  3.0/6.0 à 0.5
Ø  10/9 à 1.9

// 		Integer	Division	
•  Result	is	an	int	
•  Examples:	

Ø  6//3 à 2
Ø  10//3 à 3
Ø  3.0//6.0 à 0
Ø  10//9 à 1

Jan	24,	2017	 Sprenkle	-	CSCI111	 9	

Review:	Formalizing	Process	of		
Developing	Computa(onal	Solu(ons	
1. Think	about	the	test	cases	

a.  Input,	expected	output	
2. Create	a	sketch	of	how	to	solve	the	problem	

(the	algorithm)	
3. Fill	in	the	details	in	Python	
4. Test	the	Python	program	with	good	test	cases	

a.  If	errors	found,	debug	program	
b.  Repeat	step	3	

Jan	24,	2017	 Sprenkle	-	CSCI111	 10	

Good	Development	Prac(ces	
• Design	the	algorithm	

Ø Break	into	pieces		

• Implement	and	Test	each	piece	separately	
Ø Iden(fy	the	best	pieces	to	make	progress	
Ø Iterate	over	each	step	to	improve	it	

• Write	comments	FIRST	for	each	step	
Ø Elaborate	on	what	you’re	doing	in	comments	when	
necessary	

Jan	24,	2017	 Sprenkle	-	CSCI111	 11	

Review	
• How	do	we	repeat	code?	

Jan	24,	2017	 Sprenkle	-	CSCI111	 12	

4	

Jan	24,	2017	 Sprenkle	-	CSCI111	 13	

for Loop	Syntax	and	Seman(cs	
• Use	when	know	how	many	(mes	loop	will	
execute	
Ø Repeat	N	(mes	

	

Times to repeat

for i in range(10):
statement_1
statement_2
…
statement_n	

“Body” of for loop
-  Gets repeated
-  Note indentation

Jan	24,	2017	 Sprenkle	-	CSCI111	 14	

for	loop	review	

• Note:	when	have	range(5),
Ø x	gets	values	(0,	1,	2,	3,	4)	
Ø Which	means	that	loop	executes	5	(mes	

• Op(onal:	start	and	step	parameters	

for x in range(5):
like assigning x values(0,1,2,3,4)
consecutively, each time through loop

rest of loop body …

Prac(cing for Loops	
Ø A)

Ø B)

•  C)

Jan 24, 2017 Sprenkle - CSCI111 15

10
9
8
7
…
1
Blast off

I had the time of my life
And I never felt this way before
And I swear this is true
And I owe it all to you

1
2
3
4
Tell me that you
love me more

What is getting repeated?
How many times?

3 times, �
followed by Dirty bit

Jan	24,	2017	 Sprenkle	-	CSCI111	 16	

Review:	Programming	Prac(ce	
• Add	5	numbers,	inpuoed	by	the	user	

Ø Acer	implemen(ng,	simulate	running	on	computer	

sum5.py

Key questions:
•  What is getting repeated?
•  How many times?

5	

Comparing	Solu(ons	

sum5.py
print("This program will add up 5
numbers given by the user.")

total = 0

for x in range(5):
 num = eval(input("Enter number:
"))
 total = total + num

print("The total of the inputted
numbers is ", total)

sum5_no_loop.py
print("This program will add up 5
numbers given by the user.")

num1 = eval(input("Enter number: "))
num2 = eval(input("Enter number: "))
num3 = eval(input("Enter number: "))
num4 = eval(input("Enter number: "))
num5 = eval(input("Enter number: "))

total = num1 + num2 + num3 + num4 +
num5

print("The total of the inputted
numbers is ", total)

Jan	24,	2017	 Sprenkle	-	CSCI111	 17	

Comparing	Solu(ons	
• Both	are	valid	solu(ons	
• sum5_no_loop.py	is	conceptually	simpler	

Ø Don’t	need	to	understand	what	the	loop	does	
• sum5.py	has	less	repeated	code	

Ø Makes	it	easier	to	change	if	we	decide	to	change	
what	gets	repeated	

• sum5.py	is	easier	to	change	how	many	numbers	
are	input	
Ø More	on	that	on	Wednesday	

Jan	24,	2017	 Sprenkle	-	CSCI111	 18	

Jan	24,	2017	 Sprenkle	-	CSCI111	

Generalizing	Solu(on:	
Accumulator	Design	Paoern	

1.  Ini(alize	accumulator	variable	
2.  Loop	un(l	done	

Ø Update	the	value	of	the	accumulator	

3.  Display	result	

19	

How	does	this	paoern	relate	to	the	sum5.py	solu(on?	

Jan	24,	2017	 Sprenkle	-	CSCI111	

Generalizing	Solu(on:	
Accumulator	Design	Paoern	

1.  Ini(alize	
accumulator	
variable	

2.  Loop	un(l	done	
Ø Update	the	value	

of	the	accumulator	

3.  Display	result	

20	

total = 0

for x in range(5):
 num = eval(input("Enter
number: "))
 total = total + num

print("The total of the inputted
numbers is ", total)

total	is	the	accumulator	variable	

6	

Jan	24,	2017	 Sprenkle	-	CSCI111	 21	

Programming	Building	Blocks	
• Each	type	of	statement	is	a	building	block	

Ø  Ini(aliza(on/Assignment	
•  So	far:	Arithme(c,	func(ons	

Ø Print	
Ø For	
Ø  Input	(also	with	assignment)	

• We	can	combine	them	to	create	more	complex	
programs	
Ø Solu(ons	to	problems	

• When	solving	problems,	think,	“To	solve	this	part	
of	the	problem,	I	need	this	building	block.”	

Assign.	 print

input
for

Honor	
•  You	may	discuss	programming	assignments	informally	
with	other	students	
Ø  Sharing	the	code	is	an	honor	viola(on	
Ø Do	not	share	your	password	

•  You	should	know	where	to	draw	the	line	between	
legi(mate	outside	assistance	with	course	material	and	
outright	chea(ng	
Ø  Students	who	obtain	too	much	assistance	without	learning	

the	material	ul(mately	cheat	themselves	
•  If	you	have	any	uncertainty	about	what	this	means,	
consult	with	me	before	you	collaborate	

•  All	wrioen	assignments	should	be	done	individually	

Jan 24, 2017 Sprenkle	-	CSCI111	 22	

Jan 24, 2017 Sprenkle - CSCI111

Honors	System:	Rules	of	Thumb 		
• Discussion	of	problems/programs	-	OK	

Ø Clarifica(on	ques(ons	
Ø Algorithm	discussion	(on	paper,	board)	

• Debugging	help	
Ø Programmer	always	“owns”	keyboard,	mouse	
Ø Helper	can	read	other’s	program/debug/help,	up	to	
5	minutes	
• Ask	TA	or	me	or	email	me	for	problems	that	require	
more	(me	

23

Lab	2	Expecta(ons	
• Comments	in	programs	

Ø High-level	comments,	author	
Ø Notes	for	your	algorithms,	implementa(on	

• Tes(ng	programs	
Ø What	are	good	test	cases	for	your	programs?	
Ø Show	the	output	from	those	test	cases	
Ø But	don’t	go	overboard	by	tes(ng	every	possible	
number!	

Ø Don’t	need	test	things	for	which	we	can’t	handle	well	

Jan	24,	2017	 Sprenkle	-	CSCI111	 24	

7	

Lab	2	Expecta(ons:	Example	Output	
• For	programs	that	take	user	input,	run	mul(ple	
(mes	to	demonstrate	that	the	program	works.	

• Example	output	that	should	be	saved	in	the	.out	file	

Jan	24,	2017	 Sprenkle	-	CSCI111	 25	

Lab	2	Expecta(ons	
• Nice,	readable,	understandable	output	

Ø Think	about	if	you	were	the	user	of	the	program:	
what	would	you	want	to	see?	

Ø Don’t	show	me	any	of	your	“scratch	work”	from	
earlier	versions	of	the	program	that	don’t	work.	

• Honor	System	
Ø Pledge	the	Honor	Code	on	printed	sheets	

Jan	24,	2017	 Sprenkle	-	CSCI111	 26	

