Lab 7

Lab 6 Review

Review for Lab 7

March 7, 2017 Sprenkle - CSCI111 1

Lab Musings

As we learn more computer science, we’re
moving toward a much higher ratio of thinking
to coding

Give yourself the time and room to think
Going beyond simply correctness in solutions

Looking for understanding of good coding practices

Testing, readability, usability, documentation,
organization, efficiency
> (not necessarily in that order)

March 7, 2017 Sprenkle - CSCI111 2

Lab Musings

Lab benefit: access to other students, lab
assistants, and instructor to help
Lab limitation: may not be the best environment

Seems to cause a competitive atmosphere, increased
anxiety for some students

You have until Friday to complete the lab
Work at your pace, think clearly and deeply

March 7, 2017 Sprenkle - CSCI111 3

Compare Solutions

words = sentence.split()

shorthandList = []

for word in words:

shorthandList.append(word[@])

shorthand = "".join(shorthandList)

shorthand = shorthand.lower()

print("Shorthand is:", shorthand)
words = sentence.split()
shorthand=""
for word in words:

shorthand += word[@]

shorthand = shorthand.lower()

print("Shorthand is:", shorthand)

March 7, 2017 Sprenkle - CSCI111 4

Com pa re Soluﬁons Both are valid solutions.

. I’'m not sure which is more
words = sentence.split() efficient in practice.
shorthandList = []
for word in words: However, the solution at left

shorthandlList.append(word[@]) has more conceptual
shorthand = "".join(shorthandList) complexity (appending to a
list and then converting to a
string, as opposed to just

print("Shorthand is:", shorthand) creating the string).

shorthand = shorthand.lower()

In general, looking for less words = sentence.split()

complex solutions. shorthand=""

for word in words:

Saw similar, more complex shorthand += word[0]

solutions for the password shorthand = shorthand.lower()

generation problem. i .
print("Shorthand is:", shorthand)

March 7, 2017 Sprenkle - CSCI111 5

Generating a Random Password

CHOOSE_NUM=0 i
CHOOSE_LOWER-1 {l?eﬁnle outside of
CHOOSE_UPPER=2 or loop
password=""

len_password = randint(6,8) + Good variable names
for charPos in range(len_password):
#determines if character is number, uppercase, or lowercase
char_type = randint(0,2)
#for each case, randomly assigns ASCII val
if char_type == CHOOSE_NUM:
asciival = randint(48,57) Even better to use
elif char_type == CHOOSE_LOWER: constants for ASCII values.
asciival = randint(97,122) ’
elif char type — CHOOSE UPPER. (I'M short on space)
asciival = randint(65,90)

Consider:
char = chr(asciival) MIN_NUM=ord('@")
password += char -
March 7, 2017 Sprenkle - CSCI111 6

Review Caesar Cipher

Consider the following solutions

for char in message:

asciiVal = ord(char) Which is easier to
if asciiVal == 32: read and understand?
else:

for char in message:
if char == " ":

else:

March 7, 2017 Sprenkle - CSCI111 7

Review Caesar Cipher

Consider the following solutions

for char in message:
asciiVal = ord(char)
if asciiVal == 32:

else:
| know what " " means. for '(if?aghép TESﬁage
| don’t immediately know __ :

what 32 means.
Lesson: prefer words
over numbers.

else:

March 7, 2017 Sprenkle - CSCI111 8

Caesar Cipher with Files

High-level description explaining what you’re
doing at the top of the program
How to debug
Look at the input files
Common issues
Not handling new lines ("\n") in the file
Similar to handling spaces

Close files as soon as possible

March 7, 2017 Sprenkle - CSCI111 9

Review

What is the keyword we use to create a new function?
How do we get output from a function?

What happens in the program execution when a function
reaches a return statement?

Why do we write functions?

Why do we write functions?

What makes a good function?

How should you comment your functions?

What is the name for the process for changing a program
to improve readability/organization/readability without
changing functionality?

March 7, 2017 Sprenkle - CSCI111 10

Review: Writing a “Good” Function

Should be an “intuitive chunk”
Doesn’t do too much or too little

If does too much, try to break into more
functions

Should be reusable

Always have comment that tells what the
function does

March 7, 2017 Sprenkle - CSCI111 11

Writing Comments for Functions

Good style: Each function must have a comment
Describes functionality at a high-level
Include the precondition, postcondition

Describe the parameters (their types) and the result
of calling the function (precondition and
postcondition may cover this)

March 7, 2017 Sprenkle - CSCI111 12

Writing Comments for Functions

Include the function's pre- and post- conditions
Precondition: Things that must be true for
function to work correctly

» E.g., num must be even

Postcondition: Things that will be true when
function finishes (if precondition is true)

» E.g., the returned value is the max

March 7, 2017 Sprenkle - CSCI111 13

Example Comment

Describes at high-level
Describes parameters
def EﬂntVer‘se(animal, sound):
Prints a verse of 0ld MacDonald, plugging in the

animal and.sound parameters (which are strings),
as appropriate. Comment style: Docstring

nun

print(BEGIN_END + EIEIO) “documentation string”
print("And on that farm he had a " + animal + EIEIO)

Comments from docstrings show up when you use help function

March 7, 2017 Sprenkle - CSCI111 14

Pre/Post Conditions
def P}par‘yToDecimal(binary_string):

pre: binary_string is a string that contains
only @s and 1s
post: returns the decimal value for the binary
string
dec_value = 0
for pos in range(len(binNum)):
exp = len(binNum) - pos - 1
bit = int(binNum[pos])

compute the decimal value of this bit
val = bit * 2 ** exp

add it to the decimal value
decVal += val

return dec_value

March 7, 2017 Sprenkle - CSCI111 15

Function comments

def printHeadings():
"""displays table column headings

nnn

Good. Describes function at high level

def printHeadings():
"""defines the printHeader function

non

Not descriptive.
Says what you'’re doing, not what function does
Need to tell programmer how to use function

March 7, 2017 Sprenkle - CSCI111 16

Summary “Good” Function

Reusable functionality
Good function name
Good parameter names

Good documentation
» Well-described input, output

March 7, 2017 Sprenkle - CSCI111 17

Review: Refactoring

Converting Functionality into Functions

Identify functionality that should be put into a
function

» What is the function’s input?

» What is the function’s output?

Define the function

» Write comments

Call the function where appropriate

Create a main function that contains the “driver”
for your program
» Put at top of program

Callmain at bottom of program

March 7, 2017 Sprenkle - CSCI111 18

TOP-DOWN DESIGN

March 7, 2017 Sprenkle - CSCI111 19

Designing Code

15t Approach: Bottom-up
» Create functions
» Call functions
2" Approach: Refactoring
» Write code
» Refactor code to have functions
» Call those functions
3rd approach: Top-down Design -
» Write code, calling functions
» Write “stub” functions
» Fill-in functions later

March 7, 2017 Sprenkle - CSCI111 20

Top-Down Design:
Alternative Approach to Development
Create overview, e.g., inmain

Define functions later

def main():
get the binary number from the user, as a string
binNum = input("Please enter a binary number: ")
isBinary = checkBinary(binNum)

if not isBinary : # equivalent to isBinary == False
print(binNum, "is not a binary number.™")
sys.exitQ)

decVal = binaryToDecimal(binNum)
print(binNum, "is", decVal)

Benefits:
* Know what functions you need

* Know the requirements for your functions
March7, 2017 * What is each function’s input, output n

Problem: Create a Summary Report

Given: a file containing students names and their
years (first years, sophomore, junior, or senior)
for this class

Problem: create a report (in a file) that says the
year and how many students from that year are
in this class, on the same line.

writeSumReport.py

March 7, 2017 Sprenkle - CSCI111 22

Development Advice

Build up your program in steps
» Always write small pieces of code
» Test function separately from other code, using a test

function
» Test, debug. Repeat
. . May use more than one
Development Options: approach in a program
» Refactor:

Write function body as part of main, test
Then, separate out into its own function

» Top-down design Example: Could still refactor
> Bottom-up design after using these options

March 7, 2017 Sprenkle - CSCI111 23

Lab 7

Function practice

Defining functions (refactoring)
File practice

Working with lists

March 7, 2017 Sprenkle - CSCI111 24

Testing Functions Review: Testing Functions
def testBinaryToDecimal():

Create test cases """Test the binaryToDecimal function.
Displays the correctness or incorrectness of the
Input, expected output function.

Nothing is returned."""

Write a function that creates lists of the input paramInputs = ["@", "1", "10", "1001", "10000"]

. expectedResults = [0, 1, 2, 9, 16]
and expected output and automatically tests for index in rangeClen(paranInputs)):
your function paramInput = paramInputs[index]

expectedResult = expectedResults[index]
actualResult = binaryToDecimal(paramInput)

Call the function to test your function if actualResult != expectedResult:
print("**ERROR!**" = paramInput, "should be", \
expectedResult)
Iterate print("Instead, got", actualResult)
e f else:
Add additional test cases if needed to help debug N G L)) (el G A o
your function paramInput, "-->", actualResult)
Call function to test: testBinaryToDecimal()
March 7, 2017 Sprenkle - CSCI111 25 March 7, 2017 Sprenkle - CSCI111 26
Getting Documentation Problem: Create a Summary Report
dir: function that returns a list of methods and Given: a file containing students names and their
. . . years (first years, sophomore, junior, or senior) for
attributes in an object :
this class
dir(<type>) Problem: create a report (in a file) that says the year
help: get documentation and how many students from that year are in this
class, on the same line.
def mainQ): Pseudocode for program
get name of data file
In the Python shell # open output file
for searchTerm in searchTerms:
help(<type>) numFound = numOccurrences(searchTerm, dataFileName)
A outputFile.write("%s %d\n" % (searchTerm, numFound))
import <modulename> # close output file
help(<modulename>) Example of top-down design:

- Can fill in details, e.g., the comments, the function numOccurrences
March 7, 2017 Sprenkle - CSCI111 27 March 7, 2017 Sprenkle - CSCI111 28

Gymnastics Scores

Read in first line of file

> Can use readline() method
Read in rest of lines

> Either a for orwhile loop

March 7, 2017 Sprenkle - CSCI111 29

Gymnast Scores (Partial Solution)
judgeFile = file(FILENAME, “r”)

avgDifficulty = judgeFile.readline() Read in separately
avgDifficulty = float(avgDifficulty) Notinloop = inefficient
min = 10

max = @

total = @

for x in xrange(6): # get next 6 execution scores
line = judgeFile.readline()
score = float(line)
if score < min:

e S SIS Keep track of
if score > max:

o o AT current” min/max
total += score
judgeFile.close()
total -= max + min # exclude high and low scores from total

Comments: what code means
March 7, 2017 Sprenkle - CSCI111 30

Review

What does x represent and what is its data type
for the following code snippets?

y = "computers"
z=1[1,2,5,7]

for x in y:
for x in range(len(y)):

for x in z:

for x in range(len(z)):

March 7, 2017 Sprenkle - CSCI111 31

DEAL OR NO DEAL

March 7, 2017 Sprenkle - CSCI111 32

Lab 7: Deal or No Deal Overview

Have 26 cases with various amounts of money
Amounts are known
Player selects a case (hope has the big jackpot)
In each round, player opens up cases
Reveals amounts that are not in the case they chose
Banker makes an offer to buy the case
Player decides if want to take the deal

Is the offer more than what is in the case?
Make decision based on amounts that haven’t been opened
yet
Game ends when only one more case to open (two
amounts on board) or player takes the deal.

March 7, 2017 Sprenkle - CSCI111 33

Implementing Deal or No Deal

Given: partial solution in code
main() function, some additional functions are
already written

Your job:
Read, understand given code

Fill in the functions for a complete solution
Example of top-down design

In main() ... printBoard not yet defined

keep track of how much was in your case
and mark the case as chosen.

amtInCase = cases[choice]

cases[choice] = CHOSEN

March7. printBoard(caseValues) .

Modeling Deal or No Deal

How can we represent that

Cases, numbered 0 to 25 a case has been opened?

Have dollar amounts in them

1000000 |1000 5 750000 value
0 1 25 case/
position
Board
Which dollar amounts have been chosen, which are
still in play
01 |1 1000000 value
0 1 25 position

March 7, 2017

Sprenkle - CSCI111

35

CHOSEN = -1
means case opened:
Don’t display on board,
Don't allow user to select again

Modeling Deal or No Dea

Cases, numbered 0 to 25

Have dollar amounts in them

1000000 |1000 5 value
0 1 |25 case/
position
Board
Which dollar amounts have been chosen, which are
still in play
.01 5 1000000 value

0 1 2 |25 position

March 7, 2017 Sprenkle - CSCI111 36

Functionality

Read in values contained in cases from a file
What data type should these values be?
Have user select from remaining cases
Make sure choice is valid
Display remaining cases
Print four to a row
Display remaining amounts on board
Left column is smaller amounts

Advice: don’t worry about the formatting at first
Do a first pass implementation of all the functions,
vai then go back and refine the functions. 37

How to print remaining cases?

Cases, numbered 0 to 25

Have dollar amounts in them

1000000 |1000 5 value
0 1 2 125 case/
position
Board
Which dollar amounts have been chosen, which are
still in play
.01 1000 -1 value
0 1 2 125 position

March 7, 2017 Sprenkle - CSCI111 38

Honor System Review

Person who needs help should never look at the
code of the person who is helping

No sharing code

No emailing, printing, ...
Cite the help you’re receiving outside of lab
Pledge your assignments

Report suspicious behavior

March 7, 2017 Sprenkle - CSCI111 39

Rules for Collaboration

Debugging help
5 minute rule: a friend can only look at your code to
help with debugging for 5 minutes

Owner of code owns keyboard/mouse

Problem solving discussion

No written solutions leave the room
Acknowledge aid
Do not give out your password

March 7, 2017 Sprenkle - CSCI111 40

Lab 7 Overview

Focus: program organization
» Defining and Using Functions

Deal or No Deal

March 7, 2017 Sprenkle - CSCI111

41

Error Message:

Debugging NameError: global name 'num'

is not defined

def binaryToDecimal(binary):
accumulate the decimal value in this variable
decVal = 0

go through the positions in the string

for pos in xrange(len(Cnum)):
num[pos] is a string; need to convert to an int
bit = int(num[pos])
calculate which "place" the current bit is at
place = 2**(len(num)-pos-1)
add to the decimal value
decVal += place * bit

return decVal

March 7, 2017 Sprenkle - CSCI111 42

