
1	

Lab	Overview	
• Review	lab	8	
• Prep	for	lab	9	

Mar	21,	2017	 Sprenkle	-	CSCI111	 1	 Mar	21,	2017	 Sprenkle	-	CSCI111	 2	

Lab	8	Feedback	
• Define	constants	for	HEADS	and	TAILS	
• Extra	step	in	game	module’s	flipCoin	
funcOon	

HEADS=0
TAILS=1

def flipCoin():
return random.randint(HEADS,TAILS)

HEADS=0
TAILS=1

def flipCoin():
flip = random.randint(0,1)
if flip == HEADS:

return HEADS
else:

return TAILS
Equivalent	code	
(needs	comments)	

Common	Issues	
• Test	mulOple	of	6	the	first	Ome	–	make	sure	to	
exit	on	first	iteraOon	of	loop	
• Comments	on	game’s	funcOons	

Ø Describe	interface	à	tell	others	how	to	use	
• What	are	parameters?		RestricOons?	
• What	is	returned?	

• DemonstraOng	and	tesOng	game’s	funcOons	
Ø Need	to	show	the	results—that	the	code	is	working	
Ø Otherwise,	need	to	write	test	funcOons.	

Mar	21,	2017	 Sprenkle	-	CSCI111	 3	

MulOple	Checks	with	While	Loop	
• Draw	control	flow	diagram	

Mar	21,	2017	 Sprenkle	-	CSCI111	 4	

num = eval(input("Enter a number: "))
remainder = num % 6

while remainder != 0:
    second = eval(input("Enter a number: "))
    remainder2 = second % 6
    if remainder == 0 or remainder2 == 0:
        break
    
print("Done!")



2	

Difference	btw	File	Name	and	Object	
• File	name	is	a	string
• File	object	is	a	file		
• Need	the	file	name	to	create	the	file	object	

Mar	21,	2017	 Sprenkle	-	CSCI111	 5	

•  Need to remember data types 
because not explicit in Python

•  Use good variable names to help LAB	9	PREPARATION	

Mar	21,	2017	 Sprenkle	-	CSCI111	 6	

MoOvaOng	using	list’s	sort	method	
with	a	key	
• We	may	not	want	to	sort	a	list	of	objects	by	the	
“standard”	way	to	sort	objects	

• Consider	sorOng	strings:	How	does	Python	sort	
strings	usually?	

Mar	21,	2017	 Sprenkle	-	CSCI111	 7	

Using	list’s	sort	method	with	a	key	
• We	may	not	want	to	sort	a	list	of	objects	by	the	
“standard”	way	to	sort	objects	
• Consider	sorOng	strings:	How	does	Python	sort	
strings	usually?	
Ø AlphabeOcally,	upper-case	first	
• To	alphabeOze	strings,	sorOng	them	by	their	
lowercase	value:	

Mar	21,	2017	 Sprenkle	-	CSCI111	 8	

words.sort(key=str.lower)

Method to call to do comparison 

sort_ignore_case.py



3	

Using	list’s	sort	method	with	a	key	

Mar	21,	2017	 Sprenkle	-	CSCI111	 9	

sort_ignore_case.py

words = ["Washington", "and", "Lee", "computer", "science”]
words.sort()

print("Words in Python str-standard sorted order:”)
for word in words:
    print(word)
print()

print("Words in sorted order, ignoring upper and lower case:")

words.sort(key=str.lower)

for word in words:
    print(word) Method is named as

Classname.methodname

Using	list’s	sort	method	with	a	key	

Mar	21,	2017	 Sprenkle	-	CSCI111	 10	sort_ignore_case.py

words = ["Washington", "and", "Lee", "computer", "science"]
words.sort()

print("Words in Python str-standard sorted order:”)
for word in words:
    print(word)
print()

print("Words in sorted order, ignoring upper and lower case:")

words.sort(key=str.lower)

for word in words:
    print(word)

Words	in	Python	str-standard	sorted	order:	
Lee	
Washington	
and	
computer	
science	
	
Words	in	sorted	order,	ignoring	upper	and	
lower	case:	
and	
computer	
Lee	
science	
Washington	

Review:	DicOonaries	
• How	do	you	create	a	new	dicOonary?	
• How	do	you	find	out	if	there	is	a	mapping	for	a	
key	in	the	dicOonary?	(Two	ways)	
• How	do	you	access	the	value	for	a	key?	
• How	do	you	add	a	mapping?	
• How	can	you	iterate	through	a	dicOonary?	
	

Mar	21,	2017	 Sprenkle	-	CSCI111	 11	

Review	the	problems	we	solved	using	a	dicOonary	

Review:	Objects	and	Classes	
• Goal:	Package	data	and	func(onality	into	one	
structure	
•  Class:	a	template	for	objects	that	have	the	same	
data	and	funcOonality	
Ø  Instance	variables	represent	object’s	data	
Ø Methods	represent	object’s	funcOonality	
• Objects	are	an	instance	of	a	class	

Ø Examples:	c1	=	Card(2,	“hearts”)	and	c2	=	Card(13,	
“spades”)	
•  Each	is	an	instance	of	the	Card	class	
•  Have	the	same	funcOonality/methods	but	different	state	

Mar	21,	2017	 Sprenkle	-	CSCI111	 12	



4	

Review:	Defining	our	own	classes	
• Where	do	we	define	the	data	that	is	needed	to	
represent	every	object	of	a	class?	
Ø How	do	we	access	that	data?	
• What	are	defined	methods	like?	
• Special	method	name	for	constructor?	
• Special	name	for	method	that	helps	with	
prinOng?	
• Keyword	that	must	be	the	first	parameter	of	
every	defined	method?	

Mar	21,	2017	 Sprenkle	-	CSCI111	 13	

Review:	Defining	our	own	classes	
•  Where	do	we	define	the	data	that	is	needed	to	represent	every	

object	of	a	class?	
Ø  How	do	we	access	that	data?	
Ø  Answer:	In	the	constructor.	Use	self._data	to	represent	that	

data.		Can	access	that	data	in	other	methods	as	self._data	
•  What	are	defined	methods	like?	

Ø  Answer:	funcOons	
•  Special	method	name	for	constructor?	

Ø  __init__
•  Special	name	for	method	that	helps	with	prinOng?	

Ø  __str__(self) –	returns	a	string	representaOon	of	the	object	
•  Keyword	that	must	be	the	first	parameter	of	every	defined	

method?	
Ø  self

Mar	21,	2017	 Sprenkle	-	CSCI111	 14	

Card	Class	(Incomplete)	

Mar	21,	2017	 Sprenkle	-	CSCI111	 15	

class Card:
    """ A class to represent a standard playing card.
    The ranks are ints: 2-10 for numbered cards, 11=Jack, 
12=Queen, 13=King, 14=Ace.
    The suits are strings: 'clubs', 'spades', 'hearts', 
'diamonds’."""
    def __init__(self, rank, suit):
        """Constructor for class Card takes int rank and 

string suit."""
        self._rank = rank
        self._suit = suit

    def getRank(self):
        "Returns the card’s rank."
        return self._rank

    def getSuit(self):
        "Returns the card’s suit."
        return self._suit

Doc	String	

card.py

M
et
ho

ds
	

IdenOfy	the	instance	variables	
•  How	do	we	use	them	in	other	
Card	methods?	

Card	Class	(Incomplete)	

Mar	21,	2017	 Sprenkle	-	CSCI111	 16	

class Card:
    """ A class to represent a standard playing card.
    The ranks are ints: 2-10 for numbered cards, 11=Jack, 
12=Queen, 13=King, 14=Ace.
    The suits are strings: 'clubs', 'spades', 'hearts', 
'diamonds’."""
    def __init__(self, rank, suit):
        """Constructor for class Card takes int rank and 

string suit."""
        self._rank = rank
        self._suit = suit

    def getRank(self):
        "Returns the card’s rank."
        return self._rank

    def getSuit(self):
        "Returns the card’s suit."
        return self._suit

Doc	String	

card.py

M
et
ho

ds
	

IdenOfy	the	instance	variables	
•  How	do	we	use	them	in	other	
Card	methods?	

Convention: instance variables are 
named beginning with _



5	

Review:	Algorithm	for	CreaOng	Classes	
1.  IdenOfy	need	for	a	class	
2.  IdenOfy	state	or	alributes	of	a	class/an	object	in	that	

class	
Ø  Write	the	constructor	(__init__)	and	__str__	methods	
Ø  Test	those	methods	

3.  IdenOfy	methods	(i.e.,	funcOonality)	the	class	should	
provide	
Ø  How	will	a	user	call	those	methods	(parameters,	return	

values)?	
•  Develop	API	

4.  Implement,	test	one	method	
Ø  Repeat	unOl	have	complete	API	

Mar	21,	2017	 Sprenkle	-	CSCI111	 17	 Mar	21,	2017	 Sprenkle	-	CSCI111	 18	

Lab	9:	Dealing	with	Real	Data	
• Problem:	Determine	most	common	first	and	last	
names	at	W&L	
Ø 4	data	files,	containing	student	names	
•  Last	names,	female	first	names,	male	first	names,	all	
first	names	
•  1	name	per	line	

Ø What	data	structure	to	use?	
• Create	your	own	class	to	help	with	data	
• Create	output	file	used	by	another	applicaOon	

Ø Common	use	of	programming	

WriOng	To	a	File	
• Review:	What	data	type	does	file’s	write	
method	take	as	a	parameter?	

Mar	21,	2017	 Sprenkle	-	CSCI111	 19	

WriOng	To	a	File	
• Review:	What	data	type	does	file’s	write	
method	take	as	a	parameter?	

• To	write	numeric	data	to	a	file,	you	need	to	
convert	it	to	a	string	
Ø Can	use	str()	or	use	string	formanng,	which	
makes	it	easier	to	print	out	a	line	of	text	

Mar	21,	2017	 Sprenkle	-	CSCI111	 20	



6	

Lab	Overview	
1.  Implement	parOal	soluOon	using	a	dicOonary	to	map	the	

name	to	its	count	
Ø  handles	basic	set	up	of	soluOon,	including	reading	and	

processing	file	
2.  Implement	a	class	that	packages	the	name	(a	key)	and	its	

count	together	
Ø  Data	and	funcOonality	given	
Ø  Test	the	class	

3.  Implement	Step	1	with	objects	of	class	you	created	in	
Step	2	
Ø  Complete	soluOon	

4.  Graph	data	generated	from	Step	3	
5.  Make	web	page	with	graphs	

Mar	21,	2017	 Sprenkle	-	CSCI111	 21	

Graphing	
•  I	provide	code	that	will	create	a	bar	chart	using	
the	matplotlib	library	
Ø generateFreqGraphs.py	
• You	will	need	to	provide	the	appropriate	
informaOon	to	the	Python	code	to	generate	the	
graph	
Ø You	can	either		
• Use	the	user	interface	
• Write	code	to	directly	call	the	plotFrequencyData	
funcOon	

Mar	21,	2017	 Sprenkle	-	CSCI111	 22	

Graphing:	Using	the	User	Interface	

Mar	21,	2017	 Sprenkle	-	CSCI111	 23	

$ python3 generateFreqGraphs.py 
What is the name of your properly-formatted data file? 
data/lastnames.dat
How many results do you want to display? 6
What is the title of this graph? Most Common Last Names at 
W&L
What is the y-axis label of this graph? Number of Students
['Smith', '18']
['Williams', '12']
['Miller', '10']
['Lee', '9']
['Jones', '8']
['Murphy', '8']

Generates Graph:

Can also save generated graph
by clicking save icon

Graphing:	Using	FuncOon	Calls	

Mar	21,	2017	 Sprenkle	-	CSCI111	 24	

from generateFreqGraphs import *

labels, values = processDataFile("data/lastnames.dat", 6)

plot = plotFrequencyData(labels, values, \ 
     "Most Commonly Occurring Last Names at W&L", \
     "Number of Students")

plot.savefig("data/lastnames.png")

We	could	then	put	this	code		
into	a	loop	to	run	it	for	all	the	files	and	

updaOng	the	Otle	accordingly.	

graphing_example.py



7	

Overview	
1.  Implement	parOal	soluOon	using	a	dicOonary	to	map	the	

name	to	its	count	
Ø  handles	basic	set	up	of	soluOon,	including	reading	and	

processing	file	
2.  Implement	a	class	that	packages	the	name	(a	key)	and	its	

count	together	
Ø  Data	and	funcOonality	given	
Ø  Test	the	class	

3.  Implement	Step	1	with	objects	of	class	you	created	in	
Step	2	
Ø  Complete	soluOon	

4.  Graph	data	generated	from	Step	3	
5.  Make	web	page	with	graphs	

Mar	21,	2017	 Sprenkle	-	CSCI111	 25	

FNL	

Mar	21,	2017	 Sprenkle	-	CSCI111	 26	

 

COMPUTATIONAL THINKING 


