Objectives

- Review algorithms
- Programming in Python
 - Data types
 - **Expressions**
 - Variables
 - > Arithmetic

Jan 12, 2018

Sprenkle - CSCI111

1

Review

- What is an algorithm?
- What did we learn from the PB&J demonstration?

Jan 12, 2018

Sprenkle - CSCI111

Review: Parts of an Algorithm

- Input, Output
- Primitive operations
 - What data you have, what you can do to the data
- Naming
 - > Identify things we're using
- Sequence of operations
- Conditionals
 - Handle special cases
- Repetition/Loops
- Subroutines

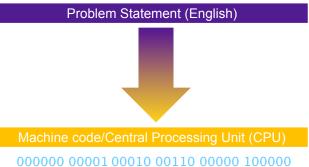
Jan 12, 2018

> Call, reuse similar techniques

euse similar techniques

Sprenkle - CSCI111

3

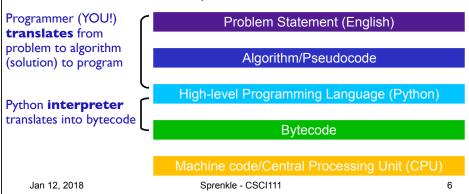

Computational Problem Solving 101

- Computational Problem:
 A problem that can be solved by logic
- To solve the problem:
 - > Create a **model** of the problem
 - Design an algorithm for solving the problem using the model
 - Write a **program** that *implements* the algorithm

Why Do We Need Programming Languages?

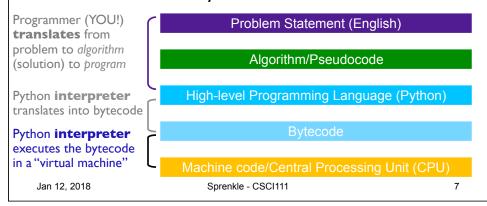
- Computers can't understand English
 - > Too ambiguous

Humans can't easily write machine code



Jan 12, 2018

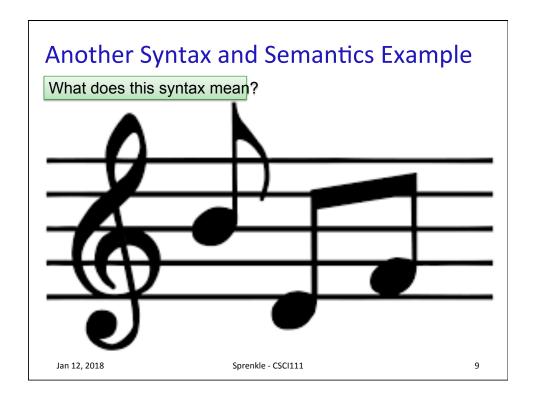
Sprenkle - CSCI111


Why Do We Need Programming Languages?

- Computers can't understand English
 - > Too ambiguous
- Humans can't easily write machine code

Why Do We Need Programming Languages?

- Computers can't understand English
 - > Too ambiguous
- Humans can't easily write machine code



Programming Languages

- Programming language:
 - > Specific rules for what is and isn't allowed
 - Must be exact
 - Computer carries out commands as they are given
- Syntax: the symbols given
- **Semantics**: what it means
- Example:
 - ➤ III * IV means 3 × 4 which evaluates to 12
- Programming languages are unambiguous

Jan 12, 2018

Sprenkle - CSCI111

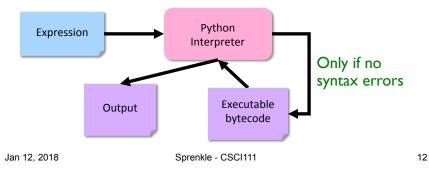
Python Is ...

- A programming language
 - ➤ 4th most popular programming language, according to Tiobe survey

http://www.tiobe.com/tiobe-index/

 An interpreter (which is a program) that understands and executes Python code

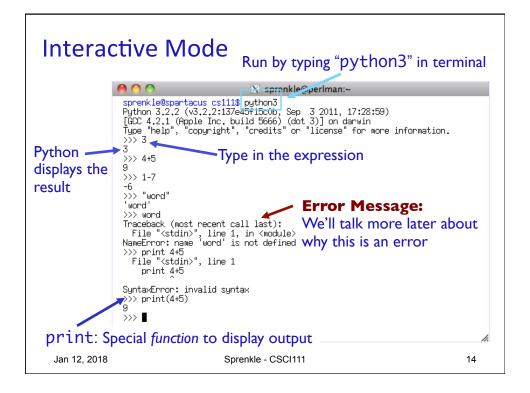
 Jan 12, 2018
 Sprenkle - CSCI111
 10


Python Programming Language

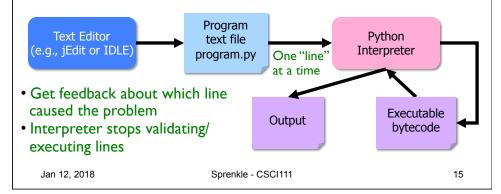
- A common *interpreted* programming language
 Runs on many operating systems
- First released by Guido van Rossum in 1991
- Named after Monty Python's Flying Circus
- Minimalist syntax, emphasizes readability
- Flexible, fast, useful language
- Used by scientists, engineers, systems programmers

Jan 12, 2018 Sprenkle - CSCI111 11

Python Interpreter


- 1. Validates Python programming language expression(s)
 - Enforces Python syntax
 - Reports syntax errors
- Executes expression(s)
 - Runtime errors (e.g., divide by 0)
 - Semantic errors (not what you meant)

Two Modes to Execute Python Code


- Interactive: using the interpreter
 - > Try out Python expressions
- Batch: execute scripts (i.e., files containing Python code)
 - > What we'll usually write

More on Tuesday in Lab

- 1. Programmer types a program/script into a text editor (jEdit or IDLE).
- 2. An interpreter turns each expression into bytecode and then executes each expression

Review: Parts of an Algorithm

- - Input, Output
- Primitive operations
 - What data you have, what you can do to the data
- Naming
 - ➤ Identify things we're using
- Sequence of operations
- Conditionals
 - Handle special cases
- Repetition/Loops
- Subroutines
 - Call, reuse similar techniques

Jan 12, 2018

Sprenkle - CSCI111

Printing Output

- print is a special command or a function
 - ➤ Displays the result of expression(s) to the terminal
 - Automatically adds a '\n' (carriage return) after it's printed
 - Relevant when have multiple print statements
- print("Hello, class")
 string literal

Syntax: a set of double quotes **Semantics**: represents text

Jan 12, 2018

Sprenkle - CSCI111

17

Printing Output

- print is a special command
 - ➤ Displays the result of expression(s) to the terminal
- print("Hello, class")

string literal

print automatically adds a '\n' (carriage return) after it's printed

print("Your answer is", 4*4)

Syntax: comma

Semantics: print multiple "things" in one line

Jan 12, 2018

Sprenkle - CSCI111

Parts of an Algorithm

- Input, Output
 - Primitive operations
 - > What data you have, what you can do to the data
- Naming
 - Identify things we're using
- Sequence of operations
- Conditionals
 - Handle special cases
- Repetition/Loops
- Subroutines
 - Call, reuse similar techniques

Jan 12, 2018 Sprenkle - CSCI111

19

Primitive Data Types

- Primitive data types represent data
 - ➤ In PB&J example, our data had **types** slice of bread, PB jar, jelly jar, etc.
- Python provides some basic or *primitive* data types
- Broadly, the categories of primitive types are
 - Numeric
 - Boolean
 - ➤ Strings

 Jan 12, 2018
 Sprenkle - CSCI111
 20

Numeric Primitive Types

Python Data Type	Description	Examples
int	Plain integers (32-bit precision)	-214, -2, 0, 2, 100
float	Real numbers	.001, -1.234, 1000.1, 0.00, 2.45
complex	Imaginary numbers (have real and imaginary part)	1j * 1J → (-1+0j)

 Jan 12, 2018
 Sprenkle - CSCI111
 21

How big (or small or precise) can we get?

- Computer cannot represent all values
- Problem: Computer has a finite capacity
 - The computer only has so much memory that it can devote to one value.
 - > Eventually, reach a cutoff
 - Limits size of value
 - Limits precision of value

PI has more decimals, but we're out of space!

0 0 0 0 0 3 .1 4 1 5 9 2 6 5

Example: in Python interpreter, .1 + .1 + .1 yields 0.30000000000000000.

* In reality, computers represent data in binary.

Strings: **str**

- Indicated by double quotes " " or single quotes ' '
- Treat what is in the " " or ' ' literally
 - > Known as string literals
- Examples:
 - ➤ "Hello, world!"
 - 'c'
 - "That is Buddy's dog."

Single quote must be inside double quotes*

* Exception later

Jan 12, 2018

Sprenkle - CSCI111

23

Booleans: bool

- 2 values
 - > True
 - ▶ False
- More on these later...

Jan 12, 2018

Sprenkle - CSCI111

What is the value's type?

Value	Туре
52	
-0.01	
4+6j	
"3.7"	
4047583648	
True	
'false'	

 Jan 12, 2018
 Sprenkle - CSCI111
 25

What is the value's type?

Value	Туре
52	int
-0.01	float
4+6j	complex
"3.7"	str
4047583648	int
True	boolean
'false'	str

 Jan 12, 2018
 Sprenkle - CSCI111
 26

Literals

 Pieces of data that are not variables are called literals

27

28

- > We've been using these already
- Examples:
 - >4
 - >3.2
 - > 'q'
 - ▶ "books"

Jan 12, 2018 Sprenkle - CSCI111

Parts of an Algorithm

- Input, Output
- Primitive operations
 - > What data you have, what you can do to the data
- Naming
 - > Identify things we're using
- Sequence of operations
- Conditionals
 - > Handle special cases
- Repetition/Loops
- Subroutines
 - Call, reuse similar techniques

Introduction to Variables

- Variables save data/information
 - > Example: first slice of bread or knife A
 - Type of data the variable holds can be any of primitive data types as well as other data types we'll learn about later
- Variables have names, called identifiers

 Jan 12, 2018
 Sprenkle - CSCI111
 29

Variable Names/Identifiers

- A variable name (identifier) can be any one word that:
 - Consists of letters, numbers, or _
 - > Does not start with a number
 - Is not a Python reserved word
 - Examples: for while def
- Python is case-sensitive:
 - change isn't the same as Change

 Jan 12, 2018
 Sprenkle - CSCI111
 30

Variable Name Conventions

- Variables start with lowercase letter
- Convention: Constants (values that won't change) are all capitals
 - (more on this later...)
- Example: Variable for the current year
 - > currentYear

Naming doesn't matter to computer, matters to humans

- > current_year
- > CURRENT_YEAR
- Currentyear Harder to read
- current year

No spaces allowed

Jan 12, 2018 Sprenkle - CSCI111

31

Importance of Variable Naming

- Helps you remember what the variable represents
- Easier for others to understand your program
- Examples:

Info Represented	Good Variable Name
A person's first name	firstName, first_name
Radius of a circle	radius
If someone is employed or not	isEmployed

Review: Computational Problem Solving

- Computational Problem:
 A problem that can be solved by logic
- To solve the problem:
 - Create a **model** of the problem
 - Design an algorithm for solving the problem using the model
 - > Write a **program** that *implements* the algorithm

Jan 12, 2018 Sprenkle - CSCI111 33

Modeling Information

- How would you *model* this information?
- What data type best represents the info?

Info Represented	Data Type	Variable Name
A person's salary		
Sales tax		
If item is taxable		
Course name		
Graduation Year		

Modeling Information

- How would you *model* this information?
- What data type best represents the info?

Info Represented	Data Type	Variable Name
A person's salary	int or float	salary
Sales tax	float	salesTax
If item is taxable	boolean	isTaxable
Course name	str	course_name
Graduation Year	int	gradYear

Variable names are just suggestions, Many other possible variable names

 Jan 12, 2018
 Sprenkle - CSCI111
 35

Assignment Statements

- Variables can be given any value using =
 - > Syntax: <variable> = <expression>
 - Semantics: <variable> is set to value of <expression>
- After a variable is set to a value, the variable is said to be *initialized*
- Examples:

```
month = 1
impt_num = 4.5
monthName = 'January'
```

These are **not** equations! Read "=" as "is set to"

Jan 12, 2018

Sprenkle - CSCI111

Variables: The Rules

- Only the variable(s) to left of the = in the current statement change
 - > We'll usually only have one variable on the left
- **Initialize** a variable **before** using it on the righthand side (rhs) of a statement

Jan 12, 2018

Sprenkle - CSCI111

37

Assignment Statements

$$x = 5$$

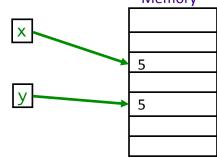
 $y = x$

Computer Memory

 Statements execute in order, from top to botto
--

 Value of X does not change because of second assignment statement

Jan 12, 2018


Sprenkle - CSCI111

Assignment Statements

Computer Memory

$$x = 5$$

 $y = x$

Does a "lookup" in memory to find value of X

- Statements execute in order, from top to bottom
- Value of X does not change because of second assignment statement

Jan 12, 2018 Sprenkle - CSCl111 39

Numeric Arithmetic Operations

Symbol	Meaning
+	Addition
-	Subtraction
*	Multiplication
/	Division
%	Remainder ("mod")
**	Exponentiation (power)

Arithmetic & Assignment

- You can use the assignment operator (=) and arithmetic operators to do calculations
 - 1. Calculate right hand side
 - 2. Assign value to variable
- Remember your order of operations! (PEMDAS)
- Examples:

x = 4+3*10

y = 3/2.0

Z = X+Y

The right-hand sides are **expressions**, just like in math.

Jan 12, 2018

Sprenkle - CSCI111

41

Arithmetic & Assignment

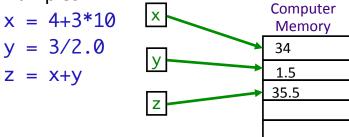
• Examples:

x = 4+3*10

y = 3/2.0

z = x+y

Computer Memory


- For last statement
 - > need to "lookup" values of x and y
 - computer remembers the result of the expression, not the expression itself

Jan 12, 2018

Sprenkle - CSCI111

Arithmetic & Assignment

• Examples:

- For last statement
 - > need to "lookup" values of x and y
 - computer remembers the result of the expression, not the expression itself

Jan 12, 2018 Sprenkle - CSCI111 43

What are the values?

 After executing the following statements, what are the values of each variable?

$$r = 5$$

$$s = -1 + r$$

$$t = r + s$$

$$s = 2$$

$$r = -7$$

How can we verify our answers?

Programming Building Blocks

- Each type of statement is a building block
 - ➤ Initialization/Assignment
 - So far: Arithmetic
 - > Print
- We can combine them to create more complex programs
 - > Solutions to problems

Assign.

Assign.

print

Assign.

Assign.
Assign.
print

Jan 12, 2018 Sprenkle - CSCI111 45

Broader Issue Groups

Introduce yourselves!

Andrew Anna Joseph Lizzie Parker Ben Ian Jordan Olivia Ryan Alison Davis Lindsey Mary-Frances Rachel

Chas Chase Findley Kalady Nate

Harris Mac Margaret Robert

Broader CS Issues

- Good summaries!
 - ➤ Good English, complete sentences
- Good, thoughtful questions
- Mechanics details
 - Follow instructions on BI Forum about what summary should contain
 - > Should be able to edit your own posts
 - Characters from Word
 - Click button "Paste from Word"
 - Don't attach Word documents

Jan 12, 2018 Sprenkle - CSCI111 47

"Really?" with Professor Sprenkle

 In TV Guide, showrunners of Once Upon a Time were asked, "Give us an algorithm for your show."

"Really?" with Professor Sprenkle

- In TV Guide, showrunners of Once Upon a Time were asked, "Give us an algorithm for your show."
 - Example (for 1st season): 1 part Snow White + 1 part Lost + .5 Alias
- They said, "We don't understand math. That's why we became writers."

Jan 12, 2018 Sprenkle - CSCI111 49

Al Everywhere

- "An algorithm is, essentially, a brainless way of doing clever things... Brainlessness, in other words, is no impediment to intelligence."
- What are examples of algorithms that you do every day?
- What is AI (which is based on algorithms) useful for?
 What aren't algorithms useful for?
- What would be some useful algorithms, specific to W&L students?
 - What are problems that are difficult—but useful—to solve?

Extra Credit Opportunities

- Read an article that relates to CS
- Summarize it on the forum under "Extra Credit"
 - > 5 pts extra credit on lab grade

 Jan 12, 2018
 Sprenkle - CSCI111
 51

Looking Ahead

Pre-lab assignment due before lab on Tuesday

 Jan 12, 2018
 Sprenkle - CSCI111
 52