
1	

Objec(ves	
• Defining	your	own	func(ons	

Ø Control	flow	
Ø Scope,	variable	life(me	

• Tes(ng	
• Refining	our	development	process	
• BI:	Net	Neutrality	

Feb	2,	2018	 Sprenkle	-	CSCI111	 1	

Review	
• What	are	benefits	of	func(ons?	
• What	is	the	syntax	for	crea(ng	a	func(on?	
• What	is	the	special	keyword	that	means	“this	is	
the	output	for	the	func(on”?	

Feb	2,	2018	 Sprenkle	-	CSCI111	 2	

2	

Review:	Syntax	of	Func(on	Defini(on	

Feb	2,	2018	 Sprenkle	-	CSCI111	 3	

def average2(num1, num2):
 """
 Parameters: two numbers to be averaged.
 Returns the average of two numbers
 """

 average = (num1 + num2)/2
 return average

Keyword	 Func-on	
Name	

Input	Name/	
Parameter	

Bo
dy
	

(o
r	f
un

c-
on

	d
efi

ni
-o

n)
	

Keyword:	
How	to	give	output	

Func-on	header	

Output	

Func-on	documenta-on	

Review:	Calling	your	own	func(ons	

average = average2(100, 50)

Feb	2,	2018	 Sprenkle	-	CSCI111	 4	

Output	is	
assigned	to	
average

Func-on	
Name	

Input	

Same as calling someone else’s functions …

average2.py

3	

Review:	Func(on	Output	
• When	the	code	reaches	a	statement	like	

return x
Ø The	func(on	stops	execu(ng	
Ø x	is	the	output	returned	to	the	place	where	the	
func(on	was	called	

• For	func(ons	that	don't	have	explicit	output,	
return	does	not	have	a	value	with	it,	e.g.,		

• Op(onal:	don't	need	to	have	return
Ø Func(on	automa)cally	returns	at	the	end	

Feb	2,	2018	 Sprenkle	-	CSCI111	 5	

return

Words	in	Different	Contexts	

• Output	from	a	func/on	
Ø What	is	returned	from	the	func(on	
Ø If	the	func(on	prints	something,	it’s	what	the	
func(on	displays	(rather	than	outputs).	

• Output	from	a	program	
Ø What	is	displayed	by	the	program	

Feb	2,	2018	 Sprenkle	-	CSCI111	 6	

“Time	flies	like	an	arrow.	
Fruit	flies	like	bananas.”	

		—	Groucho	Marx.	

4	

return	vs	print
•  In	general,	whenever	we	want	output	from	a	
func(on,	we’ll	use	return
Ø More	flexible,	reusable	func(on	
Ø Let	whoever	called	the	func(on	figure	out	what	to	
display	

• Use	print	for	
Ø Debugging	your	func(on	(then	remove)	

• Otherwise,	unintended	side	effect	of	calling	the	func(on	
Ø When	you	have	a	func(on	that	is	supposed	to	display	
something	
•  Some(mes,	that	is	what	you	want.	

Feb	2,	2018	 Sprenkle	-	CSCI111	 7	

Feb	2,	2018	 Sprenkle	-	CSCI111	 8	

Review:	Program	Organiza(on	
•  Larger	programs	require	func/ons	to	maintain	
readability	
Ø Use	main()	and	other	func(ons	to	break	up	program	into	

smaller,	more	manageable	chunks	
Ø  “Abstract	away”	the	details	

•  As	before,	can	s(ll	write	smaller	scripts	without	any	
func(ons	
Ø  Can	try	out	func(ons	using	smaller	scripts	

•  Need	the	main()	func(on	when	using	other	func(ons	
to	keep	“driver”	at	top	
Ø Otherwise,	func(ons	need	to	be	defined	before	use	

5	

Review:	Example	program	with	a	main()	

Feb	2,	2018	 Sprenkle	-	CSCI111	 9	

def main():
 printVerse("dog", "ruff")
 printVerse("duck", "quack")

 animal_type = "cow"
 animal_sound = "moo"
 printVerse(animal_type, animal_sound)

def printVerse(animal, sound):
 print(BEGIN_END + EIEIO)
 print("And on that farm he had a " + animal + EIEIO)
 print("With a " + sound + ", " + sound + " here")
 print("And a " + sound + ", " + sound + " there")
 print("Here a", sound)
 print("There a", sound)
 print("Everywhere a " + sound + ", " + sound)
 print(BEGIN_END + EIEIO)
 print()

main()
oldmac.py

Constants, comments
are in example program

In what order does this program execute?
What is output from this program?

Review:	Example	program	with	a	main()	

Feb	2,	2018	 Sprenkle	-	CSCI111	 10	

def main():
 printVerse("dog", "ruff")
 printVerse("duck", "quack")

 animal_type = "cow"
 animal_sound = "moo"
 printVerse(animal_type, animal_sound)

def printVerse(animal, sound):
 print(BEGIN_END + EIEIO)
 print("And on that farm he had a " + animal + EIEIO)
 print("With a " + sound + ", " + sound + " here")
 print("And a " + sound + ", " + sound + " there")
 print("Here a", sound)
 print("There a", sound)
 print("Everywhere a " + sound + ", " + sound)
 print(BEGIN_END + EIEIO)
 print()

main() oldmac.py

1. Set definition of main
2. Set definition of printVerse
3. Call main function
4. Execute main function
5. Call, execute printVerse

…

1	

2	

3	

4	

5	

6	

VARIABLE	LIFETIMES	AND	SCOPE	

Feb	2,	2018	 Sprenkle	-	CSCI111	 11	

What	does	this	program	output?	
def main():  

x = 10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit):
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Feb	2,	2018	 Sprenkle	-	CSCI111	 12	mystery.py

7	

Func(on	Variables	

Feb	2,	2018	 Sprenkle	-	CSCI111	 13	

def main():  
x = 10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit):
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Why can we name two
different variables x?

mystery.py

Tracing	through	Execu(on	

Feb	2,	2018	 Sprenkle	-	CSCI111	 14	

def main():  
x = 10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit):
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

D
efi

ne
s

fu
nc

tio
ns

When you call main(), that means you
want to execute this function

8	

def main() :  
x = 10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Func(on	Variables	

Feb	2,	2018	 Sprenkle	-	CSCI111	 15	

main	

Memory stack

	x					10	

Function names are like last names
Define the SCOPE of the variable

Variable names �
are like first names

def main() :  
x = 10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Func(on	Variables	

Feb	2,	2018	 Sprenkle	-	CSCI111	 16	

main	 	x					10	

sum	
Evens	 limit 	10	

Called the function sumEvens
Add its parameters to the stack

9	

def main() :  
x = 10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Func(on	Variables	

Feb	2,	2018	 Sprenkle	-	CSCI111	 17	

main	 	x					10	

sum	
Evens	

total	0	
limit	10	

def main() :  
x = 10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Func(on	Variables	

Feb	2,	2018	 Sprenkle	-	CSCI111	 18	

main	 	x					10	

sum	
Evens	

x						0	
total			0	
limit	10	

10	

def main() :  
x = 10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Func(on	Variables	

Feb	2,	2018	 Sprenkle	-	CSCI111	 19	

main	 	x					10	

sum	
Evens	

x				8	
total	20	
limit	10	

def main() :  
x = 10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Func(on	Variables	

Feb	2,	2018	 Sprenkle	-	CSCI111	 20	

main	 sum		20	
	x					10	

Function sumEvens returned
• no longer have to keep track of

its variables on stack
•  lifetime of those variables is over

11	

def main() :  
x = 10
sum = sumEvens(x)
print("The sum of even #s up to", x, "is", sum)

def sumEvens(limit) :
total = 0
for x in range(0, limit, 2):

total += x
return total

main()

Func(on	Variables	

Feb	2,	2018	 Sprenkle	-	CSCI111	 21	

main	 	x					10	
sum		20	

Variable	Scope	
•  Func(ons	can	have	the	same	parameter	and	variable	
names	as	other	func(ons	
Ø Need	to	look	at	the	variable’s	scope	to	determine	which	one	

you’re	looking	at 		
Ø Use	the	stack	to	figure	out	which	variable	you’re	using	

•  Scope	levels	
Ø  Local	scope	(also	called	func/on	scope)	

•  Can	only	be	seen	within	the	func(on	
Ø Global	scope	(also	called	file	scope)	

• Whole	program	can	access	
• More	on	these	later	

Feb	2,	2018	 Sprenkle	-	CSCI111	 22	

12	

Summary:	Why	Write	Func(ons?	
•  Allows	you	to	break	up	a	hard	problem	into	smaller,	
more	manageable	parts	

• Makes	your	code	easier	to	understand	
•  Hides	implementa(on	details	(abstrac)on)	

Ø  Provides	interface	(input,	output)	
• Makes	part	of	the	code	reusable	so	that	you:	

Ø Only	have	to	write	func(on	code	once	
Ø  Can	debug	it	all	at	once	

•  Isolates	errors	
Ø  Can	make	changes	in	one	func(on	(maintainability)	

Feb	2,	2018	 Sprenkle	-	CSCI111	 23	

Similar to benefits of OO Programming

TESTING	FUNCTIONS	

Feb	2,	2018	 Sprenkle	-	CSCI111	 24	

13	

Tes(ng	Func(ons	
• Func(ons	make	it	easier	for	us	to	test	our	code	
• We	can	write	code	to	test	the	func(ons	

Ø Test	Case:	
•  Input:	parameters	
• Expected	Output:	what	we	expect	to	be	returned	

Ø We	can	verify	the	func(on	programma(cally	
• “programma(cally”	–	automa(cally	execute	test	cases	
and	verify	that	the	actual	returned	result	is	what	we	
expected	

• No	user	input	required!	

Feb	2,	2018	 Sprenkle	-	CSCI111	 25	

test	Module	
• FUNCTIONS	

Ø testEqual(actual, expected)

Feb	2,	2018	 Sprenkle	-	CSCI111	 26	

14	

Example:	Tes(ng	sumEvens	
import test
…
def testSumEvens():
 actual = sumEvens(10)
 expected = 20
 test.testEqual(actual, expected)

def sumEvens(limit):
 total = 0
 for x in range(0, limit, 2):
 total += x
 return total

Feb	2,	2018	 Sprenkle	-	CSCI111	 27	

testSumEvens.py

This is the actual result
from our function

This is what we expect the result to be

What	are	other	good	test	cases?	

Broader	Issue:	Net	Neutrality	

Feb	2,	2018	 Sprenkle	-	CSCI111	 28	

15	

Net	Neutrality	
• What	is	net	neutrality?	
•  Is	this	an	issue?	

Ø Argument:	hasn’t	been	an	issue	up	un(l	now	
• What	are	the	arguments	for/against	net	
neutrality?	
Ø Who	are	the	stakeholders	in	net	neutrality?	
Ø What	are	their	takes?	
Ø “My	view	is	that	the	Internet	should	be	run	by	
engineers	and	entrepreneurs,	not	lawyers	and	
bureaucrats.”	–	Ajit	Pai,	FCC	head	

• How	is	this	similar/different	to	phone	calls	or	TV?	
Feb	2,	2018	 Sprenkle	-	CSCI111	 29	

Propor(on	of	US	Internet	Traffic	

Dec	8,	2017	 Sprenkle	-	CSCI111	 30	

Sources: Cisco estimates based on CAIDA publications
Andrew Odlyzko https://www.wired.com/2010/08/ff_webrip/

