
1	

Objec(ves	
• Designing	our	own	classes	

Ø Represen(ng	a8ributes/data	
Ø What	func(onality	to	provide	

• Using	our	defined	classes	

Mar	21,	2018	 Sprenkle	-	CSCI111	 1	

Review	
• What	did	yesterday’s	lab	bring	together?	

Ø What	were	some	different	things	you	prac(ced?	

•  If	I	gave	you	a	file	of	all	the	names	from	the	US	
Census,	how	much	code	would	you	need	to	
change	to	process/graph	the	most	common	
names?	

• How	long	did	it	take	the	computer	to	write	the	
outputs	of	all	four	files?	

Mar	21,	2018	 Sprenkle	-	CSCI111	 2	

2	

Where	We	Are	
• With	what	you	now	know	(OO	programming)	

Ø Opens	up	the	possibili(es	for	what	you	kinds	of	
programs	you	can	write	

Ø Just	about	anything	computa(onal	is	possible	

• Example:	Car	
Ø Data	to	model	for	a	Car?	
Ø API	for	a	Car?	

Mar	21,	2018	 Sprenkle	-	CSCI111	 3	

Review:	Classes	and	Objects	
• Car	class	
• Each	car	has	these	a"ributes:	

Ø Make	
Ø Model	
Ø Year	
Ø Transmission	
Ø Exterior	color	

• Methods	
Ø getYear()	
Ø setGear()	
Ø …	

Mar	21,	2018	 Sprenkle	-	CSCI111	 4	

Cars all have these attributes, �
different values for the attributes

Each car is an instance of
the Car class

3	

Review:	Object-Oriented	Programming	
• Why	do	we	want	to	define	classes/new	data	
types?	

• What	is	the	keyword	to	create	a	new	class?	
• How	do	you	define	a	method?	

Ø What	parameter	is	needed	in	every	method?	

• How	do	you	create	a	new	object	of	a	given	class?	
Ø What	method	does	this	call?	

• How	do	we	access	instance	variables	in	other	
methods?	

Mar	21,	2018	 Sprenkle	-	CSCI111	 5	

Algorithm	for	Crea(ng	Classes	
1.  Iden(fy	need	for	a	class	
2.  Iden(fy	state	or	a8ributes	of	a	class/an	object	

in	that	class	
Ø  Write	the	constructor	(__init__)	and	__str__	

methods	

3.  Iden(fy	methods	the	class	should	provide	
Ø  How	will	a	user	call	those	methods	(parameters,	

return	values)?	
•  Develop	API	

Ø  Implement	methods	
Mar	21,	2018	 Sprenkle	-	CSCI111	 6	

4	

Review:	Classes	and	Objects	
c1 = Card(14, "spades")
c2 = Card(13, "hearts")

Mar	21,	2018	 Sprenkle	-	CSCI111	 7	

Instance variables,
attributes, or fields

Object	c1	of	
type	Card

_rank	=	14	
_suit	=	"spades"	

Object	c2	of	
type	Card

_rank	=	13	
_suit	=	"hearts"	

c1	and	c2	are	
instances	of	the	
Card	class	

Instance variables: named beginning with _

Card	Class	(Incomplete)	

Mar	21,	2018	 Sprenkle	-	CSCI111	 8	

class Card:
 """ A class to represent a standard playing card.
 The ranks are ints: 2-10 for numbered cards, 11=Jack,
12=Queen, 13=King, 14=Ace.
 The suits are strings: 'clubs', 'spades', 'hearts',
'diamonds’."""
 def __init__(self, rank, suit):
 """Constructor for class Card takes int rank and

string suit."""
 self._rank = rank
 self._suit = suit

 def getRank(self):
 "Returns the card’s rank."
 return self._rank

 def getSuit(self):
 "Returns the card’s suit."
 return self._suit

Doc String

card.py

M
et
ho

ds
	 Methods are like functions

defined in a class

5	

Defining	the	Constructor	
• __init__	method	is	like	the	constructor	
•  In	constructor,	define	instance	variables	

Ø Data	contained	in	every	object	
Ø Also	called	a"ributes	or	fields	

• Constructor	never	returns	anything	

Mar	21,	2018	 Sprenkle	-	CSCI111	 9	

def __init__(self, rank, suit):
 """Constructor for class Card takes int rank

and string suit."""
 self._rank = rank
 self._suit = suit

First parameter of every method is self
-  pointer to the object that method acts on

Instance
variables

Using	the	Constructor	
• As	defined,	constructor	is	called	using	
Card(<rank>,<suit>)
Ø Do	not	pass	anything	for	the	self	parameter	
Ø Python	handles	for	us,	passing	the	parameter	
automa(cally	

• Example:		
Ø card = Card(2, "hearts")
Ø Creates	a	2	of	Hearts	card	
Ø Python	passes	card as self for	us	

Mar	21,	2018	 Sprenkle	-	CSCI111	 10	

def __init__(self,
 rank, suit):

Object	card	
of	type	Card

_rank	=	2	
_suit	=	"hearts"	

6	

Accessor	Methods	
• Need	to	be	able	to	get	informa(on	about	the	
object	

• These	methods	will	get	called	as	
card.getRank()	and	card.getSuit()
Ø Python	plugs card in	for self

Mar	21,	2018	 Sprenkle	-	CSCI111	 11	

def getRank(self):
"Returns the card’s rank."
return self._rank

def getSuit(self):
"Returns the card’s suit."
return self._suit

•  Have self
parameter
•  Return data/

information

Another	Special	Method:	__str__
•  Returns	a	string	
that	describes	the	
object	

• Whenever	you	print	
an	object,	Python	
checks	if	the	object’s	
__str__	method	is	
defined	
Ø  Prints	result	of	calling	
__str__	method	

• str(<object>)
also	calls	__str__
method	

Mar	21,	2018	 Sprenkle	-	CSCI111	 12	

def __str__(self):
 """Returns a string

describing the card as  
'rank of suit'."""

 result = ""
 if self._rank == 11:
 result += "Jack"
 elif self._rank == 12:
 result += "Queen"
 elif self._rank == 13:
 result += "King"
 elif self._rank == 14:
 result += "Ace"
 else:
 result += str(self._rank)
 result += " of " + self._suit
 return result

self is a
Card object

7	

Using	the	Card	Class	

Mar	21,	2018	 Sprenkle	-	CSCI111	 13	

def main():
 c1 = Card(14, "spades")
 print(c1)
 c2 = Card(13, "hearts")
 print(c2)

Invokes	the	
__str__	method	

Displays:	
Ace	of	spades	
King	of	hearts	

Object	c1	of	
type	Card

_rank	=	14	
_suit	=	“spades”	

Object	c2	of	
type	Card

_rank	=	13	
_suit	=	“hearts”	

Review	

Mar	21,	2018	 Sprenkle	-	CSCI111	 14	

from graphics import *

win = GraphWin("Picture")
win.setBackground("black")

from card import *

c = Card(7, "diamonds")
print(c.getRank())

•  Same	programming	as	before	
•  Just	defining	our	own	classes	

8	

Using	the	Card	class	

• Can	make	a	Deck	class	
Ø What	data	should	a	Deck	contain?	
Ø How	can	we	represent	that	data?	

• To	start:	write	methods	__init__	and	
__str__
Ø What	do	the	method	headers	look	like?	

Mar	21,	2018	 Sprenkle	-	CSCI111	 15	

Now	that	we	have	the	Card	class,	
how	can	we	use	it?	

Crea(ng	a	Deck	Class	(Par(al)	
• List	of	Card	objects	

Mar	21,	2018	 Sprenkle	-	CSCI111	 16	

from card import *

class Deck:
 def __init__(self):
 self._listOfCards = []
 for suit in ["clubs","hearts","diamonds","spades"]:
 for rank in range(2,15):
 self._listOfCards.append(Card(rank, suit))

Ini(alize	instance	variable,	
self._listOfCards

Actual code should have doc strings

How	would	we	want	to	display	a	deck?	

9	

Crea(ng	a	Deck	Class	(Par(al)	
• List	of	Card	objects	

Mar	21,	2018	 Sprenkle	-	CSCI111	 17	

from card import *

class Deck:
 def __init__(self):
 self._listOfCards = []
 for suit in ["clubs","hearts","diamonds","spades"]:
 for rank in range(2,15):
 self._listOfCards.append(Card(rank, suit))

 def __str__(self):
 deckRep= ""
 for c in self._listOfCards:
 deckRep += str(c) + "\n"
 return deckRep

Represents	cards	
on	separate	lines	

Ini(alize	instance	variable,	
self._listOfCards

Creates	and	returns	a	string	

Actual code should have doc strings

Deck	Class	
• What	does	the	Deck	API	look	like	so	far?	

Mar	21,	2018	 Sprenkle	-	CSCI111	 18	

10	

Deck	API	
• Deck()
• __str__()

Ø str(<deck>)

Mar	21,	2018	 Sprenkle	-	CSCI111	 19	

Constructor	

Algorithm	for	Crea(ng	Classes	
1.  Iden(fy	need	for	a	class	
2.  Iden(fy	state	or	a8ributes	of	a	class/an	object	

in	that	class	
Ø  Write	the	constructor	(__init__)	and	__str__	

methods	

3.  Iden(fy	methods	the	class	should	provide	
Ø  How	will	a	user	call	those	methods	(parameters,	

return	values)?	
•  Develop	API	

Ø  Implement	methods	
Mar	21,	2018	 Sprenkle	-	CSCI111	 20	

11	

Deck	API	

Mar	21,	2018	 Sprenkle	-	CSCI111	 21	

• What additional methods should our
Deck class provide?
• What do the method headers look like?
• Deck’s API

• What should they return?
• How do we implement them?

Deck	API	
• Deck()
• shuffle()
• draw()
• deal(num_cards)
• numRemaining()
• isEmpty()
• __str__()

Mar	21,	2018	 Sprenkle	-	CSCI111	 22	

Constructor	

12	

Exam	2	Ques(ons	
• Content	

Ø Everything	up	through	dic(onaries	
Ø Cumula(ve	
Ø (Not	crea(ng	our	own	classes)	

• What	types	of	ques(ons	are	you	expec(ng?	

Mar	21,	2018	 Sprenkle	-	CSCI111	 23	

Looking	Ahead	
• Exam	2	on	Friday	
• Lab	9	due	on	Friday	

Mar	21,	2018	 Sprenkle	-	CSCI111	 24	

