
1	

Lab	4	
• Review	Lab	3	

Ø Run	Anima1ons!	

• Func1on	review	

Feb	6,	2018	 Sprenkle	-	CSCI111	 1	

Lab	3	
•  Itera1ve	Fibonacci	Sequence	was	a	ques1on	on	
several	students’	interviews	

Feb	6,	2018	 Sprenkle	-	CSCI111	 2	

2	

Feb	6,	2018	 Sprenkle	-	CSCI111	

Lab	3	Feedback	
• Con1nuing	to	get	tougher	in	grading	

Ø Paying	more	aLen1on	to	style	(e.g.,	variable	names),	
efficiency,	readability,	good	output	

Ø High-level	descrip1ons	
Ø More	strict	on	adhering	to	problem	specifica1on	
Ø Constants	
Ø Demonstrate	program	more	than	once	if	gets	input	
from	user	or	outcome	changes	when	run	again	
•  Find	errors	before	I	do!	

3	

Program	Organiza1on	

Feb	6,	2018	 Sprenkle	-	CSCI111	 4	

high-level description
author name

import statements

CONSTANT_DEFNS = …

program_statements ...
program_statements ...
program_statements …

3	

Program	Organiza1on	

Feb	6,	2018	 Sprenkle	-	CSCI111	 5	

high-level description
author name

import statements

CONSTANT_DEFNS = …

def main():
 statements…
 statements...

def otherfunction():
 statement...

Lab	2	Feedback:	Common	Issues	

Jan	30,	2018	 Sprenkle	-	CSCI111	 6	

	

operand1=6
for operand2 in range(1, 10):

result = operand1 % operand2
print(operand1, "%", operand2, "=", result)

for operand2 in range(1, 10):
operand1=6
result = operand1 % operand2
print(operand1, "%", operand2, "=", result)

vs	

Which	solu1on	is	more	efficient?	

4	

Lab	2	Feedback:	Common	Issues	

Jan	30,	2018	 Sprenkle	-	CSCI111	 7	

operand1=6
for operand2 in range(1, 10):

result = operand1 % operand2
print(operand1, "%", operand2, "=", result)

for operand2 in range(1, 10):
operand1=6
result = operand1 % operand2
print(operand1, "%", operand2, "=", result)

vs	

çAdditional assignment each time through loop

Which	solu1on	is	more	efficient?	

Lab	2	Feedback:	Common	Issues	

Jan	30,	2018	 Sprenkle	-	CSCI111	 8	

operand1=6
for operand2 in range(1, 10):
 result = operand1 % operand2
 print(operand1, "%", operand2, "=", result)

operand1=6
operand2=0
for x in range(9):
 operand2 = x + 1
 result = operand1 % operand2
 print(operand1, "%", operand2, "=", result)

vs	

Which	solu1on	is	simpler?	

5	

Lab	2	Feedback:	Common	Issues	

Jan	30,	2018	 Sprenkle	-	CSCI111	 9	

operand1=6
for operand2 in range(1, 10):
 result = operand1 % operand2
 print(operand1, "%", operand2, "=", result)

operand1=6
operand2=0
for x in range(9):
 operand2 = x + 1
 result = operand1 % operand2
 print(operand1, "%", operand2, "=", result)

vs	

Which	solu1on	is	simpler?	

More code makes
solution more difficult

to understand

Run	Anima1ons	

Feb	6,	2018	 Sprenkle	-	CSCI111	 10	

6	

Review	
• What	makes	a	func1on	“good”?	

Feb	6,	2018	 Sprenkle	-	CSCI111	 11	

Feb	6,	2018	 Sprenkle	-	CSCI111	 12	

Wri1ng	a	“Good”	Func1on	

• Should	be	an	“intui1ve	chunk”	
Ø Doesn’t	do	too	much	or	too	liLle	
Ø If	does	too	much,	try	to	break	into	more	
func1ons	

• Should	be	reusable	
• Always	have	comment	that	tells	what	the	
func1on	does	

7	

Wri1ng	Comments	for	Func1ons	
• Good	style:	Each	func1on	must	have	a	comment	

Ø Describes	func1onality	at	a	high-level	
Ø Include	the	precondi)on,	postcondi)on	
Ø Describe	the	parameters	(their	types)	and	the	result	
of	calling	the	func1on	(precondi1on	and	
postcondi1on	may	cover	this)	

Feb	6,	2018	 Sprenkle	-	CSCI111	 13	

Wri1ng	Comments	for	Func1ons	
•  Include	the	func1on’s	pre-	and	post-	condi1ons	
• Precondi0on:	Things	that	must	be	true	for	
func1on	to	work	correctly	
Ø E.g.,	num	must	be	even	

• Postcondi0on:	Things	that	will	be	true	when	
func1on	finishes	(if	precondi1on	is	true)	
Ø E.g.,	the	returned	value	is	the	max	

Feb	6,	2018	 Sprenkle	-	CSCI111	 14	

8	

Refactoring:		
Conver1ng	Func1onality	into	Func1ons	
1.  Iden1fy	func1onality	that	should	be	put	into	a	

func1on	
Ø What	should	the	func1on	do?	
Ø What	is	the	func1on’s	input?	
Ø What	is	the	func1on’s	output	(i.e.,	what	is	returned)?	

2.  Define	the	func1on	
Ø Write	comments	

3.  Call	the	func1on	where	appropriate	
4.  Create	a	main	func1on	that	contains	the	“driver”	

for	your	program	
Ø Put	at	top	of	program	

5.  Call	main	at	boLom	of	program	
Feb	5,	2018	 Sprenkle	-	CSCI111	 15	

Review	
• How	can	we	programma1cally	test	func1ons?	

Feb	6,	2018	 Sprenkle	-	CSCI111	 16	

9	

test	module’s	testEqual	func1on	
• Example	from	yesterday	

Feb	6,	2018	 Sprenkle	-	CSCI111	 17	

def testWinPercentage():
 test.testEqual(calculateWinPercentage(0, 1), 0)
 test.testEqual(calculateWinPercentage(2, 2), .5)
 test.testEqual(calculateWinPercentage(3, 7), .3)
 test.testEqual(calculateWinPercentage(1, 0), 1)

testWinPercentage()

Aeer	confirming	that	the	func1on	works…	

test	module’s	testEqual	func1on	
• Example	from	yesterday	

Feb	6,	2018	 Sprenkle	-	CSCI111	 18	

def testWinPercentage():
 test.testEqual(calculateWinPercentage(0, 1), 0)
 test.testEqual(calculateWinPercentage(2, 2), .5)
 test.testEqual(calculateWinPercentage(3, 7), .3)
 test.testEqual(calculateWinPercentage(1, 0), 1)

testWinPercentage()
main()

Comment	out	call	to	test	func1on.	
Call	main.	

10	

Lab	4	Overview	
• Calling	func1ons	defined	in	the	same	program	
• Refactoring	code	
• Modifying	func1on	defini1ons	
• Tes1ng	func1ons	
• Crea1ng	a	module	
• Wri1ng	a	program	with	a	func1on	from	scratch	

Feb	6,	2018	 Sprenkle	-	CSCI111	 19	

