
1	

Lab	8	
• Reading,	wri0ng	files	
• Modules	
• Excep0on	Handling	
• Using	lists	to	solve	problems	

March	13,	2018	 Sprenkle	-	CSCI111	 1	

Lab	8:	Pair	Programming	
Findley	 Jordan	
Parker	 Margaret	
Ryan	 Chas	
Lizzie	 Robert	
Olivia	 Anna	
Lindsey	 Ben	
Alison	 Rachel	
Kalady	 Mary-Frances	
Joseph	 Andrew	
Harris	 Davis	
Chase	 Ian	

March	13,	2018	 Sprenkle	-	CSCI111	 2	

Jordan	 Findley	
Margaret	 Parker	
Chas	 Ryan	
Robert	 Lizzie	
Anna	 Olivia	
Ben	 Lindsey	

Rachel	 Alison	
Mary-Frances	 Kalady	

Andrew	 Joseph	
Davis	 Harris	
Ian	 Chase	

Same	pairing	in	each	table		

2	

Pair	Programming	
• Two	of	you	

Ø double	check	problem	requirements	
Ø Push	each	other:	beWer	tests,	beWer	comments	
Ø Iterate	

March	13,	2018	 Sprenkle	-	CSCI111	 3	

Compare	Solu0ons	

March	13,	2018	 Sprenkle	-	CSCI111	 4	

words = sentence.split()

shorthandList = []
for word in words:
 shorthandList.append(word[0])

shorthand = "".join(shorthandList)

shorthand = shorthand.lower()

print("Shorthand is:", shorthand)

words = sentence.split()

shorthand=""
for word in words:
 shorthand += word[0]

shorthand = shorthand.lower()

print("Shorthand is:", shorthand)

3	

Compare	Solu0ons	

March	13,	2018	 Sprenkle	-	CSCI111	 5	

words = sentence.split()

shorthandList = []
for word in words:
 shorthandList.append(word[0])

shorthand = "".join(shorthandList)

shorthand = shorthand.lower()

print("Shorthand is:", shorthand)

words = sentence.split()

shorthand=""
for word in words:
 shorthand += word[0]

shorthand = shorthand.lower()

print("Shorthand is:", shorthand)

Both are valid solutions.
I’m not sure which is more
efficient in practice.

However, the solution at left
has more conceptual
complexity (appending to a
list and then converting to a
string, as opposed to just
creating the string).

In general, look for less
complex solutions.

Comment	Example	

March	13,	2018	 Sprenkle	-	CSCI111	 6	

def encodeLetter(char, key):
 """Encodes a single character.
 PRE: Input parameters are a single, lowercase
 character string (char) and an integer key
 (between -25 and 25, inclusive)
 POST: returns the encoded character as a str"""

•  Does	not	say	who	called	func0on,	where	parameters	came	
from,	or	where	returned	to	
•  Any	code	can	call	the	func0on	and	pass	in	input	from	
anywhere	(e.g.,	hardcoded,	from	user	input,	test	func0on,	
…)	

•  Does	not	say	variable	name	returned	

4	

Review	Caesar	Cipher	
• Consider	the	following	solu0ons	

March	13,	2018	 Sprenkle	-	CSCI111	 7	

for char in message:
 if char == " ":
 …
 else:
 …

for char in message:
 asciiVal = ord(char)
 if asciiVal == 32:
 …
 else:
 …

Review	Caesar	Cipher	
• Consider	the	following	solu0ons	

March	13,	2018	 Sprenkle	-	CSCI111	 8	

I	know	what	"	"	means.	
I	don’t	immediately	know	
what	32	means.	
Lesson:	prefer	words	

over	numbers.	

for char in message:
 if char == " ":
 …
 else:
 …

for char in message:
 asciiVal = ord(char)
 if asciiVal == 32:
 …
 else:
 …

5	

Review	
• What	are	things	we	can	do	to	lists?	
• How	do	we	work	with	files?	
• What	is	the	structure	we	use	to	do	excep0on	
handling?	

March	13,	2018	 Sprenkle	-	CSCI111	 9	

CREATING	MODULES	

March	12,	2018	 Sprenkle	-	CSCI111	 10	

6	

Where	are	Func0ons	Defined?	
• Func0ons	can	go	inside	of	program	script	

Ø Defined	before	use/called	(if	no	main()	func0on)	
Ø Or,	below	the	main()	func0on	()	

• Func0ons	can	go	inside	a	separate	module	

March	12,	2018	 Sprenkle	-	CSCI111	 11	

March	12,	2018	 Sprenkle	-	CSCI111	 12	

Crea0ng	Modules	
• Modules	group	together	related	func0ons	and	
constants	
• Unlike	func0ons,	no	special	keyword	to	define	a	
module	
Ø A	module	is	named	by	its	filename	

• You’ve	used	modules	in	the	past	
Ø graphics.py	
Ø game.py	

Just a
Python file!

7	

Typical	Use	of	Modules	
• Put	your	reusable	code	in	a	module	that	can	be	
shared	with	others	

• Example:	game.py
Ø rollDie(sides)
Ø rollMultipleDice(numDice, sides)

• Call	import game in	Python	interpreter	
Ø What	happened?	

March	12,	2018	 Sprenkle	-	CSCI111	 13	

March	12,	2018	 Sprenkle	-	CSCI111	 14	

Crea0ng	Modules	
• Then,	to	call	rollDie func0on	

Ø game.rollDie(6)
• To	access	a	defined	constants	

Ø Example:	game.SIDES

8	

• So	that	our	program	doesn’t	execute	code	
automa0cally	when	it	is	imported	in	a	program,	
at	boWom,	add	

	

• Note	the	sub-directories	now	listed	in	the	
directory	

if __name__ == '__main__' :
 testRollDie()
 testRollMultipleDice()

March	12,	2018	 Sprenkle	-	CSCI111	 15	

Crea0ng	Modules	

Not important how this works;
just know when to use

Benefits	of	Defining	Func0ons	in	Separate	Module	

• Reduces	code	in	primary	driver	script	
• Easier	to	reuse	by	impor0ng	from	a	module	
• Maintains	the	“black	box”	

Ø Abstrac,on	
•  Isolates	tes0ng	of	func0on	
• Write	“test	driver”	scripts	to	test	func0ons	
separately	from	use	in	script	

March	12,	2018	 Sprenkle	-	CSCI111	 16	

9	

Lab	8	Overview	
• Modules	
• Reading	Files	
• Wri0ng	Files	
• Excep0on	handling	
• Func0ons/Lists	

March	13,	2018	 Sprenkle	-	CSCI111	 17	

