
1	

Lab	10	
• Social	Network	

March	27,	2018	 Sprenkle	-	CSCI111	 1	

Lab	10:	Pair	Programming	
Lizzie Rachel 
Ian Anna 

Lindsey Chase 
Chas Alison 
Ryan Robert 

Joseph Margaret 
Olivia Parker 
Jordan Kalady 
Davis Mary-Frances 

Findley Andrew 

March	27,	2018	 Sprenkle	-	CSCI111	 2	



2	

Review	Lab	9	
• How	can	you	get	all	the	values	from	a	dicJonary?	

Ø How	can	you	turn	it	into	a	list?	

March	27,	2018	 Sprenkle	-	CSCI111	 3	

More work with dictionaries in lab10. 
Make sure you understand how to use dictionaries. 

Review	
• Why	do	we	create	classes?	
• How	do	we	create	a	class?	

Ø What	are	important	methods	to	implement?	
Ø How	do	we	implement	them?	

March	27,	2018	 Sprenkle	-	CSCI111	 4	



3	

Lab	10	Social	Network	Design	
• 3	files:	person.py, social.py, 
facespace.py

March	27,	2018	 Sprenkle	-	CSCI111	 5	

SocialNetwork	
(test	funcJons)	

social.py

Driver	

• Uses	SocialNetwork	object	
• Gets	command-line	arguments	
• Handles	UI	
•  Calls	methods	on	the	SN	object	

facespace.py

Person	
(test	funcJons)	

person.py

Social	Network	Classes/Driver	Data	
•  Person	

Ø  Id	
Ø Name	
Ø  Friends	

•  Social	Network	
Ø  People	in	network	

•  Driver	(UI)	
Ø  Social	network	

March	27,	2018	 Sprenkle	-	CSCI111	 6	

What are the data types 
for each class’s data?



4	

SN	Classes/Driver	FuncJonality	
•  Person	

Ø Ge[ers	(accessors)	
Ø  String	rep	
Ø  Se[ers	

•  Social	Network	
Ø Ge[ers	
Ø  String	rep	
Ø Add	people	to	network	
Ø Add	connecJons	
Ø WriJng	to	a	file	

•  Driver	
Ø Ge]ng	user	input	to	

•  Read	people,	
connecJons	files	

•  Store	social	network	to	
file	

•  Add	a	person	
•  Add	connecJons	

Ø  Summary:	call	appropriate	
methods	on	classes	to	do	
above	

March	27,	2018	 Sprenkle	-	CSCI111	 7	

How should we test these?

Towards	a	SoluJon	and	Hints	
• Given	“stubs”	for	each	of	the	class	files	
• social.py	is	the	most	filled	out	

Ø Has	the	methods	and	docstrings	defined	
Ø BUT	sJll	refer	to	the	descripJon	in	the	lab	on	the	
web	for	all	informaJon	

• For	whatever	variable	you’re	dealing	with,	think	
about	its	data	type	and	API		
Ø SocialNetwork	API	handout	
Ø Add	your	Person	class’s	API	to	the	handout	

March	27,	2018	 Sprenkle	-	CSCI111	 8	



5	

Problem:	People	Files	
•  Given	a	people	file	that	has	the	format	

	
• Write	algorithm	to	create	Person	objects	to	represent	
each	person,	add	to	SocialNetwork	object	

March	27,	2018	 Sprenkle	-	CSCI111	 9	

<num_users>
<user_id>
<name>
…
<user_id_n>
<name_n>

Problem:	People	Files	
•  Algorithm:	

Ø Open	file	
Ø  Read	the	first	line	in	the	file	

•  	that	represents	the	number	of	users	in	the	file	

Ø  Repeat	<number	of	users>	Jmes	
•  Read	the	line	à	that’s	the	userid/username	
•  Read	the	line	à	that’s	the	name	of	the	user	
•  Create	a	Person	object	

Ø  Update	the	Person’s	name	

•  Add	the	Person	object	to	the	dicJonary	
Ø  Close	the	file	

March	27,	2018	 Sprenkle	-	CSCI111	 10	

<num_users>
<user_id>
<name>
…
<user_id_n>
<name_n>

fileobj.readline() always 
reads in the next line of the file 



6	

Problem:	ConnecJon	Files	
• Given	a	connecJon	file	that	has	the	format	

• Each	line	represents	a	friend/connecJon	
Ø Symmetric	relaJonship	
Ø Each	is	a	friend	of	the	other	

• Update	SocialNetwork	object	

March	27,	2018	 Sprenkle	-	CSCI111	 11	

<user_id> <user_id>
<user_id> <user_id>
…
<user_id> <user_id>

Algorithm:	ConnecJon	Files	
• Given	a	connecJon	file	that	has	the	format	

• For	each	line	in	the	file	
Ø Split	the	line	into	the	two	ids	
Ø Look	up	the	two	Persons	by	their	ids	
Ø Make	the	two	Persons	friends	

March	27,	2018	 Sprenkle	-	CSCI111	 12	

<user_id> <user_id>
<user_id> <user_id>
…
<user_id> <user_id>



7	

UI	SpecificaJon	
•  Checks	if	user	entered	command-line	argument	

Ø Default	files	otherwise	
•  Read	people,	connecJons	from	files	
•  Repeatedly	gets	selected	opJons	from	the	user,	unJl	
user	quits	

•  Repeatedly	prompts	for	new	selecJon	if	invalid	opJon	
•  Executes	the	appropriate	code	for	the	selecJon	
•  Stops	when	user	quits	
•  Stores	the	social	network	into	the	file	

March	27,	2018	 Sprenkle	-	CSCI111	 13	Write	pseudocode	

(see later slides)

UI	Pseudocode	

March	27,	2018	 Sprenkle	-	CSCI111	 14	

Use	default	files	if	only	one	command-line	argument	
Read	people,	connecJons	from	files	
while	True:	

	display	menu	opJons	
	prompt	for	selecJon	
	while	invalid	opJon	
	 	print	error	message	
	 	prompt	for	selecJon	
	break	if	selected	quit	
	otherwise,	do	selected	opJon	

Store	social	network	to	designated	file	

Why	not	a	GUI?	



8	

ImplementaJon	Plan	
1.  Implement	Person	class	

Ø  Test	(write	test	funcJon,	e.g.,	testPerson())	
2.  Implement	SocialNetwork	class	

Ø  Example	runs	in	lab	write	up	
Ø Note:	Methods	for	classes	will	not	prompt	for	input;		

Use	input	parameters	
Ø  Test	

3.  Implement	driver	program	

March	27,	2018	 Sprenkle	-	CSCI111	 15	

Plan	for	ImplemenJng	a	Class	
• Write	the	constructor	and	string	representaJon/
print	methods	first	

• Write	funcJon	to	test	them	
Ø See	card.py	for	example	test	funcJons	

• While	more	methods	to	implement	…	
Ø Write	method	
Ø Test	
Ø REMINDER:	methods	should	not	be	using	input	
funcJon	but	ge]ng	the	input	as	parameters	to	the	
method	

March	27,	2018	 Sprenkle	-	CSCI111	 16	



9	

Export	SocialNetwork	to	Files	
•  I	provide	method	to	write	connecJons	to	a	file	

Ø Because	only	want	connecJon	once	
•  You	handle	wriJng	to	people	file	

Ø Must	be	in	same	format	that	you	read	in	
Ø Just	“undoing”	the	read	

• Good	test:	if	you	read	in	a	people	file,	export	it	to	
another	file	à	original	and	exported	file	should	look	
similar	
Ø  If	you	read	in	that	exported	file,	should	see	same	social	
network	

Ø Files	themselves	may	not	be	exactly	the	same	because	of	
order	printed	out	

March	27,	2018	 Sprenkle	-	CSCI111	 17	

Test	Data	
• SocialNetwork	requires:	People	file,	ConnecJons	
file	

• Social	Networks:	
Ø Simple	
Ø Hollywood	
Ø Randomly	generated	files	

•  From	W&L	first	and	last	names,	randomly	combined,	
connected	

• Can	combine	mulJple	files	(with	unique	
usernames)	to	create	larger	social	networks	

March	27,	2018	 Sprenkle	-	CSCI111	 18	



10	

COMMAND-LINE	ARGUMENTS	

March	27,	2018	 Sprenkle	-	CSCI111	 19	

Command-line	Arguments	
• We	can	run	programs	from	terminal	(i.e.,	the	
“command-line”)	and	from	IDLE	

• From	the	command-line,	can	pass	in	arguments,	
similar	to	how	we	use	Unix	commands	
Ø Ex:	cp <source> <dest>

Ø Ex:	python3 myprog.py 3
• Makes	input	easier	

Ø Don’t	have	to	retype	each	Jme	executed	
March	27,	2018	 Sprenkle	-	CSCI111	 20	

Command-line	arguments	



11	

Command-line	Arguments	
• Using	the	sys	module	

Ø What	else	did	we	use	from	the	sys	module?	

• How	can	we	access	“<filename>”?	
Ø Then	we	can	use	in	our	program	

March	27,	2018	 Sprenkle	-	CSCI111	 21	

python3 command_line_args.py <filename>

List	of	arguments,	named	sys.argv

python3 myprogram.py 3

Command-line	Arguments	
• Using	the	sys	module	

	
• How	can	we	access	“<filename>”?	

Ø sys.argv is	a	list	of	the	arguments	
Ø sys.argv[0] is	the	name	of	the	program
Ø sys.argv[1]	is	the	filename	

March	27,	2018	 Sprenkle	-	CSCI111	 22	command_line_args.py

python3 command_line_args.py <filename>

sys.argv command_line_args.py <filename>
0		 1	



12	

Using	Command-line	Arguments	
•  In	general	in	Python:	

Ø sys.argv[0] is	the	Python	program’s	name	
• Have	to	run	program	from	terminal	(not	from	
IDLE)	
Ø Can	edit	program	in	IDLE	though	

è Useful	trick:	
Ø If	can’t	figure	out	bug	in	IDLE,	try	running	from	
command-line	
• May	get	different	error	message	

March	27,	2018	 Sprenkle	-	CSCI111	 23	


