
1

Objectives
• Review algorithms
• Programming in Python

ØData types
Ø Expressions
ØVariables
ØArithmetic

Jan 11, 2019 Sprenkle - CSCI111 1

Review
• What is an algorithm?
• What did we learn from the PB&J

demonstration?

Jan 11, 2019 Sprenkle - CSCI111 2

2

Review: Parts of an Algorithm
• Input, Output
• Primitive operations

Ø What data you have, what you can do to the data
• Naming

Ø Identify things we’re using
• Sequence of operations
• Conditionals

Ø Handle special cases
• Repetition/Loops
• Subroutines

Ø Call, reuse similar techniques

Jan 11, 2019 Sprenkle - CSCI111 3

An overview for the
semester!

Discussion of PB&J
• The computer: a blessing and a curse

ØRecognize and meet the challenge!
• Be unambiguous, descriptive

ØMust be clear for the computer to understand
Ø “Do what I meant! Not what I said!”

• Motivates programming languages
• Creating/Implementing an algorithm

ØBreak down pieces
Ø Try it out
ØRevise

Jan 11, 2019 Sprenkle - CSCI111 4

3

Discussion of PB&J
• Steps need to be done in a particular order
• Be prepared for special cases

ØAny other special cases we didn’t discuss?
• Aren’t necessarily spares in real life

ØNeed to write correct algorithms!
• Reusing similar techniques

ØDo the same thing with a little twist
• Looping

Ø For repeating the same action

Jan 11, 2019 Sprenkle - CSCI111 5

Other Lessons To Remember
• A cowboy’s wisdom: Good judgment comes from

experience
ØHow can you get experience?
ØBad judgment works every time

• Program errors can have bad effects
ØPrevent the bad effects--especially before you turn in

your assignment!

Jan 11, 2019 Sprenkle - CSCI111 6

4

Computational Problem Solving 101
• Computational Problem:

A problem that can be solved by logic

• To solve the problem:
ØCreate a model of the problem
ØDesign an algorithm for solving the problem using

the model
ØWrite a program that implements the algorithm

Jan 11, 2019 Sprenkle - CSCI111 7

Jan 11, 2019 Sprenkle - CSCI111

Why Do We Need Programming
Languages?
• Computers can’t understand English

Ø Too ambiguous
• Humans can’t easily write machine code

Problem Statement (English)

Machine code/Central Processing Unit (CPU)
000000 00001 00010 00110 00000 100000

8

Live Jazz!

5

Jan 11, 2019 Sprenkle - CSCI111

Why Do We Need Programming
Languages?
• Computers can’t understand English

Ø Too ambiguous
• Humans can’t easily write machine code

Problem Statement (English)

Algorithm/Pseudocode

Bytecode

High-level Programming Language (Python)

Machine code/Central Processing Unit (CPU)

Programmer (YOU!)
translates from
problem to algorithm
(solution) to program

Python interpreter
translates into bytecode

9

Jan 11, 2019 Sprenkle - CSCI111

Why Do We Need Programming
Languages?
• Computers can’t understand English

Ø Too ambiguous
• Humans can’t easily write machine code

Problem Statement (English)

Algorithm/Pseudocode

Bytecode

High-level Programming Language (Python)

Machine code/Central Processing Unit (CPU)

Python interpreter
executes the bytecode
in a “virtual machine”

10

Programmer (YOU!)
translates from
problem to algorithm
(solution) to program

Python interpreter
translates into bytecode

6

Jan 11, 2019 Sprenkle - CSCI111

Programming Languages
• Programming language:

Ø Specific rules for what is and isn’t allowed
ØMust be exact
ØComputer carries out commands as they are given

• Syntax: the symbols given
• Semantics: what it means
• Example:

Ø III * IV means 3 × 4 which evaluates to 12
Ø cp src dest means copy the file named src to dest

• Programming languages are unambiguous
11

Another Syntax and Semantics Example

Jan 11, 2019 Sprenkle - CSCI111 12

What does this syntax mean?

7

Python Is …

• A programming language
Ø 3rd most popular programming language, according

to Tiobe survey

• An interpreter (which is a program) that

understands and executes Python code

Jan 11, 2019 Sprenkle - CSCI111 13

http://www.tiobe.com/tiobe-index/

Jan 11, 2019 Sprenkle - CSCI111

Python Programming Language
• A common interpreted programming language

ØRuns on many operating systems
• First released by Guido van Rossum in 1991
• Named after Monty Python’s Flying Circus
• Minimalist syntax, emphasizes readability
• Flexible, fast, useful language
• Used by scientists, engineers, systems

programmers

14

8

Jan 11, 2019 Sprenkle - CSCI111

Python Interpreter
1. Validates Python programming language expression(s)

• Enforces Python syntax
• Reports syntax errors

2. Executes expression(s)
• Runtime errors (e.g., divide by 0)
• Semantic errors (not what you meant)

15

Python
Interpreter

Expression

Output Executable
bytecode

Only if no
syntax errors

Review: Parts of an Algorithm
• Input, Output
• Primitive operations

Ø What data you have, what you can do to the data
• Naming

Ø Identify things we’re using
• Sequence of operations
• Conditionals

Ø Handle special cases
• Repetition/Loops
• Subroutines

Ø Call, reuse similar techniques

Jan 11, 2019 Sprenkle - CSCI111 19

9

Printing Output
•print is a special command or a function

ØDisplays the result of expression(s) to the terminal
ØAutomatically adds a '\n' (carriage return) after it’s

printed
• Relevant when have multiple print statements

•print("Hello, class")

Jan 11, 2019 Sprenkle - CSCI111 20

string literal

Syntax: a set of double quotes
Semantics: represents text

Printing Output
•print is a special command

ØDisplays the result of expression(s) to the terminal
•print("Hello, class")

•print("Your answer is", 4*4)

Jan 11, 2019 Sprenkle - CSCI111 21

string literal

print automatically
adds a '\n' (carriage

return) after it’s printed

Syntax: comma
Semantics: print multiple “things” in one line

10

Parts of an Algorithm
• Input, Output
èPrimitive operations

Ø What data you have, what you can do to the data
• Naming

Ø Identify things we’re using
• Sequence of operations
• Conditionals

Ø Handle special cases
• Repetition/Loops
• Subroutines

Ø Call, reuse similar techniques

Jan 11, 2019 Sprenkle - CSCI111 22

Primitive Data Types
• Primitive data types represent data

Ø In PB&J example, our data had types slice of bread,
PB jar, jelly jar, etc.

• Python provides some basic or primitive data
types

• Broadly, the categories of primitive types are
ØNumeric
ØBoolean
Ø Strings

Jan 11, 2019 Sprenkle - CSCI111 23

11

Numeric Primitive Types

Jan 11, 2019 Sprenkle - CSCI111 24

Python Data
Type

Description Examples

int Plain integers (32-bit
precision)

-214, -2, 0, 2, 100

float Real numbers .001, -1.234, 1000.1, 0.00, 2.45

complex Imaginary numbers (have
real and imaginary part) 1j * 1J à (-1+0j)

How big (or small or precise) can we get?

• Computer cannot represent all values

• Problem: Computer has a finite capacity
Ø The computer only has so much memory that it can

devote to one value.

Ø Eventually, reach a cutoff
• Limits size of value
• Limits precision of value

Jan 11, 2019 Sprenkle - CSCI111 25

Example: in Python interpreter, .1 + .1 + .1 yields 0.30000000000000004.
* In reality, computers represent data in binary.

0 0 0 0 0 3 .1 4 1 5 9 2 6 5

PI has more decimals,
but we’re out of space!

12

Strings: str
• Indicated by double quotes " " or single quotes ' '
• Treat what is in the " " or ' ' literally

ØKnown as string literals
• Examples:

Ø "Hello, world!"
Ø 'c'
Ø "That is Buddy's dog."

Jan 11, 2019 Sprenkle - CSCI111 26

Single quote must be
inside double quotes*

* Exception later

Booleans: bool
• 2 values

ØTrue
ØFalse

• More on these later…

Jan 11, 2019 Sprenkle - CSCI111 27

13

What is the value’s type?

Jan 11, 2019 Sprenkle - CSCI111 28

Value Type
52

-0.01
4+6j
"3.7"

4047583648
True

'false'

What is the value’s type?

Jan 11, 2019 Sprenkle - CSCI111 29

Value Type
52 int

-0.01 float
4+6j complex
"3.7" str

4047583648 int
True boolean

'false' str

14

Parts of an Algorithm
• Input, Output
• Primitive operations

Ø What data you have, what you can do to the data
• Naming

Ø Identify things we’re using
• Sequence of operations
• Conditionals

Ø Handle special cases
• Repetition/Loops
• Subroutines

Ø Call, reuse similar techniques

Jan 11, 2019 Sprenkle - CSCI111 30

Introduction to Variables

• Variables save data/information

Ø Example: first slice of bread or knife A

Ø Type of data the variable holds can be any of

primitive data types as well as other data types we’ll

learn about later

• Variables have names, called identifiers

Jan 11, 2019 Sprenkle - CSCI111 31

15

Variable Names/Identifiers
• A variable name (identifier) can be any one word

that:
ØConsists of letters, numbers, or _
ØDoes not start with a number
Ø Is not a Python reserved word

• Examples: for while def

• Python is case-sensitive:
Øchange isn’t the same as Change

Jan 11, 2019 Sprenkle - CSCI111 32

Variable Name Conventions
• Variables start with lowercase letter
• Convention: Constants (values that won’t

change) are all capitals
Ø (more on this later…)

• Example: Variable for the current year
ØcurrentYear
Øcurrent_year
ØCURRENT_YEAR
Øcurrentyear
Øcurrent year

Jan 11, 2019 Sprenkle - CSCI111 33
No spaces allowed

Harder to read

Naming doesn’t matter to computer,
matters to humans

16

Importance of Variable Naming
• Helps you remember what the variable

represents
• Easier for others to understand your program
• Examples:

Jan 11, 2019 Sprenkle - CSCI111 34

Info Represented Good Variable Name
A person’s first name firstName, first_name
Radius of a circle radius
If someone is employed or not isEmployed

Review: Computational Problem Solving

• Computational Problem:
A problem that can be solved by logic

• To solve the problem:

ØCreate a model of the problem

ØDesign an algorithm for solving the problem using

the model

ØWrite a program that implements the algorithm

Jan 11, 2019 Sprenkle - CSCI111 35

17

Modeling Information

Jan 11, 2019 Sprenkle - CSCI111 36

Info Represented Data Type Variable Name
A person’s salary

Sales tax
If item is taxable

Course name
Graduation Year

• How would you model this information?
•What data type best represents the info?

Modeling Information

Jan 11, 2019 Sprenkle - CSCI111 37

Info Represented Data Type Variable Name
A person’s salary int or float salary

Sales tax float salesTax
If item is taxable boolean isTaxable

Course name str course_name
Graduation Year int gradYear

• How would you model this information?
•What data type best represents the info?

Variable names are just suggestions,
Many other possible variable names

18

Assignment Statements
• Variables can be given any value using =

Ø Syntax: <variable> = <expression>
Ø Semantics: <variable> is set to value of
<expression>

• After a variable is set to a value, the variable is
said to be initialized

• Examples:

Jan 11, 2019 Sprenkle - CSCI111 38

month = 1
impt_num = 4.5
monthName = 'January'

These are not equations!
Read “=” as “is set to”

Variables: The Rules

• Only the variable(s) to left of the =
in the current statement change
ØWe’ll usually only have one variable on the left

• Initialize a variable before using it on the right-
hand side (rhs) of a statement

Jan 11, 2019 Sprenkle - CSCI111 39

19

Assignment Statements

• Statements execute in order, from top to bottom
• Value of x does not change because of second

assignment statement
Jan 11, 2019 Sprenkle - CSCI111 40

Computer
Memory

x = 5
y = x

Assignment Statements

• Statements execute in order, from top to bottom
• Value of x does not change because of second

assignment statement
Jan 11, 2019 Sprenkle - CSCI111 41

Computer
Memory

x = 5
y = x

x

5

y 5Does a “lookup”
in memory to find

value of x

20

Literals
• Pieces of data that are not variables are called
literals
ØWe’ve been using these a lot

• Examples:
Ø4
Ø3.2
Ø'q'
Ø"books"

Jan 11, 2019 Sprenkle - CSCI111 42

Numeric Arithmetic Operations

Jan 11, 2019 Sprenkle - CSCI111 43

Symbol Meaning

+ Addition

- Subtraction
* Multiplication
/ Division

% Remainder (“mod”)

** Exponentiation (power)

21

Arithmetic & Assignment

• You can use the assignment operator (=) and

arithmetic operators to do calculations

1. Calculate right hand side

2. Assign value to variable

• Remember your order of operations! (PEMDAS)

• Examples:

x = 4+3*10
y = 3/2.0
z = x+y

Jan 11, 2019 Sprenkle - CSCI111 44

The right-hand sides are
expressions, just like in math.

Arithmetic & Assignment
• Examples:

x = 4+3*10
y = 3/2.0
z = x+y

• For last statement
Øneed to “lookup” values of x and y
Ø computer remembers the result of the expression,

not the expression itself
Jan 11, 2019 Sprenkle - CSCI111 45

Computer
Memory

22

Arithmetic & Assignment
• Examples:

x = 4+3*10
y = 3/2.0
z = x+y

• For last statement
Øneed to “lookup” values of x and y
Ø computer remembers the result of the expression,

not the expression itself
Jan 11, 2019 Sprenkle - CSCI111 46

Computer
Memoryx

y
1.5
34

35.5
z

What are the values?
• After executing the following statements, what

are the values of each variable?
Ør = 5
Øs = -1 + r
Øt = r + s
Øs = 2
Ør = -7

Jan 11, 2019 Sprenkle - CSCI111 47

How can we verify our answers?

23

Jan 11, 2019 Sprenkle - CSCI111 48

print

Programming Building Blocks
• Each type of statement is a building

block
Ø Initialization/Assignment

• So far: Arithmetic
ØPrint

• We can combine them to create
more complex programs
Ø Solutions to problems

Assign.

Assign.
Assign.
print
Assign.

print

Broader Issue Groups

Jan 11, 2019 Sprenkle - CSCI111 49

Introduce yourselves!

24

Broader CS Issues
• Good summaries!

ØGood English, complete sentences
• Good, thoughtful questions
• Mechanics details

Ø Follow instructions on BI Forum about what
summary should contain

Ø Should be able to edit your own posts
ØCharacters from Word

• Click button “Paste from Word”
• Don’t attach Word documents

Jan 11, 2019 Sprenkle - CSCI111 50

“Really?” with Professor Sprenkle
• In TV Guide, showrunners of Once Upon a Time

were asked, “Give us an algorithm for your
show.”

Jan 11, 2019 Sprenkle - CSCI111 51

25

“Really?” with Professor Sprenkle

• In TV Guide, showrunners of Once Upon a Time
were asked, “Give us an algorithm for your
show.”
Ø Example (for 1st season): 1 part Snow White

+ 1 part Lost + .5 Alias
• They said, “We don’t understand math. That’s

why we became writers.”

Jan 11, 2019 Sprenkle - CSCI111 52

AI Everywhere
• “An algorithm is, essentially, a brainless way of

doing clever things… Brainlessness, in other words,
is no impediment to intelligence. ”

• What are examples of algorithms that you do every
day?

• What is AI (which is based on algorithms) useful for?
Ø What aren’t algorithms useful for?

• What would be some useful algorithms, specific to
W&L students?
Ø What are problems that are difficult—but useful—to

solve?

Jan 11, 2019 Sprenkle - CSCI111 53

26

Extra Credit Opportunities
• Read an article that relates to CS
• Summarize it on the forum under “Extra Credit”

Ø 5 pts extra credit on lab grade

Jan 11, 2019 Sprenkle - CSCI111 54

Looking Ahead
• Textbook Pre Lab 1 assignment due before lab

on Tuesday

Jan 11, 2019 Sprenkle - CSCI111 55

