
1/14/19

1

Objectives
• Software development practices

Ø Testing
ØDebugging
Ø Iteration

• User input

Jan 14, 2019 Sprenkle - CSCI111 1

Review
• How can we tell our program to display output?
• How can we store information?
• What is the syntax to do the last step?
• What are the rules and conventions for variable

names?
ØWhat is another word for “variable names”?
ØDescribe what good variable names look like

• What are the types of information in Python?

Jan 14, 2019 Sprenkle - CSCI111 2

Get out handouts from Friday

1/14/19

2

Review: NOT Math Class
• Need to write out all operations explicitly

Ø In math class, a (b+1) meant a*(b+1)

Jan 14, 2019 Sprenkle - CSCI111 3

Write this way in Python

What are the values?
• After executing the following statements, what

are the values of each variable?
Ør = 5
Øs = -1 + r
Øt = r + s
Øs = 2
Ør = -7

Jan 14, 2019 Sprenkle - CSCI111 4

1/14/19

3

Jan 14, 2019 Sprenkle - CSCI111 5

Programming Building Blocks
• Each type of statement is a building block

Ø Initialization/Assignment
• So far: Arithmetic

ØPrint

Assign.

print

Jan 14, 2019 Sprenkle - CSCI111

Review: Python Interpreter
1. Validates Python programming language expression(s)

• Enforces Python syntax rules
• Reports syntax errors

2. Executes expression(s)

Python
Interpreter

Expression

Output Executable
bytecode

Have a lot of these early on!

Only if no
syntax errors

6

1/14/19

4

Jan 14, 2019 Sprenkle - CSCI111

Two Modes to Execute Python Code

• Interactive/Shell
Ø Try out Python expressions

• Batch: execute scripts (i.e., files containing
Python code)
ØWhat we’ll write usually

7

What are the values?

• After executing the following statements, what
are the values of each variable?
Ør = 5
Øs = -1 + r
Øt = r + s
Øs = 2
Ør = -7

Jan 14, 2019 Sprenkle - CSCI111 8

Try these expressions out in interactive mode!

1/14/19

5

What are the values?
• After executing the following statements, what

are the values of each variable?
Øa = 5
Øy = a + -1 * a
Øz = a + y / 2
Øa = a + 3
Øy = (7+x)*z
Øx = z*2

Jan 14, 2019 Sprenkle - CSCI111 9

What are the values?
• After executing the following statements, what

are the values of each variable?
Øa = 5
Øy = a + -1 * a
Øz = a + y / 2
Øa = a + 3
Øy = (7+x)*z
Øx = z*2

Jan 14, 2019 Sprenkle - CSCI111 10

Runtime error:
x doesn’t have a value yet!

•We say “x was not initialized”
• Can’t use a variable on RHS until

seen on LHS!*

1/14/19

6

Jan 14, 2019 Sprenkle - CSCI111 11

print

Programming Building Blocks

• Each type of statement is a building block
Ø Initialization/Assignment

• So far: Arithmetic

ØPrint

• We can combine them to create more
complex programs
Ø Solutions to problems

Assign.

Assign.

Assign.

print
Assign.

print

Bringing It All Together:
A simple program or script

Jan 14, 2019 Sprenkle - CSCI111 12

Demonstrates arithmetic operations and
assignment statements
by Sara Sprenkle

x = 3
y = 5

print("x =", x)
print("y =", y)

result = x * y
print("x * y =", result)

arith_and_assign.py

Comments: human-readable descriptions.
Computer does not execute.

1/14/19

7

Bringing It All Together:
A simple program or script

Jan 14, 2019 Sprenkle - CSCI111 13

Demonstrates arithmetic operations and
assignment statements
by Sara Sprenkle

x = 3
y = 5

print("x =", x)
print("y =", y)

alternative to the previous program
print("x * y =", x * y)

arith_and_assign.py

Comments: human-readable descriptions.
Computer does not execute.

Jan 15, 2019 Sprenkle - CSCI111

Batch Mode: Execute Scripts
1. Programmer save a program/script into a text file

using a text editor.
2. An interpreter turns each expression in file into

bytecode and then executes each expression
Python

Interpreter

Program
text file

program.py

Output

Text Editor
(e.g., jEdit or IDLE)

Executable
bytecode

One “line”
at a time

If error,
• Get feedback about which line

caused the problem
• Interpreter stops

validating/executing lines
14

1/14/19

8

Formalizing Process of
Developing Computational Solutions
1. Create a sketch of how to solve the problem

(the algorithm)

Jan 14, 2019 Sprenkle - CSCI111 15

Use comments to describe the steps

Formalizing Process of

Developing Computational Solutions

1. Create a sketch of how to solve the problem

(the algorithm)

2. Fill in the details in Python

Jan 14, 2019 Sprenkle - CSCI111 16

1/14/19

9

Errors

• Sometimes the program doesn’t work

• Types of programming errors:

Ø Syntax error

• Interpreter shows where the problem is

Ø Logic/semantic error

• answer = 2+3

• No, answer should be 2*3
Ø Exceptions/Runtime errors

• answer = 2/0

• Undefined variable name

Jan 14, 2019 Sprenkle - CSCI111 17

Testing Process

Jan 14, 2019 Sprenkle - CSCI111 18

Program

• Test case: input used to test the program, expected
output given that input

• Verify if output is what you expected

Verify output

OutputInput

Expected
Output

Test Case

If output is not what you expect…

1/14/19

10

Debugging
• After identifying errors during testing
• Identify the problems in your code

Ø Edit the program to fix the problem
Ø Re-execute/test until all test cases pass

• The error is called a “bug” or a “fault”
• Diagnosing and fixing error is called debugging

Jan 14, 2019 Sprenkle - CSCI111 19

Interpreter
(python)

Program
text file

program.py
Output

Text Editor
(jEdit or IDLE)

ERROR! (from testing)

Identify bug, fix

Practice: A Computational Algorithm
• Find the average of two numbers

Jan 14, 2019 Sprenkle - CSCI111 20

1/14/19

11

Practice: A Computational Algorithm
• Find the average of two numbers
• Test cases:

Jan 14, 2019 Sprenkle - CSCI111 21

Input
num1 num2 Expected Output

A Computational Algorithm
• Algorithm for finding the average of two

numbers:
ØHard-code two numbers

• Later: get the two numbers from user
ØCalculate average
ØPrint average

• Test cases for finding the average
Ø Test both integers
Ø Test with at least one float
Ø Test numbers less than or equal to 0

Jan 14, 2019 Sprenkle - CSCI111 22average2.py

1/14/19

12

Good Development Practices

• Design the algorithm

ØBreak into pieces

• Implement and Test each piece separately
Ø Identify the best pieces to make progress

Ø Iterate over each step to improve it

• Write comments FIRST for each step

Ø Elaborate on what you’re doing in comments when

necessary

Jan 14, 2019 Sprenkle - CSCI111 23

average2.py

When to Use Comments
• Document the author, high-level description of

the program at the top of the program

• Provide an outline of an algorithm
Ø Separates the steps of the algorithm

• Describe difficult-to-understand code

Jan 14, 2019 Sprenkle - CSCI111 24

1/14/19

13

Jan 14, 2019 Sprenkle - CSCI111 25

Trick: Type Conversion
• You can convert a variable’s type

ØUse the type’s constructor

Conversion Function/Constructor Example Value
Returned

int(<number or string>) int(3.77)
int("33")

3
33

float(<number or string>) float(22) 22.0

str(<any value>) str(99) "99"

Parts of an Algorithm
• Input, Output
• Primitive operations

Ø What data you have, what you can do to the data
• Naming

Ø Identify things we’re using
• Sequence of operations
• Conditionals

Ø Handle special cases
• Repetition/Loops
• Subroutines

Ø Call, reuse similar techniques

Jan 14, 2019 Sprenkle - CSCI111 26

1/14/19

14

Interactive Programs
• Meaningful programs often need input from

users

• Demo: input_demo.py

Jan 14, 2019 Sprenkle - CSCI111 27

2.8 in Text Book

Getting Input From User
•input is a function

Ø Function: A command to do something
• A “subroutine”

• Syntax:
Øinput(<string_prompt>)

• Semantics:
ØDisplay the prompt <string_prompt> in the

terminal
ØRead in the user’s input and return it as a string/text

Jan 14, 2019 Sprenkle - CSCI111 28

1/14/19

15

Getting Input From User
• Typically used in assignments
• Examples:

Øname=input("What is your name? ")
•name is assigned the string the user enters

Øwidth=eval(input("Enter the width:"))
• What the user enters is evaluated (as a number) and

assigned to width
• Use eval function because expect a number from

user

Jan 14, 2019 Sprenkle - CSCI111 29

Prompt displayed to user

What do you think the code looks like for input_demo.py?

Getting Input from User

color = input("What is your favorite color? ")

Jan 14, 2019 Sprenkle - CSCI111 30

> python3 input_demo.py
What is your favorite color? blue
Cool! My favorite color is _light_ blue !

Terminal: Grabs every character up to
the user presses �enter�

Semantics: Sets the variable color to the user’s input

input_demo.py

1/14/19

16

Restricting User’s Inputs

Jan 14, 2019 Sprenkle - CSCI111 31

>>> x = 7
>>> yourVal = input("My val is: ")
My val is: x
>>> print(yourVal)
x

Restricting User’s Inputs

Jan 14, 2019 Sprenkle - CSCI111 32

>>> x = 7
>>> yourVal = input("My val is: ")
My val is: x
>>> print(yourVal)
x
>>> yourVal = eval(input("My val is: "))
My val is: x
>>> print(yourVal)
7
>>> yourVal = int(input("My val is: "))
My val is: x
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10:
'x'

What happened here?

1/14/19

17

Identify the Parts of a Program

Jan 14, 2019 Sprenkle - CSCI111 33

Demonstrate numeric and string input
by Sara Sprenkle for CS111
#

color = input("What is your favorite color? ")
print("Cool! My favorite color is _light_", color, "!")

rating = eval(input("On a scale of 1 to 10, how much do
you like Chadwick Boseman? "))
print("Cool! I like him", rating*1.8, "much!")

Identify the comments, variables, functions,
expressions, assignments, literals

input_demo.py

Identify the Parts of a Program

Jan 14, 2019 Sprenkle - CSCI111 34

Demonstrate numeric and string input
by Sara Sprenkle for CS111
#

color = input("What is your favorite color? ")
print("Cool! My favorite color is _light_", color, "!")

rating = eval(input("On a scale of 1 to 10, how much do
you like Chadwick Boseman? �)
print("Cool! I like him� , rating*1.8, "much!")

Identify the comments, variables, functions, expressions,
assignments, literals

expression

1/14/19

18

Improving average2.py
• With what we just learned, how could we

improve average2.py?

• Example of suggested approach to development
Ø Input is going to become fairly routine.
ØWait on input until you have figured out the rest of

the program/problem.

Jan 14, 2019 Sprenkle - CSCI111 35

Design Patterns
• General, repeatable solution to a commonly

occurring problem in software design
Ø Template for solution

Jan 14, 2019 Sprenkle - CSCI111 36

1/14/19

19

Design Patterns
• General, repeatable solution to a commonly

occurring problem in software design
Ø Template for solution

• Example (Standard Algorithm)
ØGet input from user
ØDo some computation
ØDisplay output

Jan 14, 2019 Sprenkle - CSCI111 37

print
Assign.
Assign. x = input("…")

ans = …
print(ans)

Looking Ahead
• Prelab 1 due tomorrow before lab
• Lab 1 due Friday
• Broader Issue due Friday

Jan 14, 2019 Sprenkle - CSCI111 38

