Objectives

A little more arithmetic

Introduction to Object-Oriented Programming

Introduction to APIs

Jan 16, 2019

Sprenkle - CSCI111

Review

What did you learn from yesterday’s lab?

What are your takeaways?

How will you prepare for next week’s lab?

What is our development process?

What are good test cases?

Jan 16, 2019

Sprenkle - CSCI111

Lab Retrospective

Learning how to solve problems

Every week: new problems, new techniques to solve
problems

Note how | am explicit in directions/reminders
early

Then stop reminding because you should know the
process by then

Jan 16, 2019 Sprenkle - CSCI111 3

Two Division Operators

/ Float Division // Integer Division
Resultis a float Resultis an 1nt
Examples: Examples:

6/3 > 2.0 6//3 > 2

10/3 > 10//3 > 3
3.3333333333333335 3.0//6.0 > 0.0
3.0/6.0 > 0.5 19//10 > 1
19/10 > 1.9

Integer division is the default
division used in most
programming languages

Jan 16, 2019 Sprenkle - CSCI111 4

Division Practice

a=12//4
12 // 4 * 5.0
b =6/12
6.0//12 * 5.0
z=a/b

Jan 16, 2019 Sprenkle - CSCI111

More on Arithmetic Operations

Symbol Meaning Associativity
+ Addition Left
- Subtraction Left
* Multiplication Left
/ Division Left
% Remainder (“mod”) Left
* % Exponentiation (power) Right

Precedence rules: P E - DM% AS

negation
Jan 16, 2019 Sprenkle - CSCI111

More on Arithmetic Operations

Precedence rules: P E - DM% AS

Jan 16, 2019

negation
Sprenkle - CSCI111

Symbol Meaning Associativity

+ Addition Left

- Subtraction Left

* Multiplication Left

/ Division Left

% Remainder (“mod”) Left
Associativit tt

** Exponentiation (powe SSOCIGEIVIty matters
when you have the same

operation multiple times.
It tells you where you
should start computing.

Python Math Practice

5 43 %2
2 * 3 %% 2
-3 %% 2

Jan 16, 2019

How should we verify our answers?

Sprenkle - CSCI111

Modulo Operator: %

Modular Arithmetic: Remainder from division
X % Yy means the remainder of x//y
Read as “x mod y”

Example:©6 % 4
Read as “six mod four”
6//4 is 1 with a remainder of 2, so 6%4 evaluates to 2

Works only with integers
Typically just positive numbers

Precedence rules: P E - DM% AS

Jan 16, 2019 Sprenkle - CSCI111 9

Modulo Practice

7% 2
3% 6
6% 2
7 % 14
14 % 7
6% 0

Jan 16, 2019 Sprenkle - CSCI111 10

Brainstorm

What useful thing does % 10 do?
3%10=
51% 10 =
40% 10 =
678 % 10 =
12543 % 10 =

What useful thing does // 10 do (integer division)?
3//10=
51//10=
40 // 10=
678 //10 =
12543 // 10 =

What useful thing does % 2 do?

Jan 16, 2019 Sprenkle - CSCI111

Trick: Arithmetic Shorthands

Called extended assignment operators
Increment Operator

X = X + 1 canbewrittenasX += 1
Decrement Operator

X = X — 1 canbewrittenasXx -= 1
Shorthands are similar for *, /, // :

amount *= 1.055

X //= 2

Jan 16, 2019 Sprenkle - CSCI111

Programming Paradigm: Imperative

Most modern programming languages are
imperative

Have data (numbers and strings in variables)

Perform operations on data using operations,
such as + (addition and concatenation)

Data and operations are separate

Add to imperative:
object-oriented programming

Jan 16, 2019 Sprenkle - CSCI111 13

OBJECT-ORIENTED PROGRAMMING

Jan 16, 2019 Sprenkle - CSCI111 14

Object-Oriented Programming

Program is a collection of objects
Objects combine data and methods together

Objects interact by invoking methods on other
objects
Methods perform some operation on object

Jan 16, 2019 Sprenkle - CSCI111 15

Object-Oriented Programming

Program is a collection of objects
Objects combine data and methods together

Objects interact by invoking methods on other
objects
Methods perform some operation on object

Hides o.method()

. Object o of |EEEEEEY »
internal data o0

type X Optionally may return
something back

Jan 16, 2019 Sprenkle - CSCI111 16

Object-Oriented Programming

We’ve been using objects
» Just didn't call them objects
For example: Str is a data type (or class)

> We created objects of type (class) string
animal = "cow"

coursename = "cscilll"
memory

Variable ee—yp animal —_— " con" Objects of

names/ ¢ type Str
identifiers\ /
courseName ——p "escilll"

Jan 16, 2019 Sprenkle - CSCI111 17

Example of OO Programming Abstraction

Think of a smart phone—It's an object
What can you do to a phone?

Jan 16, 2019 Sprenkle - CSCI111 18

Example of OO Programming Abstraction

Think of a phone—it’s an object
What can you do to a phone?
» Turn it on/off)
» Open applications

» Make a phone call . methods
» Mute it

» Update settings

You don't know how that operation is being
done (i.e., implemented)
» Just know what it does and that it works

Jan 16, 2019 Sprenkle - CSCI111 19

Example of OO Programming Abstraction

A smart phone is an object

Methods you can call on your smart phone:
» Turn it on/off
» Open applications
» Make a phone call
» Mute it
» Update settings

”

SmartPhone is a class, a.k.a., a data type

» My smart phone (identified by myPhone) is an object of
type SmartPhone

» You can call the above methods on any object of type
SmartPhone

Jan 16, 2019 Sprenkle - CSCI111 20

10

Object-Oriented Programming

Objects combine data and methods together

Provides interface (methods) that
users interact with

Hides internal _ o.method()
data structures, Object o of V
implementation type X Optionally may return

something back

Use an Application Programming Interface (API)
to interact with a set of classes.

Jan 16, 2019 Sprenkle - CSCI111 21

Class Libraries

Python provides libraries of classes

Defines methods that you can call on objects from
those classes

str class provides a bunch of useful methods
More on that later
Third-party libraries
Written by non-Python people
Can write programs using these libraries too

Jan 16, 2019 Sprenkle - CSCI111 22

11

Using a Graphics Module/Library

Allows us to handle graphical input and output
Example output: Pictures
Example input: Mouse clicks

Defines a collection of related graphics classes

Not part of a standard Python distribution
Need to import from graphics.py

»Use the library to help us learn OO programming

Jan 16, 2019 Sprenkle - CSCI111 23

USING A GRAPHICS MODULE

Jan 16, 2019 Sprenkle - CSCI111 24

12

Using a Graphics Module/Library

Handout lists the various classes

» Constructor is in bold
Creates an object of that type

» For each class, lists some of their methods and
parameters

» Drawn objects have some common methods
Listed at end of handout

Known as an API
» Application Programming Interface

Jan 16, 2019 Sprenkle - CSCI111

25

Example of Output

Jan 16, 2019 Sprenkle - CSCI111

26

13

Using the Graphics Library

In general, graphics are drawn on a canvas

A canvas is a 2-dimensional grid of pixels

For our Graphics library, our canvas is a window
Specifically an instance of the GraphWin class
By default, a GraphWin object is 200x200 pixels

Jan 16, 2019 Sprenkle - CSCI111 27

A GraphWin Object’s Canvas

(0,0) X horizontal axis
origin Coordinates are
specified as (x,y)
Y
v
e
r ¢ What are the
.t a coordinates for
' these points!?
c
g |
| s
o

(200,200)

Jan 16, 2019 Sprenkle - CSCI111 28

14

A GraphWin Object’s Canvas

(0,0) X horizontal axis (200, 0)
@
origin Coordinates are
specified as (x,y)
Y
v
e
: ® What are the
F a (100, 100) coordinates for
: X these points?
c
a i
| s
o
(0, 200) (200,200)

Jan 16, 2019 Sprenkle - CSCI111 29

Using the API: Constructors

To create an object of a certain type/class, use
the constructor for that type/class
Syntax:
objName = ClassName([parameters])
Note:
Class names typically begin with capital letter
Object names begin with lowercase letter
objname is known as an instance of the class
Example: To create a GraphWin object that’s
identified by window
window = GraphWin("My Window",200,200)

Jan 16, 2019 Sprenkle - CSCI111 30

15

The GraphWin Class

All parameters to the constructor are optional
Could call constructor as

Call Meaning

. Title, width, height to defaults
GraphWin() (“Graphics Window”, 200, 200)

GraphWin(<title>) Width, height to defaults
GraphWin(<title>,<width>) Height to default

GraphWin(<title>, <width>,
<height>)

Jan 16, 2019 Sprenkle - CSCI111 31

Using the API: Methods

To call a method on an object,
» Syntax:

objName .methodName([parameters])
» Method names typically begin with lowercase letter
» Similar to calling functions

Example: To change the background color of a
GraphWin object named window

window.setBackground("blue")

Jan 16, 2019 Sprenkle - CSCI111 32

16

Using the API: Methods

A method sometimes returns output, which you
may want to save in a variable

Class’s APl should say if method returns output

Example: if you want to know the width of a
GraphWin object named window

width = window.getWidth()

Jan 16, 2019 Sprenkle - CSCI111 33

The GraphWin API

Accessor methods for GraphWin
Return some information about the GraphWin

Example methods:
<GraphWinObj>.getWidth()
<GraphWinObj>.getHeight()

Jan 16, 2019 Sprenkle - CSCI111 34

17

The GraphWin API

<GraphWinObj>.setBackground(<color>)
Colors are strings, such as "red" or "purple"

Can add numbers to end of string for darker colors,
e.g., "red2", "red3", "red4"

win = GraphWin()
win.setBackground("purple™)

Does not return anything to shell

Called for change in win's state, i.e., this method is a
mutator

Jan 16, 2019 Sprenkle - CSCI111 35

General Categories of Methods

Accessor
Returns information about the object
Example: getWidth()

Mutator

Changes the state of the object
i.e., changes something about the object
Example: setBackground()

Jan 16, 2019 Sprenkle - CSCI111 36

18

What Does This Code Do?

Use OO terminology previously defined

from graphics import *

win = GraphWin("My Circle", 200, 200)
point = Point(100,100)

c = Circle(point, 10)

c.draw(win)

win.getMouse()

graphics_test.py

Jan 16, 2019 Sprenkle - CSCI111 37

What Does This Code Do?

Use OO terminology previously defined
Need to import the code from graphics.py into our program
~\\‘Mcr'om graphics import *

Constructor

win = GraphWin("My Circle", 200, 200)
Graphifin = point = Point(100, 100)
object c = Circle(point, 10)
Also known asan c.draw(win)
instance of the win.getMouse()

GraphWin class .
Method called on GraphWin object

Note: Class names start with capital letters,
Jan 16, 2019 Method names start with lowercase letters

19

Benefits of Object-Oriented Programming

Abstraction
» Hides details of underlying implementation
» Easier to change implementation

Easy reuse of code
» Can import the library in multiple files
Collects related data/methods together
» Easier to reason about data

Less code in main program
» Our program code is relatively simple

Jan 16, 2019 Sprenkle - CSCI111 39

What objects make up this image?

Jan 16, 2019 Sprenkle - CSCI111 40

20

Looking Ahead
Lab 1 due Friday

Broader Issue write up due Friday

Jan 16, 2019

Sprenkle - CSCI111

41

21

