Objectives

A little more arithmetic

Introduction to Object-Oriented Programming

Introduction to APIs
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Review

What did you learn from yesterday’s lab?

What are your takeaways?

How will you prepare for next week’s lab?

What is our development process?

What are good test cases?
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Lab Retrospective

Learning how to solve problems

Every week: new problems, new techniques to solve
problems

Note how | am explicit in directions/reminders
early

Then stop reminding because you should know the
process by then
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Two Division Operators

/ Float Division //  Integer Division
Resultis a float Resultis an 1nt
Examples: Examples:

6/3 > 2.0 6//3 > 2

10/3 > 10//3 > 3
3.3333333333333335 3.0//6.0 > 0.0
3.0/6.0 > 0.5 19//10 > 1
19/10 > 1.9

Integer division is the default
division used in most
programming languages
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Division Practice

a=12//4
12 // 4 * 5.0
b =6/12
6.0//12 * 5.0
z=a/b
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More on Arithmetic Operations

Symbol Meaning Associativity
+ Addition Left
- Subtraction Left
* Multiplication Left
/ Division Left
% Remainder (“mod”) Left
* % Exponentiation (power) Right

Precedence rules: P E - DM% AS

negation
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More on Arithmetic Operations

Precedence rules: P E - DM% AS

Jan 16, 2019

negation
Sprenkle - CSCI111

Symbol Meaning Associativity

+ Addition Left

- Subtraction Left

* Multiplication Left

/ Division Left

% Remainder (“mod”) Left
Associativit tt

** Exponentiation (powe SSOCIGEIVIty matters
when you have the same

operation multiple times.
It tells you where you
should start computing.

Python Math Practice

5 43 %2
2 * 3 %% 2
-3 %% 2
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How should we verify our answers?

Sprenkle - CSCI111




Modulo Operator: %

Modular Arithmetic: Remainder from division
X % Yy means the remainder of x//y
Read as “x mod y”

Example:©6 % 4
Read as “six mod four”
6//4 is 1 with a remainder of 2, so 6%4 evaluates to 2

Works only with integers
Typically just positive numbers

Precedence rules: P E - DM% AS
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Modulo Practice

7% 2
3% 6
6% 2
7 % 14
14 % 7
6% 0
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Brainstorm

What useful thing does % 10 do?
3%10=
51% 10 =
40% 10 =
678 % 10 =
12543 % 10 =

What useful thing does // 10 do (integer division)?
3//10=
51//10=
40 // 10=
678 //10 =
12543 // 10 =

What useful thing does % 2 do?

Jan 16, 2019 Sprenkle - CSCI111

Trick: Arithmetic Shorthands

Called extended assignment operators
Increment Operator

X = X + 1 canbewrittenasX += 1
Decrement Operator

X = X — 1 canbewrittenasXx -= 1
Shorthands are similar for *, /, // :

amount *= 1.055

X //= 2
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Programming Paradigm: Imperative

Most modern programming languages are
imperative

Have data (numbers and strings in variables)

Perform operations on data using operations,
such as + (addition and concatenation)

Data and operations are separate

Add to imperative:
object-oriented programming
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OBJECT-ORIENTED PROGRAMMING
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Object-Oriented Programming

Program is a collection of objects
Objects combine data and methods together

Objects interact by invoking methods on other
objects
Methods perform some operation on object
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Object-Oriented Programming

Program is a collection of objects
Objects combine data and methods together

Objects interact by invoking methods on other
objects
Methods perform some operation on object

Hides o.method()

. Object o of  |EEEEEEY »
internal data o0

type X Optionally may return
something back

Jan 16, 2019 Sprenkle - CSCI111 16




Object-Oriented Programming

We’ve been using objects
» Just didn't call them objects
For example: Str is a data type (or class)

> We created objects of type (class) string
animal = "cow"

coursename = "cscilll"
memory

Variable ee—yp animal —_— " con" Objects of

names/ ¢ type Str
identifiers\ /
courseName ——p "escilll"
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Example of OO Programming Abstraction

Think of a smart phone—It's an object
What can you do to a phone?
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Example of OO Programming Abstraction

Think of a phone—it’s an object
What can you do to a phone?
» Turn it on/off )
» Open applications

» Make a phone call . methods
» Mute it

» Update settings

You don't know how that operation is being
done (i.e., implemented)
» Just know what it does and that it works
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Example of OO Programming Abstraction

A smart phone is an object

Methods you can call on your smart phone:
» Turn it on/off
» Open applications
» Make a phone call
» Mute it
» Update settings

”

SmartPhone is a class, a.k.a., a data type

» My smart phone (identified by myPhone) is an object of
type SmartPhone

» You can call the above methods on any object of type
SmartPhone
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Object-Oriented Programming

Objects combine data and methods together

Provides interface (methods) that
users interact with

Hides internal _ o.method()
data structures, Object o of V
implementation type X Optionally may return

something back

Use an Application Programming Interface (API)
to interact with a set of classes.
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Class Libraries

Python provides libraries of classes

Defines methods that you can call on objects from
those classes

str class provides a bunch of useful methods
More on that later
Third-party libraries
Written by non-Python people
Can write programs using these libraries too
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Using a Graphics Module/Library

Allows us to handle graphical input and output
Example output: Pictures
Example input: Mouse clicks

Defines a collection of related graphics classes

Not part of a standard Python distribution
Need to import from graphics.py

»Use the library to help us learn OO programming
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USING A GRAPHICS MODULE
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Using a Graphics Module/Library

Handout lists the various classes

» Constructor is in bold
Creates an object of that type

» For each class, lists some of their methods and
parameters

» Drawn objects have some common methods
Listed at end of handout

Known as an API
» Application Programming Interface
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Example of Output
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Using the Graphics Library

In general, graphics are drawn on a canvas

A canvas is a 2-dimensional grid of pixels

For our Graphics library, our canvas is a window
Specifically an instance of the GraphWin class
By default, a GraphWin object is 200x200 pixels
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A GraphWin Object’s Canvas

(0,0) X horizontal axis
origin Coordinates are
specified as (x,y)
Y
v
e
r ¢ What are the
.t a coordinates for
' these points!?
c
g |
| s
o

(200,200)
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A GraphWin Object’s Canvas

(0,0) X horizontal axis (200, 0)
@
origin Coordinates are
specified as (x,y)
Y
v
e
: ® What are the
F a (100, 100) coordinates for
: X these points?
c
a i
| s
o
(0, 200) (200,200)
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Using the API: Constructors

To create an object of a certain type/class, use
the constructor for that type/class
Syntax:
objName = ClassName([parameters])
Note:
Class names typically begin with capital letter
Object names begin with lowercase letter
objname is known as an instance of the class
Example: To create a GraphWin object that’s
identified by window
window = GraphWin("My Window",200,200)
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The GraphWin Class

All parameters to the constructor are optional
Could call constructor as

Call Meaning

. Title, width, height to defaults
GraphWin() (“Graphics Window”, 200, 200)

GraphWin(<title>) Width, height to defaults
GraphWin(<title>,<width>) Height to default

GraphWin(<title>, <width>,
<height>)
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Using the API: Methods

To call a method on an object,
» Syntax:

objName .methodName([parameters])
» Method names typically begin with lowercase letter
» Similar to calling functions

Example: To change the background color of a
GraphWin object named window

window.setBackground("blue")
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Using the API: Methods

A method sometimes returns output, which you
may want to save in a variable

Class’s APl should say if method returns output

Example: if you want to know the width of a
GraphWin object named window

width = window.getWidth()
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The GraphWin API

Accessor methods for GraphWin
Return some information about the GraphWin

Example methods:
<GraphWinObj>.getWidth()
<GraphWinObj>.getHeight()
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The GraphWin API

<GraphWinObj>.setBackground(<color>)
Colors are strings, such as "red" or "purple"

Can add numbers to end of string for darker colors,
e.g., "red2", "red3", "red4"

win = GraphWin()
win.setBackground("purple™)

Does not return anything to shell

Called for change in win's state, i.e., this method is a
mutator
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General Categories of Methods

Accessor
Returns information about the object
Example: getWidth()

Mutator

Changes the state of the object
i.e., changes something about the object
Example: setBackground()
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What Does This Code Do?

Use OO terminology previously defined

from graphics import *

win = GraphWin("My Circle", 200, 200)
point = Point(100,100)

c = Circle(point, 10)

c.draw(win)

win.getMouse()

graphics_test.py
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What Does This Code Do?

Use OO terminology previously defined
Need to import the code from graphics.py into our program
~\\‘Mcr'om graphics import *

Constructor

win = GraphWin("My Circle", 200, 200)
Graphifin = point = Point(100, 100)
object c = Circle(point, 10)
Also known asan c.draw(win)
instance of the win.getMouse()

GraphWin class .
Method called on GraphWin object

Note: Class names start with capital letters,
Jan 16, 2019 Method names start with lowercase letters
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Benefits of Object-Oriented Programming

Abstraction
» Hides details of underlying implementation
» Easier to change implementation

Easy reuse of code
» Can import the library in multiple files
Collects related data/methods together
» Easier to reason about data

Less code in main program
» Our program code is relatively simple
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What objects make up this image?
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Looking Ahead
Lab 1 due Friday

Broader Issue write up due Friday
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